1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Provides the Expression parsing implementation.
12 ///
13 /// Expressions in C99 basically consist of a bunch of binary operators with
14 /// unary operators and other random stuff at the leaves.
15 ///
16 /// In the C99 grammar, these unary operators bind tightest and are represented
17 /// as the 'cast-expression' production. Everything else is either a binary
18 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
19 /// handled by ParseCastExpression, the higher level pieces are handled by
20 /// ParseBinaryExpression.
21 ///
22 //===----------------------------------------------------------------------===//
23
24 #include "clang/Parse/Parser.h"
25 #include "RAIIObjectsForParser.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/ParsedTemplate.h"
29 #include "clang/Sema/Scope.h"
30 #include "clang/Sema/TypoCorrection.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/SmallVector.h"
33 using namespace clang;
34
35 /// \brief Simple precedence-based parser for binary/ternary operators.
36 ///
37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
38 /// production. C99 specifies that the LHS of an assignment operator should be
39 /// parsed as a unary-expression, but consistency dictates that it be a
40 /// conditional-expession. In practice, the important thing here is that the
41 /// LHS of an assignment has to be an l-value, which productions between
42 /// unary-expression and conditional-expression don't produce. Because we want
43 /// consistency, we parse the LHS as a conditional-expression, then check for
44 /// l-value-ness in semantic analysis stages.
45 ///
46 /// \verbatim
47 /// pm-expression: [C++ 5.5]
48 /// cast-expression
49 /// pm-expression '.*' cast-expression
50 /// pm-expression '->*' cast-expression
51 ///
52 /// multiplicative-expression: [C99 6.5.5]
53 /// Note: in C++, apply pm-expression instead of cast-expression
54 /// cast-expression
55 /// multiplicative-expression '*' cast-expression
56 /// multiplicative-expression '/' cast-expression
57 /// multiplicative-expression '%' cast-expression
58 ///
59 /// additive-expression: [C99 6.5.6]
60 /// multiplicative-expression
61 /// additive-expression '+' multiplicative-expression
62 /// additive-expression '-' multiplicative-expression
63 ///
64 /// shift-expression: [C99 6.5.7]
65 /// additive-expression
66 /// shift-expression '<<' additive-expression
67 /// shift-expression '>>' additive-expression
68 ///
69 /// relational-expression: [C99 6.5.8]
70 /// shift-expression
71 /// relational-expression '<' shift-expression
72 /// relational-expression '>' shift-expression
73 /// relational-expression '<=' shift-expression
74 /// relational-expression '>=' shift-expression
75 ///
76 /// equality-expression: [C99 6.5.9]
77 /// relational-expression
78 /// equality-expression '==' relational-expression
79 /// equality-expression '!=' relational-expression
80 ///
81 /// AND-expression: [C99 6.5.10]
82 /// equality-expression
83 /// AND-expression '&' equality-expression
84 ///
85 /// exclusive-OR-expression: [C99 6.5.11]
86 /// AND-expression
87 /// exclusive-OR-expression '^' AND-expression
88 ///
89 /// inclusive-OR-expression: [C99 6.5.12]
90 /// exclusive-OR-expression
91 /// inclusive-OR-expression '|' exclusive-OR-expression
92 ///
93 /// logical-AND-expression: [C99 6.5.13]
94 /// inclusive-OR-expression
95 /// logical-AND-expression '&&' inclusive-OR-expression
96 ///
97 /// logical-OR-expression: [C99 6.5.14]
98 /// logical-AND-expression
99 /// logical-OR-expression '||' logical-AND-expression
100 ///
101 /// conditional-expression: [C99 6.5.15]
102 /// logical-OR-expression
103 /// logical-OR-expression '?' expression ':' conditional-expression
104 /// [GNU] logical-OR-expression '?' ':' conditional-expression
105 /// [C++] the third operand is an assignment-expression
106 ///
107 /// assignment-expression: [C99 6.5.16]
108 /// conditional-expression
109 /// unary-expression assignment-operator assignment-expression
110 /// [C++] throw-expression [C++ 15]
111 ///
112 /// assignment-operator: one of
113 /// = *= /= %= += -= <<= >>= &= ^= |=
114 ///
115 /// expression: [C99 6.5.17]
116 /// assignment-expression ...[opt]
117 /// expression ',' assignment-expression ...[opt]
118 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)119 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
120 ExprResult LHS(ParseAssignmentExpression(isTypeCast));
121 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
122 }
123
124 /// This routine is called when the '@' is seen and consumed.
125 /// Current token is an Identifier and is not a 'try'. This
126 /// routine is necessary to disambiguate \@try-statement from,
127 /// for example, \@encode-expression.
128 ///
129 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)130 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
131 ExprResult LHS(ParseObjCAtExpression(AtLoc));
132 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
133 }
134
135 /// This routine is called when a leading '__extension__' is seen and
136 /// consumed. This is necessary because the token gets consumed in the
137 /// process of disambiguating between an expression and a declaration.
138 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)139 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
140 ExprResult LHS(true);
141 {
142 // Silence extension warnings in the sub-expression
143 ExtensionRAIIObject O(Diags);
144
145 LHS = ParseCastExpression(false);
146 }
147
148 if (!LHS.isInvalid())
149 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
150 LHS.take());
151
152 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
153 }
154
155 /// \brief Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)156 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
157 if (Tok.is(tok::code_completion)) {
158 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
159 cutOffParsing();
160 return ExprError();
161 }
162
163 if (Tok.is(tok::kw_throw))
164 return ParseThrowExpression();
165
166 ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
167 /*isAddressOfOperand=*/false,
168 isTypeCast);
169 return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
170 }
171
172 /// \brief Parse an assignment expression where part of an Objective-C message
173 /// send has already been parsed.
174 ///
175 /// In this case \p LBracLoc indicates the location of the '[' of the message
176 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
177 /// the receiver of the message.
178 ///
179 /// Since this handles full assignment-expression's, it handles postfix
180 /// expressions and other binary operators for these expressions as well.
181 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)182 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
183 SourceLocation SuperLoc,
184 ParsedType ReceiverType,
185 Expr *ReceiverExpr) {
186 ExprResult R
187 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
188 ReceiverType, ReceiverExpr);
189 R = ParsePostfixExpressionSuffix(R);
190 return ParseRHSOfBinaryExpression(R, prec::Assignment);
191 }
192
193
ParseConstantExpression(TypeCastState isTypeCast)194 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
195 // C++03 [basic.def.odr]p2:
196 // An expression is potentially evaluated unless it appears where an
197 // integral constant expression is required (see 5.19) [...].
198 // C++98 and C++11 have no such rule, but this is only a defect in C++98.
199 EnterExpressionEvaluationContext Unevaluated(Actions,
200 Sema::ConstantEvaluated);
201
202 ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
203 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
204 return Actions.ActOnConstantExpression(Res);
205 }
206
isNotExpressionStart()207 bool Parser::isNotExpressionStart() {
208 tok::TokenKind K = Tok.getKind();
209 if (K == tok::l_brace || K == tok::r_brace ||
210 K == tok::kw_for || K == tok::kw_while ||
211 K == tok::kw_if || K == tok::kw_else ||
212 K == tok::kw_goto || K == tok::kw_try)
213 return true;
214 // If this is a decl-specifier, we can't be at the start of an expression.
215 return isKnownToBeDeclarationSpecifier();
216 }
217
218 /// \brief Parse a binary expression that starts with \p LHS and has a
219 /// precedence of at least \p MinPrec.
220 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)221 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
222 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
223 GreaterThanIsOperator,
224 getLangOpts().CPlusPlus11);
225 SourceLocation ColonLoc;
226
227 while (1) {
228 // If this token has a lower precedence than we are allowed to parse (e.g.
229 // because we are called recursively, or because the token is not a binop),
230 // then we are done!
231 if (NextTokPrec < MinPrec)
232 return LHS;
233
234 // Consume the operator, saving the operator token for error reporting.
235 Token OpToken = Tok;
236 ConsumeToken();
237
238 // Bail out when encountering a comma followed by a token which can't
239 // possibly be the start of an expression. For instance:
240 // int f() { return 1, }
241 // We can't do this before consuming the comma, because
242 // isNotExpressionStart() looks at the token stream.
243 if (OpToken.is(tok::comma) && isNotExpressionStart()) {
244 PP.EnterToken(Tok);
245 Tok = OpToken;
246 return LHS;
247 }
248
249 // Special case handling for the ternary operator.
