• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains small standalone helper functions and enum definitions for
11 // the X86 target useful for the compiler back-end and the MC libraries.
12 // As such, it deliberately does not include references to LLVM core
13 // code gen types, passes, etc..
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef X86BASEINFO_H
18 #define X86BASEINFO_H
19 
20 #include "X86MCTargetDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 
24 namespace llvm {
25 
26 namespace X86 {
27   // Enums for memory operand decoding.  Each memory operand is represented with
28   // a 5 operand sequence in the form:
29   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30   // These enums help decode this.
31   enum {
32     AddrBaseReg = 0,
33     AddrScaleAmt = 1,
34     AddrIndexReg = 2,
35     AddrDisp = 3,
36 
37     /// AddrSegmentReg - The operand # of the segment in the memory operand.
38     AddrSegmentReg = 4,
39 
40     /// AddrNumOperands - Total number of operands in a memory reference.
41     AddrNumOperands = 5
42   };
43 } // end namespace X86;
44 
45 
46 /// X86II - This namespace holds all of the target specific flags that
47 /// instruction info tracks.
48 ///
49 namespace X86II {
50   /// Target Operand Flag enum.
51   enum TOF {
52     //===------------------------------------------------------------------===//
53     // X86 Specific MachineOperand flags.
54 
55     MO_NO_FLAG,
56 
57     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58     /// relocation of:
59     ///    SYMBOL_LABEL + [. - PICBASELABEL]
60     MO_GOT_ABSOLUTE_ADDRESS,
61 
62     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63     /// immediate should get the value of the symbol minus the PIC base label:
64     ///    SYMBOL_LABEL - PICBASELABEL
65     MO_PIC_BASE_OFFSET,
66 
67     /// MO_GOT - On a symbol operand this indicates that the immediate is the
68     /// offset to the GOT entry for the symbol name from the base of the GOT.
69     ///
70     /// See the X86-64 ELF ABI supplement for more details.
71     ///    SYMBOL_LABEL @GOT
72     MO_GOT,
73 
74     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75     /// the offset to the location of the symbol name from the base of the GOT.
76     ///
77     /// See the X86-64 ELF ABI supplement for more details.
78     ///    SYMBOL_LABEL @GOTOFF
79     MO_GOTOFF,
80 
81     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82     /// offset to the GOT entry for the symbol name from the current code
83     /// location.
84     ///
85     /// See the X86-64 ELF ABI supplement for more details.
86     ///    SYMBOL_LABEL @GOTPCREL
87     MO_GOTPCREL,
88 
89     /// MO_PLT - On a symbol operand this indicates that the immediate is
90     /// offset to the PLT entry of symbol name from the current code location.
91     ///
92     /// See the X86-64 ELF ABI supplement for more details.
93     ///    SYMBOL_LABEL @PLT
94     MO_PLT,
95 
96     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
97     /// the offset of the GOT entry with the TLS index structure that contains
98     /// the module number and variable offset for the symbol. Used in the
99     /// general dynamic TLS access model.
100     ///
101     /// See 'ELF Handling for Thread-Local Storage' for more details.
102     ///    SYMBOL_LABEL @TLSGD
103     MO_TLSGD,
104 
105     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
106     /// the offset of the GOT entry with the TLS index for the module that
107     /// contains the symbol. When this index is passed to a call to
108     /// __tls_get_addr, the function will return the base address of the TLS
109     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
110     ///
111     /// See 'ELF Handling for Thread-Local Storage' for more details.
112     ///    SYMBOL_LABEL @TLSLD
113     MO_TLSLD,
114 
115     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
116     /// the offset of the GOT entry with the TLS index for the module that
117     /// contains the symbol. When this index is passed to a call to
118     /// ___tls_get_addr, the function will return the base address of the TLS
119     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
120     ///
121     /// See 'ELF Handling for Thread-Local Storage' for more details.
122     ///    SYMBOL_LABEL @TLSLDM
123     MO_TLSLDM,
124 
125     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126     /// the offset of the GOT entry with the thread-pointer offset for the
127     /// symbol. Used in the x86-64 initial exec TLS access model.
128     ///
129     /// See 'ELF Handling for Thread-Local Storage' for more details.
130     ///    SYMBOL_LABEL @GOTTPOFF
131     MO_GOTTPOFF,
132 
133     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
134     /// the absolute address of the GOT entry with the negative thread-pointer
135     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
136     /// model.
