• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* libs/pixelflinger/codeflinger/MIPSAssembler.cpp
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 
19 /* MIPS assembler and ARM->MIPS assembly translator
20 **
21 ** The approach is to leave the GGLAssembler and associated files largely
22 ** un-changed, still utilizing all Arm instruction generation. Via the
23 ** ArmToMipsAssembler (subclassed from ArmAssemblerInterface) each Arm
24 ** instruction is translated to one or more Mips instructions as necessary. This
25 ** is clearly less efficient than a direct implementation within the
26 ** GGLAssembler, but is far cleaner, more maintainable, and has yielded very
27 ** significant performance gains on Mips compared to the generic pixel pipeline.
28 **
29 **
30 ** GGLAssembler changes
31 **
32 ** - The register allocator has been modified to re-map Arm registers 0-15 to mips
33 ** registers 2-17. Mips register 0 cannot be used as general-purpose register,
34 ** and register 1 has traditional uses as a short-term temporary.
35 **
36 ** - Added some early bailouts for OUT_OF_REGISTERS in texturing.cpp and
37 ** GGLAssembler.cpp, since this is not fatal, and can be retried at lower
38 ** optimization level.
39 **
40 **
41 ** ARMAssembler and ARMAssemblerInterface changes
42 **
43 ** Refactored ARM address-mode static functions (imm(), reg_imm(), imm12_pre(), etc.)
44 ** to virtual, so they can be overridden in MIPSAssembler. The implementation of these
45 ** functions on ARM is moved from ARMAssemblerInterface.cpp to ARMAssembler.cpp, and
46 ** is unchanged from the original. (This required duplicating 2 of these as static
47 ** functions in ARMAssemblerInterface.cpp so they could be used as static initializers).
48 */
49 
50 
51 #define LOG_TAG "MIPSAssembler"
52 
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <cutils/log.h>
56 #include <cutils/properties.h>
57 
58 #if defined(WITH_LIB_HARDWARE)
59 #include <hardware_legacy/qemu_tracing.h>
60 #endif
61 
62 #include <private/pixelflinger/ggl_context.h>
63 
64 #include "MIPSAssembler.h"
65 #include "CodeCache.h"
66 #include "mips_disassem.h"
67 
68 // Choose MIPS arch variant following gcc flags
69 #if defined(__mips__) && __mips==32 && __mips_isa_rev>=2
70 #define mips32r2 1
71 #else
72 #define mips32r2 0
73 #endif
74 
75 
76 #define NOT_IMPLEMENTED()  LOG_ALWAYS_FATAL("Arm instruction %s not yet implemented\n", __func__)
77 
78 
79 
80 // ----------------------------------------------------------------------------
81 
82 namespace android {
83 
84 // ----------------------------------------------------------------------------
85 #if 0
86 #pragma mark -
87 #pragma mark ArmToMipsAssembler...
88 #endif
89 
ArmToMipsAssembler(const sp<Assembly> & assembly,char * abuf,int linesz,int instr_count)90 ArmToMipsAssembler::ArmToMipsAssembler(const sp<Assembly>& assembly,
91                                        char *abuf, int linesz, int instr_count)
92     :   ARMAssemblerInterface(),
93         mArmDisassemblyBuffer(abuf),
94         mArmLineLength(linesz),
95         mArmInstrCount(instr_count),
96         mInum(0),
97         mAssembly(assembly)
98 {
99     mMips = new MIPSAssembler(assembly, this);
100     mArmPC = (uint32_t **) malloc(ARM_MAX_INSTUCTIONS * sizeof(uint32_t *));
101     init_conditional_labels();
102 }
103 
~ArmToMipsAssembler()104 ArmToMipsAssembler::~ArmToMipsAssembler()
105 {
106     delete mMips;
107     free((void *) mArmPC);
108 }
109 
pc() const110 uint32_t* ArmToMipsAssembler::pc() const
111 {
112     return mMips->pc();
113 }
114 
base() const115 uint32_t* ArmToMipsAssembler::base() const
116 {
117     return mMips->base();
118 }
119 
reset()120 void ArmToMipsAssembler::reset()
121 {
122     cond.labelnum = 0;
123     mInum = 0;
124     mMips->reset();
125 }
126 
getCodegenArch()127 int ArmToMipsAssembler::getCodegenArch()
128 {
129     return CODEGEN_ARCH_MIPS;
130 }
131 
comment(const char * string)132 void ArmToMipsAssembler::comment(const char* string)
133 {
134     mMips->comment(string);
135 }
136 
label(const char * theLabel)137 void ArmToMipsAssembler::label(const char* theLabel)
138 {
139     mMips->label(theLabel);
140 }
141 
disassemble(const char * name)142 void ArmToMipsAssembler::disassemble(const char* name)
143 {
144     mMips->disassemble(name);
145 }
146 
init_conditional_labels()147 void ArmToMipsAssembler::init_conditional_labels()
148 {
149     int i;
150     for (i=0;i<99; ++i) {
151         sprintf(cond.label[i], "cond_%d", i);
152     }
153 }
154 
155 
156 
157 #if 0
158 #pragma mark -
159 #pragma mark Prolog/Epilog & Generate...
160 #endif
161 
prolog()162 void ArmToMipsAssembler::prolog()
163 {
164     mArmPC[mInum++] = pc();  // save starting PC for this instr
165 
166     mMips->ADDIU(R_sp, R_sp, -(5 * 4));
167     mMips->SW(R_s0, R_sp, 0);
168     mMips->SW(R_s1, R_sp, 4);
169     mMips->SW(R_s2, R_sp, 8);
170     mMips->SW(R_s3, R_sp, 12);
171     mMips->SW(R_s4, R_sp, 16);
172     mMips->MOVE(R_v0, R_a0);    // move context * passed in a0 to v0 (arm r0)
173 }
174 
epilog(uint32_t touched)175 void ArmToMipsAssembler::epilog(uint32_t touched)
176 {
177     mArmPC[mInum++] = pc();  // save starting PC for this instr
178 
179     mMips->LW(R_s0, R_sp, 0);
180     mMips->LW(R_s1, R_sp, 4);
181     mMips->LW(R_s2, R_sp, 8);
182     mMips->LW(R_s3, R_sp, 12);
183     mMips->LW(R_s4, R_sp, 16);
184     mMips->ADDIU(R_sp, R_sp, (5 * 4));
185     mMips->JR(R_ra);
186 
187 }
188 
generate(const char * name)189 int ArmToMipsAssembler::generate(const char* name)
190 {
191     return mMips->generate(name);
192 }
193 
pcForLabel(const char * label)194 uint32_t* ArmToMipsAssembler::pcForLabel(const char* label)
195 {
196     return mMips->pcForLabel(label);
197 }
198 
199 
200 
201 //----------------------------------------------------------
202 
203 #if 0
204 #pragma mark -
205 #pragma mark Addressing modes & shifters...
206 #endif
207 
208 
209 // do not need this for MIPS, but it is in the Interface (virtual)
buildImmediate(uint32_t immediate,uint32_t & rot,uint32_t & imm)210 int ArmToMipsAssembler::buildImmediate(
211         uint32_t immediate, uint32_t& rot, uint32_t& imm)
212 {
213     // for MIPS, any 32-bit immediate is OK
214     rot = 0;
215     imm = immediate;
216     return 0;
217 }
218 
219 // shifters...
220 
isValidImmediate(uint32_t immediate)221 bool ArmToMipsAssembler::isValidImmediate(uint32_t immediate)
222 {
223     // for MIPS, any 32-bit immediate is OK
224     return true;
225 }
226 
imm(uint32_t immediate)227 uint32_t ArmToMipsAssembler::imm(uint32_t immediate)
228 {
229     // ALOGW("immediate value %08x at pc %08x\n", immediate, (int)pc());
230     amode.value = immediate;
231     return AMODE_IMM;
232 }
233 
reg_imm(int Rm,int type,uint32_t shift)234 uint32_t ArmToMipsAssembler::reg_imm(int Rm, int type, uint32_t shift)
235 {
236     amode.reg = Rm;
237     amode.stype = type;
238     amode.value = shift;
239     return AMODE_REG_IMM;
240 }
241 
reg_rrx(int Rm)242 uint32_t ArmToMipsAssembler::reg_rrx(int Rm)
243 {
244     // reg_rrx mode is not used in the GLLAssember code at this time
245     return AMODE_UNSUPPORTED;
246 }
247 
reg_reg(int Rm,int type,int Rs)248 uint32_t ArmToMipsAssembler::reg_reg(int Rm, int type, int Rs)
249 {
250     // reg_reg mode is not used in the GLLAssember code at this time
251     return AMODE_UNSUPPORTED;
252 }
253 
254 
255 // addressing modes...