250 ExprResult TernaryMiddle(true);
251 if (NextTokPrec == prec::Conditional) {
252 if (Tok.isNot(tok::colon)) {
253 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
254 ColonProtectionRAIIObject X(*this);
255
256 // Handle this production specially:
257 // logical-OR-expression '?' expression ':' conditional-expression
258 // In particular, the RHS of the '?' is 'expression', not
259 // 'logical-OR-expression' as we might expect.
260 TernaryMiddle = ParseExpression();
261 if (TernaryMiddle.isInvalid()) {
262 LHS = ExprError();
263 TernaryMiddle = 0;
264 }
265 } else {
266 // Special case handling of "X ? Y : Z" where Y is empty:
267 // logical-OR-expression '?' ':' conditional-expression [GNU]
268 TernaryMiddle = 0;
269 Diag(Tok, diag::ext_gnu_conditional_expr);
270 }
271
272 if (Tok.is(tok::colon)) {
273 // Eat the colon.
274 ColonLoc = ConsumeToken();
275 } else {
276 // Otherwise, we're missing a ':'. Assume that this was a typo that
277 // the user forgot. If we're not in a macro expansion, we can suggest
278 // a fixit hint. If there were two spaces before the current token,
279 // suggest inserting the colon in between them, otherwise insert ": ".
280 SourceLocation FILoc = Tok.getLocation();
281 const char *FIText = ": ";
282 const SourceManager &SM = PP.getSourceManager();
283 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
284 assert(FILoc.isFileID());
285 bool IsInvalid = false;
286 const char *SourcePtr =
287 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
288 if (!IsInvalid && *SourcePtr == ' ') {
289 SourcePtr =
290 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
291 if (!IsInvalid && *SourcePtr == ' ') {
292 FILoc = FILoc.getLocWithOffset(-1);
293 FIText = ":";
294 }
295 }
296 }
297
298 Diag(Tok, diag::err_expected_colon)
299 << FixItHint::CreateInsertion(FILoc, FIText);
300 Diag(OpToken, diag::note_matching) << "?";
301 ColonLoc = Tok.getLocation();
302 }
303 }
304
305 // Code completion for the right-hand side of an assignment expression
306 // goes through a special hook that takes the left-hand side into account.
307 if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
308 Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
309 cutOffParsing();
310 return ExprError();
311 }
312
313 // Parse another leaf here for the RHS of the operator.
314 // ParseCastExpression works here because all RHS expressions in C have it
315 // as a prefix, at least. However, in C++, an assignment-expression could
316 // be a throw-expression, which is not a valid cast-expression.
317 // Therefore we need some special-casing here.
318 // Also note that the third operand of the conditional operator is
319 // an assignment-expression in C++, and in C++11, we can have a
320 // braced-init-list on the RHS of an assignment. For better diagnostics,
321 // parse as if we were allowed braced-init-lists everywhere, and check that
322 // they only appear on the RHS of assignments later.
323 ExprResult RHS;
324 bool RHSIsInitList = false;
325 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
326 RHS = ParseBraceInitializer();
327 RHSIsInitList = true;
328 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
329 RHS = ParseAssignmentExpression();
330 else
331 RHS = ParseCastExpression(false);
332
333 if (RHS.isInvalid())
334 LHS = ExprError();
335
336 // Remember the precedence of this operator and get the precedence of the
337 // operator immediately to the right of the RHS.
338 prec::Level ThisPrec = NextTokPrec;
339 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
340 getLangOpts().CPlusPlus11);
341
342 // Assignment and conditional expressions are right-associative.
343 bool isRightAssoc = ThisPrec == prec::Conditional ||
344 ThisPrec == prec::Assignment;
345
346 // Get the precedence of the operator to the right of the RHS. If it binds
347 // more tightly with RHS than we do, evaluate it completely first.
348 if (ThisPrec < NextTokPrec ||
349 (ThisPrec == NextTokPrec && isRightAssoc)) {
350 if (!RHS.isInvalid() && RHSIsInitList) {
351 Diag(Tok, diag::err_init_list_bin_op)
352 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
353 RHS = ExprError();
354 }
355 // If this is left-associative, only parse things on the RHS that bind
356 // more tightly than the current operator. If it is left-associative, it
357 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
358 // A=(B=(C=D)), where each paren is a level of recursion here.
359 // The function takes ownership of the RHS.
360 RHS = ParseRHSOfBinaryExpression(RHS,
361 static_cast<prec::Level>(ThisPrec + !isRightAssoc));
362 RHSIsInitList = false;
363
364 if (RHS.isInvalid())
365 LHS = ExprError();
366
367 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
368 getLangOpts().CPlusPlus11);
369 }
370 assert(NextTokPrec <= ThisPrec && "Recursion didn't work!");
371
372 if (!RHS.isInvalid() && RHSIsInitList) {
373 if (ThisPrec == prec::Assignment) {
374 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
375 << Actions.getExprRange(RHS.get());
376 } else {
377 Diag(OpToken, diag::err_init_list_bin_op)
378 << /*RHS*/1 << PP.getSpelling(OpToken)
379 << Actions.getExprRange(RHS.get());
380 LHS = ExprError();
381 }
382 }
383
384 if (!LHS.isInvalid()) {
385 // Combine the LHS and RHS into the LHS (e.g. build AST).
386 if (TernaryMiddle.isInvalid()) {
387 // If we're using '>>' as an operator within a template
388 // argument list (in C++98), suggest the addition of
389 // parentheses so that the code remains well-formed in C++0x.
390 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
391 SuggestParentheses(OpToken.getLocation(),
392 diag::warn_cxx0x_right_shift_in_template_arg,
393 SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
394 Actions.getExprRange(RHS.get()).getEnd()));
395
396 LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
397 OpToken.getKind(), LHS.take(), RHS.take());
398 } else
399 LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
400 LHS.take(), TernaryMiddle.take(),
401 RHS.take());
402 }
403 }
404 }
405
406 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
407 /// parse a unary-expression.
408 ///
409 /// \p isAddressOfOperand exists because an id-expression that is the
410 /// operand of address-of gets special treatment due to member pointers.
411 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,TypeCastState isTypeCast)412 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
413 bool isAddressOfOperand,
414 TypeCastState isTypeCast) {
415 bool NotCastExpr;
416 ExprResult Res = ParseCastExpression(isUnaryExpression,
417 isAddressOfOperand,
418 NotCastExpr,
419 isTypeCast);
420 if (NotCastExpr)
421 Diag(Tok, diag::err_expected_expression);
422 return Res;
423 }
424
425 namespace {
426 class CastExpressionIdValidator : public CorrectionCandidateCallback {
427 public:
CastExpressionIdValidator(bool AllowTypes,bool AllowNonTypes)428 CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes)
429 : AllowNonTypes(AllowNonTypes) {
430 WantTypeSpecifiers = AllowTypes;
431 }
432
ValidateCandidate(const TypoCorrection & candidate)433 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
434 NamedDecl *ND = candidate.getCorrectionDecl();
435 if (!ND)
436 return candidate.isKeyword();
437
438 if (isa<TypeDecl>(ND))
439 return WantTypeSpecifiers;
440 return AllowNonTypes;
441 }
442
443 private:
444 bool AllowNonTypes;
445 };
446 }
447
448 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
449 /// a unary-expression.
450 ///
451 /// \p isAddressOfOperand exists because an id-expression that is the operand
452 /// of address-of gets special treatment due to member pointers. NotCastExpr
453 /// is set to true if the token is not the start of a cast-expression, and no
454 /// diagnostic is emitted in this case.
455 ///
456 /// \verbatim
457 /// cast-expression: [C99 6.5.4]
458 /// unary-expression
459 /// '(' type-name ')' cast-expression
460 ///
461 /// unary-expression: [C99 6.5.3]
462 /// postfix-expression
463 /// '++' unary-expression
464 /// '--' unary-expression
465 /// unary-operator cast-expression
466 /// 'sizeof' unary-expression
467 /// 'sizeof' '(' type-name ')'
468 /// [C++11] 'sizeof' '...' '(' identifier ')'
469 /// [GNU] '__alignof' unary-expression
470 /// [GNU] '__alignof' '(' type-name ')'
471 /// [C11] '_Alignof' '(' type-name ')'
472 /// [C++11] 'alignof' '(' type-id ')'
473 /// [GNU] '&&' identifier
474 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
475 /// [C++] new-expression
476 /// [C++] delete-expression
477 ///
478 /// unary-operator: one of
479 /// '&' '*' '+' '-' '~' '!'