137     ///
138     /// See 'ELF Handling for Thread-Local Storage' for more details.
139     ///    SYMBOL_LABEL @INDNTPOFF
140     MO_INDNTPOFF,
141 
142     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
143     /// the thread-pointer offset for the symbol. Used in the x86-64 local
144     /// exec TLS access model.
145     ///
146     /// See 'ELF Handling for Thread-Local Storage' for more details.
147     ///    SYMBOL_LABEL @TPOFF
148     MO_TPOFF,
149 
150     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
151     /// the offset of the GOT entry with the TLS offset of the symbol. Used
152     /// in the local dynamic TLS access model.
153     ///
154     /// See 'ELF Handling for Thread-Local Storage' for more details.
155     ///    SYMBOL_LABEL @DTPOFF
156     MO_DTPOFF,
157 
158     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
159     /// the negative thread-pointer offset for the symbol. Used in the IA32
160     /// local exec TLS access model.
161     ///
162     /// See 'ELF Handling for Thread-Local Storage' for more details.
163     ///    SYMBOL_LABEL @NTPOFF
164     MO_NTPOFF,
165 
166     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
167     /// the offset of the GOT entry with the negative thread-pointer offset for
168     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
169     ///
170     /// See 'ELF Handling for Thread-Local Storage' for more details.
171     ///    SYMBOL_LABEL @GOTNTPOFF
172     MO_GOTNTPOFF,
173 
174     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
175     /// reference is actually to the "__imp_FOO" symbol.  This is used for
176     /// dllimport linkage on windows.
177     MO_DLLIMPORT,
178 
179     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
180     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
181     /// and jumps to external functions on Tiger and earlier.
182     MO_DARWIN_STUB,
183 
184     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
185     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
186     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
187     MO_DARWIN_NONLAZY,
188 
189     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
190     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
191     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
192     MO_DARWIN_NONLAZY_PIC_BASE,
193 
194     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
195     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
196     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
197     /// stub.
198     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
199 
200     /// MO_TLVP - On a symbol operand this indicates that the immediate is
201     /// some TLS offset.
202     ///
203     /// This is the TLS offset for the Darwin TLS mechanism.
204     MO_TLVP,
205 
206     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
207     /// is some TLS offset from the picbase.
208     ///
209     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
210     MO_TLVP_PIC_BASE,
211 
212     /// MO_SECREL - On a symbol operand this indicates that the immediate is
213     /// the offset from beginning of section.
214     ///
215     /// This is the TLS offset for the COFF/Windows TLS mechanism.
216     MO_SECREL
217   };
218 
219   enum {
220     //===------------------------------------------------------------------===//
221     // Instruction encodings.  These are the standard/most common forms for X86
222     // instructions.
223     //
224 
225     // PseudoFrm - This represents an instruction that is a pseudo instruction
226     // or one that has not been implemented yet.  It is illegal to code generate
227     // it, but tolerated for intermediate implementation stages.
228     Pseudo         = 0,
229 
230     /// Raw - This form is for instructions that don't have any operands, so
231     /// they are just a fixed opcode value, like 'leave'.
232     RawFrm         = 1,
233 
234     /// AddRegFrm - This form is used for instructions like 'push r32' that have
235     /// their one register operand added to their opcode.
236     AddRegFrm      = 2,
237 
238     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
239     /// to specify a destination, which in this case is a register.
240     ///
241     MRMDestReg     = 3,
242 
243     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
244     /// to specify a destination, which in this case is memory.
245     ///
246     MRMDestMem     = 4,
247 
248     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
249     /// to specify a source, which in this case is a register.
250     ///
251     MRMSrcReg      = 5,
252 
253     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
254     /// to specify a source, which in this case is memory.
255     ///
256     MRMSrcMem      = 6,
257 
258     /// MRM[0-7][rm] - These forms are used to represent instructions that use
259     /// a Mod/RM byte, and use the middle field to hold extended opcode
260     /// information.  In the intel manual these are represented as /0, /1, ...
261     ///
262 
263     // First, instructions that operate on a register r/m operand...
264     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
265     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
266 
267     // Next, instructions that operate on a memory r/m operand...
268     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
269     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
270 
271     // MRMInitReg - This form is used for instructions whose source and
272     // destinations are the same register.
