1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/TableGen/Error.h"
22 #include "llvm/TableGen/Record.h"
23 #include <algorithm>
24 #include <cstdio>
25 #include <set>
26 using namespace llvm;
27
28 //===----------------------------------------------------------------------===//
29 // EEVT::TypeSet Implementation
30 //===----------------------------------------------------------------------===//
31
isInteger(MVT::SimpleValueType VT)32 static inline bool isInteger(MVT::SimpleValueType VT) {
33 return EVT(VT).isInteger();
34 }
isFloatingPoint(MVT::SimpleValueType VT)35 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36 return EVT(VT).isFloatingPoint();
37 }
isVector(MVT::SimpleValueType VT)38 static inline bool isVector(MVT::SimpleValueType VT) {
39 return EVT(VT).isVector();
40 }
isScalar(MVT::SimpleValueType VT)41 static inline bool isScalar(MVT::SimpleValueType VT) {
42 return !EVT(VT).isVector();
43 }
44
TypeSet(MVT::SimpleValueType VT,TreePattern & TP)45 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46 if (VT == MVT::iAny)
47 EnforceInteger(TP);
48 else if (VT == MVT::fAny)
49 EnforceFloatingPoint(TP);
50 else if (VT == MVT::vAny)
51 EnforceVector(TP);
52 else {
53 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
54 VT == MVT::iPTRAny) && "Not a concrete type!");
55 TypeVec.push_back(VT);
56 }
57 }
58
59
TypeSet(ArrayRef<MVT::SimpleValueType> VTList)60 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
61 assert(!VTList.empty() && "empty list?");
62 TypeVec.append(VTList.begin(), VTList.end());
63
64 if (!VTList.empty())
65 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
66 VTList[0] != MVT::fAny);
67
68 // Verify no duplicates.
69 array_pod_sort(TypeVec.begin(), TypeVec.end());
70 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
71 }
72
73 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
74 /// on completely unknown type sets.
FillWithPossibleTypes(TreePattern & TP,bool (* Pred)(MVT::SimpleValueType),const char * PredicateName)75 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76 bool (*Pred)(MVT::SimpleValueType),
77 const char *PredicateName) {
78 assert(isCompletelyUnknown());
79 ArrayRef<MVT::SimpleValueType> LegalTypes =
80 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81
82 if (TP.hasError())
83 return false;
84
85 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
86 if (Pred == 0 || Pred(LegalTypes[i]))
87 TypeVec.push_back(LegalTypes[i]);
88
89 // If we have nothing that matches the predicate, bail out.
90 if (TypeVec.empty()) {
91 TP.error("Type inference contradiction found, no " +
92 std::string(PredicateName) + " types found");
93 return false;
94 }
95 // No need to sort with one element.
96 if (TypeVec.size() == 1) return true;
97
98 // Remove duplicates.
99 array_pod_sort(TypeVec.begin(), TypeVec.end());
100 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
101
102 return true;
103 }
104
105 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
106 /// integer value type.
hasIntegerTypes() const107 bool EEVT::TypeSet::hasIntegerTypes() const {
108 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
109 if (isInteger(TypeVec[i]))
110 return true;
111 return false;
112 }
113
114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115 /// a floating point value type.
hasFloatingPointTypes() const116 bool EEVT::TypeSet::hasFloatingPointTypes() const {
117 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
118 if (isFloatingPoint(TypeVec[i]))
119 return true;
120 return false;
121 }
122
123 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
124 /// value type.
hasVectorTypes() const125 bool EEVT::TypeSet::hasVectorTypes() const {
126 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
127 if (isVector(TypeVec[i]))
128 return true;
129 return false;
130 }
131
132
getName() const133 std::string EEVT::TypeSet::getName() const {
134 if (TypeVec.empty()) return "<empty>";
135
136 std::string Result;
137
138 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
139 std::string VTName = llvm::getEnumName(TypeVec[i]);
140 // Strip off MVT:: prefix if present.
141 if (VTName.substr(0,5) == "MVT::")
142 VTName = VTName.substr(5);
143 if (i) Result += ':';
144 Result += VTName;
145 }
146
147 if (TypeVec.size() == 1)
148 return Result;
149 return "{" + Result + "}";
150 }
151
152 /// MergeInTypeInfo - This merges in type information from the specified
153 /// argument. If 'this' changes, it returns true. If the two types are
154 /// contradictory (e.g. merge f32 into i32) then this flags an error.
MergeInTypeInfo(const EEVT::TypeSet & InVT,TreePattern & TP)155 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
156 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
157 return false;
158
159 if (isCompletelyUnknown()) {
160 *this = InVT;
161 return true;
162 }
163
164 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
165
166 // Handle the abstract cases, seeing if we can resolve them better.
167 switch (TypeVec[0]) {
168 default: break;
169 case MVT::iPTR:
170 case MVT::iPTRAny:
171 if (InVT.hasIntegerTypes()) {
172 EEVT::TypeSet InCopy(InVT);
173 InCopy.EnforceInteger(TP);
174 InCopy.EnforceScalar(TP);
175
176 if (InCopy.isConcrete()) {
177 // If the RHS has one integer type, upgrade iPTR to i32.
178 TypeVec[0] = InVT.TypeVec[0];
179 return true;
180 }
181
182 // If the input has multiple scalar integers, this doesn't add any info.
183 if (!InCopy.isCompletelyUnknown())
184 return false;
185 }
186 break;
187 }
188
189 // If the input constraint is iAny/iPTR and this is an integer type list,
190 // remove non-integer types from the list.
191 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
192 hasIntegerTypes()) {
193 bool MadeChange = EnforceInteger(TP);
194
195 // If we're merging in iPTR/iPTRAny and the node currently has a list of
196 // multiple different integer types, replace them with a single iPTR.
197 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
198 TypeVec.size() != 1) {
199 TypeVec.resize(1);
200 TypeVec[0] = InVT.TypeVec[0];
201 MadeChange = true;
202 }
203
204 return MadeChange;
205 }
206
207 // If this is a type list and the RHS is a typelist as well, eliminate entries
208 // from this list that aren't in the other one.
209 bool MadeChange = false;
210 TypeSet InputSet(*this);
211
212 for (unsigned i = 0; i != TypeVec.size(); ++i) {
213 bool InInVT = false;
214 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
215 if (TypeVec[i] == InVT.TypeVec[j]) {
216 InInVT = true;
217 break;
218 }
219
220 if (InInVT) continue;
221 TypeVec.erase(TypeVec.begin()+i--);
222 MadeChange = true;
223 }
224
225 // If we removed all of our types, we have a type contradiction.
226 if (!TypeVec.empty())
227 return MadeChange;
228
229 // FIXME: Really want an SMLoc here!
230 TP.error("Type inference contradiction found, merging '" +
231 InVT.getName() + "' into '" + InputSet.getName() + "'");
232 return false;
233 }
234
235 /// EnforceInteger - Remove all non-integer types from this set.
EnforceInteger(TreePattern & TP)236 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
237 if (TP.hasError())
238 return false;
239 // If we know nothing, then get the full set.
240 if (TypeVec.empty())
241 return FillWithPossibleTypes(TP, isInteger, "integer");
242 if (!hasFloatingPointTypes())
243 return false;
244
245 TypeSet InputSet(*this);
246
247 // Filter out all the fp types.
248 for (unsigned i = 0; i != TypeVec.size(); ++i)
249 if (!isInteger(TypeVec[i]))
250 TypeVec.erase(TypeVec.begin()+i--);
251
252 if (TypeVec.empty()) {
253 TP.error("Type inference contradiction found, '" +
254 InputSet.getName() + "' needs to be integer");
255 return false;
256 }
257 return true;
258 }
259
260 /// EnforceFloatingPoint - Remove all integer types from this set.
EnforceFloatingPoint(TreePattern & TP)261 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
262 if (TP.hasError())
263 return false;
264 // If we know nothing, then get the full set.
265 if (TypeVec.empty())
266 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
267
268 if (!hasIntegerTypes())
269 return false;
270
271 TypeSet InputSet(*this);
272
273 // Filter out all the fp types.
274 for (unsigned i = 0; i != TypeVec.size(); ++i)
275 if (!isFloatingPoint(TypeVec[i]))
276 TypeVec.erase(TypeVec.begin()+i--);
277
278 if (TypeVec.empty()) {
279 TP.error("Type inference contradiction found, '" +
280 InputSet.getName() + "' needs to be floating point");
281 return false;
282 }
283 return true;
284 }
285
286 /// EnforceScalar - Remove all vector types from this.
EnforceScalar(TreePattern & TP)287 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
288 if (TP.hasError())
289 return false;
290
291 // If we know nothing, then get the full set.
292 if (TypeVec.empty())
293 return FillWithPossibleTypes(TP, isScalar, "scalar");
294
295 if (!hasVectorTypes())
296 return false;
297
298 TypeSet InputSet(*this);
299
300 // Filter out all the vector types.
301 for (unsigned i = 0; i != TypeVec.size(); ++i)
302 if (!isScalar(TypeVec[i]))
303 TypeVec.erase(TypeVec.begin()+i--);
304
305 if (TypeVec.empty()) {
306 TP.error("Type inference contradiction found, '" +
307 InputSet.getName() + "' needs to be scalar");
308 return false;
309 }
310 return true;
311 }
312
313 /// EnforceVector - Remove all vector types from this.
EnforceVector(TreePattern & TP)314 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
315 if (TP.hasError())
316 return false;
317
318 // If we know nothing, then get the full set.
319 if (TypeVec.empty())
320 return FillWithPossibleTypes(TP, isVector, "vector");
321
322 TypeSet InputSet(*this);
323 bool MadeChange = false;
324
325 // Filter out all the scalar types.
326 for (unsigned i = 0; i != TypeVec.size(); ++i)
327 if (!isVector(TypeVec[i])) {
328 TypeVec.erase(TypeVec.begin()+i--);
329 MadeChange = true;
330 }
331
332 if (TypeVec.empty()) {
333 TP.error("Type inference contradiction found, '" +
334 InputSet.getName() + "' needs to be a vector");
335 return false;
336 }
337 return MadeChange;
338 }
339
340
341
342 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
343 /// this an other based on this information.
EnforceSmallerThan(EEVT::TypeSet & Other,TreePattern & TP)344 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
345 if (TP.hasError())
346 return false;
347
348 // Both operands must be integer or FP, but we don't care which.
349 bool MadeChange = false;
350
351 if (isCompletelyUnknown())
352 MadeChange = FillWithPossibleTypes(TP);
353
354 if (Other.isCompletelyUnknown())
355 MadeChange = Other.FillWithPossibleTypes(TP);
356
357 // If one side is known to be integer or known to be FP but the other side has
358 // no information, get at least the type integrality info in there.
359 if (!hasFloatingPointTypes())
360 MadeChange |= Other.EnforceInteger(TP);
361 else if (!hasIntegerTypes())
362 MadeChange |= Other.EnforceFloatingPoint(TP);
363 if (!Other.hasFloatingPointTypes())
364 MadeChange |= EnforceInteger(TP);
365 else if (!Other.hasIntegerTypes())
366 MadeChange |= EnforceFloatingPoint(TP);
367
368 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
369 "Should have a type list now");
370
371 // If one contains vectors but the other doesn't pull vectors out.
372 if (!hasVectorTypes())
373 MadeChange |= Other.EnforceScalar(TP);
374 if (!hasVectorTypes())
375 MadeChange |= EnforceScalar(TP);
376
377 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
378 // If we are down to concrete types, this code does not currently
379 // handle nodes which have multiple types, where some types are
380 // integer, and some are fp. Assert that this is not the case.
381 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
382 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
383 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
384
385 // Otherwise, if these are both vector types, either this vector
386 // must have a larger bitsize than the other, or this element type
387 // must be larger than the other.
388 EVT Type(TypeVec[0]);
389 EVT OtherType(Other.TypeVec[0]);
390
391 if (hasVectorTypes() && Other.hasVectorTypes()) {
392 if (Type.getSizeInBits() >= OtherType.getSizeInBits())
393 if (Type.getVectorElementType().getSizeInBits()
394 >= OtherType.getVectorElementType().getSizeInBits()) {
395 TP.error("Type inference contradiction found, '" +
396 getName() + "' element type not smaller than '" +
397 Other.getName() +"'!");
398 return false;
399 }
400 }
401 else
402 // For scalar types, the bitsize of this type must be larger
403 // than that of the other.
404 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) {
405 TP.error("Type inference contradiction found, '" +
406 getName() + "' is not smaller than '" +
407 Other.getName() +"'!");
408 return false;
409 }
410 }
411
412
413 // Handle int and fp as disjoint sets. This won't work for patterns
414 // that have mixed fp/int types but those are likely rare and would
415 // not have been accepted by this code previously.
416
417 // Okay, find the smallest type from the current set and remove it from the
418 // largest set.
419 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
420 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
421 if (isInteger(TypeVec[i])) {
422 SmallestInt = TypeVec[i];
423 break;
424 }
425 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
426 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
427 SmallestInt = TypeVec[i];
428
429 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
430 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
431 if (isFloatingPoint(TypeVec[i])) {
432 SmallestFP = TypeVec[i];
433 break;
434 }
435 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
436 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
437 SmallestFP = TypeVec[i];
438
439 int OtherIntSize = 0;
440 int OtherFPSize = 0;
441 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
442 Other.TypeVec.begin();
443 TVI != Other.TypeVec.end();
444 /* NULL */) {
445 if (isInteger(*TVI)) {
446 ++OtherIntSize;
447 if (*TVI == SmallestInt) {
448 TVI = Other.TypeVec.erase(TVI);
449 --OtherIntSize;
450 MadeChange = true;
451 continue;
452 }
453 }
454 else if (isFloatingPoint(*TVI)) {
455 ++OtherFPSize;
456 if (*TVI == SmallestFP) {
457 TVI = Other.TypeVec.erase(TVI);
458 --OtherFPSize;
459 MadeChange = true;
460 continue;
461 }
462 }
463 ++TVI;
464 }
465
466 // If this is the only type in the large set, the constraint can never be
467 // satisfied.