480 /// [GNU] '__extension__' '__real' '__imag'
481 ///
482 /// primary-expression: [C99 6.5.1]
483 /// [C99] identifier
484 /// [C++] id-expression
485 /// constant
486 /// string-literal
487 /// [C++] boolean-literal [C++ 2.13.5]
488 /// [C++11] 'nullptr' [C++11 2.14.7]
489 /// [C++11] user-defined-literal
490 /// '(' expression ')'
491 /// [C11] generic-selection
492 /// '__func__' [C99 6.4.2.2]
493 /// [GNU] '__FUNCTION__'
494 /// [GNU] '__PRETTY_FUNCTION__'
495 /// [GNU] '(' compound-statement ')'
496 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
497 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
498 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
499 /// assign-expr ')'
500 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
501 /// [GNU] '__null'
502 /// [OBJC] '[' objc-message-expr ']'
503 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
504 /// [OBJC] '\@protocol' '(' identifier ')'
505 /// [OBJC] '\@encode' '(' type-name ')'
506 /// [OBJC] objc-string-literal
507 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
508 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
509 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
510 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
511 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
512 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
513 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
514 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
515 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
516 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
517 /// [C++] 'this' [C++ 9.3.2]
518 /// [G++] unary-type-trait '(' type-id ')'
519 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
520 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
521 /// [clang] '^' block-literal
522 ///
523 /// constant: [C99 6.4.4]
524 /// integer-constant
525 /// floating-constant
526 /// enumeration-constant -> identifier
527 /// character-constant
528 ///
529 /// id-expression: [C++ 5.1]
530 /// unqualified-id
531 /// qualified-id
532 ///
533 /// unqualified-id: [C++ 5.1]
534 /// identifier
535 /// operator-function-id
536 /// conversion-function-id
537 /// '~' class-name
538 /// template-id
539 ///
540 /// new-expression: [C++ 5.3.4]
541 /// '::'[opt] 'new' new-placement[opt] new-type-id
542 /// new-initializer[opt]
543 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
544 /// new-initializer[opt]
545 ///
546 /// delete-expression: [C++ 5.3.5]
547 /// '::'[opt] 'delete' cast-expression
548 /// '::'[opt] 'delete' '[' ']' cast-expression
549 ///
550 /// [GNU/Embarcadero] unary-type-trait:
551 /// '__is_arithmetic'
552 /// '__is_floating_point'
553 /// '__is_integral'
554 /// '__is_lvalue_expr'
555 /// '__is_rvalue_expr'
556 /// '__is_complete_type'
557 /// '__is_void'
558 /// '__is_array'
559 /// '__is_function'
560 /// '__is_reference'
561 /// '__is_lvalue_reference'
562 /// '__is_rvalue_reference'
563 /// '__is_fundamental'
564 /// '__is_object'
565 /// '__is_scalar'
566 /// '__is_compound'
567 /// '__is_pointer'
568 /// '__is_member_object_pointer'
569 /// '__is_member_function_pointer'
570 /// '__is_member_pointer'
571 /// '__is_const'
572 /// '__is_volatile'
573 /// '__is_trivial'
574 /// '__is_standard_layout'
575 /// '__is_signed'
576 /// '__is_unsigned'
577 ///
578 /// [GNU] unary-type-trait:
579 /// '__has_nothrow_assign'
580 /// '__has_nothrow_copy'
581 /// '__has_nothrow_constructor'
582 /// '__has_trivial_assign' [TODO]
583 /// '__has_trivial_copy' [TODO]
584 /// '__has_trivial_constructor'
585 /// '__has_trivial_destructor'
586 /// '__has_virtual_destructor'
587 /// '__is_abstract' [TODO]
588 /// '__is_class'
589 /// '__is_empty' [TODO]
590 /// '__is_enum'
591 /// '__is_final'
592 /// '__is_pod'
593 /// '__is_polymorphic'
594 /// '__is_trivial'
595 /// '__is_union'
596 ///
597 /// [Clang] unary-type-trait:
598 /// '__trivially_copyable'
599 ///
600 /// binary-type-trait:
601 /// [GNU] '__is_base_of'
602 /// [MS] '__is_convertible_to'
603 /// '__is_convertible'
604 /// '__is_same'
605 ///
606 /// [Embarcadero] array-type-trait:
607 /// '__array_rank'
608 /// '__array_extent'
609 ///
610 /// [Embarcadero] expression-trait:
611 /// '__is_lvalue_expr'
612 /// '__is_rvalue_expr'
613 /// \endverbatim
614 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast)615 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
616 bool isAddressOfOperand,
617 bool &NotCastExpr,
618 TypeCastState isTypeCast) {
619 ExprResult Res;
620 tok::TokenKind SavedKind = Tok.getKind();
621 NotCastExpr = false;
622
623 // This handles all of cast-expression, unary-expression, postfix-expression,
624 // and primary-expression. We handle them together like this for efficiency
625 // and to simplify handling of an expression starting with a '(' token: which
626 // may be one of a parenthesized expression, cast-expression, compound literal
627 // expression, or statement expression.
628 //
629 // If the parsed tokens consist of a primary-expression, the cases below
630 // break out of the switch; at the end we call ParsePostfixExpressionSuffix
631 // to handle the postfix expression suffixes. Cases that cannot be followed
632 // by postfix exprs should return without invoking
633 // ParsePostfixExpressionSuffix.
634 switch (SavedKind) {
635 case tok::l_paren: {
636 // If this expression is limited to being a unary-expression, the parent can
637 // not start a cast expression.
638 ParenParseOption ParenExprType =
639 (isUnaryExpression && !getLangOpts().CPlusPlus)? CompoundLiteral : CastExpr;
640 ParsedType CastTy;
641 SourceLocation RParenLoc;
642
643 {
644 // The inside of the parens don't need to be a colon protected scope, and
645 // isn't immediately a message send.
646 ColonProtectionRAIIObject X(*this, false);
647
648 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
649 isTypeCast == IsTypeCast, CastTy, RParenLoc);
650 }
651
652 switch (ParenExprType) {
653 case SimpleExpr: break; // Nothing else to do.
654 case CompoundStmt: break; // Nothing else to do.
655 case CompoundLiteral:
656 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
657 // postfix-expression exist, parse them now.
658 break;
659 case CastExpr:
660 // We have parsed the cast-expression and no postfix-expr pieces are
661 // following.
662 return Res;
663 }
664
665 break;
666 }
667
668 // primary-expression
669 case tok::numeric_constant:
670 // constant: integer-constant
671 // constant: floating-constant
672
673 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
674 ConsumeToken();
675 break;
676
677 case tok::kw_true:
678 case tok::kw_false:
679 return ParseCXXBoolLiteral();
680
681 case tok::kw___objc_yes:
682 case tok::kw___objc_no:
683 return ParseObjCBoolLiteral();
684
685 case tok::kw_nullptr:
686 Diag(Tok, diag::warn_cxx98_compat_nullptr);
687 return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
688
689 case tok::annot_primary_expr:
690 assert(Res.get() == 0 && "Stray primary-expression annotation?");
691 Res = getExprAnnotation(Tok);
692 ConsumeToken();
693 break;
694
695 case tok::kw_decltype:
696 case tok::identifier: { // primary-expression: identifier
697 // unqualified-id: identifier
698 // constant: enumeration-constant
699 // Turn a potentially qualified name into a annot_typename or
700 // annot_cxxscope if it would be valid. This handles things like x::y, etc.
701 if (getLangOpts().CPlusPlus) {
702 // Avoid the unnecessary parse-time lookup in the common case
703 // where the syntax forbids a type.
704 const Token &Next = NextToken();
705
706 // If this identifier was reverted from a token ID, and the next token
707 // is a parenthesis, this is likely to be a use of a type trait. Check
708 // those tokens.
709 if (Next.is(tok::l_paren) &&
710 Tok.is(tok::identifier) &&
711 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
712 IdentifierInfo *II = Tok.getIdentifierInfo();
713 // Build up the mapping of revertable type traits, for future use.