256 // LDR(B)/STR(B)/PLD (immediate and Rm can be negative, which indicate U=0)
immed12_pre(int32_t immed12,int W)257 uint32_t ArmToMipsAssembler::immed12_pre(int32_t immed12, int W)
258 {
259     LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
260                         "LDR(B)/STR(B)/PLD immediate too big (%08x)",
261                         immed12);
262     amode.value = immed12;
263     amode.writeback = W;
264     return AMODE_IMM_12_PRE;
265 }
266 
immed12_post(int32_t immed12)267 uint32_t ArmToMipsAssembler::immed12_post(int32_t immed12)
268 {
269     LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
270                         "LDR(B)/STR(B)/PLD immediate too big (%08x)",
271                         immed12);
272 
273     amode.value = immed12;
274     return AMODE_IMM_12_POST;
275 }
276 
reg_scale_pre(int Rm,int type,uint32_t shift,int W)277 uint32_t ArmToMipsAssembler::reg_scale_pre(int Rm, int type,
278         uint32_t shift, int W)
279 {
280     LOG_ALWAYS_FATAL_IF(W | type | shift, "reg_scale_pre adv modes not yet implemented");
281 
282     amode.reg = Rm;
283     // amode.stype = type;      // more advanced modes not used in GGLAssembler yet
284     // amode.value = shift;
285     // amode.writeback = W;
286     return AMODE_REG_SCALE_PRE;
287 }
288 
reg_scale_post(int Rm,int type,uint32_t shift)289 uint32_t ArmToMipsAssembler::reg_scale_post(int Rm, int type, uint32_t shift)
290 {
291     LOG_ALWAYS_FATAL("adr mode reg_scale_post not yet implemented\n");
292     return AMODE_UNSUPPORTED;
293 }
294 
295 // LDRH/LDRSB/LDRSH/STRH (immediate and Rm can be negative, which indicate U=0)
immed8_pre(int32_t immed8,int W)296 uint32_t ArmToMipsAssembler::immed8_pre(int32_t immed8, int W)
297 {
298     // uint32_t offset = abs(immed8);
299 
300     LOG_ALWAYS_FATAL("adr mode immed8_pre not yet implemented\n");
301 
302     LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
303                         "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
304                         immed8);
305     return AMODE_IMM_8_PRE;
306 }
307 
immed8_post(int32_t immed8)308 uint32_t ArmToMipsAssembler::immed8_post(int32_t immed8)
309 {
310     // uint32_t offset = abs(immed8);
311 
312     LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
313                         "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
314                         immed8);
315     amode.value = immed8;
316     return AMODE_IMM_8_POST;
317 }
318 
reg_pre(int Rm,int W)319 uint32_t ArmToMipsAssembler::reg_pre(int Rm, int W)
320 {
321     LOG_ALWAYS_FATAL_IF(W, "reg_pre writeback not yet implemented");
322     amode.reg = Rm;
323     return AMODE_REG_PRE;
324 }
325 
reg_post(int Rm)326 uint32_t ArmToMipsAssembler::reg_post(int Rm)
327 {
328     LOG_ALWAYS_FATAL("adr mode reg_post not yet implemented\n");
329     return AMODE_UNSUPPORTED;
330 }
331 
332 
333 
334 // ----------------------------------------------------------------------------
335 
336 #if 0
337 #pragma mark -
338 #pragma mark Data Processing...
339 #endif
340 
341 
342 static const char * const dpOpNames[] = {
343     "AND", "EOR", "SUB", "RSB", "ADD", "ADC", "SBC", "RSC",
344     "TST", "TEQ", "CMP", "CMN", "ORR", "MOV", "BIC", "MVN"
345 };
346 
347 // check if the operand registers from a previous CMP or S-bit instruction
348 // would be overwritten by this instruction. If so, move the value to a
349 // safe register.
350 // Note that we cannot tell at _this_ instruction time if a future (conditional)
351 // instruction will _also_ use this value (a defect of the simple 1-pass, one-
352 // instruction-at-a-time translation). Therefore we must be conservative and
353 // save the value before it is overwritten. This costs an extra MOVE instr.
354 
protectConditionalOperands(int Rd)355 void ArmToMipsAssembler::protectConditionalOperands(int Rd)
356 {
357     if (Rd == cond.r1) {
358         mMips->MOVE(R_cmp, cond.r1);
359         cond.r1 = R_cmp;
360     }
361     if (cond.type == CMP_COND && Rd == cond.r2) {
362         mMips->MOVE(R_cmp2, cond.r2);
363         cond.r2 = R_cmp2;
364     }
365 }
366 
367 
368 // interprets the addressing mode, and generates the common code
369 // used by the majority of data-processing ops. Many MIPS instructions
370 // have a register-based form and a different immediate form. See
371 // opAND below for an example. (this could be inlined)
372 //
373 // this works with the imm(), reg_imm() methods above, which are directly
374 // called by the GLLAssembler.
375 // note: _signed parameter defaults to false (un-signed)
376 // note: tmpReg parameter defaults to 1, MIPS register AT
dataProcAdrModes(int op,int & source,bool _signed,int tmpReg)377 int ArmToMipsAssembler::dataProcAdrModes(int op, int& source, bool _signed, int tmpReg)
378 {
379     if (op < AMODE_REG) {
380         source = op;
381         return SRC_REG;
382     } else if (op == AMODE_IMM) {
383         if ((!_signed && amode.value > 0xffff)
384                 || (_signed && ((int)amode.value < -32768 || (int)amode.value > 32767) )) {
385             mMips->LUI(tmpReg, (amode.value >> 16));
386             if (amode.value & 0x0000ffff) {
387                 mMips->ORI(tmpReg, tmpReg, (amode.value & 0x0000ffff));
388             }
389             source = tmpReg;
390             return SRC_REG;
391         } else {
392             source = amode.value;
393             return SRC_IMM;
394         }
395     } else if (op == AMODE_REG_IMM) {
396         switch (amode.stype) {
397             case LSL: mMips->SLL(tmpReg, amode.reg, amode.value); break;
398             case LSR: mMips->SRL(tmpReg, amode.reg, amode.value); break;
399             case ASR: mMips->SRA(tmpReg, amode.reg, amode.value); break;
400             case ROR: if (mips32r2) {
401                           mMips->ROTR(tmpReg, amode.reg, amode.value);
402                       } else {
403                           mMips->RORIsyn(tmpReg, amode.reg, amode.value);
404                       }
405                       break;
406         }
407         source = tmpReg;
408         return SRC_REG;
409     } else {  // adr mode RRX is not used in GGL Assembler at this time
410         // we are screwed, this should be exception, assert-fail or something
411         LOG_ALWAYS_FATAL("adr mode reg_rrx not yet implemented\n");
412         return SRC_ERROR;
413     }
414 }
415 
416 
dataProcessing(int opcode,int cc,int s,int Rd,int Rn,uint32_t Op2)417 void ArmToMipsAssembler::dataProcessing(int opcode, int cc,
418         int s, int Rd, int Rn, uint32_t Op2)
419 {
420     int src;    // src is modified by dataProcAdrModes() - passed as int&
421 
422 
423     if (cc != AL) {
424         protectConditionalOperands(Rd);
425         // the branch tests register(s) set by prev CMP or instr with 'S' bit set
426         // inverse the condition to jump past this conditional instruction
427         ArmToMipsAssembler::B(cc^1, cond.label[++cond.labelnum]);
428     } else {
429         mArmPC[mInum++] = pc();  // save starting PC for this instr
430     }
431 
432     switch (opcode) {
433     case opAND:
434         if (dataProcAdrModes(Op2, src) == SRC_REG) {
435             mMips->AND(Rd, Rn, src);
436         } else {                        // adr mode was SRC_IMM
437             mMips->ANDI(Rd, Rn, src);
438         }
439         break;
440 
441     case opADD:
442         // set "signed" to true for adr modes
443         if (dataProcAdrModes(Op2, src, true) == SRC_REG) {
444             mMips->ADDU(Rd, Rn, src);
445         } else {                        // adr mode was SRC_IMM
446             mMips->ADDIU(Rd, Rn, src);
447         }
448         break;
449 
450     case opSUB:
451         // set "signed" to true for adr modes
452         if (dataProcAdrModes(Op2, src, true) == SRC_REG) {
453             mMips->SUBU(Rd, Rn, src);
454         } else {                        // adr mode was SRC_IMM
455             mMips->SUBIU(Rd, Rn, src);
456         }
457         break;
458 
459     case opEOR:
460         if (dataProcAdrModes(Op2, src) == SRC_REG) {
461             mMips->XOR(Rd, Rn, src);
462         } else {                        // adr mode was SRC_IMM
463             mMips->XORI(Rd, Rn, src);
464         }
465         break;
466 
467     case opORR:
468         if (dataProcAdrModes(Op2, src) == SRC_REG) {
469             mMips->OR(Rd, Rn, src);
470         } else {                        // adr mode was SRC_IMM
471             mMips->ORI(Rd, Rn, src);
472         }
473         break;
474 
475     case opBIC:
476         if (dataProcAdrModes(Op2, src) == SRC_IMM) {
477             // if we are 16-bit imnmediate, load to AT reg
478             mMips->ORI(R_at, 0, src);
479             src = R_at;
480         }
481         mMips->NOT(R_at, src);
482         mMips->AND(Rd, Rn, R_at);
483         break;
484 
485     case opRSB:
486         if (dataProcAdrModes(Op2, src) == SRC_IMM) {
487             // if we are 16-bit imnmediate, load to AT reg
488             mMips->ORI(R_at, 0, src);
489             src = R_at;
490         }
491         mMips->SUBU(Rd, src, Rn);   // subu with the parameters reversed
492         break;
493 
494     case opMOV:
495         if (Op2 < AMODE_REG) {  // op2 is reg # in this case
496             mMips->MOVE(Rd, Op2);
497         } else if (Op2 == AMODE_IMM) {
498             if (amode.value > 0xffff) {
499                 mMips->LUI(Rd, (amode.value >> 16));
500                 if (amode.value & 0x0000ffff) {
501                     mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff));
502                 }
503              } else {
504                 mMips->ORI(Rd, 0, amode.value);
505             }
506         } else if (Op2 == AMODE_REG_IMM) {
507             switch (amode.stype) {
508             case LSL: mMips->SLL(Rd, amode.reg, amode.value); break;
509             case LSR: mMips->SRL(Rd, amode.reg, amode.value); break;
510             case ASR: mMips->SRA(Rd, amode.reg, amode.value); break;
511             case ROR: if (mips32r2) {
512                           mMips->ROTR(Rd, amode.reg, amode.value);
513                       } else {
514                           mMips->RORIsyn(Rd, amode.reg, amode.value);
515                       }
516                       break;
517             }
518         }
519         else {
520             // adr mode RRX is not used in GGL Assembler at this time
521             mMips->UNIMPL();
522         }
523         break;
524 
525     case opMVN:     // this is a 1's complement: NOT
526         if (Op2 < AMODE_REG) {  // op2 is reg # in this case
527             mMips->NOR(Rd, Op2, 0);     // NOT is NOR with 0
528             break;
529         } else if (Op2 == AMODE_IMM) {
530             if (amode.value > 0xffff) {
531                 mMips->LUI(Rd, (amode.value >> 16));
532                 if (amode.value & 0x0000ffff) {
533                     mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff));
534                 }
535              } else {
536                 mMips->ORI(Rd, 0, amode.value);
537              }
538         } else if (Op2 == AMODE_REG_IMM) {
539             switch (amode.stype) {
540             case LSL: mMips->SLL(Rd, amode.reg, amode.value); break;
541             case LSR: mMips->SRL(Rd, amode.reg, amode.value); break;
542             case ASR: mMips->SRA(Rd, amode.reg, amode.value); break;
543             case ROR: if (mips32r2) {
544                           mMips->ROTR(Rd, amode.reg, amode.value);
545                       } else {
546                           mMips->RORIsyn(Rd, amode.reg, amode.value);
547                       }
548                       break;
549             }
550         }
551         else {
552             // adr mode RRX is not used in GGL Assembler at this time
553             mMips->UNIMPL();
554         }
555         mMips->NOR(Rd, Rd, 0);     // NOT is NOR with 0
556         break;
557 
558     case opCMP:
559         // Either operand of a CMP instr could get overwritten by a subsequent
560         // conditional instruction, which is ok, _UNLESS_ there is a _second_
561         // conditional instruction. Under MIPS, this requires doing the comparison
562         // again (SLT), and the original operands must be available. (and this
563         // pattern of multiple conditional instructions from same CMP _is_ used
564         // in GGL-Assembler)
565         //
566         // For now, if a conditional instr overwrites the operands, we will
567         // move them to dedicated temp regs. This is ugly, and inefficient,
568         // and should be optimized.