468 if ((Other.hasIntegerTypes() && OtherIntSize == 0)
469 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) {
470 TP.error("Type inference contradiction found, '" +
471 Other.getName() + "' has nothing larger than '" + getName() +"'!");
472 return false;
473 }
474
475 // Okay, find the largest type in the Other set and remove it from the
476 // current set.
477 MVT::SimpleValueType LargestInt = MVT::Other;
478 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
479 if (isInteger(Other.TypeVec[i])) {
480 LargestInt = Other.TypeVec[i];
481 break;
482 }
483 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
484 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
485 LargestInt = Other.TypeVec[i];
486
487 MVT::SimpleValueType LargestFP = MVT::Other;
488 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
489 if (isFloatingPoint(Other.TypeVec[i])) {
490 LargestFP = Other.TypeVec[i];
491 break;
492 }
493 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
494 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
495 LargestFP = Other.TypeVec[i];
496
497 int IntSize = 0;
498 int FPSize = 0;
499 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
500 TypeVec.begin();
501 TVI != TypeVec.end();
502 /* NULL */) {
503 if (isInteger(*TVI)) {
504 ++IntSize;
505 if (*TVI == LargestInt) {
506 TVI = TypeVec.erase(TVI);
507 --IntSize;
508 MadeChange = true;
509 continue;
510 }
511 }
512 else if (isFloatingPoint(*TVI)) {
513 ++FPSize;
514 if (*TVI == LargestFP) {
515 TVI = TypeVec.erase(TVI);
516 --FPSize;
517 MadeChange = true;
518 continue;
519 }
520 }
521 ++TVI;
522 }
523
524 // If this is the only type in the small set, the constraint can never be
525 // satisfied.
526 if ((hasIntegerTypes() && IntSize == 0)
527 || (hasFloatingPointTypes() && FPSize == 0)) {
528 TP.error("Type inference contradiction found, '" +
529 getName() + "' has nothing smaller than '" + Other.getName()+"'!");
530 return false;
531 }
532
533 return MadeChange;
534 }
535
536 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
537 /// whose element is specified by VTOperand.
EnforceVectorEltTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)538 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
539 TreePattern &TP) {
540 if (TP.hasError())
541 return false;
542
543 // "This" must be a vector and "VTOperand" must be a scalar.
544 bool MadeChange = false;
545 MadeChange |= EnforceVector(TP);
546 MadeChange |= VTOperand.EnforceScalar(TP);
547
548 // If we know the vector type, it forces the scalar to agree.
549 if (isConcrete()) {
550 EVT IVT = getConcrete();
551 IVT = IVT.getVectorElementType();
552 return MadeChange |
553 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
554 }
555
556 // If the scalar type is known, filter out vector types whose element types
557 // disagree.
558 if (!VTOperand.isConcrete())
559 return MadeChange;
560
561 MVT::SimpleValueType VT = VTOperand.getConcrete();
562
563 TypeSet InputSet(*this);
564
565 // Filter out all the types which don't have the right element type.
566 for (unsigned i = 0; i != TypeVec.size(); ++i) {
567 assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
568 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
569 TypeVec.erase(TypeVec.begin()+i--);
570 MadeChange = true;
571 }
572 }
573
574 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
575 TP.error("Type inference contradiction found, forcing '" +
576 InputSet.getName() + "' to have a vector element");
577 return false;
578 }
579 return MadeChange;
580 }
581
582 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
583 /// vector type specified by VTOperand.
EnforceVectorSubVectorTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)584 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
585 TreePattern &TP) {
586 // "This" must be a vector and "VTOperand" must be a vector.
587 bool MadeChange = false;
588 MadeChange |= EnforceVector(TP);
589 MadeChange |= VTOperand.EnforceVector(TP);
590
591 // "This" must be larger than "VTOperand."
592 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
593
594 // If we know the vector type, it forces the scalar types to agree.
595 if (isConcrete()) {
596 EVT IVT = getConcrete();
597 IVT = IVT.getVectorElementType();
598
599 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
600 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
601 } else if (VTOperand.isConcrete()) {
602 EVT IVT = VTOperand.getConcrete();
603 IVT = IVT.getVectorElementType();
604
605 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
606 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
607 }
608
609 return MadeChange;
610 }
611
612 //===----------------------------------------------------------------------===//
613 // Helpers for working with extended types.
614
615 /// Dependent variable map for CodeGenDAGPattern variant generation
616 typedef std::map<std::string, int> DepVarMap;
617
618 /// Const iterator shorthand for DepVarMap
619 typedef DepVarMap::const_iterator DepVarMap_citer;
620
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)621 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
622 if (N->isLeaf()) {
623 if (isa<DefInit>(N->getLeafValue()))
624 DepMap[N->getName()]++;
625 } else {
626 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
627 FindDepVarsOf(N->getChild(i), DepMap);
628 }
629 }
630
631 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)632 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
633 DepVarMap depcounts;
634 FindDepVarsOf(N, depcounts);
635 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
636 if (i->second > 1) // std::pair<std::string, int>
637 DepVars.insert(i->first);
638 }
639 }
640
641 #ifndef NDEBUG
642 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)643 static void DumpDepVars(MultipleUseVarSet &DepVars) {
644 if (DepVars.empty()) {
645 DEBUG(errs() << "<empty set>");
646 } else {
647 DEBUG(errs() << "[ ");
648 for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
649 e = DepVars.end(); i != e; ++i) {
650 DEBUG(errs() << (*i) << " ");
651 }
652 DEBUG(errs() << "]");
653 }
654 }
655 #endif
656
657
658 //===----------------------------------------------------------------------===//
659 // TreePredicateFn Implementation
660 //===----------------------------------------------------------------------===//
661
662 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)663 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
664 assert((getPredCode().empty() || getImmCode().empty()) &&
665 ".td file corrupt: can't have a node predicate *and* an imm predicate");
666 }
667
getPredCode() const668 std::string TreePredicateFn::getPredCode() const {
669 return PatFragRec->getRecord()->getValueAsString("PredicateCode");
670 }
671
getImmCode() const672 std::string TreePredicateFn::getImmCode() const {
673 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
674 }
675
676
677 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const678 bool TreePredicateFn::isAlwaysTrue() const {
679 return getPredCode().empty() && getImmCode().empty();
680 }
681
682 /// Return the name to use in the generated code to reference this, this is
683 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const684 std::string TreePredicateFn::getFnName() const {
685 return "Predicate_" + PatFragRec->getRecord()->getName();
686 }
687
688 /// getCodeToRunOnSDNode - Return the code for the function body that
689 /// evaluates this predicate. The argument is expected to be in "Node",
690 /// not N. This handles casting and conversion to a concrete node type as
691 /// appropriate.
getCodeToRunOnSDNode() const692 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
693 // Handle immediate predicates first.
694 std::string ImmCode = getImmCode();
695 if (!ImmCode.empty()) {
696 std::string Result =
697 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
698 return Result + ImmCode;
699 }
700
701 // Handle arbitrary node predicates.
702 assert(!getPredCode().empty() && "Don't have any predicate code!");
703 std::string ClassName;
704 if (PatFragRec->getOnlyTree()->isLeaf())
705 ClassName = "SDNode";
706 else {
707 Record *Op = PatFragRec->getOnlyTree()->getOperator();
708 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
709 }
710 std::string Result;
711 if (ClassName == "SDNode")
712 Result = " SDNode *N = Node;\n";
713 else
714 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
715
716 return Result + getPredCode();
717 }
718
719 //===----------------------------------------------------------------------===//
720 // PatternToMatch implementation
721 //
722
723
724 /// getPatternSize - Return the 'size' of this pattern. We want to match large
725 /// patterns before small ones. This is used to determine the size of a
726 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)727 static unsigned getPatternSize(const TreePatternNode *P,
728 const CodeGenDAGPatterns &CGP) {
729 unsigned Size = 3; // The node itself.
730 // If the root node is a ConstantSDNode, increases its size.
731 // e.g. (set R32:$dst, 0).
732 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
733 Size += 2;
734
735 // FIXME: This is a hack to statically increase the priority of patterns
736 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
737 // Later we can allow complexity / cost for each pattern to be (optionally)
738 // specified. To get best possible pattern match we'll need to dynamically
739 // calculate the complexity of all patterns a dag can potentially map to.
740 const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
741 if (AM)
742 Size += AM->getNumOperands() * 3;
743
744 // If this node has some predicate function that must match, it adds to the
745 // complexity of this node.
746 if (!P->getPredicateFns().empty())
747 ++Size;
748
749 // Count children in the count if they are also nodes.
750 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
751 TreePatternNode *Child = P->getChild(i);
752 if (!Child->isLeaf() && Child->getNumTypes() &&
753 Child->getType(0) != MVT::Other)
754 Size += getPatternSize(Child, CGP);
755 else if (Child->isLeaf()) {
756 if (isa<IntInit>(Child->getLeafValue()))
757 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
758 else if (Child->getComplexPatternInfo(CGP))
759 Size += getPatternSize(Child, CGP);
760 else if (!Child->getPredicateFns().empty())
761 ++Size;
762 }
763 }
764
765 return Size;
766 }
767
768 /// Compute the complexity metric for the input pattern. This roughly
769 /// corresponds to the number of nodes that are covered.
770 unsigned PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const771 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
772 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
773 }
774
775
776 /// getPredicateCheck - Return a single string containing all of this
777 /// pattern's predicates concatenated with "&&" operators.
778 ///
getPredicateCheck() const779 std::string PatternToMatch::getPredicateCheck() const {
780 std::string PredicateCheck;
781 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
782 if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
783 Record *Def = Pred->getDef();
784 if (!Def->isSubClassOf("Predicate")) {
785 #ifndef NDEBUG
786 Def->dump();
787 #endif
788 llvm_unreachable("Unknown predicate type!");
789 }
790 if (!PredicateCheck.empty())
791 PredicateCheck += " && ";
792 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
793 }
794 }
795
796 return PredicateCheck;
797 }
798
799 //===----------------------------------------------------------------------===//
800 // SDTypeConstraint implementation
801 //
802
SDTypeConstraint(Record * R)803 SDTypeConstraint::SDTypeConstraint(Record *R) {
804 OperandNo = R->getValueAsInt("OperandNum");
805
806 if (R->isSubClassOf("SDTCisVT")) {
807 ConstraintType = SDTCisVT;
808 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
809 if (x.SDTCisVT_Info.VT == MVT::isVoid)
810 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
811
812 } else if (R->isSubClassOf("SDTCisPtrTy")) {
813 ConstraintType = SDTCisPtrTy;
814 } else if (R->isSubClassOf("SDTCisInt")) {
815 ConstraintType = SDTCisInt;
816 } else if (R->isSubClassOf("SDTCisFP")) {
817 ConstraintType = SDTCisFP;
818 } else if (R->isSubClassOf("SDTCisVec")) {
819 ConstraintType = SDTCisVec;
820 } else if (R->isSubClassOf("SDTCisSameAs")) {
821 ConstraintType = SDTCisSameAs;
822 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
823 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
824 ConstraintType = SDTCisVTSmallerThanOp;
825 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
826 R->getValueAsInt("OtherOperandNum");
827 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
828 ConstraintType = SDTCisOpSmallerThanOp;
829 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
830 R->getValueAsInt("BigOperandNum");
831 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
832 ConstraintType = SDTCisEltOfVec;
833 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
834 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
835 ConstraintType = SDTCisSubVecOfVec;
836 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
837 R->getValueAsInt("OtherOpNum");
838 } else {
839 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
840 exit(1);
841 }
842 }
843
844 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
845 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)846 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
847 const SDNodeInfo &NodeInfo,
848 unsigned &ResNo) {
849 unsigned NumResults = NodeInfo.getNumResults();
850 if (OpNo < NumResults) {
851 ResNo = OpNo;
852 return N;
853 }
854
855 OpNo -= NumResults;
856
857 if (OpNo >= N->getNumChildren()) {
858 errs() << "Invalid operand number in type constraint "
859 << (OpNo+NumResults) << " ";
860 N->dump();
861 errs() << '\n';
862 exit(1);
863 }
864
865 return N->getChild(OpNo);
866 }
867
868 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
869 /// constraint to the nodes operands. This returns true if it makes a
870 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const871 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
872 const SDNodeInfo &NodeInfo,
873 TreePattern &TP) const {
874 if (TP.hasError())
875 return false;
876
877 unsigned ResNo = 0; // The result number being referenced.
878 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
879
880 switch (ConstraintType) {
881 case SDTCisVT:
882 // Operand must be a particular type.
883 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
884 case SDTCisPtrTy:
885 // Operand must be same as target pointer type.
886 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
887 case SDTCisInt:
888 // Require it to be one of the legal integer VTs.
889 return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
890 case SDTCisFP:
891 // Require it to be one of the legal fp VTs.
892 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
893 case SDTCisVec:
894 // Require it to be one of the legal vector VTs.
895 return NodeToApply->getExtType(ResNo).EnforceVector(TP);
896 case SDTCisSameAs: {
897 unsigned OResNo = 0;
898 TreePatternNode *OtherNode =
899 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
900 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
901 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
902 }
903 case SDTCisVTSmallerThanOp: {
904 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
905 // have an integer type that is smaller than the VT.
906 if (!NodeToApply->isLeaf() ||
907 !isa<DefInit>(NodeToApply->getLeafValue()) ||
908 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
909 ->isSubClassOf("ValueType")) {
910 TP.error(N->getOperator()->getName() + " expects a VT operand!");
911 return false;
912 }
913 MVT::SimpleValueType VT =
914 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
915
916 EEVT::TypeSet TypeListTmp(VT, TP);
917
918 unsigned OResNo = 0;
919 TreePatternNode *OtherNode =
920 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
921 OResNo);
922
923 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
924 }
925 case SDTCisOpSmallerThanOp: {
926 unsigned BResNo = 0;
927 TreePatternNode *BigOperand =
928 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
929 BResNo);
930 return NodeToApply->getExtType(ResNo).