714 if (RevertableTypeTraits.empty()) {
715 #define RTT_JOIN(X,Y) X##Y
716 #define REVERTABLE_TYPE_TRAIT(Name) \
717 RevertableTypeTraits[PP.getIdentifierInfo(#Name)] \
718 = RTT_JOIN(tok::kw_,Name)
719
720 REVERTABLE_TYPE_TRAIT(__is_arithmetic);
721 REVERTABLE_TYPE_TRAIT(__is_convertible);
722 REVERTABLE_TYPE_TRAIT(__is_empty);
723 REVERTABLE_TYPE_TRAIT(__is_floating_point);
724 REVERTABLE_TYPE_TRAIT(__is_function);
725 REVERTABLE_TYPE_TRAIT(__is_fundamental);
726 REVERTABLE_TYPE_TRAIT(__is_integral);
727 REVERTABLE_TYPE_TRAIT(__is_member_function_pointer);
728 REVERTABLE_TYPE_TRAIT(__is_member_pointer);
729 REVERTABLE_TYPE_TRAIT(__is_pod);
730 REVERTABLE_TYPE_TRAIT(__is_pointer);
731 REVERTABLE_TYPE_TRAIT(__is_same);
732 REVERTABLE_TYPE_TRAIT(__is_scalar);
733 REVERTABLE_TYPE_TRAIT(__is_signed);
734 REVERTABLE_TYPE_TRAIT(__is_unsigned);
735 REVERTABLE_TYPE_TRAIT(__is_void);
736 #undef REVERTABLE_TYPE_TRAIT
737 #undef RTT_JOIN
738 }
739
740 // If we find that this is in fact the name of a type trait,
741 // update the token kind in place and parse again to treat it as
742 // the appropriate kind of type trait.
743 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
744 = RevertableTypeTraits.find(II);
745 if (Known != RevertableTypeTraits.end()) {
746 Tok.setKind(Known->second);
747 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
748 NotCastExpr, isTypeCast);
749 }
750 }
751
752 if (Next.is(tok::coloncolon) ||
753 (!ColonIsSacred && Next.is(tok::colon)) ||
754 Next.is(tok::less) ||
755 Next.is(tok::l_paren) ||
756 Next.is(tok::l_brace)) {
757 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
758 if (TryAnnotateTypeOrScopeToken())
759 return ExprError();
760 if (!Tok.is(tok::identifier))
761 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
762 }
763 }
764
765 // Consume the identifier so that we can see if it is followed by a '(' or
766 // '.'.
767 IdentifierInfo &II = *Tok.getIdentifierInfo();
768 SourceLocation ILoc = ConsumeToken();
769
770 // Support 'Class.property' and 'super.property' notation.
771 if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
772 (Actions.getTypeName(II, ILoc, getCurScope()) ||
773 // Allow the base to be 'super' if in an objc-method.
774 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
775 ConsumeToken();
776
777 // Allow either an identifier or the keyword 'class' (in C++).
778 if (Tok.isNot(tok::identifier) &&
779 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
780 Diag(Tok, diag::err_expected_property_name);
781 return ExprError();
782 }
783 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
784 SourceLocation PropertyLoc = ConsumeToken();
785
786 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
787 ILoc, PropertyLoc);
788 break;
789 }
790
791 // In an Objective-C method, if we have "super" followed by an identifier,
792 // the token sequence is ill-formed. However, if there's a ':' or ']' after
793 // that identifier, this is probably a message send with a missing open
794 // bracket. Treat it as such.
795 if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
796 getCurScope()->isInObjcMethodScope() &&
797 ((Tok.is(tok::identifier) &&
798 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
799 Tok.is(tok::code_completion))) {
800 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
801 0);
802 break;
803 }
804
805 // If we have an Objective-C class name followed by an identifier
806 // and either ':' or ']', this is an Objective-C class message
807 // send that's missing the opening '['. Recovery
808 // appropriately. Also take this path if we're performing code
809 // completion after an Objective-C class name.
810 if (getLangOpts().ObjC1 &&
811 ((Tok.is(tok::identifier) && !InMessageExpression) ||
812 Tok.is(tok::code_completion))) {
813 const Token& Next = NextToken();
814 if (Tok.is(tok::code_completion) ||
815 Next.is(tok::colon) || Next.is(tok::r_square))
816 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
817 if (Typ.get()->isObjCObjectOrInterfaceType()) {
818 // Fake up a Declarator to use with ActOnTypeName.
819 DeclSpec DS(AttrFactory);
820 DS.SetRangeStart(ILoc);
821 DS.SetRangeEnd(ILoc);
822 const char *PrevSpec = 0;
823 unsigned DiagID;
824 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ);
825
826 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
827 TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
828 DeclaratorInfo);
829 if (Ty.isInvalid())
830 break;
831
832 Res = ParseObjCMessageExpressionBody(SourceLocation(),
833 SourceLocation(),
834 Ty.get(), 0);
835 break;
836 }
837 }
838
839 // Make sure to pass down the right value for isAddressOfOperand.
840 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
841 isAddressOfOperand = false;
842
843 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
844 // need to know whether or not this identifier is a function designator or
845 // not.
846 UnqualifiedId Name;
847 CXXScopeSpec ScopeSpec;
848 SourceLocation TemplateKWLoc;
849 CastExpressionIdValidator Validator(isTypeCast != NotTypeCast,
850 isTypeCast != IsTypeCast);
851 Name.setIdentifier(&II, ILoc);
852 Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
853 Name, Tok.is(tok::l_paren),
854 isAddressOfOperand, &Validator);
855 break;
856 }
857 case tok::char_constant: // constant: character-constant
858 case tok::wide_char_constant:
859 case tok::utf16_char_constant:
860 case tok::utf32_char_constant:
861 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
862 ConsumeToken();
863 break;
864 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
865 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
866 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
867 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
868 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
869 ConsumeToken();
870 break;
871 case tok::string_literal: // primary-expression: string-literal
872 case tok::wide_string_literal:
873 case tok::utf8_string_literal:
874 case tok::utf16_string_literal:
875 case tok::utf32_string_literal:
876 Res = ParseStringLiteralExpression(true);
877 break;
878 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
879 Res = ParseGenericSelectionExpression();
880 break;
881 case tok::kw___builtin_va_arg:
882 case tok::kw___builtin_offsetof:
883 case tok::kw___builtin_choose_expr:
884 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
885 return ParseBuiltinPrimaryExpression();
886 case tok::kw___null:
887 return Actions.ActOnGNUNullExpr(ConsumeToken());
888
889 case tok::plusplus: // unary-expression: '++' unary-expression [C99]
890 case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
891 // C++ [expr.unary] has:
892 // unary-expression:
893 // ++ cast-expression
894 // -- cast-expression
895 SourceLocation SavedLoc = ConsumeToken();
896 Res = ParseCastExpression(!getLangOpts().CPlusPlus);
897 if (!Res.isInvalid())
898 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
899 return Res;
900 }
901 case tok::amp: { // unary-expression: '&' cast-expression
902 // Special treatment because of member pointers
903 SourceLocation SavedLoc = ConsumeToken();
904 Res = ParseCastExpression(false, true);
905 if (!Res.isInvalid())
906 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
907 return Res;
908 }
909
910 case tok::star: // unary-expression: '*' cast-expression
911 case tok::plus: // unary-expression: '+' cast-expression
912 case tok::minus: // unary-expression: '-' cast-expression
913 case tok::tilde: // unary-expression: '~' cast-expression
914 case tok::exclaim: // unary-expression: '!' cast-expression
915 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
916 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
917 SourceLocation SavedLoc = ConsumeToken();
918 Res = ParseCastExpression(false);
919 if (!Res.isInvalid())
920 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
921 return Res;
922 }
923
924 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
925 // __extension__ silences extension warnings in the subexpression.
926 ExtensionRAIIObject O(Diags); // Use RAII to do this.
927 SourceLocation SavedLoc = ConsumeToken();
928 Res = ParseCastExpression(false);
929 if (!Res.isInvalid())
930 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
931 return Res;
932 }
933 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
934 if (!getLangOpts().C11)
935 Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
936 // fallthrough
937 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
938 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
939 // unary-expression: '__alignof' '(' type-name ')'
940 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
941 // unary-expression: 'sizeof' '(' type-name ')'
942 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
943 return ParseUnaryExprOrTypeTraitExpression();
944 case tok::ampamp: { // unary-expression: '&&' identifier
945 SourceLocation AmpAmpLoc = ConsumeToken();
946 if (Tok.isNot(tok::identifier))
947 return ExprError(Diag(Tok, diag::err_expected_ident));
948
949 if (getCurScope()->getFnParent() == 0)
950 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
951
952 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
953 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
954 Tok.getLocation());
955 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
956 ConsumeToken();
957 return Res;
958 }
959 case tok::kw_const_cast:
960 case tok::kw_dynamic_cast:
961 case tok::kw_reinterpret_cast:
962 case tok::kw_static_cast:
963 Res = ParseCXXCasts();
964 break;
965 case tok::kw_typeid:
966 Res = ParseCXXTypeid();
967 break;
968 case tok::kw___uuidof:
969 Res = ParseCXXUuidof();
970 break;
971 case tok::kw_this:
972 Res = ParseCXXThis();
973 break;
974
975 case tok::annot_typename:
976 if (isStartOfObjCClassMessageMissingOpenBracket()) {
977 ParsedType Type = getTypeAnnotation(Tok);
978
979 // Fake up a Declarator to use with ActOnTypeName.