569         //
570         // WARNING: making an _Assumption_ that CMP operand regs will NOT be
571         // trashed by intervening NON-conditional instructions. In the general
572         // case this is legal, but it is NOT currently done in GGL-Assembler.
573 
574         cond.type = CMP_COND;
575         cond.r1 = Rn;
576         if (dataProcAdrModes(Op2, src, false, R_cmp2) == SRC_REG) {
577             cond.r2 = src;
578         } else {                        // adr mode was SRC_IMM
579             mMips->ORI(R_cmp2, R_zero, src);
580             cond.r2 = R_cmp2;
581         }
582 
583         break;
584 
585 
586     case opTST:
587     case opTEQ:
588     case opCMN:
589     case opADC:
590     case opSBC:
591     case opRSC:
592         mMips->UNIMPL(); // currently unused in GGL Assembler code
593         break;
594     }
595 
596     if (cc != AL) {
597         mMips->label(cond.label[cond.labelnum]);
598     }
599     if (s && opcode != opCMP) {
600         cond.type = SBIT_COND;
601         cond.r1 = Rd;
602     }
603 }
604 
605 
606 
607 #if 0
608 #pragma mark -
609 #pragma mark Multiply...
610 #endif
611 
612 // multiply, accumulate
MLA(int cc,int s,int Rd,int Rm,int Rs,int Rn)613 void ArmToMipsAssembler::MLA(int cc, int s,
614         int Rd, int Rm, int Rs, int Rn) {
615 
616     mArmPC[mInum++] = pc();  // save starting PC for this instr
617 
618     mMips->MUL(R_at, Rm, Rs);
619     mMips->ADDU(Rd, R_at, Rn);
620     if (s) {
621         cond.type = SBIT_COND;
622         cond.r1 = Rd;
623     }
624 }
625 
MUL(int cc,int s,int Rd,int Rm,int Rs)626 void ArmToMipsAssembler::MUL(int cc, int s,
627         int Rd, int Rm, int Rs) {
628     mArmPC[mInum++] = pc();
629     mMips->MUL(Rd, Rm, Rs);
630     if (s) {
631         cond.type = SBIT_COND;
632         cond.r1 = Rd;
633     }
634 }
635 
UMULL(int cc,int s,int RdLo,int RdHi,int Rm,int Rs)636 void ArmToMipsAssembler::UMULL(int cc, int s,
637         int RdLo, int RdHi, int Rm, int Rs) {
638     mArmPC[mInum++] = pc();
639     mMips->MULT(Rm, Rs);
640     mMips->MFHI(RdHi);
641     mMips->MFLO(RdLo);
642     if (s) {
643         cond.type = SBIT_COND;
644         cond.r1 = RdHi;     // BUG...
645         LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n");
646     }
647 }
648 
UMUAL(int cc,int s,int RdLo,int RdHi,int Rm,int Rs)649 void ArmToMipsAssembler::UMUAL(int cc, int s,
650         int RdLo, int RdHi, int Rm, int Rs) {
651     LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
652                         "UMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
653     // *mPC++ =    (cc<<28) | (1<<23) | (1<<21) | (s<<20) |
654     //             (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
655     mArmPC[mInum++] = pc();
656     mMips->NOP2();
657     NOT_IMPLEMENTED();
658     if (s) {
659         cond.type = SBIT_COND;
660         cond.r1 = RdHi;     // BUG...
661         LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n");
662     }
663 }
664 
SMULL(int cc,int s,int RdLo,int RdHi,int Rm,int Rs)665 void ArmToMipsAssembler::SMULL(int cc, int s,
666         int RdLo, int RdHi, int Rm, int Rs) {
667     LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
668                         "SMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
669     // *mPC++ =    (cc<<28) | (1<<23) | (1<<22) | (s<<20) |
670     //             (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
671     mArmPC[mInum++] = pc();
672     mMips->NOP2();
673     NOT_IMPLEMENTED();
674     if (s) {
675         cond.type = SBIT_COND;
676         cond.r1 = RdHi;     // BUG...
677         LOG_ALWAYS_FATAL("Condition on SMULL must be on 64-bit result\n");
678     }
679 }
SMUAL(int cc,int s,int RdLo,int RdHi,int Rm,int Rs)680 void ArmToMipsAssembler::SMUAL(int cc, int s,
681         int RdLo, int RdHi, int Rm, int Rs) {
682     LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
683                         "SMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
684     // *mPC++ =    (cc<<28) | (1<<23) | (1<<22) | (1<<21) | (s<<20) |
685     //             (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
686     mArmPC[mInum++] = pc();
687     mMips->NOP2();
688     NOT_IMPLEMENTED();
689     if (s) {
690         cond.type = SBIT_COND;
691         cond.r1 = RdHi;     // BUG...
692         LOG_ALWAYS_FATAL("Condition on SMUAL must be on 64-bit result\n");
693     }
694 }
695 
696 
697 
698 #if 0
699 #pragma mark -
700 #pragma mark Branches...
701 #endif
702 
703 // branches...
704 
B(int cc,const char * label)705 void ArmToMipsAssembler::B(int cc, const char* label)
706 {
707     mArmPC[mInum++] = pc();
708     if (cond.type == SBIT_COND) { cond.r2 = R_zero; }
709 
710     switch(cc) {
711         case EQ: mMips->BEQ(cond.r1, cond.r2, label); break;
712         case NE: mMips->BNE(cond.r1, cond.r2, label); break;
713         case HS: mMips->BGEU(cond.r1, cond.r2, label); break;
714         case LO: mMips->BLTU(cond.r1, cond.r2, label); break;
715         case MI: mMips->BLT(cond.r1, cond.r2, label); break;
716         case PL: mMips->BGE(cond.r1, cond.r2, label); break;
717 
718         case HI: mMips->BGTU(cond.r1, cond.r2, label); break;
719         case LS: mMips->BLEU(cond.r1, cond.r2, label); break;
720         case GE: mMips->BGE(cond.r1, cond.r2, label); break;
721         case LT: mMips->BLT(cond.r1, cond.r2, label); break;
722         case GT: mMips->BGT(cond.r1, cond.r2, label); break;
723         case LE: mMips->BLE(cond.r1, cond.r2, label); break;
724         case AL: mMips->B(label); break;
725         case NV: /* B Never - no instruction */ break;
726 
727         case VS:
728         case VC:
729         default:
730             LOG_ALWAYS_FATAL("Unsupported cc: %02x\n", cc);
731             break;
732     }
733 }
734 
BL(int cc,const char * label)735 void ArmToMipsAssembler::BL(int cc, const char* label)
736 {
737     LOG_ALWAYS_FATAL("branch-and-link not supported yet\n");
738     mArmPC[mInum++] = pc();
739 }
740 
741 // no use for Branches with integer PC, but they're in the Interface class ....
B(int cc,uint32_t * to_pc)742 void ArmToMipsAssembler::B(int cc, uint32_t* to_pc)
743 {
744     LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n");
745     mArmPC[mInum++] = pc();
746 }
747 
BL(int cc,uint32_t * to_pc)748 void ArmToMipsAssembler::BL(int cc, uint32_t* to_pc)
749 {
750     LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n");
751     mArmPC[mInum++] = pc();
752 }
753 
BX(int cc,int Rn)754 void ArmToMipsAssembler::BX(int cc, int Rn)
755 {
756     LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n");
757     mArmPC[mInum++] = pc();
758 }
759 
760 
761 
762 #if 0
763 #pragma mark -
764 #pragma mark Data Transfer...
765 #endif
766 
767 // data transfer...
LDR(int cc,int Rd,int Rn,uint32_t offset)768 void ArmToMipsAssembler::LDR(int cc, int Rd, int Rn, uint32_t offset)
769 {
770     mArmPC[mInum++] = pc();
771     // work-around for ARM default address mode of immed12_pre(0)
772     if (offset > AMODE_UNSUPPORTED) offset = 0;
773     switch (offset) {
774         case 0:
775             amode.value = 0;
776             amode.writeback = 0;
777             // fall thru to next case ....