273     MRMInitReg = 32,
274 
275     //// MRM_XX - A mod/rm byte of exactly 0xXX.
276     MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36,
277     MRM_C8 = 37, MRM_C9 = 38, MRM_E8 = 39, MRM_F0 = 40,
278     MRM_F8 = 41, MRM_F9 = 42, MRM_D0 = 45, MRM_D1 = 46,
279     MRM_D4 = 47, MRM_D5 = 48, MRM_D8 = 49, MRM_D9 = 50,
280     MRM_DA = 51, MRM_DB = 52, MRM_DC = 53, MRM_DD = 54,
281     MRM_DE = 55, MRM_DF = 56,
282 
283     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
284     /// immediates, the first of which is a 16-bit immediate (specified by
285     /// the imm encoding) and the second is a 8-bit fixed value.
286     RawFrmImm8 = 43,
287 
288     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
289     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
290     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
291     /// manual, this operand is described as pntr16:32 and pntr16:16
292     RawFrmImm16 = 44,
293 
294     FormMask       = 63,
295 
296     //===------------------------------------------------------------------===//
297     // Actual flags...
298 
299     // OpSize - Set if this instruction requires an operand size prefix (0x66),
300     // which most often indicates that the instruction operates on 16 bit data
301     // instead of 32 bit data.
302     OpSize      = 1 << 6,
303 
304     // AsSize - Set if this instruction requires an operand size prefix (0x67),
305     // which most often indicates that the instruction address 16 bit address
306     // instead of 32 bit address (or 32 bit address in 64 bit mode).
307     AdSize      = 1 << 7,
308 
309     //===------------------------------------------------------------------===//
310     // Op0Mask - There are several prefix bytes that are used to form two byte
311     // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
312     // used to obtain the setting of this field.  If no bits in this field is
313     // set, there is no prefix byte for obtaining a multibyte opcode.
314     //
315     Op0Shift    = 8,
316     Op0Mask     = 0x1F << Op0Shift,
317 
318     // TB - TwoByte - Set if this instruction has a two byte opcode, which
319     // starts with a 0x0F byte before the real opcode.
320     TB          = 1 << Op0Shift,
321 
322     // REP - The 0xF3 prefix byte indicating repetition of the following
323     // instruction.
324     REP         = 2 << Op0Shift,
325 
326     // D8-DF - These escape opcodes are used by the floating point unit.  These
327     // values must remain sequential.
328     D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
329     DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
330     DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
331     DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
332 
333     // XS, XD - These prefix codes are for single and double precision scalar
334     // floating point operations performed in the SSE registers.
335     XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
336 
337     // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
338     T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
339     A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift,
340 
341     // T8XD - Prefix before and after 0x0F. Combination of T8 and XD.
342     T8XD = 17 << Op0Shift,
343 
344     // T8XS - Prefix before and after 0x0F. Combination of T8 and XS.
345     T8XS = 18 << Op0Shift,
346 
347     // TAXD - Prefix before and after 0x0F. Combination of TA and XD.
348     TAXD = 19 << Op0Shift,
349 
350     // XOP8 - Prefix to include use of imm byte.
351     XOP8 = 20 << Op0Shift,
352 
353     // XOP9 - Prefix to exclude use of imm byte.
354     XOP9 = 21 << Op0Shift,
355 
356     //===------------------------------------------------------------------===//
357     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
358     // They are used to specify GPRs and SSE registers, 64-bit operand size,
359     // etc. We only cares about REX.W and REX.R bits and only the former is
360     // statically determined.
361     //
362     REXShift    = Op0Shift + 5,
363     REX_W       = 1 << REXShift,
364 
365     //===------------------------------------------------------------------===//
366     // This three-bit field describes the size of an immediate operand.  Zero is
367     // unused so that we can tell if we forgot to set a value.
368     ImmShift = REXShift + 1,
369     ImmMask    = 7 << ImmShift,
370     Imm8       = 1 << ImmShift,
371     Imm8PCRel  = 2 << ImmShift,
372     Imm16      = 3 << ImmShift,
373     Imm16PCRel = 4 << ImmShift,
374     Imm32      = 5 << ImmShift,
375     Imm32PCRel = 6 << ImmShift,
376     Imm64      = 7 << ImmShift,
377 
378     //===------------------------------------------------------------------===//
379     // FP Instruction Classification...  Zero is non-fp instruction.