931 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
932 }
933 case SDTCisEltOfVec: {
934 unsigned VResNo = 0;
935 TreePatternNode *VecOperand =
936 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
937 VResNo);
938
939 // Filter vector types out of VecOperand that don't have the right element
940 // type.
941 return VecOperand->getExtType(VResNo).
942 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
943 }
944 case SDTCisSubVecOfVec: {
945 unsigned VResNo = 0;
946 TreePatternNode *BigVecOperand =
947 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
948 VResNo);
949
950 // Filter vector types out of BigVecOperand that don't have the
951 // right subvector type.
952 return BigVecOperand->getExtType(VResNo).
953 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
954 }
955 }
956 llvm_unreachable("Invalid ConstraintType!");
957 }
958
959 // Update the node type to match an instruction operand or result as specified
960 // in the ins or outs lists on the instruction definition. Return true if the
961 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)962 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
963 Record *Operand,
964 TreePattern &TP) {
965 // The 'unknown' operand indicates that types should be inferred from the
966 // context.
967 if (Operand->isSubClassOf("unknown_class"))
968 return false;
969
970 // The Operand class specifies a type directly.
971 if (Operand->isSubClassOf("Operand"))
972 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
973 TP);
974
975 // PointerLikeRegClass has a type that is determined at runtime.
976 if (Operand->isSubClassOf("PointerLikeRegClass"))
977 return UpdateNodeType(ResNo, MVT::iPTR, TP);
978
979 // Both RegisterClass and RegisterOperand operands derive their types from a
980 // register class def.
981 Record *RC = 0;
982 if (Operand->isSubClassOf("RegisterClass"))
983 RC = Operand;
984 else if (Operand->isSubClassOf("RegisterOperand"))
985 RC = Operand->getValueAsDef("RegClass");
986
987 assert(RC && "Unknown operand type");
988 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
989 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
990 }
991
992
993 //===----------------------------------------------------------------------===//
994 // SDNodeInfo implementation
995 //
SDNodeInfo(Record * R)996 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
997 EnumName = R->getValueAsString("Opcode");
998 SDClassName = R->getValueAsString("SDClass");
999 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1000 NumResults = TypeProfile->getValueAsInt("NumResults");
1001 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1002
1003 // Parse the properties.
1004 Properties = 0;
1005 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
1006 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
1007 if (PropList[i]->getName() == "SDNPCommutative") {
1008 Properties |= 1 << SDNPCommutative;
1009 } else if (PropList[i]->getName() == "SDNPAssociative") {
1010 Properties |= 1 << SDNPAssociative;
1011 } else if (PropList[i]->getName() == "SDNPHasChain") {
1012 Properties |= 1 << SDNPHasChain;
1013 } else if (PropList[i]->getName() == "SDNPOutGlue") {
1014 Properties |= 1 << SDNPOutGlue;
1015 } else if (PropList[i]->getName() == "SDNPInGlue") {
1016 Properties |= 1 << SDNPInGlue;
1017 } else if (PropList[i]->getName() == "SDNPOptInGlue") {
1018 Properties |= 1 << SDNPOptInGlue;
1019 } else if (PropList[i]->getName() == "SDNPMayStore") {
1020 Properties |= 1 << SDNPMayStore;
1021 } else if (PropList[i]->getName() == "SDNPMayLoad") {
1022 Properties |= 1 << SDNPMayLoad;
1023 } else if (PropList[i]->getName() == "SDNPSideEffect") {
1024 Properties |= 1 << SDNPSideEffect;
1025 } else if (PropList[i]->getName() == "SDNPMemOperand") {
1026 Properties |= 1 << SDNPMemOperand;
1027 } else if (PropList[i]->getName() == "SDNPVariadic") {
1028 Properties |= 1 << SDNPVariadic;
1029 } else {
1030 errs() << "Unknown SD Node property '" << PropList[i]->getName()
1031 << "' on node '" << R->getName() << "'!\n";
1032 exit(1);
1033 }
1034 }
1035
1036
1037 // Parse the type constraints.
1038 std::vector<Record*> ConstraintList =
1039 TypeProfile->getValueAsListOfDefs("Constraints");
1040 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1041 }
1042
1043 /// getKnownType - If the type constraints on this node imply a fixed type
1044 /// (e.g. all stores return void, etc), then return it as an
1045 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1046 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1047 unsigned NumResults = getNumResults();
1048 assert(NumResults <= 1 &&
1049 "We only work with nodes with zero or one result so far!");
1050 assert(ResNo == 0 && "Only handles single result nodes so far");
1051
1052 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
1053 // Make sure that this applies to the correct node result.
1054 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
1055 continue;
1056
1057 switch (TypeConstraints[i].ConstraintType) {
1058 default: break;
1059 case SDTypeConstraint::SDTCisVT:
1060 return TypeConstraints[i].x.SDTCisVT_Info.VT;
1061 case SDTypeConstraint::SDTCisPtrTy:
1062 return MVT::iPTR;
1063 }
1064 }
1065 return MVT::Other;
1066 }
1067
1068 //===----------------------------------------------------------------------===//
1069 // TreePatternNode implementation
1070 //
1071
~TreePatternNode()1072 TreePatternNode::~TreePatternNode() {
1073 #if 0 // FIXME: implement refcounted tree nodes!
1074 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1075 delete getChild(i);
1076 #endif
1077 }
1078
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1079 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1080 if (Operator->getName() == "set" ||
1081 Operator->getName() == "implicit")
1082 return 0; // All return nothing.
1083
1084 if (Operator->isSubClassOf("Intrinsic"))
1085 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1086
1087 if (Operator->isSubClassOf("SDNode"))
1088 return CDP.getSDNodeInfo(Operator).getNumResults();
1089
1090 if (Operator->isSubClassOf("PatFrag")) {
1091 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1092 // the forward reference case where one pattern fragment references another
1093 // before it is processed.
1094 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1095 return PFRec->getOnlyTree()->getNumTypes();
1096
1097 // Get the result tree.
1098 DagInit *Tree = Operator->getValueAsDag("Fragment");
1099 Record *Op = 0;
1100 if (Tree)
1101 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1102 Op = DI->getDef();
1103 assert(Op && "Invalid Fragment");
1104 return GetNumNodeResults(Op, CDP);
1105 }
1106
1107 if (Operator->isSubClassOf("Instruction")) {
1108 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1109
1110 // FIXME: Should allow access to all the results here.
1111 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1112
1113 // Add on one implicit def if it has a resolvable type.
1114 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1115 ++NumDefsToAdd;
1116 return NumDefsToAdd;
1117 }
1118
1119 if (Operator->isSubClassOf("SDNodeXForm"))
1120 return 1; // FIXME: Generalize SDNodeXForm
1121
1122 Operator->dump();
1123 errs() << "Unhandled node in GetNumNodeResults\n";
1124 exit(1);
1125 }
1126
print(raw_ostream & OS) const1127 void TreePatternNode::print(raw_ostream &OS) const {
1128 if (isLeaf())
1129 OS << *getLeafValue();
1130 else
1131 OS << '(' << getOperator()->getName();
1132
1133 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1134 OS << ':' << getExtType(i).getName();
1135
1136 if (!isLeaf()) {
1137 if (getNumChildren() != 0) {
1138 OS << " ";
1139 getChild(0)->print(OS);
1140 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1141 OS << ", ";
1142 getChild(i)->print(OS);
1143 }
1144 }
1145 OS << ")";
1146 }
1147
1148 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1149 OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1150 if (TransformFn)
1151 OS << "<<X:" << TransformFn->getName() << ">>";
1152 if (!getName().empty())
1153 OS << ":$" << getName();
1154
1155 }
dump() const1156 void TreePatternNode::dump() const {
1157 print(errs());
1158 }
1159
1160 /// isIsomorphicTo - Return true if this node is recursively
1161 /// isomorphic to the specified node. For this comparison, the node's
1162 /// entire state is considered. The assigned name is ignored, since
1163 /// nodes with differing names are considered isomorphic. However, if
1164 /// the assigned name is present in the dependent variable set, then
1165 /// the assigned name is considered significant and the node is
1166 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1167 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1168 const MultipleUseVarSet &DepVars) const {
1169 if (N == this) return true;
1170 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1171 getPredicateFns() != N->getPredicateFns() ||
1172 getTransformFn() != N->getTransformFn())
1173 return false;
1174
1175 if (isLeaf()) {
1176 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1177 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1178 return ((DI->getDef() == NDI->getDef())
1179 && (DepVars.find(getName()) == DepVars.end()
1180 || getName() == N->getName()));
1181 }
1182 }
1183 return getLeafValue() == N->getLeafValue();
1184 }
1185
1186 if (N->getOperator() != getOperator() ||
1187 N->getNumChildren() != getNumChildren()) return false;
1188 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1189 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1190 return false;
1191 return true;
1192 }
1193
1194 /// clone - Make a copy of this tree and all of its children.
1195 ///
clone() const1196 TreePatternNode *TreePatternNode::clone() const {
1197 TreePatternNode *New;
1198 if (isLeaf()) {
1199 New = new TreePatternNode(getLeafValue(), getNumTypes());
1200 } else {
1201 std::vector<TreePatternNode*> CChildren;
1202 CChildren.reserve(Children.size());
1203 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1204 CChildren.push_back(getChild(i)->clone());
1205 New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1206 }
1207 New->setName(getName());
1208 New->Types = Types;
1209 New->setPredicateFns(getPredicateFns());
1210 New->setTransformFn(getTransformFn());
1211 return New;
1212 }
1213
1214 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1215 void TreePatternNode::RemoveAllTypes() {
1216 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1217 Types[i] = EEVT::TypeSet(); // Reset to unknown type.
1218 if (isLeaf()) return;
1219 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1220 getChild(i)->RemoveAllTypes();
1221 }
1222
1223
1224 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1225 /// with actual values specified by ArgMap.
1226 void TreePatternNode::
SubstituteFormalArguments(std::map<std::string,TreePatternNode * > & ArgMap)1227 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1228 if (isLeaf()) return;
1229
1230 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1231 TreePatternNode *Child = getChild(i);
1232 if (Child->isLeaf()) {
1233 Init *Val = Child->getLeafValue();
1234 if (isa<DefInit>(Val) &&
1235 cast<DefInit>(Val)->getDef()->getName() == "node") {
1236 // We found a use of a formal argument, replace it with its value.
1237 TreePatternNode *NewChild = ArgMap[Child->getName()];
1238 assert(NewChild && "Couldn't find formal argument!");
1239 assert((Child->getPredicateFns().empty() ||
1240 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1241 "Non-empty child predicate clobbered!");
1242 setChild(i, NewChild);
1243 }
1244 } else {
1245 getChild(i)->SubstituteFormalArguments(ArgMap);
1246 }
1247 }
1248 }
1249
1250
1251 /// InlinePatternFragments - If this pattern refers to any pattern
1252 /// fragments, inline them into place, giving us a pattern without any
1253 /// PatFrag references.
InlinePatternFragments(TreePattern & TP)1254 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1255 if (TP.hasError())
1256 return 0;
1257
1258 if (isLeaf())
1259 return this; // nothing to do.
1260 Record *Op = getOperator();
1261
1262 if (!Op->isSubClassOf("PatFrag")) {
1263 // Just recursively inline children nodes.
1264 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1265 TreePatternNode *Child = getChild(i);
1266 TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1267
1268 assert((Child->getPredicateFns().empty() ||
1269 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1270 "Non-empty child predicate clobbered!");
1271
1272 setChild(i, NewChild);
1273 }
1274 return this;
1275 }
1276
1277 // Otherwise, we found a reference to a fragment. First, look up its
1278 // TreePattern record.
1279 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1280
1281 // Verify that we are passing the right number of operands.
1282 if (Frag->getNumArgs() != Children.size()) {
1283 TP.error("'" + Op->getName() + "' fragment requires " +
1284 utostr(Frag->getNumArgs()) + " operands!");
1285 return 0;
1286 }
1287
1288 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1289
1290 TreePredicateFn PredFn(Frag);
1291 if (!PredFn.isAlwaysTrue())
1292 FragTree->addPredicateFn(PredFn);
1293
1294 // Resolve formal arguments to their actual value.
1295 if (Frag->getNumArgs()) {
1296 // Compute the map of formal to actual arguments.
1297 std::map<std::string, TreePatternNode*> ArgMap;
1298 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1299 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1300
1301 FragTree->SubstituteFormalArguments(ArgMap);
1302 }
1303
1304 FragTree->setName(getName());
1305 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1306 FragTree->UpdateNodeType(i, getExtType(i), TP);
1307
1308 // Transfer in the old predicates.
1309 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1310 FragTree->addPredicateFn(getPredicateFns()[i]);
1311
1312 // Get a new copy of this fragment to stitch into here.
1313 //delete this; // FIXME: implement refcounting!
1314
1315 // The fragment we inlined could have recursive inlining that is needed. See
1316 // if there are any pattern fragments in it and inline them as needed.
1317 return FragTree->InlinePatternFragments(TP);
1318 }
1319
1320 /// getImplicitType - Check to see if the specified record has an implicit
1321 /// type which should be applied to it. This will infer the type of register
1322 /// references from the register file information, for example.
1323 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,TreePattern & TP)1324 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1325 bool NotRegisters, TreePattern &TP) {
1326 // Check to see if this is a register operand.
1327 if (R->isSubClassOf("RegisterOperand")) {
1328 assert(ResNo == 0 && "Regoperand ref only has one result!");
1329 if (NotRegisters)
1330 return EEVT::TypeSet(); // Unknown.
1331 Record *RegClass = R->getValueAsDef("RegClass");
1332 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1333 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1334 }
1335
1336 // Check to see if this is a register or a register class.
1337 if (R->isSubClassOf("RegisterClass")) {
1338 assert(ResNo == 0 && "Regclass ref only has one result!");
1339 if (NotRegisters)
1340 return EEVT::TypeSet(); // Unknown.
1341 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1342 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1343 }
1344
1345 if (R->isSubClassOf("PatFrag")) {
1346 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1347 // Pattern fragment types will be resolved when they are inlined.