778         case AMODE_IMM_12_PRE:
779             if (Rn == ARMAssemblerInterface::SP) {
780                 Rn = R_sp;      // convert LDR via Arm SP to LW via Mips SP
781             }
782             mMips->LW(Rd, Rn, amode.value);
783             if (amode.writeback) {      // OPTIONAL writeback on pre-index mode
784                 mMips->ADDIU(Rn, Rn, amode.value);
785             }
786             break;
787         case AMODE_IMM_12_POST:
788             if (Rn == ARMAssemblerInterface::SP) {
789                 Rn = R_sp;      // convert STR thru Arm SP to STR thru Mips SP
790             }
791             mMips->LW(Rd, Rn, 0);
792             mMips->ADDIU(Rn, Rn, amode.value);
793             break;
794         case AMODE_REG_SCALE_PRE:
795             // we only support simple base + index, no advanced modes for this one yet
796             mMips->ADDU(R_at, Rn, amode.reg);
797             mMips->LW(Rd, R_at, 0);
798             break;
799     }
800 }
801 
LDRB(int cc,int Rd,int Rn,uint32_t offset)802 void ArmToMipsAssembler::LDRB(int cc, int Rd, int Rn, uint32_t offset)
803 {
804     mArmPC[mInum++] = pc();
805     // work-around for ARM default address mode of immed12_pre(0)
806     if (offset > AMODE_UNSUPPORTED) offset = 0;
807     switch (offset) {
808         case 0:
809             amode.value = 0;
810             amode.writeback = 0;
811             // fall thru to next case ....
812         case AMODE_IMM_12_PRE:
813             mMips->LBU(Rd, Rn, amode.value);
814             if (amode.writeback) {      // OPTIONAL writeback on pre-index mode
815                 mMips->ADDIU(Rn, Rn, amode.value);
816             }
817             break;
818         case AMODE_IMM_12_POST:
819             mMips->LBU(Rd, Rn, 0);
820             mMips->ADDIU(Rn, Rn, amode.value);
821             break;
822         case AMODE_REG_SCALE_PRE:
823             // we only support simple base + index, no advanced modes for this one yet
824             mMips->ADDU(R_at, Rn, amode.reg);
825             mMips->LBU(Rd, R_at, 0);
826             break;
827     }
828 
829 }
830 
STR(int cc,int Rd,int Rn,uint32_t offset)831 void ArmToMipsAssembler::STR(int cc, int Rd, int Rn, uint32_t offset)
832 {
833     mArmPC[mInum++] = pc();
834     // work-around for ARM default address mode of immed12_pre(0)
835     if (offset > AMODE_UNSUPPORTED) offset = 0;
836     switch (offset) {
837         case 0:
838             amode.value = 0;
839             amode.writeback = 0;
840             // fall thru to next case ....
841         case AMODE_IMM_12_PRE:
842             if (Rn == ARMAssemblerInterface::SP) {
843                 Rn = R_sp;  // convert STR thru Arm SP to SW thru Mips SP
844             }
845             if (amode.writeback) {      // OPTIONAL writeback on pre-index mode
846                 // If we will writeback, then update the index reg, then store.
847                 // This correctly handles stack-push case.
848                 mMips->ADDIU(Rn, Rn, amode.value);
849                 mMips->SW(Rd, Rn, 0);
850             } else {
851                 // No writeback so store offset by value
852                 mMips->SW(Rd, Rn, amode.value);
853             }
854             break;
855         case AMODE_IMM_12_POST:
856             mMips->SW(Rd, Rn, 0);
857             mMips->ADDIU(Rn, Rn, amode.value);  // post index always writes back
858             break;
859         case AMODE_REG_SCALE_PRE:
860             // we only support simple base + index, no advanced modes for this one yet
861             mMips->ADDU(R_at, Rn, amode.reg);
862             mMips->SW(Rd, R_at, 0);
863             break;
864     }
865 }
866 
STRB(int cc,int Rd,int Rn,uint32_t offset)867 void ArmToMipsAssembler::STRB(int cc, int Rd, int Rn, uint32_t offset)
868 {
869     mArmPC[mInum++] = pc();
870     // work-around for ARM default address mode of immed12_pre(0)
871     if (offset > AMODE_UNSUPPORTED) offset = 0;
872     switch (offset) {
873         case 0:
874             amode.value = 0;
875             amode.writeback = 0;
876             // fall thru to next case ....
877         case AMODE_IMM_12_PRE:
878             mMips->SB(Rd, Rn, amode.value);
879             if (amode.writeback) {      // OPTIONAL writeback on pre-index mode
880                 mMips->ADDIU(Rn, Rn, amode.value);
881             }
882             break;
883         case AMODE_IMM_12_POST:
884             mMips->SB(Rd, Rn, 0);
885             mMips->ADDIU(Rn, Rn, amode.value);
886             break;
887         case AMODE_REG_SCALE_PRE:
888             // we only support simple base + index, no advanced modes for this one yet
889             mMips->ADDU(R_at, Rn, amode.reg);
890             mMips->SB(Rd, R_at, 0);
891             break;
892     }
893 }
894 
LDRH(int cc,int Rd,int Rn,uint32_t offset)895 void ArmToMipsAssembler::LDRH(int cc, int Rd, int Rn, uint32_t offset)
896 {
897     mArmPC[mInum++] = pc();
898     // work-around for ARM default address mode of immed8_pre(0)
899     if (offset > AMODE_UNSUPPORTED) offset = 0;
900     switch (offset) {
901         case 0:
902             amode.value = 0;
903             // fall thru to next case ....
904         case AMODE_IMM_8_PRE:      // no support yet for writeback
905             mMips->LHU(Rd, Rn, amode.value);
906             break;
907         case AMODE_IMM_8_POST:
908             mMips->LHU(Rd, Rn, 0);
909             mMips->ADDIU(Rn, Rn, amode.value);
910             break;
911         case AMODE_REG_PRE:
912             // we only support simple base +/- index
913             if (amode.reg >= 0) {
914                 mMips->ADDU(R_at, Rn, amode.reg);
915             } else {
916                 mMips->SUBU(R_at, Rn, abs(amode.reg));
917             }
918             mMips->LHU(Rd, R_at, 0);
919             break;
920     }
921 }
922 
LDRSB(int cc,int Rd,int Rn,uint32_t offset)923 void ArmToMipsAssembler::LDRSB(int cc, int Rd, int Rn, uint32_t offset)
924 {
925     mArmPC[mInum++] = pc();
926     mMips->NOP2();
927     NOT_IMPLEMENTED();
928 }
929 
LDRSH(int cc,int Rd,int Rn,uint32_t offset)930 void ArmToMipsAssembler::LDRSH(int cc, int Rd, int Rn, uint32_t offset)
931 {
932     mArmPC[mInum++] = pc();
933     mMips->NOP2();
934     NOT_IMPLEMENTED();
935 }
936 
STRH(int cc,int Rd,int Rn,uint32_t offset)937 void ArmToMipsAssembler::STRH(int cc, int Rd, int Rn, uint32_t offset)
938 {
939     mArmPC[mInum++] = pc();
940     // work-around for ARM default address mode of immed8_pre(0)
941     if (offset > AMODE_UNSUPPORTED) offset = 0;
942     switch (offset) {
943         case 0:
944             amode.value = 0;
945             // fall thru to next case ....
946         case AMODE_IMM_8_PRE:      // no support yet for writeback
947             mMips->SH(Rd, Rn, amode.value);
948             break;
949         case AMODE_IMM_8_POST:
950             mMips->SH(Rd, Rn, 0);
951             mMips->ADDIU(Rn, Rn, amode.value);
952             break;
953         case AMODE_REG_PRE:
954             // we only support simple base +/- index
955             if (amode.reg >= 0) {
956                 mMips->ADDU(R_at, Rn, amode.reg);
957             } else {
958                 mMips->SUBU(R_at, Rn, abs(amode.reg));
959             }
960             mMips->SH(Rd, R_at, 0);
961             break;
962     }
963 }
964 
965 
966 
967 #if 0
968 #pragma mark -
969 #pragma mark Block Data Transfer...
970 #endif
971 
972 // block data transfer...
LDM(int cc,int dir,int Rn,int W,uint32_t reg_list)973 void ArmToMipsAssembler::LDM(int cc, int dir,
974         int Rn, int W, uint32_t reg_list)
975 {   //                        ED FD EA FA      IB IA DB DA
976     // const uint8_t P[8] = { 1, 0, 1, 0,      1, 0, 1, 0 };
977     // const uint8_t U[8] = { 1, 1, 0, 0,      1, 1, 0, 0 };
978     // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
979     //         (uint32_t(U[dir])<<23) | (1<<20) | (W<<21) | (Rn<<16) | reg_list;
980     mArmPC[mInum++] = pc();
981     mMips->NOP2();
982     NOT_IMPLEMENTED();
983 }
984 
STM(int cc,int dir,int Rn,int W,uint32_t reg_list)985 void ArmToMipsAssembler::STM(int cc, int dir,
986         int Rn, int W, uint32_t reg_list)
987 {   //                        FA EA FD ED      IB IA DB DA
988     // const uint8_t P[8] = { 0, 1, 0, 1,      1, 0, 1, 0 };
989     // const uint8_t U[8] = { 0, 0, 1, 1,      1, 1, 0, 0 };
990     // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
991     //         (uint32_t(U[dir])<<23) | (0<<20) | (W<<21) | (Rn<<16) | reg_list;
992     mArmPC[mInum++] = pc();
993     mMips->NOP2();
994     NOT_IMPLEMENTED();
995 }
996 
997 
998 
999 #if 0
1000 #pragma mark -
1001 #pragma mark Special...
1002 #endif
1003 
1004 // special...