980 DeclSpec DS(AttrFactory);
981 DS.SetRangeStart(Tok.getLocation());
982 DS.SetRangeEnd(Tok.getLastLoc());
983
984 const char *PrevSpec = 0;
985 unsigned DiagID;
986 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
987 PrevSpec, DiagID, Type);
988
989 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
990 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
991 if (Ty.isInvalid())
992 break;
993
994 ConsumeToken();
995 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
996 Ty.get(), 0);
997 break;
998 }
999 // Fall through
1000
1001 case tok::annot_decltype:
1002 case tok::kw_char:
1003 case tok::kw_wchar_t:
1004 case tok::kw_char16_t:
1005 case tok::kw_char32_t:
1006 case tok::kw_bool:
1007 case tok::kw_short:
1008 case tok::kw_int:
1009 case tok::kw_long:
1010 case tok::kw___int64:
1011 case tok::kw___int128:
1012 case tok::kw_signed:
1013 case tok::kw_unsigned:
1014 case tok::kw_half:
1015 case tok::kw_float:
1016 case tok::kw_double:
1017 case tok::kw_void:
1018 case tok::kw_typename:
1019 case tok::kw_typeof:
1020 case tok::kw___vector:
1021 case tok::kw_image1d_t:
1022 case tok::kw_image1d_array_t:
1023 case tok::kw_image1d_buffer_t:
1024 case tok::kw_image2d_t:
1025 case tok::kw_image2d_array_t:
1026 case tok::kw_image3d_t:
1027 case tok::kw_sampler_t:
1028 case tok::kw_event_t: {
1029 if (!getLangOpts().CPlusPlus) {
1030 Diag(Tok, diag::err_expected_expression);
1031 return ExprError();
1032 }
1033
1034 if (SavedKind == tok::kw_typename) {
1035 // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1036 // typename-specifier braced-init-list
1037 if (TryAnnotateTypeOrScopeToken())
1038 return ExprError();
1039 }
1040
1041 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1042 // simple-type-specifier braced-init-list
1043 //
1044 DeclSpec DS(AttrFactory);
1045 ParseCXXSimpleTypeSpecifier(DS);
1046 if (Tok.isNot(tok::l_paren) &&
1047 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1048 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1049 << DS.getSourceRange());
1050
1051 if (Tok.is(tok::l_brace))
1052 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1053
1054 Res = ParseCXXTypeConstructExpression(DS);
1055 break;
1056 }
1057
1058 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1059 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1060 // (We can end up in this situation after tentative parsing.)
1061 if (TryAnnotateTypeOrScopeToken())
1062 return ExprError();
1063 if (!Tok.is(tok::annot_cxxscope))
1064 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1065 NotCastExpr, isTypeCast);
1066
1067 Token Next = NextToken();
1068 if (Next.is(tok::annot_template_id)) {
1069 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1070 if (TemplateId->Kind == TNK_Type_template) {
1071 // We have a qualified template-id that we know refers to a
1072 // type, translate it into a type and continue parsing as a
1073 // cast expression.
1074 CXXScopeSpec SS;
1075 ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1076 /*EnteringContext=*/false);
1077 AnnotateTemplateIdTokenAsType();
1078 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1079 NotCastExpr, isTypeCast);
1080 }
1081 }
1082
1083 // Parse as an id-expression.
1084 Res = ParseCXXIdExpression(isAddressOfOperand);
1085 break;
1086 }
1087
1088 case tok::annot_template_id: { // [C++] template-id
1089 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1090 if (TemplateId->Kind == TNK_Type_template) {
1091 // We have a template-id that we know refers to a type,
1092 // translate it into a type and continue parsing as a cast
1093 // expression.
1094 AnnotateTemplateIdTokenAsType();
1095 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1096 NotCastExpr, isTypeCast);
1097 }
1098
1099 // Fall through to treat the template-id as an id-expression.
1100 }
1101
1102 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1103 Res = ParseCXXIdExpression(isAddressOfOperand);
1104 break;
1105
1106 case tok::coloncolon: {
1107 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1108 // annotates the token, tail recurse.
1109 if (TryAnnotateTypeOrScopeToken())
1110 return ExprError();
1111 if (!Tok.is(tok::coloncolon))
1112 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1113
1114 // ::new -> [C++] new-expression
1115 // ::delete -> [C++] delete-expression
1116 SourceLocation CCLoc = ConsumeToken();
1117 if (Tok.is(tok::kw_new))
1118 return ParseCXXNewExpression(true, CCLoc);
1119 if (Tok.is(tok::kw_delete))
1120 return ParseCXXDeleteExpression(true, CCLoc);
1121
1122 // This is not a type name or scope specifier, it is an invalid expression.
1123 Diag(CCLoc, diag::err_expected_expression);
1124 return ExprError();
1125 }
1126
1127 case tok::kw_new: // [C++] new-expression
1128 return ParseCXXNewExpression(false, Tok.getLocation());
1129
1130 case tok::kw_delete: // [C++] delete-expression
1131 return ParseCXXDeleteExpression(false, Tok.getLocation());
1132
1133 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1134 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1135 SourceLocation KeyLoc = ConsumeToken();
1136 BalancedDelimiterTracker T(*this, tok::l_paren);
1137
1138 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1139 return ExprError();
1140 // C++11 [expr.unary.noexcept]p1:
1141 // The noexcept operator determines whether the evaluation of its operand,
1142 // which is an unevaluated operand, can throw an exception.
1143 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1144 ExprResult Result = ParseExpression();
1145
1146 T.consumeClose();
1147
1148 if (!Result.isInvalid())
1149 Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1150 Result.take(), T.getCloseLocation());
1151 return Result;
1152 }
1153
1154 case tok::kw___is_abstract: // [GNU] unary-type-trait
1155 case tok::kw___is_class:
1156 case tok::kw___is_empty:
1157 case tok::kw___is_enum:
1158 case tok::kw___is_interface_class:
1159 case tok::kw___is_literal:
1160 case tok::kw___is_arithmetic:
1161 case tok::kw___is_integral:
1162 case tok::kw___is_floating_point:
1163 case tok::kw___is_complete_type:
1164 case tok::kw___is_void:
1165 case tok::kw___is_array:
1166 case tok::kw___is_function:
1167 case tok::kw___is_reference:
1168 case tok::kw___is_lvalue_reference:
1169 case tok::kw___is_rvalue_reference:
1170 case tok::kw___is_fundamental:
1171 case tok::kw___is_object:
1172 case tok::kw___is_scalar:
1173 case tok::kw___is_compound:
1174 case tok::kw___is_pointer:
1175 case tok::kw___is_member_object_pointer:
1176 case tok::kw___is_member_function_pointer:
1177 case tok::kw___is_member_pointer:
1178 case tok::kw___is_const:
1179 case tok::kw___is_volatile:
1180 case tok::kw___is_standard_layout:
1181 case tok::kw___is_signed:
1182 case tok::kw___is_unsigned:
1183 case tok::kw___is_literal_type:
1184 case tok::kw___is_pod:
1185 case tok::kw___is_polymorphic:
1186 case tok::kw___is_trivial:
1187 case tok::kw___is_trivially_copyable:
1188 case tok::kw___is_union:
1189 case tok::kw___is_final:
1190 case tok::kw___has_trivial_constructor:
1191 case tok::kw___has_trivial_copy:
1192 case tok::kw___has_trivial_assign:
1193 case tok::kw___has_trivial_destructor:
1194 case tok::kw___has_nothrow_assign:
1195 case tok::kw___has_nothrow_copy:
1196 case tok::kw___has_nothrow_constructor:
1197 case tok::kw___has_virtual_destructor:
1198 return ParseUnaryTypeTrait();
1199
1200 case tok::kw___builtin_types_compatible_p:
1201 case tok::kw___is_base_of:
1202 case tok::kw___is_same:
1203 case tok::kw___is_convertible:
1204 case tok::kw___is_convertible_to:
1205 case tok::kw___is_trivially_assignable:
1206 return ParseBinaryTypeTrait();
1207
1208 case tok::kw___is_trivially_constructible:
1209 return ParseTypeTrait();
1210
1211 case tok::kw___array_rank:
1212 case tok::kw___array_extent:
1213 return ParseArrayTypeTrait();
1214
1215 case tok::kw___is_lvalue_expr:
1216 case tok::kw___is_rvalue_expr:
1217 return ParseExpressionTrait();
1218
1219 case tok::at: {
1220 SourceLocation AtLoc = ConsumeToken();
1221 return ParseObjCAtExpression(AtLoc);
1222 }
1223 case tok::caret:
1224 Res = ParseBlockLiteralExpression();
1225 break;
1226 case tok::code_completion: {
1227 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1228 cutOffParsing();
1229 return ExprError();
1230 }
1231 case tok::l_square:
1232 if (getLangOpts().CPlusPlus11) {
1233 if (getLangOpts().ObjC1) {
1234 // C++11 lambda expressions and Objective-C message sends both start with a
1235 // square bracket. There are three possibilities here:
1236 // we have a valid lambda expression, we have an invalid lambda
1237 // expression, or we have something that doesn't appear to be a lambda.