1348 return EEVT::TypeSet(); // Unknown.
1349 }
1350
1351 if (R->isSubClassOf("Register")) {
1352 assert(ResNo == 0 && "Registers only produce one result!");
1353 if (NotRegisters)
1354 return EEVT::TypeSet(); // Unknown.
1355 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1356 return EEVT::TypeSet(T.getRegisterVTs(R));
1357 }
1358
1359 if (R->isSubClassOf("SubRegIndex")) {
1360 assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1361 return EEVT::TypeSet();
1362 }
1363
1364 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
1365 assert(ResNo == 0 && "This node only has one result!");
1366 // Using a VTSDNode or CondCodeSDNode.
1367 return EEVT::TypeSet(MVT::Other, TP);
1368 }
1369
1370 if (R->isSubClassOf("ComplexPattern")) {
1371 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1372 if (NotRegisters)
1373 return EEVT::TypeSet(); // Unknown.
1374 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1375 TP);
1376 }
1377 if (R->isSubClassOf("PointerLikeRegClass")) {
1378 assert(ResNo == 0 && "Regclass can only have one result!");
1379 return EEVT::TypeSet(MVT::iPTR, TP);
1380 }
1381
1382 if (R->getName() == "node" || R->getName() == "srcvalue" ||
1383 R->getName() == "zero_reg") {
1384 // Placeholder.
1385 return EEVT::TypeSet(); // Unknown.
1386 }
1387
1388 TP.error("Unknown node flavor used in pattern: " + R->getName());
1389 return EEVT::TypeSet(MVT::Other, TP);
1390 }
1391
1392
1393 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1394 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1395 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const1396 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1397 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1398 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1399 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1400 return 0;
1401
1402 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1403 return &CDP.getIntrinsicInfo(IID);
1404 }
1405
1406 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1407 /// return the ComplexPattern information, otherwise return null.
1408 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const1409 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1410 if (!isLeaf()) return 0;
1411
1412 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1413 if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1414 return &CGP.getComplexPattern(DI->getDef());
1415 return 0;
1416 }
1417
1418 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1419 bool TreePatternNode::NodeHasProperty(SDNP Property,
1420 const CodeGenDAGPatterns &CGP) const {
1421 if (isLeaf()) {
1422 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1423 return CP->hasProperty(Property);
1424 return false;
1425 }
1426
1427 Record *Operator = getOperator();
1428 if (!Operator->isSubClassOf("SDNode")) return false;
1429
1430 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1431 }
1432
1433
1434
1435
1436 /// TreeHasProperty - Return true if any node in this tree has the specified
1437 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1438 bool TreePatternNode::TreeHasProperty(SDNP Property,
1439 const CodeGenDAGPatterns &CGP) const {
1440 if (NodeHasProperty(Property, CGP))
1441 return true;
1442 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1443 if (getChild(i)->TreeHasProperty(Property, CGP))
1444 return true;
1445 return false;
1446 }
1447
1448 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1449 /// commutative intrinsic.
1450 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const1451 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1452 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1453 return Int->isCommutative;
1454 return false;
1455 }
1456
1457
1458 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1459 /// this node and its children in the tree. This returns true if it makes a
1460 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)1461 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1462 if (TP.hasError())
1463 return false;
1464
1465 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1466 if (isLeaf()) {
1467 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1468 // If it's a regclass or something else known, include the type.
1469 bool MadeChange = false;
1470 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1471 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1472 NotRegisters, TP), TP);
1473 return MadeChange;
1474 }
1475
1476 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1477 assert(Types.size() == 1 && "Invalid IntInit");
1478
1479 // Int inits are always integers. :)
1480 bool MadeChange = Types[0].EnforceInteger(TP);
1481
1482 if (!Types[0].isConcrete())
1483 return MadeChange;
1484
1485 MVT::SimpleValueType VT = getType(0);
1486 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1487 return MadeChange;
1488
1489 unsigned Size = EVT(VT).getSizeInBits();
1490 // Make sure that the value is representable for this type.
1491 if (Size >= 32) return MadeChange;
1492
1493 // Check that the value doesn't use more bits than we have. It must either
1494 // be a sign- or zero-extended equivalent of the original.
1495 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1496 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1497 return MadeChange;
1498
1499 TP.error("Integer value '" + itostr(II->getValue()) +
1500 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1501 return false;
1502 }
1503 return false;
1504 }
1505
1506 // special handling for set, which isn't really an SDNode.
1507 if (getOperator()->getName() == "set") {
1508 assert(getNumTypes() == 0 && "Set doesn't produce a value");
1509 assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1510 unsigned NC = getNumChildren();
1511
1512 TreePatternNode *SetVal = getChild(NC-1);
1513 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1514
1515 for (unsigned i = 0; i < NC-1; ++i) {
1516 TreePatternNode *Child = getChild(i);
1517 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1518
1519 // Types of operands must match.
1520 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1521 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1522 }
1523 return MadeChange;
1524 }
1525
1526 if (getOperator()->getName() == "implicit") {
1527 assert(getNumTypes() == 0 && "Node doesn't produce a value");
1528
1529 bool MadeChange = false;
1530 for (unsigned i = 0; i < getNumChildren(); ++i)
1531 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1532 return MadeChange;
1533 }
1534
1535 if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1536 bool MadeChange = false;
1537 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1538 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
1539
1540 assert(getChild(0)->getNumTypes() == 1 &&
1541 getChild(1)->getNumTypes() == 1 && "Unhandled case");
1542
1543 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care
1544 // what type it gets, so if it didn't get a concrete type just give it the
1545 // first viable type from the reg class.
1546 if (!getChild(1)->hasTypeSet(0) &&
1547 !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1548 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
1549 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
1550 }
1551 return MadeChange;
1552 }
1553
1554 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1555 bool MadeChange = false;
1556
1557 // Apply the result type to the node.
1558 unsigned NumRetVTs = Int->IS.RetVTs.size();
1559 unsigned NumParamVTs = Int->IS.ParamVTs.size();
1560
1561 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1562 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1563
1564 if (getNumChildren() != NumParamVTs + 1) {
1565 TP.error("Intrinsic '" + Int->Name + "' expects " +
1566 utostr(NumParamVTs) + " operands, not " +
1567 utostr(getNumChildren() - 1) + " operands!");
1568 return false;
1569 }
1570
1571 // Apply type info to the intrinsic ID.
1572 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1573
1574 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1575 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1576
1577 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1578 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1579 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1580 }
1581 return MadeChange;
1582 }
1583
1584 if (getOperator()->isSubClassOf("SDNode")) {
1585 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1586
1587 // Check that the number of operands is sane. Negative operands -> varargs.
1588 if (NI.getNumOperands() >= 0 &&
1589 getNumChildren() != (unsigned)NI.getNumOperands()) {
1590 TP.error(getOperator()->getName() + " node requires exactly " +
1591 itostr(NI.getNumOperands()) + " operands!");
1592 return false;
1593 }
1594
1595 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1596 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1597 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1598 return MadeChange;
1599 }
1600
1601 if (getOperator()->isSubClassOf("Instruction")) {
1602 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1603 CodeGenInstruction &InstInfo =
1604 CDP.getTargetInfo().getInstruction(getOperator());
1605
1606 bool MadeChange = false;
1607
1608 // Apply the result types to the node, these come from the things in the
1609 // (outs) list of the instruction.
1610 // FIXME: Cap at one result so far.
1611 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1612 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1613 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1614
1615 // If the instruction has implicit defs, we apply the first one as a result.
1616 // FIXME: This sucks, it should apply all implicit defs.
1617 if (!InstInfo.ImplicitDefs.empty()) {
1618 unsigned ResNo = NumResultsToAdd;
1619
1620 // FIXME: Generalize to multiple possible types and multiple possible
1621 // ImplicitDefs.
1622 MVT::SimpleValueType VT =
1623 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1624
1625 if (VT != MVT::Other)
1626 MadeChange |= UpdateNodeType(ResNo, VT, TP);
1627 }
1628
1629 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1630 // be the same.
1631 if (getOperator()->getName() == "INSERT_SUBREG") {
1632 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1633 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1634 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1635 }
1636
1637 unsigned ChildNo = 0;
1638 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1639 Record *OperandNode = Inst.getOperand(i);
1640
1641 // If the instruction expects a predicate or optional def operand, we
1642 // codegen this by setting the operand to it's default value if it has a
1643 // non-empty DefaultOps field.
1644 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1645 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1646 continue;
1647
1648 // Verify that we didn't run out of provided operands.
1649 if (ChildNo >= getNumChildren()) {
1650 TP.error("Instruction '" + getOperator()->getName() +
1651 "' expects more operands than were provided.");
1652 return false;
1653 }
1654
1655 TreePatternNode *Child = getChild(ChildNo++);
1656 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
1657 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1658 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1659 }
1660
1661 if (ChildNo != getNumChildren()) {
1662 TP.error("Instruction '" + getOperator()->getName() +
1663 "' was provided too many operands!");
1664 return false;
1665 }
1666
1667 return MadeChange;
1668 }
1669
1670 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1671
1672 // Node transforms always take one operand.
1673 if (getNumChildren() != 1) {
1674 TP.error("Node transform '" + getOperator()->getName() +
1675 "' requires one operand!");
1676 return false;
1677 }
1678
1679 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1680
1681
1682 // If either the output or input of the xform does not have exact
1683 // type info. We assume they must be the same. Otherwise, it is perfectly
1684 // legal to transform from one type to a completely different type.
1685 #if 0
1686 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1687 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1688 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1689 return MadeChange;
1690 }
1691 #endif
1692 return MadeChange;
1693 }
1694
1695 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1696 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)1697 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1698 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1699 return true;
1700 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1701 return true;
1702 return false;
1703 }
1704
1705
1706 /// canPatternMatch - If it is impossible for this pattern to match on this
1707 /// target, fill in Reason and return false. Otherwise, return true. This is
1708 /// used as a sanity check for .td files (to prevent people from writing stuff
1709 /// that can never possibly work), and to prevent the pattern permuter from
1710 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)1711 bool TreePatternNode::canPatternMatch(std::string &Reason,
1712 const CodeGenDAGPatterns &CDP) {
1713 if (isLeaf()) return true;
1714
1715 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1716 if (!getChild(i)->canPatternMatch(Reason, CDP))
1717 return false;
1718
1719 // If this is an intrinsic, handle cases that would make it not match. For
1720 // example, if an operand is required to be an immediate.
1721 if (getOperator()->isSubClassOf("Intrinsic")) {
1722 // TODO:
1723 return true;
1724 }
1725
1726 // If this node is a commutative operator, check that the LHS isn't an
1727 // immediate.
1728 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1729 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1730 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1731 // Scan all of the operands of the node and make sure that only the last one
1732 // is a constant node, unless the RHS also is.
1733 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1734 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1735 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1736 if (OnlyOnRHSOfCommutative(getChild(i))) {
1737 Reason="Immediate value must be on the RHS of commutative operators!";
1738 return false;
1739 }
1740 }
1741 }
1742
1743 return true;
1744 }
1745
1746 //===----------------------------------------------------------------------===//
1747 // TreePattern implementation
1748 //
1749
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)1750 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1751 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1752 isInputPattern(isInput), HasError(false) {
1753 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1754 Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1755 }
1756
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)1757 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1758 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1759 isInputPattern(isInput), HasError(false) {
1760 Trees.push_back(ParseTreePattern(Pat, ""));
1761 }
1762
TreePattern(Record * TheRec,TreePatternNode * Pat,bool isInput,CodeGenDAGPatterns & cdp)1763 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1764 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1765 isInputPattern(isInput), HasError(false) {
1766 Trees.push_back(Pat);
1767 }
1768
error(const std::string & Msg)1769 void TreePattern::error(const std::string &Msg) {
1770 if (HasError)
1771 return;
1772 dump();
1773 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1774 HasError = true;
1775 }
1776
ComputeNamedNodes()1777 void TreePattern::ComputeNamedNodes() {
1778 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1779 ComputeNamedNodes(Trees[i]);
1780 }
1781
ComputeNamedNodes(TreePatternNode * N)1782 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1783 if (!N->getName().empty())
1784 NamedNodes[N->getName()].push_back(N);
1785
1786 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1787 ComputeNamedNodes(N->getChild(i));
1788 }
1789
1790
ParseTreePattern(Init * TheInit,StringRef OpName)1791 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1792 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
1793 Record *R = DI->getDef();
1794
1795 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1796 // TreePatternNode of its own. For example:
1797 /// (foo GPR, imm) -> (foo GPR, (imm))
1798 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1799 return ParseTreePattern(
1800 DagInit::get(DI, "",
1801 std::vector<std::pair<Init*, std::string> >()),
1802 OpName);
1803
1804 // Input argument?
1805 TreePatternNode *Res = new TreePatternNode(DI, 1);
1806 if (R->getName() == "node" && !OpName.empty()) {
1807 if (OpName.empty())
1808 error("'node' argument requires a name to match with operand list");
1809 Args.push_back(OpName);
1810 }
1811
1812 Res->setName(OpName);
1813 return Res;
1814 }
1815
1816 if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
1817 if (!OpName.empty())
1818 error("Constant int argument should not have a name!");
1819 return new TreePatternNode(II, 1);
1820 }
1821
1822 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
1823 // Turn this into an IntInit.
1824 Init *II = BI->convertInitializerTo(IntRecTy::get());
1825 if (II == 0 || !isa<IntInit>(II))
1826 error("Bits value must be constants!");
1827 return ParseTreePattern(II, OpName);
1828 }
1829
1830 DagInit *Dag = dyn_cast<DagInit>(TheInit);
1831 if (!Dag) {
1832 TheInit->dump();
1833 error("Pattern has unexpected init kind!");
1834 }
1835 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
1836 if (!OpDef) error("Pattern has unexpected operator type!");
1837 Record *Operator = OpDef->getDef();
1838
1839 if (Operator->isSubClassOf("ValueType")) {
1840 // If the operator is a ValueType, then this must be "type cast" of a leaf
1841 // node.