SWP(int cc,int Rn,int Rd,int Rm)1005 void ArmToMipsAssembler::SWP(int cc, int Rn, int Rd, int Rm) {
1006     // *mPC++ = (cc<<28) | (2<<23) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
1007     mArmPC[mInum++] = pc();
1008     mMips->NOP2();
1009     NOT_IMPLEMENTED();
1010 }
1011 
SWPB(int cc,int Rn,int Rd,int Rm)1012 void ArmToMipsAssembler::SWPB(int cc, int Rn, int Rd, int Rm) {
1013     // *mPC++ = (cc<<28) | (2<<23) | (1<<22) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
1014     mArmPC[mInum++] = pc();
1015     mMips->NOP2();
1016     NOT_IMPLEMENTED();
1017 }
1018 
SWI(int cc,uint32_t comment)1019 void ArmToMipsAssembler::SWI(int cc, uint32_t comment) {
1020     // *mPC++ = (cc<<28) | (0xF<<24) | comment;
1021     mArmPC[mInum++] = pc();
1022     mMips->NOP2();
1023     NOT_IMPLEMENTED();
1024 }
1025 
1026 
1027 #if 0
1028 #pragma mark -
1029 #pragma mark DSP instructions...
1030 #endif
1031 
1032 // DSP instructions...
PLD(int Rn,uint32_t offset)1033 void ArmToMipsAssembler::PLD(int Rn, uint32_t offset) {
1034     LOG_ALWAYS_FATAL_IF(!((offset&(1<<24)) && !(offset&(1<<21))),
1035                         "PLD only P=1, W=0");
1036     // *mPC++ = 0xF550F000 | (Rn<<16) | offset;
1037     mArmPC[mInum++] = pc();
1038     mMips->NOP2();
1039     NOT_IMPLEMENTED();
1040 }
1041 
CLZ(int cc,int Rd,int Rm)1042 void ArmToMipsAssembler::CLZ(int cc, int Rd, int Rm)
1043 {
1044     mArmPC[mInum++] = pc();
1045     mMips->CLZ(Rd, Rm);
1046 }
1047 
QADD(int cc,int Rd,int Rm,int Rn)1048 void ArmToMipsAssembler::QADD(int cc,  int Rd, int Rm, int Rn)
1049 {
1050     // *mPC++ = (cc<<28) | 0x1000050 | (Rn<<16) | (Rd<<12) | Rm;
1051     mArmPC[mInum++] = pc();
1052     mMips->NOP2();
1053     NOT_IMPLEMENTED();
1054 }
1055 
QDADD(int cc,int Rd,int Rm,int Rn)1056 void ArmToMipsAssembler::QDADD(int cc,  int Rd, int Rm, int Rn)
1057 {
1058     // *mPC++ = (cc<<28) | 0x1400050 | (Rn<<16) | (Rd<<12) | Rm;
1059     mArmPC[mInum++] = pc();
1060     mMips->NOP2();
1061     NOT_IMPLEMENTED();
1062 }
1063 
QSUB(int cc,int Rd,int Rm,int Rn)1064 void ArmToMipsAssembler::QSUB(int cc,  int Rd, int Rm, int Rn)
1065 {
1066     // *mPC++ = (cc<<28) | 0x1200050 | (Rn<<16) | (Rd<<12) | Rm;
1067     mArmPC[mInum++] = pc();
1068     mMips->NOP2();
1069     NOT_IMPLEMENTED();
1070 }
1071 
QDSUB(int cc,int Rd,int Rm,int Rn)1072 void ArmToMipsAssembler::QDSUB(int cc,  int Rd, int Rm, int Rn)
1073 {
1074     // *mPC++ = (cc<<28) | 0x1600050 | (Rn<<16) | (Rd<<12) | Rm;
1075     mArmPC[mInum++] = pc();
1076     mMips->NOP2();
1077     NOT_IMPLEMENTED();
1078 }
1079 
1080 // 16 x 16 signed multiply (like SMLAxx without the accumulate)
SMUL(int cc,int xy,int Rd,int Rm,int Rs)1081 void ArmToMipsAssembler::SMUL(int cc, int xy,
1082                 int Rd, int Rm, int Rs)
1083 {
1084     mArmPC[mInum++] = pc();
1085 
1086     // the 16 bits may be in the top or bottom half of 32-bit source reg,
1087     // as defined by the codes BB, BT, TB, TT (compressed param xy)
1088     // where x corresponds to Rm and y to Rs
1089 
1090     // select half-reg for Rm
1091     if (xy & xyTB) {
1092         // use top 16-bits
1093         mMips->SRA(R_at, Rm, 16);
1094     } else {
1095         // use bottom 16, but sign-extend to 32
1096         if (mips32r2) {
1097             mMips->SEH(R_at, Rm);
1098         } else {
1099             mMips->SLL(R_at, Rm, 16);
1100             mMips->SRA(R_at, R_at, 16);
1101         }
1102     }
1103     // select half-reg for Rs
1104     if (xy & xyBT) {
1105         // use top 16-bits
1106         mMips->SRA(R_at2, Rs, 16);
1107     } else {
1108         // use bottom 16, but sign-extend to 32
1109         if (mips32r2) {
1110             mMips->SEH(R_at2, Rs);
1111         } else {
1112             mMips->SLL(R_at2, Rs, 16);
1113             mMips->SRA(R_at2, R_at2, 16);
1114         }
1115     }
1116     mMips->MUL(Rd, R_at, R_at2);
1117 }
1118 
1119 // signed 32b x 16b multiple, save top 32-bits of 48-bit result
SMULW(int cc,int y,int Rd,int Rm,int Rs)1120 void ArmToMipsAssembler::SMULW(int cc, int y,
1121                 int Rd, int Rm, int Rs)
1122 {
1123     mArmPC[mInum++] = pc();
1124 
1125     // the selector yT or yB refers to reg Rs
1126     if (y & yT) {
1127         // zero the bottom 16-bits, with 2 shifts, it can affect result
1128         mMips->SRL(R_at, Rs, 16);
1129         mMips->SLL(R_at, R_at, 16);
1130 
1131     } else {
1132         // move low 16-bit half, to high half
1133         mMips->SLL(R_at, Rs, 16);
1134     }
1135     mMips->MULT(Rm, R_at);
1136     mMips->MFHI(Rd);
1137 }
1138 
1139 // 16 x 16 signed multiply, accumulate: Rd = Rm{16} * Rs{16} + Rn
SMLA(int cc,int xy,int Rd,int Rm,int Rs,int Rn)1140 void ArmToMipsAssembler::SMLA(int cc, int xy,
1141                 int Rd, int Rm, int Rs, int Rn)
1142 {
1143     mArmPC[mInum++] = pc();
1144 
1145     // the 16 bits may be in the top or bottom half of 32-bit source reg,
1146     // as defined by the codes BB, BT, TB, TT (compressed param xy)
1147     // where x corresponds to Rm and y to Rs
1148 
1149     // select half-reg for Rm
1150     if (xy & xyTB) {
1151         // use top 16-bits
1152         mMips->SRA(R_at, Rm, 16);
1153     } else {
1154         // use bottom 16, but sign-extend to 32
1155         if (mips32r2) {
1156             mMips->SEH(R_at, Rm);
1157         } else {
1158             mMips->SLL(R_at, Rm, 16);
1159             mMips->SRA(R_at, R_at, 16);
1160         }
1161     }
1162     // select half-reg for Rs
1163     if (xy & xyBT) {
1164         // use top 16-bits
1165         mMips->SRA(R_at2, Rs, 16);
1166     } else {
1167         // use bottom 16, but sign-extend to 32
1168         if (mips32r2) {
1169             mMips->SEH(R_at2, Rs);
1170         } else {
1171             mMips->SLL(R_at2, Rs, 16);
1172             mMips->SRA(R_at2, R_at2, 16);
1173         }
1174     }
1175 
1176     mMips->MUL(R_at, R_at, R_at2);
1177     mMips->ADDU(Rd, R_at, Rn);
1178 }
1179 
SMLAL(int cc,int xy,int RdHi,int RdLo,int Rs,int Rm)1180 void ArmToMipsAssembler::SMLAL(int cc, int xy,
1181                 int RdHi, int RdLo, int Rs, int Rm)
1182 {
1183     // *mPC++ = (cc<<28) | 0x1400080 | (RdHi<<16) | (RdLo<<12) | (Rs<<8) | (xy<<4) | Rm;
1184     mArmPC[mInum++] = pc();
1185     mMips->NOP2();
1186     NOT_IMPLEMENTED();
1187 }
1188 
SMLAW(int cc,int y,int Rd,int Rm,int Rs,int Rn)1189 void ArmToMipsAssembler::SMLAW(int cc, int y,
1190                 int Rd, int Rm, int Rs, int Rn)
1191 {
1192     // *mPC++ = (cc<<28) | 0x1200080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (y<<4) | Rm;
1193     mArmPC[mInum++] = pc();
1194     mMips->NOP2();
1195     NOT_IMPLEMENTED();
1196 }
1197 
1198 // used by ARMv6 version of GGLAssembler::filter32
UXTB16(int cc,int Rd,int Rm,int rotate)1199 void ArmToMipsAssembler::UXTB16(int cc, int Rd, int Rm, int rotate)
1200 {
1201     mArmPC[mInum++] = pc();
1202 
1203     //Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]),
1204     //Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.
1205 
1206     mMips->ROTR(Rm, Rm, rotate * 8);
1207     mMips->AND(Rd, Rm, 0x00FF00FF);
1208 }
1209 
UBFX(int cc,int Rd,int Rn,int lsb,int width)1210 void ArmToMipsAssembler::UBFX(int cc, int Rd, int Rn, int lsb, int width)
1211 {
1212      /* Placeholder for UBFX */
1213      mArmPC[mInum++] = pc();
1214 
1215      mMips->NOP2();
1216      NOT_IMPLEMENTED();
1217 }
1218 
1219 
1220 
1221 
1222 
1223 #if 0
1224 #pragma mark -
1225 #pragma mark MIPS Assembler...
1226 #endif
1227 
1228 
1229 //**************************************************************************
1230 //**************************************************************************
1231 //**************************************************************************
1232 
1233 
1234 /* mips assembler
1235 ** this is a subset of mips32r2, targeted specifically at ARM instruction
1236 ** replacement in the pixelflinger/codeflinger code.