1238 // If we're in the last case, we fall back to ParseObjCMessageExpression.
1239 Res = TryParseLambdaExpression();
1240 if (!Res.isInvalid() && !Res.get())
1241 Res = ParseObjCMessageExpression();
1242 break;
1243 }
1244 Res = ParseLambdaExpression();
1245 break;
1246 }
1247 if (getLangOpts().ObjC1) {
1248 Res = ParseObjCMessageExpression();
1249 break;
1250 }
1251 // FALL THROUGH.
1252 default:
1253 NotCastExpr = true;
1254 return ExprError();
1255 }
1256
1257 // These can be followed by postfix-expr pieces.
1258 return ParsePostfixExpressionSuffix(Res);
1259 }
1260
1261 /// \brief Once the leading part of a postfix-expression is parsed, this
1262 /// method parses any suffixes that apply.
1263 ///
1264 /// \verbatim
1265 /// postfix-expression: [C99 6.5.2]
1266 /// primary-expression
1267 /// postfix-expression '[' expression ']'
1268 /// postfix-expression '[' braced-init-list ']'
1269 /// postfix-expression '(' argument-expression-list[opt] ')'
1270 /// postfix-expression '.' identifier
1271 /// postfix-expression '->' identifier
1272 /// postfix-expression '++'
1273 /// postfix-expression '--'
1274 /// '(' type-name ')' '{' initializer-list '}'
1275 /// '(' type-name ')' '{' initializer-list ',' '}'
1276 ///
1277 /// argument-expression-list: [C99 6.5.2]
1278 /// argument-expression ...[opt]
1279 /// argument-expression-list ',' assignment-expression ...[opt]
1280 /// \endverbatim
1281 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1282 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1283 // Now that the primary-expression piece of the postfix-expression has been
1284 // parsed, see if there are any postfix-expression pieces here.
1285 SourceLocation Loc;
1286 while (1) {
1287 switch (Tok.getKind()) {
1288 case tok::code_completion:
1289 if (InMessageExpression)
1290 return LHS;
1291
1292 Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1293 cutOffParsing();
1294 return ExprError();
1295
1296 case tok::identifier:
1297 // If we see identifier: after an expression, and we're not already in a
1298 // message send, then this is probably a message send with a missing
1299 // opening bracket '['.
1300 if (getLangOpts().ObjC1 && !InMessageExpression &&
1301 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1302 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1303 ParsedType(), LHS.get());
1304 break;
1305 }
1306
1307 // Fall through; this isn't a message send.
1308
1309 default: // Not a postfix-expression suffix.
1310 return LHS;
1311 case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1312 // If we have a array postfix expression that starts on a new line and
1313 // Objective-C is enabled, it is highly likely that the user forgot a
1314 // semicolon after the base expression and that the array postfix-expr is
1315 // actually another message send. In this case, do some look-ahead to see
1316 // if the contents of the square brackets are obviously not a valid
1317 // expression and recover by pretending there is no suffix.
1318 if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1319 isSimpleObjCMessageExpression())
1320 return LHS;
1321
1322 // Reject array indices starting with a lambda-expression. '[[' is
1323 // reserved for attributes.
1324 if (CheckProhibitedCXX11Attribute())
1325 return ExprError();
1326
1327 BalancedDelimiterTracker T(*this, tok::l_square);
1328 T.consumeOpen();
1329 Loc = T.getOpenLocation();
1330 ExprResult Idx;
1331 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1332 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1333 Idx = ParseBraceInitializer();
1334 } else
1335 Idx = ParseExpression();
1336
1337 SourceLocation RLoc = Tok.getLocation();
1338
1339 if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1340 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.take(), Loc,
1341 Idx.take(), RLoc);
1342 } else
1343 LHS = ExprError();
1344
1345 // Match the ']'.
1346 T.consumeClose();
1347 break;
1348 }
1349
1350 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
1351 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
1352 // '(' argument-expression-list[opt] ')'
1353 tok::TokenKind OpKind = Tok.getKind();
1354 InMessageExpressionRAIIObject InMessage(*this, false);
1355
1356 Expr *ExecConfig = 0;
1357
1358 BalancedDelimiterTracker PT(*this, tok::l_paren);
1359
1360 if (OpKind == tok::lesslessless) {
1361 ExprVector ExecConfigExprs;
1362 CommaLocsTy ExecConfigCommaLocs;
1363 SourceLocation OpenLoc = ConsumeToken();
1364
1365 if (ParseExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1366 LHS = ExprError();
1367 }
1368
1369 SourceLocation CloseLoc = Tok.getLocation();
1370 if (Tok.is(tok::greatergreatergreater)) {
1371 ConsumeToken();
1372 } else if (LHS.isInvalid()) {
1373 SkipUntil(tok::greatergreatergreater);
1374 } else {
1375 // There was an error closing the brackets
1376 Diag(Tok, diag::err_expected_ggg);
1377 Diag(OpenLoc, diag::note_matching) << "<<<";
1378 SkipUntil(tok::greatergreatergreater);
1379 LHS = ExprError();
1380 }
1381
1382 if (!LHS.isInvalid()) {
1383 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen, ""))
1384 LHS = ExprError();
1385 else
1386 Loc = PrevTokLocation;
1387 }
1388
1389 if (!LHS.isInvalid()) {
1390 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1391 OpenLoc,
1392 ExecConfigExprs,
1393 CloseLoc);
1394 if (ECResult.isInvalid())
1395 LHS = ExprError();
1396 else
1397 ExecConfig = ECResult.get();
1398 }
1399 } else {
1400 PT.consumeOpen();
1401 Loc = PT.getOpenLocation();
1402 }
1403
1404 ExprVector ArgExprs;
1405 CommaLocsTy CommaLocs;
1406
1407 if (Tok.is(tok::code_completion)) {
1408 Actions.CodeCompleteCall(getCurScope(), LHS.get(),
1409 ArrayRef<Expr *>());
1410 cutOffParsing();
1411 return ExprError();
1412 }
1413
1414 if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1415 if (Tok.isNot(tok::r_paren)) {
1416 if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall,
1417 LHS.get())) {
1418 LHS = ExprError();
1419 }
1420 }
1421 }
1422
1423 // Match the ')'.
1424 if (LHS.isInvalid()) {
1425 SkipUntil(tok::r_paren);
1426 } else if (Tok.isNot(tok::r_paren)) {
1427 PT.consumeClose();
1428 LHS = ExprError();
1429 } else {
1430 assert((ArgExprs.size() == 0 ||
1431 ArgExprs.size()-1 == CommaLocs.size())&&
1432 "Unexpected number of commas!");
1433 LHS = Actions.ActOnCallExpr(getCurScope(), LHS.take(), Loc,
1434 ArgExprs, Tok.getLocation(),
1435 ExecConfig);
1436 PT.consumeClose();
1437 }
1438
1439 break;
1440 }
1441 case tok::arrow:
1442 case tok::period: {
1443 // postfix-expression: p-e '->' template[opt] id-expression
1444 // postfix-expression: p-e '.' template[opt] id-expression
1445 tok::TokenKind OpKind = Tok.getKind();
1446 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
1447
1448 CXXScopeSpec SS;
1449 ParsedType ObjectType;
1450 bool MayBePseudoDestructor = false;
1451 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1452 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), LHS.take(),
1453 OpLoc, OpKind, ObjectType,
1454 MayBePseudoDestructor);
1455 if (LHS.isInvalid())
1456 break;
1457
1458 ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1459 /*EnteringContext=*/false,
1460 &MayBePseudoDestructor);
1461 if (SS.isNotEmpty())
1462 ObjectType = ParsedType();
1463 }
1464
1465 if (Tok.is(tok::code_completion)) {
1466 // Code completion for a member access expression.