1842 if (Dag->getNumArgs() != 1)
1843 error("Type cast only takes one operand!");
1844
1845 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1846
1847 // Apply the type cast.
1848 assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1849 New->UpdateNodeType(0, getValueType(Operator), *this);
1850
1851 if (!OpName.empty())
1852 error("ValueType cast should not have a name!");
1853 return New;
1854 }
1855
1856 // Verify that this is something that makes sense for an operator.
1857 if (!Operator->isSubClassOf("PatFrag") &&
1858 !Operator->isSubClassOf("SDNode") &&
1859 !Operator->isSubClassOf("Instruction") &&
1860 !Operator->isSubClassOf("SDNodeXForm") &&
1861 !Operator->isSubClassOf("Intrinsic") &&
1862 Operator->getName() != "set" &&
1863 Operator->getName() != "implicit")
1864 error("Unrecognized node '" + Operator->getName() + "'!");
1865
1866 // Check to see if this is something that is illegal in an input pattern.
1867 if (isInputPattern) {
1868 if (Operator->isSubClassOf("Instruction") ||
1869 Operator->isSubClassOf("SDNodeXForm"))
1870 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1871 } else {
1872 if (Operator->isSubClassOf("Intrinsic"))
1873 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1874
1875 if (Operator->isSubClassOf("SDNode") &&
1876 Operator->getName() != "imm" &&
1877 Operator->getName() != "fpimm" &&
1878 Operator->getName() != "tglobaltlsaddr" &&
1879 Operator->getName() != "tconstpool" &&
1880 Operator->getName() != "tjumptable" &&
1881 Operator->getName() != "tframeindex" &&
1882 Operator->getName() != "texternalsym" &&
1883 Operator->getName() != "tblockaddress" &&
1884 Operator->getName() != "tglobaladdr" &&
1885 Operator->getName() != "bb" &&
1886 Operator->getName() != "vt")
1887 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1888 }
1889
1890 std::vector<TreePatternNode*> Children;
1891
1892 // Parse all the operands.
1893 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1894 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1895
1896 // If the operator is an intrinsic, then this is just syntactic sugar for for
1897 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1898 // convert the intrinsic name to a number.
1899 if (Operator->isSubClassOf("Intrinsic")) {
1900 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1901 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1902
1903 // If this intrinsic returns void, it must have side-effects and thus a
1904 // chain.
1905 if (Int.IS.RetVTs.empty())
1906 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1907 else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1908 // Has side-effects, requires chain.
1909 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1910 else // Otherwise, no chain.
1911 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1912
1913 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1914 Children.insert(Children.begin(), IIDNode);
1915 }
1916
1917 unsigned NumResults = GetNumNodeResults(Operator, CDP);
1918 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1919 Result->setName(OpName);
1920
1921 if (!Dag->getName().empty()) {
1922 assert(Result->getName().empty());
1923 Result->setName(Dag->getName());
1924 }
1925 return Result;
1926 }
1927
1928 /// SimplifyTree - See if we can simplify this tree to eliminate something that
1929 /// will never match in favor of something obvious that will. This is here
1930 /// strictly as a convenience to target authors because it allows them to write
1931 /// more type generic things and have useless type casts fold away.
1932 ///
1933 /// This returns true if any change is made.
SimplifyTree(TreePatternNode * & N)1934 static bool SimplifyTree(TreePatternNode *&N) {
1935 if (N->isLeaf())
1936 return false;
1937
1938 // If we have a bitconvert with a resolved type and if the source and
1939 // destination types are the same, then the bitconvert is useless, remove it.
1940 if (N->getOperator()->getName() == "bitconvert" &&
1941 N->getExtType(0).isConcrete() &&
1942 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
1943 N->getName().empty()) {
1944 N = N->getChild(0);
1945 SimplifyTree(N);
1946 return true;
1947 }
1948
1949 // Walk all children.
1950 bool MadeChange = false;
1951 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1952 TreePatternNode *Child = N->getChild(i);
1953 MadeChange |= SimplifyTree(Child);
1954 N->setChild(i, Child);
1955 }
1956 return MadeChange;
1957 }
1958
1959
1960
1961 /// InferAllTypes - Infer/propagate as many types throughout the expression
1962 /// patterns as possible. Return true if all types are inferred, false
1963 /// otherwise. Flags an error if a type contradiction is found.
1964 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)1965 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
1966 if (NamedNodes.empty())
1967 ComputeNamedNodes();
1968
1969 bool MadeChange = true;
1970 while (MadeChange) {
1971 MadeChange = false;
1972 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1973 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1974 MadeChange |= SimplifyTree(Trees[i]);
1975 }
1976
1977 // If there are constraints on our named nodes, apply them.
1978 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
1979 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
1980 SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
1981
1982 // If we have input named node types, propagate their types to the named
1983 // values here.
1984 if (InNamedTypes) {
1985 // FIXME: Should be error?
1986 assert(InNamedTypes->count(I->getKey()) &&
1987 "Named node in output pattern but not input pattern?");
1988
1989 const SmallVectorImpl<TreePatternNode*> &InNodes =
1990 InNamedTypes->find(I->getKey())->second;
1991
1992 // The input types should be fully resolved by now.
1993 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
1994 // If this node is a register class, and it is the root of the pattern
1995 // then we're mapping something onto an input register. We allow
1996 // changing the type of the input register in this case. This allows
1997 // us to match things like:
1998 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1999 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
2000 DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue());
2001 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2002 DI->getDef()->isSubClassOf("RegisterOperand")))
2003 continue;
2004 }
2005
2006 assert(Nodes[i]->getNumTypes() == 1 &&
2007 InNodes[0]->getNumTypes() == 1 &&
2008 "FIXME: cannot name multiple result nodes yet");
2009 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
2010 *this);
2011 }
2012 }
2013
2014 // If there are multiple nodes with the same name, they must all have the
2015 // same type.
2016 if (I->second.size() > 1) {
2017 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2018 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2019 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2020 "FIXME: cannot name multiple result nodes yet");
2021
2022 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2023 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2024 }
2025 }
2026 }
2027 }
2028
2029 bool HasUnresolvedTypes = false;
2030 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
2031 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
2032 return !HasUnresolvedTypes;
2033 }
2034
print(raw_ostream & OS) const2035 void TreePattern::print(raw_ostream &OS) const {
2036 OS << getRecord()->getName();
2037 if (!Args.empty()) {
2038 OS << "(" << Args[0];
2039 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2040 OS << ", " << Args[i];
2041 OS << ")";
2042 }
2043 OS << ": ";
2044
2045 if (Trees.size() > 1)
2046 OS << "[\n";
2047 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2048 OS << "\t";
2049 Trees[i]->print(OS);
2050 OS << "\n";
2051 }
2052
2053 if (Trees.size() > 1)
2054 OS << "]\n";
2055 }
2056
dump() const2057 void TreePattern::dump() const { print(errs()); }
2058
2059 //===----------------------------------------------------------------------===//
2060 // CodeGenDAGPatterns implementation
2061 //
2062
CodeGenDAGPatterns(RecordKeeper & R)2063 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2064 Records(R), Target(R) {
2065
2066 Intrinsics = LoadIntrinsics(Records, false);
2067 TgtIntrinsics = LoadIntrinsics(Records, true);
2068 ParseNodeInfo();
2069 ParseNodeTransforms();
2070 ParseComplexPatterns();
2071 ParsePatternFragments();
2072 ParseDefaultOperands();
2073 ParseInstructions();
2074 ParsePatterns();
2075
2076 // Generate variants. For example, commutative patterns can match
2077 // multiple ways. Add them to PatternsToMatch as well.
2078 GenerateVariants();
2079
2080 // Infer instruction flags. For example, we can detect loads,
2081 // stores, and side effects in many cases by examining an
2082 // instruction's pattern.
2083 InferInstructionFlags();
2084
2085 // Verify that instruction flags match the patterns.
2086 VerifyInstructionFlags();
2087 }
2088
~CodeGenDAGPatterns()2089 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2090 for (pf_iterator I = PatternFragments.begin(),
2091 E = PatternFragments.end(); I != E; ++I)
2092 delete I->second;
2093 }
2094
2095
getSDNodeNamed(const std::string & Name) const2096 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2097 Record *N = Records.getDef(Name);
2098 if (!N || !N->isSubClassOf("SDNode")) {
2099 errs() << "Error getting SDNode '" << Name << "'!\n";
2100 exit(1);
2101 }
2102 return N;
2103 }
2104
2105 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2106 void CodeGenDAGPatterns::ParseNodeInfo() {
2107 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2108 while (!Nodes.empty()) {
2109 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2110 Nodes.pop_back();
2111 }
2112
2113 // Get the builtin intrinsic nodes.
2114 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
2115 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
2116 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2117 }
2118
2119 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2120 /// map, and emit them to the file as functions.
ParseNodeTransforms()2121 void CodeGenDAGPatterns::ParseNodeTransforms() {
2122 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2123 while (!Xforms.empty()) {
2124 Record *XFormNode = Xforms.back();
2125 Record *SDNode = XFormNode->getValueAsDef("Opcode");
2126 std::string Code = XFormNode->getValueAsString("XFormFunction");
2127 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2128
2129 Xforms.pop_back();
2130 }
2131 }
2132
ParseComplexPatterns()2133 void CodeGenDAGPatterns::ParseComplexPatterns() {
2134 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2135 while (!AMs.empty()) {
2136 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2137 AMs.pop_back();
2138 }
2139 }
2140
2141
2142 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2143 /// file, building up the PatternFragments map. After we've collected them all,
2144 /// inline fragments together as necessary, so that there are no references left
2145 /// inside a pattern fragment to a pattern fragment.
2146 ///
ParsePatternFragments()2147 void CodeGenDAGPatterns::ParsePatternFragments() {
2148 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2149
2150 // First step, parse all of the fragments.
2151 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2152 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2153 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2154 PatternFragments[Fragments[i]] = P;
2155
2156 // Validate the argument list, converting it to set, to discard duplicates.
2157 std::vector<std::string> &Args = P->getArgList();
2158 std::set<std::string> OperandsSet(Args.begin(), Args.end());
2159
2160 if (OperandsSet.count(""))
2161 P->error("Cannot have unnamed 'node' values in pattern fragment!");
2162
2163 // Parse the operands list.
2164 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2165 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2166 // Special cases: ops == outs == ins. Different names are used to
2167 // improve readability.
2168 if (!OpsOp ||
2169 (OpsOp->getDef()->getName() != "ops" &&
2170 OpsOp->getDef()->getName() != "outs" &&
2171 OpsOp->getDef()->getName() != "ins"))
2172 P->error("Operands list should start with '(ops ... '!");
2173
2174 // Copy over the arguments.
2175 Args.clear();
2176 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2177 if (!isa<DefInit>(OpsList->getArg(j)) ||
2178 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2179 P->error("Operands list should all be 'node' values.");
2180 if (OpsList->getArgName(j).empty())
2181 P->error("Operands list should have names for each operand!");
2182 if (!OperandsSet.count(OpsList->getArgName(j)))
2183 P->error("'" + OpsList->getArgName(j) +
2184 "' does not occur in pattern or was multiply specified!");
2185 OperandsSet.erase(OpsList->getArgName(j));
2186 Args.push_back(OpsList->getArgName(j));
2187 }
2188
2189 if (!OperandsSet.empty())
2190 P->error("Operands list does not contain an entry for operand '" +
2191 *OperandsSet.begin() + "'!");
2192
2193 // If there is a code init for this fragment, keep track of the fact that
2194 // this fragment uses it.
2195 TreePredicateFn PredFn(P);
2196 if (!PredFn.isAlwaysTrue())
2197 P->getOnlyTree()->addPredicateFn(PredFn);
2198
2199 // If there is a node transformation corresponding to this, keep track of
2200 // it.
2201 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2202 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
2203 P->getOnlyTree()->setTransformFn(Transform);
2204 }
2205
2206 // Now that we've parsed all of the tree fragments, do a closure on them so
2207 // that there are not references to PatFrags left inside of them.
2208 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2209 TreePattern *ThePat = PatternFragments[Fragments[i]];
2210 ThePat->InlinePatternFragments();
2211
2212 // Infer as many types as possible. Don't worry about it if we don't infer
2213 // all of them, some may depend on the inputs of the pattern.
2214 ThePat->InferAllTypes();
2215 ThePat->resetError();
2216
2217 // If debugging, print out the pattern fragment result.
2218 DEBUG(ThePat->dump());
2219 }
2220 }
2221
ParseDefaultOperands()2222 void CodeGenDAGPatterns::ParseDefaultOperands() {
2223 std::vector<Record*> DefaultOps;
2224 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2225
2226 // Find some SDNode.
2227 assert(!SDNodes.empty() && "No SDNodes parsed?");
2228 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2229
2230 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2231 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2232
2233 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2234 // SomeSDnode so that we can parse this.
2235 std::vector<std::pair<Init*, std::string> > Ops;
2236 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2237 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2238 DefaultInfo->getArgName(op)));
2239 DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2240
2241 // Create a TreePattern to parse this.
2242 TreePattern P(DefaultOps[i], DI, false, *this);
2243 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2244
2245 // Copy the operands over into a DAGDefaultOperand.
2246 DAGDefaultOperand DefaultOpInfo;
2247
2248 TreePatternNode *T = P.getTree(0);
2249 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2250 TreePatternNode *TPN = T->getChild(op);
2251 while (TPN->ApplyTypeConstraints(P, false))
2252 /* Resolve all types */;
2253
2254 if (TPN->ContainsUnresolvedType()) {
2255 PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" +
2256 DefaultOps[i]->getName() +"' doesn't have a concrete type!");
2257 }
2258 DefaultOpInfo.DefaultOps.push_back(TPN);
2259 }
2260
2261 // Insert it into the DefaultOperands map so we can find it later.
2262 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2263 }
2264 }
2265
2266 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2267 /// instruction input. Return true if this is a real use.