1237 **
1238 ** To that end, there is no need for floating point, or priviledged
1239 ** instructions. This all runs in user space, no float.
1240 **
1241 ** The syntax makes no attempt to be as complete as the assember, with
1242 ** synthetic instructions, and automatic recognition of immedate operands
1243 ** (use the immediate form of the instruction), etc.
1244 **
1245 ** We start with mips32r1, and may add r2 and dsp extensions if cpu
1246 ** supports. Decision will be made at compile time, based on gcc
1247 ** options. (makes sense since android will be built for a a specific
1248 ** device)
1249 */
1250 
MIPSAssembler(const sp<Assembly> & assembly,ArmToMipsAssembler * parent)1251 MIPSAssembler::MIPSAssembler(const sp<Assembly>& assembly, ArmToMipsAssembler *parent)
1252     : mParent(parent),
1253     mAssembly(assembly)
1254 {
1255     mBase = mPC = (uint32_t *)assembly->base();
1256     mDuration = ggl_system_time();
1257 }
1258 
~MIPSAssembler()1259 MIPSAssembler::~MIPSAssembler()
1260 {
1261 }
1262 
1263 
pc() const1264 uint32_t* MIPSAssembler::pc() const
1265 {
1266     return mPC;
1267 }
1268 
base() const1269 uint32_t* MIPSAssembler::base() const
1270 {
1271     return mBase;
1272 }
1273 
reset()1274 void MIPSAssembler::reset()
1275 {
1276     mBase = mPC = (uint32_t *)mAssembly->base();
1277     mBranchTargets.clear();
1278     mLabels.clear();
1279     mLabelsInverseMapping.clear();
1280     mComments.clear();
1281 }
1282 
1283 
1284 // convert tabs to spaces, and remove any newline
1285 // works with strings of limited size (makes a temp copy)
1286 #define TABSTOP 8
string_detab(char * s)1287 void MIPSAssembler::string_detab(char *s)
1288 {
1289     char *os = s;
1290     char temp[100];
1291     char *t = temp;
1292     int len = 99;
1293     int i = TABSTOP;
1294 
1295     while (*s && len-- > 0) {
1296         if (*s == '\n') { s++; continue; }
1297         if (*s == '\t') {
1298             s++;
1299             for ( ; i>0; i--) {*t++ = ' '; len--; }
1300         } else {
1301             *t++ = *s++;
1302         }
1303         if (i <= 0) i = TABSTOP;
1304         i--;
1305     }
1306     *t = '\0';
1307     strcpy(os, temp);
1308 }
1309 
string_pad(char * s,int padded_len)1310 void MIPSAssembler::string_pad(char *s, int padded_len)
1311 {
1312     int len = strlen(s);
1313     s += len;
1314     for (int i = padded_len - len; i > 0; --i) {
1315         *s++ = ' ';
1316     }
1317     *s = '\0';
1318 }
1319 
1320 // ----------------------------------------------------------------------------
1321 
disassemble(const char * name)1322 void MIPSAssembler::disassemble(const char* name)
1323 {
1324     char di_buf[140];
1325 
1326     if (name) {
1327         ALOGW("%s:\n", name);
1328     }
1329 
1330     bool arm_disasm_fmt = (mParent->mArmDisassemblyBuffer == NULL) ? false : true;
1331 
1332     typedef char dstr[40];
1333     dstr *lines = (dstr *)mParent->mArmDisassemblyBuffer;
1334 
1335     if (mParent->mArmDisassemblyBuffer != NULL) {
1336         for (int i=0; i<mParent->mArmInstrCount; ++i) {
1337             string_detab(lines[i]);
1338         }
1339     }
1340 
1341     // iArm is an index to Arm instructions 1...n for this assembly sequence
1342     // mArmPC[iArm] holds the value of the Mips-PC for the first MIPS
1343     // instruction corresponding to that Arm instruction number
1344 
1345     int iArm = 0;
1346     size_t count = pc()-base();
1347     uint32_t* mipsPC = base();
1348     while (count--) {
1349         ssize_t label = mLabelsInverseMapping.indexOfKey(mipsPC);
1350         if (label >= 0) {
1351             ALOGW("%s:\n", mLabelsInverseMapping.valueAt(label));
1352         }
1353         ssize_t comment = mComments.indexOfKey(mipsPC);
1354         if (comment >= 0) {
1355             ALOGW("; %s\n", mComments.valueAt(comment));
1356         }
1357         // ALOGW("%08x:    %08x    ", int(i), int(i[0]));
1358         ::mips_disassem(mipsPC, di_buf, arm_disasm_fmt);
1359         string_detab(di_buf);
1360         string_pad(di_buf, 30);
1361         ALOGW("%08x:    %08x    %s", uint32_t(mipsPC), uint32_t(*mipsPC), di_buf);
1362         mipsPC++;
1363     }
1364 }
1365 
comment(const char * string)1366 void MIPSAssembler::comment(const char* string)
1367 {
1368     mComments.add(pc(), string);
1369 }
1370 
label(const char * theLabel)1371 void MIPSAssembler::label(const char* theLabel)
1372 {
1373     mLabels.add(theLabel, pc());
1374     mLabelsInverseMapping.add(pc(), theLabel);
1375 }
1376 
1377 
prolog()1378 void MIPSAssembler::prolog()
1379 {
1380     // empty - done in ArmToMipsAssembler
1381 }
1382 
epilog(uint32_t touched)1383 void MIPSAssembler::epilog(uint32_t touched)
1384 {
1385     // empty - done in ArmToMipsAssembler
1386 }
1387 
generate(const char * name)1388 int MIPSAssembler::generate(const char* name)
1389 {
1390     // fixup all the branches
1391     size_t count = mBranchTargets.size();
1392     while (count--) {
1393         const branch_target_t& bt = mBranchTargets[count];
1394         uint32_t* target_pc = mLabels.valueFor(bt.label);
1395         LOG_ALWAYS_FATAL_IF(!target_pc,
1396                 "error resolving branch targets, target_pc is null");
1397         int32_t offset = int32_t(target_pc - (bt.pc+1));
1398         *bt.pc |= offset & 0x00FFFF;
1399     }
1400 
1401     mAssembly->resize( int(pc()-base())*4 );
1402 
1403     // the instruction & data caches are flushed by CodeCache
1404     const int64_t duration = ggl_system_time() - mDuration;
1405     const char * const format = "generated %s (%d ins) at [%p:%p] in %lld ns\n";
1406     ALOGI(format, name, int(pc()-base()), base(), pc(), duration);
1407 
1408 #if defined(WITH_LIB_HARDWARE)
1409     if (__builtin_expect(mQemuTracing, 0)) {
1410         int err = qemu_add_mapping(int(base()), name);
1411         mQemuTracing = (err >= 0);
1412     }
1413 #endif
1414 
1415     char value[PROPERTY_VALUE_MAX];
1416     value[0] = '\0';
1417 
1418     property_get("debug.pf.disasm", value, "0");
1419 
1420     if (atoi(value) != 0) {
1421         disassemble(name);
1422     }
1423 
1424     return NO_ERROR;
1425 }
1426 
pcForLabel(const char * label)1427 uint32_t* MIPSAssembler::pcForLabel(const char* label)
1428 {
1429     return mLabels.valueFor(label);
1430 }
1431 
1432 
1433 
1434 #if 0
1435 #pragma mark -
1436 #pragma mark Arithmetic...
1437 #endif
1438 
ADDU(int Rd,int Rs,int Rt)1439 void MIPSAssembler::ADDU(int Rd, int Rs, int Rt)
1440 {
1441     *mPC++ = (spec_op<<OP_SHF) | (addu_fn<<FUNC_SHF)
1442                     | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF);
1443 }
1444 
1445 // MD00086 pdf says this is: ADDIU rt, rs, imm -- they do not use Rd
ADDIU(int Rt,int Rs,int16_t imm)1446 void MIPSAssembler::ADDIU(int Rt, int Rs, int16_t imm)
1447 {
1448     *mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1449 }
1450 
1451 
SUBU(int Rd,int Rs,int Rt)1452 void MIPSAssembler::SUBU(int Rd, int Rs, int Rt)
1453 {
1454     *mPC++ = (spec_op<<OP_SHF) | (subu_fn<<FUNC_SHF) |
1455                         (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ;
1456 }
1457 
1458 
SUBIU(int Rt,int Rs,int16_t imm)1459 void MIPSAssembler::SUBIU(int Rt, int Rs, int16_t imm)   // really addiu(d, s, -j)
1460 {
1461     *mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | ((-imm) & MSK_16);
1462 }
1463 
1464 
NEGU(int Rd,int Rs)1465 void MIPSAssembler::NEGU(int Rd, int Rs)    // really subu(d, zero, s)
1466 {
1467     MIPSAssembler::SUBU(Rd, 0, Rs);
1468 }
1469 
MUL(int Rd,int Rs,int Rt)1470 void MIPSAssembler::MUL(int Rd, int Rs, int Rt)
1471 {
1472     *mPC++ = (spec2_op<<OP_SHF) | (mul_fn<<FUNC_SHF) |
1473                         (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ;
1474 }
1475 
MULT(int Rs,int Rt)1476 void MIPSAssembler::MULT(int Rs, int Rt)    // dest is hi,lo
1477 {
1478     *mPC++ = (spec_op<<OP_SHF) | (mult_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1479 }
1480 
MULTU(int Rs,int Rt)1481 void MIPSAssembler::MULTU(int Rs, int Rt)    // dest is hi,lo
1482 {
1483     *mPC++ = (spec_op<<OP_SHF) | (multu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1484 }
1485 
MADD(int Rs,int Rt)1486 void MIPSAssembler::MADD(int Rs, int Rt)    // hi,lo = hi,lo + Rs * Rt
1487 {
1488     *mPC++ = (spec2_op<<OP_SHF) | (madd_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1489 }
1490 
MADDU(int Rs,int Rt)1491 void MIPSAssembler::MADDU(int Rs, int Rt)    // hi,lo = hi,lo + Rs * Rt
1492 {
1493     *mPC++ = (spec2_op<<OP_SHF) | (maddu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1494 }
1495 
1496 
MSUB(int Rs,int Rt)1497 void MIPSAssembler::MSUB(int Rs, int Rt)    // hi,lo = hi,lo - Rs * Rt
1498 {
1499     *mPC++ = (spec2_op<<OP_SHF) | (msub_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1500 }
1501 
MSUBU(int Rs,int Rt)1502 void MIPSAssembler::MSUBU(int Rs, int Rt)    // hi,lo = hi,lo - Rs * Rt
1503 {
1504     *mPC++ = (spec2_op<<OP_SHF) | (msubu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1505 }
1506 
1507 
SEB(int Rd,int Rt)1508 void MIPSAssembler::SEB(int Rd, int Rt)    // sign-extend byte (mips32r2)
1509 {
1510     *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seb_fn << SA_SHF) |
1511                     (Rt<<RT_SHF) | (Rd<<RD_SHF);
1512 }
1513 
SEH(int Rd,int Rt)1514 void MIPSAssembler::SEH(int Rd, int Rt)    // sign-extend half-word (mips32r2)
1515 {
1516     *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seh_fn << SA_SHF) |
1517                     (Rt<<RT_SHF) | (Rd<<RD_SHF);
1518 }
1519 
1520 
1521 
1522 #if 0
1523 #pragma mark -
1524 #pragma mark Comparisons...