1467 Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1468 OpLoc, OpKind == tok::arrow);
1469
1470 cutOffParsing();
1471 return ExprError();
1472 }
1473
1474 if (MayBePseudoDestructor && !LHS.isInvalid()) {
1475 LHS = ParseCXXPseudoDestructor(LHS.take(), OpLoc, OpKind, SS,
1476 ObjectType);
1477 break;
1478 }
1479
1480 // Either the action has told is that this cannot be a
1481 // pseudo-destructor expression (based on the type of base
1482 // expression), or we didn't see a '~' in the right place. We
1483 // can still parse a destructor name here, but in that case it
1484 // names a real destructor.
1485 // Allow explicit constructor calls in Microsoft mode.
1486 // FIXME: Add support for explicit call of template constructor.
1487 SourceLocation TemplateKWLoc;
1488 UnqualifiedId Name;
1489 if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) {
1490 // Objective-C++:
1491 // After a '.' in a member access expression, treat the keyword
1492 // 'class' as if it were an identifier.
1493 //
1494 // This hack allows property access to the 'class' method because it is
1495 // such a common method name. For other C++ keywords that are
1496 // Objective-C method names, one must use the message send syntax.
1497 IdentifierInfo *Id = Tok.getIdentifierInfo();
1498 SourceLocation Loc = ConsumeToken();
1499 Name.setIdentifier(Id, Loc);
1500 } else if (ParseUnqualifiedId(SS,
1501 /*EnteringContext=*/false,
1502 /*AllowDestructorName=*/true,
1503 /*AllowConstructorName=*/
1504 getLangOpts().MicrosoftExt,
1505 ObjectType, TemplateKWLoc, Name))
1506 LHS = ExprError();
1507
1508 if (!LHS.isInvalid())
1509 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.take(), OpLoc,
1510 OpKind, SS, TemplateKWLoc, Name,
1511 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl : 0,
1512 Tok.is(tok::l_paren));
1513 break;
1514 }
1515 case tok::plusplus: // postfix-expression: postfix-expression '++'
1516 case tok::minusminus: // postfix-expression: postfix-expression '--'
1517 if (!LHS.isInvalid()) {
1518 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1519 Tok.getKind(), LHS.take());
1520 }
1521 ConsumeToken();
1522 break;
1523 }
1524 }
1525 }
1526
1527 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1528 /// vec_step and we are at the start of an expression or a parenthesized
1529 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1530 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1531 ///
1532 /// \verbatim
1533 /// unary-expression: [C99 6.5.3]
1534 /// 'sizeof' unary-expression
1535 /// 'sizeof' '(' type-name ')'
1536 /// [GNU] '__alignof' unary-expression
1537 /// [GNU] '__alignof' '(' type-name ')'
1538 /// [C11] '_Alignof' '(' type-name ')'
1539 /// [C++0x] 'alignof' '(' type-id ')'
1540 ///
1541 /// [GNU] typeof-specifier:
1542 /// typeof ( expressions )
1543 /// typeof ( type-name )
1544 /// [GNU/C++] typeof unary-expression
1545 ///
1546 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1547 /// vec_step ( expressions )
1548 /// vec_step ( type-name )
1549 /// \endverbatim
1550 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)1551 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1552 bool &isCastExpr,
1553 ParsedType &CastTy,
1554 SourceRange &CastRange) {
1555
1556 assert((OpTok.is(tok::kw_typeof) || OpTok.is(tok::kw_sizeof) ||
1557 OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1558 OpTok.is(tok::kw__Alignof) || OpTok.is(tok::kw_vec_step)) &&
1559 "Not a typeof/sizeof/alignof/vec_step expression!");
1560
1561 ExprResult Operand;
1562
1563 // If the operand doesn't start with an '(', it must be an expression.
1564 if (Tok.isNot(tok::l_paren)) {
1565 isCastExpr = false;
1566 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1567 Diag(Tok,diag::err_expected_lparen_after_id) << OpTok.getIdentifierInfo();
1568 return ExprError();
1569 }
1570
1571 Operand = ParseCastExpression(true/*isUnaryExpression*/);
1572 } else {
1573 // If it starts with a '(', we know that it is either a parenthesized
1574 // type-name, or it is a unary-expression that starts with a compound
1575 // literal, or starts with a primary-expression that is a parenthesized
1576 // expression.
1577 ParenParseOption ExprType = CastExpr;
1578 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1579
1580 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1581 false, CastTy, RParenLoc);
1582 CastRange = SourceRange(LParenLoc, RParenLoc);
1583
1584 // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1585 // a type.
1586 if (ExprType == CastExpr) {
1587 isCastExpr = true;
1588 return ExprEmpty();
1589 }
1590
1591 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1592 // GNU typeof in C requires the expression to be parenthesized. Not so for
1593 // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1594 // the start of a unary-expression, but doesn't include any postfix
1595 // pieces. Parse these now if present.
1596 if (!Operand.isInvalid())
1597 Operand = ParsePostfixExpressionSuffix(Operand.get());
1598 }
1599 }
1600
1601 // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1602 isCastExpr = false;
1603 return Operand;
1604 }
1605
1606
1607 /// \brief Parse a sizeof or alignof expression.
1608 ///
1609 /// \verbatim
1610 /// unary-expression: [C99 6.5.3]
1611 /// 'sizeof' unary-expression
1612 /// 'sizeof' '(' type-name ')'
1613 /// [C++11] 'sizeof' '...' '(' identifier ')'
1614 /// [GNU] '__alignof' unary-expression
1615 /// [GNU] '__alignof' '(' type-name ')'
1616 /// [C11] '_Alignof' '(' type-name ')'
1617 /// [C++11] 'alignof' '(' type-id ')'
1618 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()1619 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1620 assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
1621 Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
1622 Tok.is(tok::kw_vec_step)) &&
1623 "Not a sizeof/alignof/vec_step expression!");
1624 Token OpTok = Tok;
1625 ConsumeToken();
1626
1627 // [C++11] 'sizeof' '...' '(' identifier ')'
1628 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1629 SourceLocation EllipsisLoc = ConsumeToken();
1630 SourceLocation LParenLoc, RParenLoc;
1631 IdentifierInfo *Name = 0;
1632 SourceLocation NameLoc;
1633 if (Tok.is(tok::l_paren)) {
1634 BalancedDelimiterTracker T(*this, tok::l_paren);
1635 T.consumeOpen();
1636 LParenLoc = T.getOpenLocation();
1637 if (Tok.is(tok::identifier)) {
1638 Name = Tok.getIdentifierInfo();
1639 NameLoc = ConsumeToken();
1640 T.consumeClose();
1641 RParenLoc = T.getCloseLocation();
1642 if (RParenLoc.isInvalid())
1643 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1644 } else {
1645 Diag(Tok, diag::err_expected_parameter_pack);
1646 SkipUntil(tok::r_paren);
1647 }
1648 } else if (Tok.is(tok::identifier)) {
1649 Name = Tok.getIdentifierInfo();
1650 NameLoc = ConsumeToken();
1651 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1652 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1653 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1654 << Name
1655 << FixItHint::CreateInsertion(LParenLoc, "(")
1656 << FixItHint::CreateInsertion(RParenLoc, ")");
1657 } else {
1658 Diag(Tok, diag::err_sizeof_parameter_pack);
1659 }
1660
1661 if (!Name)
1662 return ExprError();
1663
1664 return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1665 OpTok.getLocation(),
1666 *Name, NameLoc,
1667 RParenLoc);
1668 }
1669
1670 if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1671 Diag(OpTok, diag::warn_cxx98_compat_alignof);
1672
1673 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1674 Sema::ReuseLambdaContextDecl);
1675
1676 bool isCastExpr;
1677 ParsedType CastTy;
1678 SourceRange CastRange;
1679 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1680 isCastExpr,
1681 CastTy,
1682 CastRange);
1683
1684 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1685 if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
1686 OpTok.is(tok::kw__Alignof))
1687 ExprKind = UETT_AlignOf;
1688 else if (OpTok.is(tok::kw_vec_step))
1689 ExprKind = UETT_VecStep;
1690
1691 if (isCastExpr)
1692 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1693 ExprKind,
1694 /*isType=*/true,
1695 CastTy.getAsOpaquePtr(),
1696 CastRange);
1697
1698 if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1699 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1700
1701 // If we get here, the operand to the sizeof/alignof was an expresion.