380 
381     // FPTypeMask - Mask for all of the FP types...
382     FPTypeShift = ImmShift + 3,
383     FPTypeMask  = 7 << FPTypeShift,
384 
385     // NotFP - The default, set for instructions that do not use FP registers.
386     NotFP      = 0 << FPTypeShift,
387 
388     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
389     ZeroArgFP  = 1 << FPTypeShift,
390 
391     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
392     OneArgFP   = 2 << FPTypeShift,
393 
394     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
395     // result back to ST(0).  For example, fcos, fsqrt, etc.
396     //
397     OneArgFPRW = 3 << FPTypeShift,
398 
399     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
400     // explicit argument, storing the result to either ST(0) or the implicit
401     // argument.  For example: fadd, fsub, fmul, etc...
402     TwoArgFP   = 4 << FPTypeShift,
403 
404     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
405     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
406     CompareFP  = 5 << FPTypeShift,
407 
408     // CondMovFP - "2 operand" floating point conditional move instructions.
409     CondMovFP  = 6 << FPTypeShift,
410 
411     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
412     SpecialFP  = 7 << FPTypeShift,
413 
414     // Lock prefix
415     LOCKShift = FPTypeShift + 3,
416     LOCK = 1 << LOCKShift,
417 
418     // Segment override prefixes. Currently we just need ability to address
419     // stuff in gs and fs segments.
420     SegOvrShift = LOCKShift + 1,
421     SegOvrMask  = 3 << SegOvrShift,
422     FS          = 1 << SegOvrShift,
423     GS          = 2 << SegOvrShift,
424 
425     // Execution domain for SSE instructions in bits 23, 24.
426     // 0 in bits 23-24 means normal, non-SSE instruction.
427     SSEDomainShift = SegOvrShift + 2,
428 
429     OpcodeShift   = SSEDomainShift + 2,
430 
431     //===------------------------------------------------------------------===//
432     /// VEX - The opcode prefix used by AVX instructions
433     VEXShift = OpcodeShift + 8,
434     VEX         = 1U << 0,
435 
436     /// VEX_W - Has a opcode specific functionality, but is used in the same
437     /// way as REX_W is for regular SSE instructions.
438     VEX_W       = 1U << 1,
439 
440     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
441     /// address instructions in SSE are represented as 3 address ones in AVX
442     /// and the additional register is encoded in VEX_VVVV prefix.
443     VEX_4V      = 1U << 2,
444 
445     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
446     /// operand 3 with VEX.vvvv.
447     VEX_4VOp3   = 1U << 3,
448 
449     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
450     /// must be encoded in the i8 immediate field. This usually happens in
451     /// instructions with 4 operands.
452     VEX_I8IMM   = 1U << 4,
453 
454     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
455     /// instruction uses 256-bit wide registers. This is usually auto detected
456     /// if a VR256 register is used, but some AVX instructions also have this
457     /// field marked when using a f256 memory references.
458     VEX_L       = 1U << 5,
459 
460     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
461     // prefix. Usually used for scalar instructions. Needed by disassembler.
462     VEX_LIG     = 1U << 6,
463 
464     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
465     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
466     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
467     /// storing a classifier in the imm8 field.  To simplify our implementation,
468     /// we handle this by storeing the classifier in the opcode field and using
469     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
470     Has3DNow0F0FOpcode = 1U << 7,
471 
472     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
473     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
474     MemOp4 = 1U << 8,
475 
476     /// XOP - Opcode prefix used by XOP instructions.
477     XOP = 1U << 9
478 
479   };
480 
481   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
482   // specified machine instruction.
483   //
getBaseOpcodeFor(uint64_t TSFlags)484   inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
485     return TSFlags >> X86II::OpcodeShift;
486   }
487 
hasImm(uint64_t TSFlags)488   inline bool hasImm(uint64_t TSFlags) {
489     return (TSFlags & X86II::ImmMask) != 0;
490   }
491 
492   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
493   /// of the specified instruction.