1525 #endif
1526 
SLT(int Rd,int Rs,int Rt)1527 void MIPSAssembler::SLT(int Rd, int Rs, int Rt)
1528 {
1529     *mPC++ = (spec_op<<OP_SHF) | (slt_fn<<FUNC_SHF) |
1530                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1531 }
1532 
SLTI(int Rt,int Rs,int16_t imm)1533 void MIPSAssembler::SLTI(int Rt, int Rs, int16_t imm)
1534 {
1535     *mPC++ = (slti_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1536 }
1537 
1538 
SLTU(int Rd,int Rs,int Rt)1539 void MIPSAssembler::SLTU(int Rd, int Rs, int Rt)
1540 {
1541     *mPC++ = (spec_op<<OP_SHF) | (sltu_fn<<FUNC_SHF) |
1542                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1543 }
1544 
SLTIU(int Rt,int Rs,int16_t imm)1545 void MIPSAssembler::SLTIU(int Rt, int Rs, int16_t imm)
1546 {
1547     *mPC++ = (sltiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1548 }
1549 
1550 
1551 
1552 #if 0
1553 #pragma mark -
1554 #pragma mark Logical...
1555 #endif
1556 
AND(int Rd,int Rs,int Rt)1557 void MIPSAssembler::AND(int Rd, int Rs, int Rt)
1558 {
1559     *mPC++ = (spec_op<<OP_SHF) | (and_fn<<FUNC_SHF) |
1560                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1561 }
1562 
ANDI(int Rt,int Rs,uint16_t imm)1563 void MIPSAssembler::ANDI(int Rt, int Rs, uint16_t imm)      // todo: support larger immediate
1564 {
1565     *mPC++ = (andi_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1566 }
1567 
1568 
OR(int Rd,int Rs,int Rt)1569 void MIPSAssembler::OR(int Rd, int Rs, int Rt)
1570 {
1571     *mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) |
1572                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1573 }
1574 
ORI(int Rt,int Rs,uint16_t imm)1575 void MIPSAssembler::ORI(int Rt, int Rs, uint16_t imm)
1576 {
1577     *mPC++ = (ori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1578 }
1579 
NOR(int Rd,int Rs,int Rt)1580 void MIPSAssembler::NOR(int Rd, int Rs, int Rt)
1581 {
1582     *mPC++ = (spec_op<<OP_SHF) | (nor_fn<<FUNC_SHF) |
1583                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1584 }
1585 
NOT(int Rd,int Rs)1586 void MIPSAssembler::NOT(int Rd, int Rs)
1587 {
1588     MIPSAssembler::NOR(Rd, Rs, 0);  // NOT(d,s) = NOR(d,s,zero)
1589 }
1590 
XOR(int Rd,int Rs,int Rt)1591 void MIPSAssembler::XOR(int Rd, int Rs, int Rt)
1592 {
1593     *mPC++ = (spec_op<<OP_SHF) | (xor_fn<<FUNC_SHF) |
1594                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1595 }
1596 
XORI(int Rt,int Rs,uint16_t imm)1597 void MIPSAssembler::XORI(int Rt, int Rs, uint16_t imm)  // todo: support larger immediate
1598 {
1599     *mPC++ = (xori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1600 }
1601 
SLL(int Rd,int Rt,int shft)1602 void MIPSAssembler::SLL(int Rd, int Rt, int shft)
1603 {
1604     *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) |
1605                         (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
1606 }
1607 
SLLV(int Rd,int Rt,int Rs)1608 void MIPSAssembler::SLLV(int Rd, int Rt, int Rs)
1609 {
1610     *mPC++ = (spec_op<<OP_SHF) | (sllv_fn<<FUNC_SHF) |
1611                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1612 }
1613 
SRL(int Rd,int Rt,int shft)1614 void MIPSAssembler::SRL(int Rd, int Rt, int shft)
1615 {
1616     *mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) |
1617                         (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
1618 }
1619 
SRLV(int Rd,int Rt,int Rs)1620 void MIPSAssembler::SRLV(int Rd, int Rt, int Rs)
1621 {
1622     *mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) |
1623                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1624 }
1625 
SRA(int Rd,int Rt,int shft)1626 void MIPSAssembler::SRA(int Rd, int Rt, int shft)
1627 {
1628     *mPC++ = (spec_op<<OP_SHF) | (sra_fn<<FUNC_SHF) |
1629                         (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
1630 }
1631 
SRAV(int Rd,int Rt,int Rs)1632 void MIPSAssembler::SRAV(int Rd, int Rt, int Rs)
1633 {
1634     *mPC++ = (spec_op<<OP_SHF) | (srav_fn<<FUNC_SHF) |
1635                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1636 }
1637 
ROTR(int Rd,int Rt,int shft)1638 void MIPSAssembler::ROTR(int Rd, int Rt, int shft)      // mips32r2
1639 {
1640     // note weird encoding (SRL + 1)
1641     *mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) |
1642                         (1<<RS_SHF) | (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
1643 }
1644 
ROTRV(int Rd,int Rt,int Rs)1645 void MIPSAssembler::ROTRV(int Rd, int Rt, int Rs)       // mips32r2
1646 {
1647     // note weird encoding (SRLV + 1)
1648     *mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) |
1649                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (1<<RE_SHF);
1650 }
1651 
1652 // uses at2 register (mapped to some appropriate mips reg)
RORsyn(int Rd,int Rt,int Rs)1653 void MIPSAssembler::RORsyn(int Rd, int Rt, int Rs)
1654 {
1655     // synthetic: d = t rotated by s
1656     MIPSAssembler::NEGU(R_at2, Rs);
1657     MIPSAssembler::SLLV(R_at2, Rt, R_at2);
1658     MIPSAssembler::SRLV(Rd, Rt, Rs);
1659     MIPSAssembler::OR(Rd, Rd, R_at2);
1660 }
1661 
1662 // immediate version - uses at2 register (mapped to some appropriate mips reg)
RORIsyn(int Rd,int Rt,int rot)1663 void MIPSAssembler::RORIsyn(int Rd, int Rt, int rot)
1664 {
1665     // synthetic: d = t rotated by immed rot
1666     // d = s >> rot | s << (32-rot)
1667     MIPSAssembler::SLL(R_at2, Rt, 32-rot);
1668     MIPSAssembler::SRL(Rd, Rt, rot);
1669     MIPSAssembler::OR(Rd, Rd, R_at2);
1670 }
1671 
CLO(int Rd,int Rs)1672 void MIPSAssembler::CLO(int Rd, int Rs)
1673 {
1674     // Rt field must have same gpr # as Rd
1675     *mPC++ = (spec2_op<<OP_SHF) | (clo_fn<<FUNC_SHF) |
1676                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF);
1677 }
1678 
CLZ(int Rd,int Rs)1679 void MIPSAssembler::CLZ(int Rd, int Rs)
1680 {
1681     // Rt field must have same gpr # as Rd
1682     *mPC++ = (spec2_op<<OP_SHF) | (clz_fn<<FUNC_SHF) |
1683                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF);
1684 }
1685 
WSBH(int Rd,int Rt)1686 void MIPSAssembler::WSBH(int Rd, int Rt)      // mips32r2
1687 {
1688     *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (wsbh_fn << SA_SHF) |
1689                         (Rt<<RT_SHF) | (Rd<<RD_SHF);
1690 }
1691 
1692 
1693 
1694 #if 0
1695 #pragma mark -
1696 #pragma mark Load/store...