HandleUse(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs)2268 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2269 std::map<std::string, TreePatternNode*> &InstInputs) {
2270 // No name -> not interesting.
2271 if (Pat->getName().empty()) {
2272 if (Pat->isLeaf()) {
2273 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2274 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2275 DI->getDef()->isSubClassOf("RegisterOperand")))
2276 I->error("Input " + DI->getDef()->getName() + " must be named!");
2277 }
2278 return false;
2279 }
2280
2281 Record *Rec;
2282 if (Pat->isLeaf()) {
2283 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2284 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2285 Rec = DI->getDef();
2286 } else {
2287 Rec = Pat->getOperator();
2288 }
2289
2290 // SRCVALUE nodes are ignored.
2291 if (Rec->getName() == "srcvalue")
2292 return false;
2293
2294 TreePatternNode *&Slot = InstInputs[Pat->getName()];
2295 if (!Slot) {
2296 Slot = Pat;
2297 return true;
2298 }
2299 Record *SlotRec;
2300 if (Slot->isLeaf()) {
2301 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2302 } else {
2303 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2304 SlotRec = Slot->getOperator();
2305 }
2306
2307 // Ensure that the inputs agree if we've already seen this input.
2308 if (Rec != SlotRec)
2309 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2310 if (Slot->getExtTypes() != Pat->getExtTypes())
2311 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2312 return true;
2313 }
2314
2315 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2316 /// part of "I", the instruction), computing the set of inputs and outputs of
2317 /// the pattern. Report errors if we see anything naughty.
2318 void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs,std::map<std::string,TreePatternNode * > & InstResults,std::vector<Record * > & InstImpResults)2319 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2320 std::map<std::string, TreePatternNode*> &InstInputs,
2321 std::map<std::string, TreePatternNode*>&InstResults,
2322 std::vector<Record*> &InstImpResults) {
2323 if (Pat->isLeaf()) {
2324 bool isUse = HandleUse(I, Pat, InstInputs);
2325 if (!isUse && Pat->getTransformFn())
2326 I->error("Cannot specify a transform function for a non-input value!");
2327 return;
2328 }
2329
2330 if (Pat->getOperator()->getName() == "implicit") {
2331 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2332 TreePatternNode *Dest = Pat->getChild(i);
2333 if (!Dest->isLeaf())
2334 I->error("implicitly defined value should be a register!");
2335
2336 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2337 if (!Val || !Val->getDef()->isSubClassOf("Register"))
2338 I->error("implicitly defined value should be a register!");
2339 InstImpResults.push_back(Val->getDef());
2340 }
2341 return;
2342 }
2343
2344 if (Pat->getOperator()->getName() != "set") {
2345 // If this is not a set, verify that the children nodes are not void typed,
2346 // and recurse.
2347 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2348 if (Pat->getChild(i)->getNumTypes() == 0)
2349 I->error("Cannot have void nodes inside of patterns!");
2350 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2351 InstImpResults);
2352 }
2353
2354 // If this is a non-leaf node with no children, treat it basically as if
2355 // it were a leaf. This handles nodes like (imm).
2356 bool isUse = HandleUse(I, Pat, InstInputs);
2357
2358 if (!isUse && Pat->getTransformFn())
2359 I->error("Cannot specify a transform function for a non-input value!");
2360 return;
2361 }
2362
2363 // Otherwise, this is a set, validate and collect instruction results.
2364 if (Pat->getNumChildren() == 0)
2365 I->error("set requires operands!");
2366
2367 if (Pat->getTransformFn())
2368 I->error("Cannot specify a transform function on a set node!");
2369
2370 // Check the set destinations.
2371 unsigned NumDests = Pat->getNumChildren()-1;
2372 for (unsigned i = 0; i != NumDests; ++i) {
2373 TreePatternNode *Dest = Pat->getChild(i);
2374 if (!Dest->isLeaf())
2375 I->error("set destination should be a register!");
2376
2377 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2378 if (!Val)
2379 I->error("set destination should be a register!");
2380
2381 if (Val->getDef()->isSubClassOf("RegisterClass") ||
2382 Val->getDef()->isSubClassOf("RegisterOperand") ||
2383 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2384 if (Dest->getName().empty())
2385 I->error("set destination must have a name!");
2386 if (InstResults.count(Dest->getName()))
2387 I->error("cannot set '" + Dest->getName() +"' multiple times");
2388 InstResults[Dest->getName()] = Dest;
2389 } else if (Val->getDef()->isSubClassOf("Register")) {
2390 InstImpResults.push_back(Val->getDef());
2391 } else {
2392 I->error("set destination should be a register!");
2393 }
2394 }
2395
2396 // Verify and collect info from the computation.
2397 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2398 InstInputs, InstResults, InstImpResults);
2399 }
2400
2401 //===----------------------------------------------------------------------===//
2402 // Instruction Analysis
2403 //===----------------------------------------------------------------------===//
2404
2405 class InstAnalyzer {
2406 const CodeGenDAGPatterns &CDP;
2407 public:
2408 bool hasSideEffects;
2409 bool mayStore;
2410 bool mayLoad;
2411 bool isBitcast;
2412 bool isVariadic;
2413
InstAnalyzer(const CodeGenDAGPatterns & cdp)2414 InstAnalyzer(const CodeGenDAGPatterns &cdp)
2415 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2416 isBitcast(false), isVariadic(false) {}
2417
Analyze(const TreePattern * Pat)2418 void Analyze(const TreePattern *Pat) {
2419 // Assume only the first tree is the pattern. The others are clobber nodes.
2420 AnalyzeNode(Pat->getTree(0));
2421 }
2422
Analyze(const PatternToMatch * Pat)2423 void Analyze(const PatternToMatch *Pat) {
2424 AnalyzeNode(Pat->getSrcPattern());
2425 }
2426
2427 private:
IsNodeBitcast(const TreePatternNode * N) const2428 bool IsNodeBitcast(const TreePatternNode *N) const {
2429 if (hasSideEffects || mayLoad || mayStore || isVariadic)
2430 return false;
2431
2432 if (N->getNumChildren() != 2)
2433 return false;
2434
2435 const TreePatternNode *N0 = N->getChild(0);
2436 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2437 return false;
2438
2439 const TreePatternNode *N1 = N->getChild(1);
2440 if (N1->isLeaf())
2441 return false;
2442 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2443 return false;
2444
2445 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2446 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2447 return false;
2448 return OpInfo.getEnumName() == "ISD::BITCAST";
2449 }
2450
2451 public:
AnalyzeNode(const TreePatternNode * N)2452 void AnalyzeNode(const TreePatternNode *N) {
2453 if (N->isLeaf()) {
2454 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2455 Record *LeafRec = DI->getDef();
2456 // Handle ComplexPattern leaves.
2457 if (LeafRec->isSubClassOf("ComplexPattern")) {
2458 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2459 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2460 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2461 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2462 }
2463 }
2464 return;
2465 }
2466
2467 // Analyze children.
2468 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2469 AnalyzeNode(N->getChild(i));
2470
2471 // Ignore set nodes, which are not SDNodes.
2472 if (N->getOperator()->getName() == "set") {
2473 isBitcast = IsNodeBitcast(N);
2474 return;
2475 }
2476
2477 // Get information about the SDNode for the operator.
2478 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2479
2480 // Notice properties of the node.
2481 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2482 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2483 if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2484 if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
2485
2486 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2487 // If this is an intrinsic, analyze it.
2488 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2489 mayLoad = true;// These may load memory.
2490
2491 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2492 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2493
2494 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2495 // WriteMem intrinsics can have other strange effects.
2496 hasSideEffects = true;
2497 }
2498 }
2499
2500 };
2501
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)2502 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2503 const InstAnalyzer &PatInfo,
2504 Record *PatDef) {
2505 bool Error = false;
2506
2507 // Remember where InstInfo got its flags.
2508 if (InstInfo.hasUndefFlags())
2509 InstInfo.InferredFrom = PatDef;
2510
2511 // Check explicitly set flags for consistency.
2512 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2513 !InstInfo.hasSideEffects_Unset) {
2514 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2515 // the pattern has no side effects. That could be useful for div/rem
2516 // instructions that may trap.
2517 if (!InstInfo.hasSideEffects) {
2518 Error = true;
2519 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2520 Twine(InstInfo.hasSideEffects));
2521 }
2522 }
2523
2524 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2525 Error = true;
2526 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2527 Twine(InstInfo.mayStore));
2528 }
2529
2530 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2531 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2532 // Some targets translate imediates to loads.
2533 if (!InstInfo.mayLoad) {
2534 Error = true;
2535 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2536 Twine(InstInfo.mayLoad));
2537 }
2538 }
2539
2540 // Transfer inferred flags.
2541 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2542 InstInfo.mayStore |= PatInfo.mayStore;
2543 InstInfo.mayLoad |= PatInfo.mayLoad;
2544
2545 // These flags are silently added without any verification.
2546 InstInfo.isBitcast |= PatInfo.isBitcast;
2547
2548 // Don't infer isVariadic. This flag means something different on SDNodes and
2549 // instructions. For example, a CALL SDNode is variadic because it has the
2550 // call arguments as operands, but a CALL instruction is not variadic - it
2551 // has argument registers as implicit, not explicit uses.
2552
2553 return Error;
2554 }
2555
2556 /// hasNullFragReference - Return true if the DAG has any reference to the
2557 /// null_frag operator.
hasNullFragReference(DagInit * DI)2558 static bool hasNullFragReference(DagInit *DI) {
2559 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2560 if (!OpDef) return false;
2561 Record *Operator = OpDef->getDef();
2562
2563 // If this is the null fragment, return true.
2564 if (Operator->getName() == "null_frag") return true;
2565 // If any of the arguments reference the null fragment, return true.
2566 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2567 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2568 if (Arg && hasNullFragReference(Arg))
2569 return true;
2570 }
2571
2572 return false;
2573 }
2574
2575 /// hasNullFragReference - Return true if any DAG in the list references
2576 /// the null_frag operator.
hasNullFragReference(ListInit * LI)2577 static bool hasNullFragReference(ListInit *LI) {
2578 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2579 DagInit *DI = dyn_cast<DagInit>(LI->getElement(i));
2580 assert(DI && "non-dag in an instruction Pattern list?!");
2581 if (hasNullFragReference(DI))
2582 return true;
2583 }
2584 return false;
2585 }
2586
2587 /// Get all the instructions in a tree.
2588 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)2589 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2590 if (Tree->isLeaf())
2591 return;
2592 if (Tree->getOperator()->isSubClassOf("Instruction"))
2593 Instrs.push_back(Tree->getOperator());
2594 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2595 getInstructionsInTree(Tree->getChild(i), Instrs);
2596 }
2597
2598 /// ParseInstructions - Parse all of the instructions, inlining and resolving
2599 /// any fragments involved. This populates the Instructions list with fully
2600 /// resolved instructions.
ParseInstructions()2601 void CodeGenDAGPatterns::ParseInstructions() {
2602 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2603
2604 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2605 ListInit *LI = 0;
2606
2607 if (isa<ListInit>(Instrs[i]->getValueInit("Pattern")))
2608 LI = Instrs[i]->getValueAsListInit("Pattern");
2609
2610 // If there is no pattern, only collect minimal information about the
2611 // instruction for its operand list. We have to assume that there is one
2612 // result, as we have no detailed info. A pattern which references the
2613 // null_frag operator is as-if no pattern were specified. Normally this
2614 // is from a multiclass expansion w/ a SDPatternOperator passed in as
2615 // null_frag.
2616 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2617 std::vector<Record*> Results;
2618 std::vector<Record*> Operands;
2619
2620 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2621
2622 if (InstInfo.Operands.size() != 0) {
2623 if (InstInfo.Operands.NumDefs == 0) {
2624 // These produce no results
2625 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2626 Operands.push_back(InstInfo.Operands[j].Rec);
2627 } else {
2628 // Assume the first operand is the result.
2629 Results.push_back(InstInfo.Operands[0].Rec);
2630
2631 // The rest are inputs.
2632 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2633 Operands.push_back(InstInfo.Operands[j].Rec);
2634 }
2635 }
2636
2637 // Create and insert the instruction.
2638 std::vector<Record*> ImpResults;
2639 Instructions.insert(std::make_pair(Instrs[i],
2640 DAGInstruction(0, Results, Operands, ImpResults)));
2641 continue; // no pattern.
2642 }
2643
2644 // Parse the instruction.
2645 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2646 // Inline pattern fragments into it.
2647 I->InlinePatternFragments();
2648
2649 // Infer as many types as possible. If we cannot infer all of them, we can
2650 // never do anything with this instruction pattern: report it to the user.
2651 if (!I->InferAllTypes())
2652 I->error("Could not infer all types in pattern!");
2653
2654 // InstInputs - Keep track of all of the inputs of the instruction, along
2655 // with the record they are declared as.
2656 std::map<std::string, TreePatternNode*> InstInputs;
2657
2658 // InstResults - Keep track of all the virtual registers that are 'set'
2659 // in the instruction, including what reg class they are.
2660 std::map<std::string, TreePatternNode*> InstResults;
2661
2662 std::vector<Record*> InstImpResults;
2663
2664 // Verify that the top-level forms in the instruction are of void type, and
2665 // fill in the InstResults map.
2666 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2667 TreePatternNode *Pat = I->getTree(j);
2668 if (Pat->getNumTypes() != 0)
2669 I->error("Top-level forms in instruction pattern should have"
2670 " void types");
2671
2672 // Find inputs and outputs, and verify the structure of the uses/defs.
2673 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2674 InstImpResults);
2675 }
2676
2677 // Now that we have inputs and outputs of the pattern, inspect the operands
2678 // list for the instruction. This determines the order that operands are
2679 // added to the machine instruction the node corresponds to.
2680 unsigned NumResults = InstResults.size();
2681
2682 // Parse the operands list from the (ops) list, validating it.
2683 assert(I->getArgList().empty() && "Args list should still be empty here!");
2684 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2685
2686 // Check that all of the results occur first in the list.