getSizeOfImm(uint64_t TSFlags)494   inline unsigned getSizeOfImm(uint64_t TSFlags) {
495     switch (TSFlags & X86II::ImmMask) {
496     default: llvm_unreachable("Unknown immediate size");
497     case X86II::Imm8:
498     case X86II::Imm8PCRel:  return 1;
499     case X86II::Imm16:
500     case X86II::Imm16PCRel: return 2;
501     case X86II::Imm32:
502     case X86II::Imm32PCRel: return 4;
503     case X86II::Imm64:      return 8;
504     }
505   }
506 
507   /// isImmPCRel - Return true if the immediate of the specified instruction's
508   /// TSFlags indicates that it is pc relative.
isImmPCRel(uint64_t TSFlags)509   inline unsigned isImmPCRel(uint64_t TSFlags) {
510     switch (TSFlags & X86II::ImmMask) {
511     default: llvm_unreachable("Unknown immediate size");
512     case X86II::Imm8PCRel:
513     case X86II::Imm16PCRel:
514     case X86II::Imm32PCRel:
515       return true;
516     case X86II::Imm8:
517     case X86II::Imm16:
518     case X86II::Imm32:
519     case X86II::Imm64:
520       return false;
521     }
522   }
523 
524   /// getMemoryOperandNo - The function returns the MCInst operand # for the
525   /// first field of the memory operand.  If the instruction doesn't have a
526   /// memory operand, this returns -1.
527   ///
528   /// Note that this ignores tied operands.  If there is a tied register which
529   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
530   /// counted as one operand.
531   ///
getMemoryOperandNo(uint64_t TSFlags,unsigned Opcode)532   inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
533     switch (TSFlags & X86II::FormMask) {
534     case X86II::MRMInitReg:
535         // FIXME: Remove this form.
536         return -1;
537     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
538     case X86II::Pseudo:
539     case X86II::RawFrm:
540     case X86II::AddRegFrm:
541     case X86II::MRMDestReg:
542     case X86II::MRMSrcReg:
543     case X86II::RawFrmImm8:
544     case X86II::RawFrmImm16:
545        return -1;
546     case X86II::MRMDestMem:
547       return 0;
548     case X86II::MRMSrcMem: {
549       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
550       bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
551       unsigned FirstMemOp = 1;
552       if (HasVEX_4V)
553         ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
554       if (HasMemOp4)
555         ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
556 
557       // FIXME: Maybe lea should have its own form?  This is a horrible hack.
558       //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
559       //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
560       return FirstMemOp;
561     }
562     case X86II::MRM0r: case X86II::MRM1r:
563     case X86II::MRM2r: case X86II::MRM3r:
564     case X86II::MRM4r: case X86II::MRM5r:
565     case X86II::MRM6r: case X86II::MRM7r:
566       return -1;
567     case X86II::MRM0m: case X86II::MRM1m:
568     case X86II::MRM2m: case X86II::MRM3m:
569     case X86II::MRM4m: case X86II::MRM5m:
570     case X86II::MRM6m: case X86II::MRM7m: {
571       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
572       unsigned FirstMemOp = 0;
573       if (HasVEX_4V)
574         ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
575       return FirstMemOp;
576     }
577     case X86II::MRM_C1: case X86II::MRM_C2:
578     case X86II::MRM_C3: case X86II::MRM_C4:
579     case X86II::MRM_C8: case X86II::MRM_C9:
580     case X86II::MRM_E8: case X86II::MRM_F0:
581     case X86II::MRM_F8: case X86II::MRM_F9:
582     case X86II::MRM_D0: case X86II::MRM_D1:
583     case X86II::MRM_D4: case X86II::MRM_D5:
584     case X86II::MRM_D8: case X86II::MRM_D9:
585     case X86II::MRM_DA: case X86II::MRM_DB:
586     case X86II::MRM_DC: case X86II::MRM_DD:
587     case X86II::MRM_DE: case X86II::MRM_DF:
588       return -1;
589     }
590   }
591 
592   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
593   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
isX86_64ExtendedReg(unsigned RegNo)594   inline bool isX86_64ExtendedReg(unsigned RegNo) {
595     switch (RegNo) {
596     default: break;
597     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
598     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
599     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
600     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
601     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
602     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
603     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
604     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
605     case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
606     case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
607     case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
608     case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
609     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
610     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
611         return true;
612     }
613     return false;
614   }
615 
isX86_64NonExtLowByteReg(unsigned reg)616   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
617     return (reg == X86::SPL || reg == X86::BPL ||
618             reg == X86::SIL || reg == X86::DIL);
619   }
620 }
621 
622 } // end namespace llvm;
623 
624 #endif
625