1697 #endif
1698 
LW(int Rt,int Rbase,int16_t offset)1699 void MIPSAssembler::LW(int Rt, int Rbase, int16_t offset)
1700 {
1701     *mPC++ = (lw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1702 }
1703 
SW(int Rt,int Rbase,int16_t offset)1704 void MIPSAssembler::SW(int Rt, int Rbase, int16_t offset)
1705 {
1706     *mPC++ = (sw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1707 }
1708 
1709 // lb is sign-extended
LB(int Rt,int Rbase,int16_t offset)1710 void MIPSAssembler::LB(int Rt, int Rbase, int16_t offset)
1711 {
1712     *mPC++ = (lb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1713 }
1714 
LBU(int Rt,int Rbase,int16_t offset)1715 void MIPSAssembler::LBU(int Rt, int Rbase, int16_t offset)
1716 {
1717     *mPC++ = (lbu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1718 }
1719 
SB(int Rt,int Rbase,int16_t offset)1720 void MIPSAssembler::SB(int Rt, int Rbase, int16_t offset)
1721 {
1722     *mPC++ = (sb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1723 }
1724 
1725 // lh is sign-extended
LH(int Rt,int Rbase,int16_t offset)1726 void MIPSAssembler::LH(int Rt, int Rbase, int16_t offset)
1727 {
1728     *mPC++ = (lh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1729 }
1730 
LHU(int Rt,int Rbase,int16_t offset)1731 void MIPSAssembler::LHU(int Rt, int Rbase, int16_t offset)
1732 {
1733     *mPC++ = (lhu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1734 }
1735 
SH(int Rt,int Rbase,int16_t offset)1736 void MIPSAssembler::SH(int Rt, int Rbase, int16_t offset)
1737 {
1738     *mPC++ = (sh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1739 }
1740 
LUI(int Rt,int16_t offset)1741 void MIPSAssembler::LUI(int Rt, int16_t offset)
1742 {
1743     *mPC++ = (lui_op<<OP_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1744 }
1745 
1746 
1747 
1748 #if 0
1749 #pragma mark -
1750 #pragma mark Register move...
1751 #endif
1752 
MOVE(int Rd,int Rs)1753 void MIPSAssembler::MOVE(int Rd, int Rs)
1754 {
1755     // encoded as "or rd, rs, zero"
1756     *mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) |
1757                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (0<<RT_SHF);
1758 }
1759 
MOVN(int Rd,int Rs,int Rt)1760 void MIPSAssembler::MOVN(int Rd, int Rs, int Rt)
1761 {
1762     *mPC++ = (spec_op<<OP_SHF) | (movn_fn<<FUNC_SHF) |
1763                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1764 }
1765 
MOVZ(int Rd,int Rs,int Rt)1766 void MIPSAssembler::MOVZ(int Rd, int Rs, int Rt)
1767 {
1768     *mPC++ = (spec_op<<OP_SHF) | (movz_fn<<FUNC_SHF) |
1769                         (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1770 }
1771 
MFHI(int Rd)1772 void MIPSAssembler::MFHI(int Rd)
1773 {
1774     *mPC++ = (spec_op<<OP_SHF) | (mfhi_fn<<FUNC_SHF) | (Rd<<RD_SHF);
1775 }
1776 
MFLO(int Rd)1777 void MIPSAssembler::MFLO(int Rd)
1778 {
1779     *mPC++ = (spec_op<<OP_SHF) | (mflo_fn<<FUNC_SHF) | (Rd<<RD_SHF);
1780 }
1781 
MTHI(int Rs)1782 void MIPSAssembler::MTHI(int Rs)
1783 {
1784     *mPC++ = (spec_op<<OP_SHF) | (mthi_fn<<FUNC_SHF) | (Rs<<RS_SHF);
1785 }
1786 
MTLO(int Rs)1787 void MIPSAssembler::MTLO(int Rs)
1788 {
1789     *mPC++ = (spec_op<<OP_SHF) | (mtlo_fn<<FUNC_SHF) | (Rs<<RS_SHF);
1790 }
1791 
1792 
1793 
1794 #if 0
1795 #pragma mark -
1796 #pragma mark Branch...
1797 #endif
1798 
1799 // temporarily forcing a NOP into branch-delay slot, just to be safe
1800 // todo: remove NOP, optimze use of delay slots
B(const char * label)1801 void MIPSAssembler::B(const char* label)
1802 {
1803     mBranchTargets.add(branch_target_t(label, mPC));
1804 
1805     // encoded as BEQ zero, zero, offset
1806     *mPC++ = (beq_op<<OP_SHF) | (0<<RT_SHF)
1807                         | (0<<RS_SHF) | 0;  // offset filled in later
1808 
1809     MIPSAssembler::NOP();
1810 }
1811 
BEQ(int Rs,int Rt,const char * label)1812 void MIPSAssembler::BEQ(int Rs, int Rt, const char* label)
1813 {
1814     mBranchTargets.add(branch_target_t(label, mPC));
1815     *mPC++ = (beq_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0;
1816     MIPSAssembler::NOP();
1817 }
1818 
BNE(int Rs,int Rt,const char * label)1819 void MIPSAssembler::BNE(int Rs, int Rt, const char* label)
1820 {
1821     mBranchTargets.add(branch_target_t(label, mPC));
1822     *mPC++ = (bne_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0;
1823     MIPSAssembler::NOP();
1824 }
1825 
BLEZ(int Rs,const char * label)1826 void MIPSAssembler::BLEZ(int Rs, const char* label)
1827 {
1828     mBranchTargets.add(branch_target_t(label, mPC));
1829     *mPC++ = (blez_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0;
1830     MIPSAssembler::NOP();
1831 }
1832 
BLTZ(int Rs,const char * label)1833 void MIPSAssembler::BLTZ(int Rs, const char* label)
1834 {
1835     mBranchTargets.add(branch_target_t(label, mPC));
1836     *mPC++ = (regimm_op<<OP_SHF) | (bltz_fn<<RT_SHF) | (Rs<<RS_SHF) | 0;
1837     MIPSAssembler::NOP();
1838 }
1839 
BGTZ(int Rs,const char * label)1840 void MIPSAssembler::BGTZ(int Rs, const char* label)
1841 {
1842     mBranchTargets.add(branch_target_t(label, mPC));
1843     *mPC++ = (bgtz_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0;
1844     MIPSAssembler::NOP();
1845 }
1846 
1847 
BGEZ(int Rs,const char * label)1848 void MIPSAssembler::BGEZ(int Rs, const char* label)
1849 {
1850     mBranchTargets.add(branch_target_t(label, mPC));
1851     *mPC++ = (regimm_op<<OP_SHF) | (bgez_fn<<RT_SHF) | (Rs<<RS_SHF) | 0;
1852     MIPSAssembler::NOP();
1853 }
1854 
JR(int Rs)1855 void MIPSAssembler::JR(int Rs)
1856 {
1857     *mPC++ = (spec_op<<OP_SHF) | (Rs<<RS_SHF) | (jr_fn << FUNC_SHF);
1858     MIPSAssembler::NOP();
1859 }
1860 
1861 
1862 #if 0
1863 #pragma mark -
1864 #pragma mark Synthesized Branch...
1865 #endif
1866 
1867 // synthetic variants of branches (using slt & friends)
BEQZ(int Rs,const char * label)1868 void MIPSAssembler::BEQZ(int Rs, const char* label)
1869 {
1870     BEQ(Rs, R_zero, label);
1871 }
1872 
BNEZ(int Rs,const char * label)1873 void MIPSAssembler::BNEZ(int Rs, const char* label)
1874 {
1875     BNE(R_at, R_zero, label);
1876 }
1877 
BGE(int Rs,int Rt,const char * label)1878 void MIPSAssembler::BGE(int Rs, int Rt, const char* label)
1879 {
1880     SLT(R_at, Rs, Rt);
1881     BEQ(R_at, R_zero, label);
1882 }
1883 
BGEU(int Rs,int Rt,const char * label)1884 void MIPSAssembler::BGEU(int Rs, int Rt, const char* label)
1885 {
1886     SLTU(R_at, Rs, Rt);
1887     BEQ(R_at, R_zero, label);
1888 }
1889 
BGT(int Rs,int Rt,const char * label)1890 void MIPSAssembler::BGT(int Rs, int Rt, const char* label)
1891 {
1892     SLT(R_at, Rt, Rs);   // rev
1893     BNE(R_at, R_zero, label);
1894 }
1895 
BGTU(int Rs,int Rt,const char * label)1896 void MIPSAssembler::BGTU(int Rs, int Rt, const char* label)
1897 {
1898     SLTU(R_at, Rt, Rs);   // rev
1899     BNE(R_at, R_zero, label);
1900 }
1901 
BLE(int Rs,int Rt,const char * label)1902 void MIPSAssembler::BLE(int Rs, int Rt, const char* label)
1903 {
1904     SLT(R_at, Rt, Rs);   // rev
1905     BEQ(R_at, R_zero, label);
1906 }
1907 
BLEU(int Rs,int Rt,const char * label)1908 void MIPSAssembler::BLEU(int Rs, int Rt, const char* label)
1909 {
1910     SLTU(R_at, Rt, Rs);  // rev
1911     BEQ(R_at, R_zero, label);
1912 }
1913 
BLT(int Rs,int Rt,const char * label)1914 void MIPSAssembler::BLT(int Rs, int Rt, const char* label)
1915 {
1916     SLT(R_at, Rs, Rt);
1917     BNE(R_at, R_zero, label);
1918 }
1919 
BLTU(int Rs,int Rt,const char * label)1920 void MIPSAssembler::BLTU(int Rs, int Rt, const char* label)
1921 {
1922     SLTU(R_at, Rs, Rt);
1923     BNE(R_at, R_zero, label);
1924 }
1925 
1926 
1927 
1928 
1929 #if 0
1930 #pragma mark -
1931 #pragma mark Misc...
1932 #endif
1933 
NOP(void)1934 void MIPSAssembler::NOP(void)
1935 {
1936     // encoded as "sll zero, zero, 0", which is all zero
1937     *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF);
1938 }
1939 
1940 // using this as special opcode for not-yet-implemented ARM instruction
NOP2(void)1941 void MIPSAssembler::NOP2(void)
1942 {
1943     // encoded as "sll zero, zero, 2", still a nop, but a unique code
1944     *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (2 << RE_SHF);
1945 }
1946 
1947 // using this as special opcode for purposefully NOT implemented ARM instruction
UNIMPL(void)1948 void MIPSAssembler::UNIMPL(void)
1949 {
1950     // encoded as "sll zero, zero, 3", still a nop, but a unique code
1951     *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (3 << RE_SHF);
1952 }
1953 
1954 
1955 }; // namespace android:
1956 
1957 
1958