2687 std::vector<Record*> Results;
2688 TreePatternNode *Res0Node = 0;
2689 for (unsigned i = 0; i != NumResults; ++i) {
2690 if (i == CGI.Operands.size())
2691 I->error("'" + InstResults.begin()->first +
2692 "' set but does not appear in operand list!");
2693 const std::string &OpName = CGI.Operands[i].Name;
2694
2695 // Check that it exists in InstResults.
2696 TreePatternNode *RNode = InstResults[OpName];
2697 if (RNode == 0)
2698 I->error("Operand $" + OpName + " does not exist in operand list!");
2699
2700 if (i == 0)
2701 Res0Node = RNode;
2702 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
2703 if (R == 0)
2704 I->error("Operand $" + OpName + " should be a set destination: all "
2705 "outputs must occur before inputs in operand list!");
2706
2707 if (CGI.Operands[i].Rec != R)
2708 I->error("Operand $" + OpName + " class mismatch!");
2709
2710 // Remember the return type.
2711 Results.push_back(CGI.Operands[i].Rec);
2712
2713 // Okay, this one checks out.
2714 InstResults.erase(OpName);
2715 }
2716
2717 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
2718 // the copy while we're checking the inputs.
2719 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2720
2721 std::vector<TreePatternNode*> ResultNodeOperands;
2722 std::vector<Record*> Operands;
2723 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2724 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2725 const std::string &OpName = Op.Name;
2726 if (OpName.empty())
2727 I->error("Operand #" + utostr(i) + " in operands list has no name!");
2728
2729 if (!InstInputsCheck.count(OpName)) {
2730 // If this is an operand with a DefaultOps set filled in, we can ignore
2731 // this. When we codegen it, we will do so as always executed.
2732 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2733 // Does it have a non-empty DefaultOps field? If so, ignore this
2734 // operand.
2735 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2736 continue;
2737 }
2738 I->error("Operand $" + OpName +
2739 " does not appear in the instruction pattern");
2740 }
2741 TreePatternNode *InVal = InstInputsCheck[OpName];
2742 InstInputsCheck.erase(OpName); // It occurred, remove from map.
2743
2744 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
2745 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2746 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
2747 I->error("Operand $" + OpName + "'s register class disagrees"
2748 " between the operand and pattern");
2749 }
2750 Operands.push_back(Op.Rec);
2751
2752 // Construct the result for the dest-pattern operand list.
2753 TreePatternNode *OpNode = InVal->clone();
2754
2755 // No predicate is useful on the result.
2756 OpNode->clearPredicateFns();
2757
2758 // Promote the xform function to be an explicit node if set.
2759 if (Record *Xform = OpNode->getTransformFn()) {
2760 OpNode->setTransformFn(0);
2761 std::vector<TreePatternNode*> Children;
2762 Children.push_back(OpNode);
2763 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2764 }
2765
2766 ResultNodeOperands.push_back(OpNode);
2767 }
2768
2769 if (!InstInputsCheck.empty())
2770 I->error("Input operand $" + InstInputsCheck.begin()->first +
2771 " occurs in pattern but not in operands list!");
2772
2773 TreePatternNode *ResultPattern =
2774 new TreePatternNode(I->getRecord(), ResultNodeOperands,
2775 GetNumNodeResults(I->getRecord(), *this));
2776 // Copy fully inferred output node type to instruction result pattern.
2777 for (unsigned i = 0; i != NumResults; ++i)
2778 ResultPattern->setType(i, Res0Node->getExtType(i));
2779
2780 // Create and insert the instruction.
2781 // FIXME: InstImpResults should not be part of DAGInstruction.
2782 DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2783 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2784
2785 // Use a temporary tree pattern to infer all types and make sure that the
2786 // constructed result is correct. This depends on the instruction already
2787 // being inserted into the Instructions map.
2788 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2789 Temp.InferAllTypes(&I->getNamedNodesMap());
2790
2791 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2792 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2793
2794 DEBUG(I->dump());
2795 }
2796
2797 // If we can, convert the instructions to be patterns that are matched!
2798 for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
2799 Instructions.begin(),
2800 E = Instructions.end(); II != E; ++II) {
2801 DAGInstruction &TheInst = II->second;
2802 TreePattern *I = TheInst.getPattern();
2803 if (I == 0) continue; // No pattern.
2804
2805 // FIXME: Assume only the first tree is the pattern. The others are clobber
2806 // nodes.
2807 TreePatternNode *Pattern = I->getTree(0);
2808 TreePatternNode *SrcPattern;
2809 if (Pattern->getOperator()->getName() == "set") {
2810 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2811 } else{
2812 // Not a set (store or something?)
2813 SrcPattern = Pattern;
2814 }
2815
2816 Record *Instr = II->first;
2817 AddPatternToMatch(I,
2818 PatternToMatch(Instr,
2819 Instr->getValueAsListInit("Predicates"),
2820 SrcPattern,
2821 TheInst.getResultPattern(),
2822 TheInst.getImpResults(),
2823 Instr->getValueAsInt("AddedComplexity"),
2824 Instr->getID()));
2825 }
2826 }
2827
2828
2829 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2830
FindNames(const TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)2831 static void FindNames(const TreePatternNode *P,
2832 std::map<std::string, NameRecord> &Names,
2833 TreePattern *PatternTop) {
2834 if (!P->getName().empty()) {
2835 NameRecord &Rec = Names[P->getName()];
2836 // If this is the first instance of the name, remember the node.
2837 if (Rec.second++ == 0)
2838 Rec.first = P;
2839 else if (Rec.first->getExtTypes() != P->getExtTypes())
2840 PatternTop->error("repetition of value: $" + P->getName() +
2841 " where different uses have different types!");
2842 }
2843
2844 if (!P->isLeaf()) {
2845 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2846 FindNames(P->getChild(i), Names, PatternTop);
2847 }
2848 }
2849
AddPatternToMatch(TreePattern * Pattern,const PatternToMatch & PTM)2850 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
2851 const PatternToMatch &PTM) {
2852 // Do some sanity checking on the pattern we're about to match.
2853 std::string Reason;
2854 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
2855 PrintWarning(Pattern->getRecord()->getLoc(),
2856 Twine("Pattern can never match: ") + Reason);
2857 return;
2858 }
2859
2860 // If the source pattern's root is a complex pattern, that complex pattern
2861 // must specify the nodes it can potentially match.
2862 if (const ComplexPattern *CP =
2863 PTM.getSrcPattern()->getComplexPatternInfo(*this))
2864 if (CP->getRootNodes().empty())
2865 Pattern->error("ComplexPattern at root must specify list of opcodes it"
2866 " could match");
2867
2868
2869 // Find all of the named values in the input and output, ensure they have the
2870 // same type.
2871 std::map<std::string, NameRecord> SrcNames, DstNames;
2872 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2873 FindNames(PTM.getDstPattern(), DstNames, Pattern);
2874
2875 // Scan all of the named values in the destination pattern, rejecting them if
2876 // they don't exist in the input pattern.
2877 for (std::map<std::string, NameRecord>::iterator
2878 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2879 if (SrcNames[I->first].first == 0)
2880 Pattern->error("Pattern has input without matching name in output: $" +
2881 I->first);
2882 }
2883
2884 // Scan all of the named values in the source pattern, rejecting them if the
2885 // name isn't used in the dest, and isn't used to tie two values together.
2886 for (std::map<std::string, NameRecord>::iterator
2887 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2888 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2889 Pattern->error("Pattern has dead named input: $" + I->first);
2890
2891 PatternsToMatch.push_back(PTM);
2892 }
2893
2894
2895
InferInstructionFlags()2896 void CodeGenDAGPatterns::InferInstructionFlags() {
2897 const std::vector<const CodeGenInstruction*> &Instructions =
2898 Target.getInstructionsByEnumValue();
2899
2900 // First try to infer flags from the primary instruction pattern, if any.
2901 SmallVector<CodeGenInstruction*, 8> Revisit;
2902 unsigned Errors = 0;
2903 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2904 CodeGenInstruction &InstInfo =
2905 const_cast<CodeGenInstruction &>(*Instructions[i]);
2906
2907 // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
2908 // This flag is obsolete and will be removed.
2909 if (InstInfo.neverHasSideEffects) {
2910 assert(!InstInfo.hasSideEffects);
2911 InstInfo.hasSideEffects_Unset = false;
2912 }
2913
2914 // Get the primary instruction pattern.
2915 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
2916 if (!Pattern) {
2917 if (InstInfo.hasUndefFlags())
2918 Revisit.push_back(&InstInfo);
2919 continue;
2920 }
2921 InstAnalyzer PatInfo(*this);
2922 PatInfo.Analyze(Pattern);
2923 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
2924 }
2925
2926 // Second, look for single-instruction patterns defined outside the
2927 // instruction.
2928 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
2929 const PatternToMatch &PTM = *I;
2930
2931 // We can only infer from single-instruction patterns, otherwise we won't
2932 // know which instruction should get the flags.
2933 SmallVector<Record*, 8> PatInstrs;
2934 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
2935 if (PatInstrs.size() != 1)
2936 continue;
2937
2938 // Get the single instruction.
2939 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
2940
2941 // Only infer properties from the first pattern. We'll verify the others.
2942 if (InstInfo.InferredFrom)
2943 continue;
2944
2945 InstAnalyzer PatInfo(*this);
2946 PatInfo.Analyze(&PTM);
2947 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
2948 }
2949
2950 if (Errors)
2951 PrintFatalError("pattern conflicts");
2952
2953 // Revisit instructions with undefined flags and no pattern.
2954 if (Target.guessInstructionProperties()) {
2955 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
2956 CodeGenInstruction &InstInfo = *Revisit[i];
2957 if (InstInfo.InferredFrom)
2958 continue;
2959 // The mayLoad and mayStore flags default to false.
2960 // Conservatively assume hasSideEffects if it wasn't explicit.
2961 if (InstInfo.hasSideEffects_Unset)
2962 InstInfo.hasSideEffects = true;
2963 }
2964 return;
2965 }
2966
2967 // Complain about any flags that are still undefined.
2968 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
2969 CodeGenInstruction &InstInfo = *Revisit[i];
2970 if (InstInfo.InferredFrom)
2971 continue;
2972 if (InstInfo.hasSideEffects_Unset)
2973 PrintError(InstInfo.TheDef->getLoc(),
2974 "Can't infer hasSideEffects from patterns");
2975 if (InstInfo.mayStore_Unset)
2976 PrintError(InstInfo.TheDef->getLoc(),
2977 "Can't infer mayStore from patterns");
2978 if (InstInfo.mayLoad_Unset)
2979 PrintError(InstInfo.TheDef->getLoc(),
2980 "Can't infer mayLoad from patterns");
2981 }
2982 }
2983
2984
2985 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()2986 void CodeGenDAGPatterns::VerifyInstructionFlags() {
2987 unsigned Errors = 0;
2988 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
2989 const PatternToMatch &PTM = *I;
2990 SmallVector<Record*, 8> Instrs;
2991 getInstructionsInTree(PTM.getDstPattern(), Instrs);
2992 if (Instrs.empty())
2993 continue;
2994
2995 // Count the number of instructions with each flag set.
2996 unsigned NumSideEffects = 0;
2997 unsigned NumStores = 0;
2998 unsigned NumLoads = 0;
2999 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3000 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3001 NumSideEffects += InstInfo.hasSideEffects;
3002 NumStores += InstInfo.mayStore;
3003 NumLoads += InstInfo.mayLoad;
3004 }
3005
3006 // Analyze the source pattern.
3007 InstAnalyzer PatInfo(*this);
3008 PatInfo.Analyze(&PTM);
3009
3010 // Collect error messages.
3011 SmallVector<std::string, 4> Msgs;
3012
3013 // Check for missing flags in the output.
3014 // Permit extra flags for now at least.
3015 if (PatInfo.hasSideEffects && !NumSideEffects)
3016 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3017
3018 // Don't verify store flags on instructions with side effects. At least for
3019 // intrinsics, side effects implies mayStore.
3020 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3021 Msgs.push_back("pattern may store, but mayStore isn't set");
3022
3023 // Similarly, mayStore implies mayLoad on intrinsics.
3024 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3025 Msgs.push_back("pattern may load, but mayLoad isn't set");
3026
3027 // Print error messages.
3028 if (Msgs.empty())
3029 continue;
3030 ++Errors;
3031
3032 for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
3033 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
3034 (Instrs.size() == 1 ?
3035 "instruction" : "output instructions"));
3036 // Provide the location of the relevant instruction definitions.
3037 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3038 if (Instrs[i] != PTM.getSrcRecord())
3039 PrintError(Instrs[i]->getLoc(), "defined here");
3040 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3041 if (InstInfo.InferredFrom &&
3042 InstInfo.InferredFrom != InstInfo.TheDef &&
3043 InstInfo.InferredFrom != PTM.getSrcRecord())
3044 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
3045 }
3046 }
3047 if (Errors)
3048 PrintFatalError("Errors in DAG patterns");
3049 }
3050
3051 /// Given a pattern result with an unresolved type, see if we can find one
3052 /// instruction with an unresolved result type. Force this result type to an
3053 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3054 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3055 if (N->isLeaf())
3056 return false;
3057
3058 // Analyze children.
3059 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3060 if (ForceArbitraryInstResultType(N->getChild(i), TP))
3061 return true;
3062
3063 if (!N->getOperator()->isSubClassOf("Instruction"))
3064 return false;
3065
3066 // If this type is already concrete or completely unknown we can't do
3067 // anything.
3068 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3069 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3070 continue;
3071
3072 // Otherwise, force its type to the first possibility (an arbitrary choice).
3073 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3074 return true;
3075 }
3076
3077 return false;
3078 }
3079
ParsePatterns()3080 void CodeGenDAGPatterns::ParsePatterns() {
3081 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3082
3083 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3084 Record *CurPattern = Patterns[i];
3085 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3086
3087 // If the pattern references the null_frag, there's nothing to do.
3088 if (hasNullFragReference(Tree))
3089 continue;
3090
3091 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3092
3093 // Inline pattern fragments into it.
3094 Pattern->InlinePatternFragments();
3095
3096 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3097 if (LI->getSize() == 0) continue; // no pattern.
3098
3099 // Parse the instruction.
3100 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
3101
3102 // Inline pattern fragments into it.
3103 Result->InlinePatternFragments();
3104
3105 if (Result->getNumTrees() != 1)
3106 Result->error("Cannot handle instructions producing instructions "
3107 "with temporaries yet!");
3108
3109 bool IterateInference;
3110 bool InferredAllPatternTypes, InferredAllResultTypes;
3111 do {
3112 // Infer as many types as possible. If we cannot infer all of them, we
3113 // can never do anything with this pattern: report it to the user.
3114 InferredAllPatternTypes =
3115 Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3116
3117 // Infer as many types as possible. If we cannot infer all of them, we
3118 // can never do anything with this pattern: report it to the user.
3119 InferredAllResultTypes =
3120 Result->InferAllTypes(&Pattern->getNamedNodesMap());
3121
3122 IterateInference = false;
3123
3124 // Apply the type of the result to the source pattern. This helps us
3125 // resolve cases where the input type is known to be a pointer type (which
3126 // is considered resolved), but the result knows it needs to be 32- or
3127 // 64-bits. Infer the other way for good measure.
3128 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
3129 Pattern->getTree(0)->getNumTypes());
3130 i != e; ++i) {
3131 IterateInference = Pattern->getTree(0)->
3132 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
3133 IterateInference |= Result->getTree(0)->
3134 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
3135 }
3136
3137 // If our iteration has converged and the input pattern's types are fully
3138 // resolved but the result pattern is not fully resolved, we may have a
3139 // situation where we have two instructions in the result pattern and
3140 // the instructions require a common register class, but don't care about
3141 // what actual MVT is used. This is actually a bug in our modelling:
3142 // output patterns should have register classes, not MVTs.
3143 //
3144 // In any case, to handle this, we just go through and disambiguate some
3145 // arbitrary types to the result pattern's nodes.
3146 if (!IterateInference && InferredAllPatternTypes &&
3147 !InferredAllResultTypes)
3148 IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
3149 *Result);
3150 } while (IterateInference);
3151
3152 // Verify that we inferred enough types that we can do something with the
3153 // pattern and result. If these fire the user has to add type casts.
3154 if (!InferredAllPatternTypes)
3155 Pattern->error("Could not infer all types in pattern!");
3156 if (!InferredAllResultTypes) {
3157 Pattern->dump();
3158 Result->error("Could not infer all types in pattern result!");
3159 }
3160
3161 // Validate that the input pattern is correct.
3162 std::map<std::string, TreePatternNode*> InstInputs;
3163 std::map<std::string, TreePatternNode*> InstResults;
3164 std::vector<Record*> InstImpResults;
3165 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3166 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3167 InstInputs, InstResults,
3168 InstImpResults);
3169
3170 // Promote the xform function to be an explicit node if set.
3171 TreePatternNode *DstPattern = Result->getOnlyTree();
3172 std::vector<TreePatternNode*> ResultNodeOperands;
3173 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3174 TreePatternNode *OpNode = DstPattern->getChild(ii);
3175 if (Record *Xform = OpNode->getTransformFn()) {
3176 OpNode->setTransformFn(0);
3177 std::vector<TreePatternNode*> Children;
3178 Children.push_back(OpNode);
3179 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3180 }
3181 ResultNodeOperands.push_back(OpNode);
3182 }
3183 DstPattern = Result->getOnlyTree();
3184 if (!DstPattern->isLeaf())
3185 DstPattern = new TreePatternNode(DstPattern->getOperator(),
3186 ResultNodeOperands,
3187 DstPattern->getNumTypes());
3188
3189 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
3190 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3191
3192 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
3193 Temp.InferAllTypes();
3194
3195
3196 AddPatternToMatch(Pattern,
3197 PatternToMatch(CurPattern,
3198 CurPattern->getValueAsListInit("Predicates"),
3199 Pattern->getTree(0),
3200 Temp.getOnlyTree(), InstImpResults,
3201 CurPattern->getValueAsInt("AddedComplexity"),
3202 CurPattern->getID()));
3203 }
3204 }
3205
3206 /// CombineChildVariants - Given a bunch of permutations of each child of the
3207 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNode * Orig,const std::vector<std::vector<TreePatternNode * >> & ChildVariants,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3208 static void CombineChildVariants(TreePatternNode *Orig,
3209 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3210 std::vector<TreePatternNode*> &OutVariants,
3211 CodeGenDAGPatterns &CDP,
3212 const MultipleUseVarSet &DepVars) {
3213 // Make sure that each operand has at least one variant to choose from.
3214 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3215 if (ChildVariants[i].empty())
3216 return;
3217
3218 // The end result is an all-pairs construction of the resultant pattern.
3219 std::vector<unsigned> Idxs;
3220 Idxs.resize(ChildVariants.size());
3221 bool NotDone;
3222 do {
3223 #ifndef NDEBUG
3224 DEBUG(if (!Idxs.empty()) {
3225 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3226 for (unsigned i = 0; i < Idxs.size(); ++i) {
3227 errs() << Idxs[i] << " ";
3228 }
3229 errs() << "]\n";
3230 });
3231 #endif
3232 // Create the variant and add it to the output list.
3233 std::vector<TreePatternNode*> NewChildren;
3234 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3235 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3236 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3237 Orig->getNumTypes());
3238
3239 // Copy over properties.
3240 R->setName(Orig->getName());
3241 R->setPredicateFns(Orig->getPredicateFns());
3242 R->setTransformFn(Orig->getTransformFn());
3243 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3244 R->setType(i, Orig->getExtType(i));
3245
3246 // If this pattern cannot match, do not include it as a variant.
3247 std::string ErrString;
3248 if (!R->canPatternMatch(ErrString, CDP)) {
3249 delete R;
3250 } else {
3251 bool AlreadyExists = false;
3252
3253 // Scan to see if this pattern has already been emitted. We can get
3254 // duplication due to things like commuting:
3255 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3256 // which are the same pattern. Ignore the dups.
3257 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3258 if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3259 AlreadyExists = true;
3260 break;
3261 }
3262
3263 if (AlreadyExists)
3264 delete R;
3265 else
3266 OutVariants.push_back(R);
3267 }
3268
3269 // Increment indices to the next permutation by incrementing the
3270 // indicies from last index backward, e.g., generate the sequence
3271 // [0, 0], [0, 1], [1, 0], [1, 1].
3272 int IdxsIdx;
3273 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3274 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3275 Idxs[IdxsIdx] = 0;
3276 else
3277 break;
3278 }
3279 NotDone = (IdxsIdx >= 0);
3280 } while (NotDone);
3281 }
3282
3283 /// CombineChildVariants - A helper function for binary operators.
3284 ///
CombineChildVariants(TreePatternNode * Orig,const std::vector<TreePatternNode * > & LHS,const std::vector<TreePatternNode * > & RHS,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3285 static void CombineChildVariants(TreePatternNode *Orig,
3286 const std::vector<TreePatternNode*> &LHS,
3287 const std::vector<TreePatternNode*> &RHS,
3288 std::vector<TreePatternNode*> &OutVariants,
3289 CodeGenDAGPatterns &CDP,
3290 const MultipleUseVarSet &DepVars) {
3291 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3292 ChildVariants.push_back(LHS);
3293 ChildVariants.push_back(RHS);
3294 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3295 }
3296
3297
GatherChildrenOfAssociativeOpcode(TreePatternNode * N,std::vector<TreePatternNode * > & Children)3298 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3299 std::vector<TreePatternNode *> &Children) {
3300 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3301 Record *Operator = N->getOperator();
3302
3303 // Only permit raw nodes.
3304 if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3305 N->getTransformFn()) {
3306 Children.push_back(N);
3307 return;
3308 }
3309
3310 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3311 Children.push_back(N->getChild(0));
3312 else
3313 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3314
3315 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3316 Children.push_back(N->getChild(1));
3317 else
3318 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3319 }
3320
3321 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3322 /// the (potentially recursive) pattern by using algebraic laws.
3323 ///
GenerateVariantsOf(TreePatternNode * N,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3324 static void GenerateVariantsOf(TreePatternNode *N,
3325 std::vector<TreePatternNode*> &OutVariants,
3326 CodeGenDAGPatterns &CDP,
3327 const MultipleUseVarSet &DepVars) {
3328 // We cannot permute leaves.
3329 if (N->isLeaf()) {
3330 OutVariants.push_back(N);
3331 return;
3332 }
3333
3334 // Look up interesting info about the node.
3335 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3336
3337 // If this node is associative, re-associate.
3338 if (NodeInfo.hasProperty(SDNPAssociative)) {
3339 // Re-associate by pulling together all of the linked operators
3340 std::vector<TreePatternNode*> MaximalChildren;
3341 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3342
3343 // Only handle child sizes of 3. Otherwise we'll end up trying too many
3344 // permutations.
3345 if (MaximalChildren.size() == 3) {
3346 // Find the variants of all of our maximal children.
3347 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3348 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3349 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3350 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3351
3352 // There are only two ways we can permute the tree:
3353 // (A op B) op C and A op (B op C)
3354 // Within these forms, we can also permute A/B/C.
3355
3356 // Generate legal pair permutations of A/B/C.
3357 std::vector<TreePatternNode*> ABVariants;
3358 std::vector<TreePatternNode*> BAVariants;
3359 std::vector<TreePatternNode*> ACVariants;
3360 std::vector<TreePatternNode*> CAVariants;
3361 std::vector<TreePatternNode*> BCVariants;
3362 std::vector<TreePatternNode*> CBVariants;
3363 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3364 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3365 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3366 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3367 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3368 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3369
3370 // Combine those into the result: (x op x) op x
3371 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3372 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3373 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3374 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3375 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3376 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3377
3378 // Combine those into the result: x op (x op x)
3379 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3380 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3381 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3382 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3383 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3384 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3385 return;
3386 }
3387 }
3388
3389 // Compute permutations of all children.
3390 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3391 ChildVariants.resize(N->getNumChildren());
3392 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3393 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3394
3395 // Build all permutations based on how the children were formed.
3396 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3397
3398 // If this node is commutative, consider the commuted order.
3399 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3400 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3401 assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3402 "Commutative but doesn't have 2 children!");
3403 // Don't count children which are actually register references.
3404 unsigned NC = 0;
3405 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3406 TreePatternNode *Child = N->getChild(i);
3407 if (Child->isLeaf())
3408 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3409 Record *RR = DI->getDef();
3410 if (RR->isSubClassOf("Register"))
3411 continue;
3412 }
3413 NC++;
3414 }
3415 // Consider the commuted order.
3416 if (isCommIntrinsic) {
3417 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3418 // operands are the commutative operands, and there might be more operands
3419 // after those.
3420 assert(NC >= 3 &&
3421 "Commutative intrinsic should have at least 3 childrean!");
3422 std::vector<std::vector<TreePatternNode*> > Variants;
3423 Variants.push_back(ChildVariants[0]); // Intrinsic id.
3424 Variants.push_back(ChildVariants[2]);
3425 Variants.push_back(ChildVariants[1]);
3426 for (unsigned i = 3; i != NC; ++i)
3427 Variants.push_back(ChildVariants[i]);
3428 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3429 } else if (NC == 2)
3430 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3431 OutVariants, CDP, DepVars);
3432 }
3433 }
3434
3435
3436 // GenerateVariants - Generate variants. For example, commutative patterns can
3437 // match multiple ways. Add them to PatternsToMatch as well.
GenerateVariants()3438 void CodeGenDAGPatterns::GenerateVariants() {
3439 DEBUG(errs() << "Generating instruction variants.\n");
3440
3441 // Loop over all of the patterns we've collected, checking to see if we can
3442 // generate variants of the instruction, through the exploitation of
3443 // identities. This permits the target to provide aggressive matching without
3444 // the .td file having to contain tons of variants of instructions.
3445 //
3446 // Note that this loop adds new patterns to the PatternsToMatch list, but we
3447 // intentionally do not reconsider these. Any variants of added patterns have
3448 // already been added.
3449 //
3450 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3451 MultipleUseVarSet DepVars;
3452 std::vector<TreePatternNode*> Variants;
3453 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3454 DEBUG(errs() << "Dependent/multiply used variables: ");
3455 DEBUG(DumpDepVars(DepVars));
3456 DEBUG(errs() << "\n");
3457 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3458 DepVars);
3459
3460 assert(!Variants.empty() && "Must create at least original variant!");
3461 Variants.erase(Variants.begin()); // Remove the original pattern.
3462
3463 if (Variants.empty()) // No variants for this pattern.
3464 continue;
3465
3466 DEBUG(errs() << "FOUND VARIANTS OF: ";
3467 PatternsToMatch[i].getSrcPattern()->dump();
3468 errs() << "\n");
3469
3470 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3471 TreePatternNode *Variant = Variants[v];
3472
3473 DEBUG(errs() << " VAR#" << v << ": ";
3474 Variant->dump();
3475 errs() << "\n");
3476
3477 // Scan to see if an instruction or explicit pattern already matches this.
3478 bool AlreadyExists = false;
3479 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3480 // Skip if the top level predicates do not match.
3481 if (PatternsToMatch[i].getPredicates() !=
3482 PatternsToMatch[p].getPredicates())
3483 continue;
3484 // Check to see if this variant already exists.
3485 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3486 DepVars)) {
3487 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
3488 AlreadyExists = true;
3489 break;
3490 }
3491 }
3492 // If we already have it, ignore the variant.
3493 if (AlreadyExists) continue;
3494
3495 // Otherwise, add it to the list of patterns we have.
3496 PatternsToMatch.
3497 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3498 PatternsToMatch[i].getPredicates(),
3499 Variant, PatternsToMatch[i].getDstPattern(),
3500 PatternsToMatch[i].getDstRegs(),
3501 PatternsToMatch[i].getAddedComplexity(),
3502 Record::getNewUID()));
3503 }
3504
3505 DEBUG(errs() << "\n");
3506 }
3507 }
3508