1702 if (!Operand.isInvalid())
1703 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1704 ExprKind,
1705 /*isType=*/false,
1706 Operand.release(),
1707 CastRange);
1708 return Operand;
1709 }
1710
1711 /// ParseBuiltinPrimaryExpression
1712 ///
1713 /// \verbatim
1714 /// primary-expression: [C99 6.5.1]
1715 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1716 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1717 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1718 /// assign-expr ')'
1719 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1720 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
1721 ///
1722 /// [GNU] offsetof-member-designator:
1723 /// [GNU] identifier
1724 /// [GNU] offsetof-member-designator '.' identifier
1725 /// [GNU] offsetof-member-designator '[' expression ']'
1726 /// \endverbatim
ParseBuiltinPrimaryExpression()1727 ExprResult Parser::ParseBuiltinPrimaryExpression() {
1728 ExprResult Res;
1729 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1730
1731 tok::TokenKind T = Tok.getKind();
1732 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
1733
1734 // All of these start with an open paren.
1735 if (Tok.isNot(tok::l_paren))
1736 return ExprError(Diag(Tok, diag::err_expected_lparen_after_id)
1737 << BuiltinII);
1738
1739 BalancedDelimiterTracker PT(*this, tok::l_paren);
1740 PT.consumeOpen();
1741
1742 // TODO: Build AST.
1743
1744 switch (T) {
1745 default: llvm_unreachable("Not a builtin primary expression!");
1746 case tok::kw___builtin_va_arg: {
1747 ExprResult Expr(ParseAssignmentExpression());
1748
1749 if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1750 Expr = ExprError();
1751
1752 TypeResult Ty = ParseTypeName();
1753
1754 if (Tok.isNot(tok::r_paren)) {
1755 Diag(Tok, diag::err_expected_rparen);
1756 Expr = ExprError();
1757 }
1758
1759 if (Expr.isInvalid() || Ty.isInvalid())
1760 Res = ExprError();
1761 else
1762 Res = Actions.ActOnVAArg(StartLoc, Expr.take(), Ty.get(), ConsumeParen());
1763 break;
1764 }
1765 case tok::kw___builtin_offsetof: {
1766 SourceLocation TypeLoc = Tok.getLocation();
1767 TypeResult Ty = ParseTypeName();
1768 if (Ty.isInvalid()) {
1769 SkipUntil(tok::r_paren);
1770 return ExprError();
1771 }
1772
1773 if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1774 return ExprError();
1775
1776 // We must have at least one identifier here.
1777 if (Tok.isNot(tok::identifier)) {
1778 Diag(Tok, diag::err_expected_ident);
1779 SkipUntil(tok::r_paren);
1780 return ExprError();
1781 }
1782
1783 // Keep track of the various subcomponents we see.
1784 SmallVector<Sema::OffsetOfComponent, 4> Comps;
1785
1786 Comps.push_back(Sema::OffsetOfComponent());
1787 Comps.back().isBrackets = false;
1788 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1789 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1790
1791 // FIXME: This loop leaks the index expressions on error.
1792 while (1) {
1793 if (Tok.is(tok::period)) {
1794 // offsetof-member-designator: offsetof-member-designator '.' identifier
1795 Comps.push_back(Sema::OffsetOfComponent());
1796 Comps.back().isBrackets = false;
1797 Comps.back().LocStart = ConsumeToken();
1798
1799 if (Tok.isNot(tok::identifier)) {
1800 Diag(Tok, diag::err_expected_ident);
1801 SkipUntil(tok::r_paren);
1802 return ExprError();
1803 }
1804 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1805 Comps.back().LocEnd = ConsumeToken();
1806
1807 } else if (Tok.is(tok::l_square)) {
1808 if (CheckProhibitedCXX11Attribute())
1809 return ExprError();
1810
1811 // offsetof-member-designator: offsetof-member-design '[' expression ']'
1812 Comps.push_back(Sema::OffsetOfComponent());
1813 Comps.back().isBrackets = true;
1814 BalancedDelimiterTracker ST(*this, tok::l_square);
1815 ST.consumeOpen();
1816 Comps.back().LocStart = ST.getOpenLocation();
1817 Res = ParseExpression();
1818 if (Res.isInvalid()) {
1819 SkipUntil(tok::r_paren);
1820 return Res;
1821 }
1822 Comps.back().U.E = Res.release();
1823
1824 ST.consumeClose();
1825 Comps.back().LocEnd = ST.getCloseLocation();
1826 } else {
1827 if (Tok.isNot(tok::r_paren)) {
1828 PT.consumeClose();
1829 Res = ExprError();
1830 } else if (Ty.isInvalid()) {
1831 Res = ExprError();
1832 } else {
1833 PT.consumeClose();
1834 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1835 Ty.get(), &Comps[0], Comps.size(),
1836 PT.getCloseLocation());
1837 }
1838 break;
1839 }
1840 }
1841 break;
1842 }
1843 case tok::kw___builtin_choose_expr: {
1844 ExprResult Cond(ParseAssignmentExpression());
1845 if (Cond.isInvalid()) {
1846 SkipUntil(tok::r_paren);
1847 return Cond;
1848 }
1849 if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1850 return ExprError();
1851
1852 ExprResult Expr1(ParseAssignmentExpression());
1853 if (Expr1.isInvalid()) {
1854 SkipUntil(tok::r_paren);
1855 return Expr1;
1856 }
1857 if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1858 return ExprError();
1859
1860 ExprResult Expr2(ParseAssignmentExpression());
1861 if (Expr2.isInvalid()) {
1862 SkipUntil(tok::r_paren);
1863 return Expr2;
1864 }
1865 if (Tok.isNot(tok::r_paren)) {
1866 Diag(Tok, diag::err_expected_rparen);
1867 return ExprError();
1868 }
1869 Res = Actions.ActOnChooseExpr(StartLoc, Cond.take(), Expr1.take(),
1870 Expr2.take(), ConsumeParen());
1871 break;
1872 }
1873 case tok::kw___builtin_astype: {
1874 // The first argument is an expression to be converted, followed by a comma.
1875 ExprResult Expr(ParseAssignmentExpression());
1876 if (Expr.isInvalid()) {
1877 SkipUntil(tok::r_paren);
1878 return ExprError();
1879 }
1880
1881 if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",
1882 tok::r_paren))
1883 return ExprError();
1884
1885 // Second argument is the type to bitcast to.
1886 TypeResult DestTy = ParseTypeName();
1887 if (DestTy.isInvalid())
1888 return ExprError();
1889
1890 // Attempt to consume the r-paren.
1891 if (Tok.isNot(tok::r_paren)) {
1892 Diag(Tok, diag::err_expected_rparen);
1893 SkipUntil(tok::r_paren);
1894 return ExprError();
1895 }
1896
1897 Res = Actions.ActOnAsTypeExpr(Expr.take(), DestTy.get(), StartLoc,
1898 ConsumeParen());
1899 break;
1900 }
1901 }
1902
1903 if (Res.isInvalid())
1904 return ExprError();
1905
1906 // These can be followed by postfix-expr pieces because they are
1907 // primary-expressions.
1908 return ParsePostfixExpressionSuffix(Res.take());
1909 }
1910
1911 /// ParseParenExpression - This parses the unit that starts with a '(' token,
1912 /// based on what is allowed by ExprType. The actual thing parsed is returned
1913 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
1914 /// not the parsed cast-expression.
1915 ///
1916 /// \verbatim
1917 /// primary-expression: [C99 6.5.1]
1918 /// '(' expression ')'
1919 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
1920 /// postfix-expression: [C99 6.5.2]
1921 /// '(' type-name ')' '{' initializer-list '}'
1922 /// '(' type-name ')' '{' initializer-list ',' '}'
1923 /// cast-expression: [C99 6.5.4]
1924 /// '(' type-name ')' cast-expression
1925 /// [ARC] bridged-cast-expression
1926 ///
1927 /// [ARC] bridged-cast-expression:
1928 /// (__bridge type-name) cast-expression
1929 /// (__bridge_transfer type-name) cast-expression
1930 /// (__bridge_retained type-name) cast-expression
1931 /// \endverbatim
1932 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)1933 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
1934 bool isTypeCast, ParsedType &CastTy,
1935 SourceLocation &RParenLoc) {
1936 assert(Tok.is(tok::l_paren) && "Not a paren expr!");
1937 BalancedDelimiterTracker T(*this, tok::l_paren);
1938 if (T.consumeOpen())
1939 return ExprError();
1940 SourceLocation OpenLoc = T.getOpenLocation();
1941
1942 ExprResult Result(true);
1943 bool isAmbiguousTypeId;
1944 CastTy = ParsedType();
1945
1946 if (Tok.is(tok::code_completion)) {
1947 Actions.CodeCompleteOrdinaryName(getCurScope(),
1948 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
1949 : Sema::PCC_Expression);
1950 cutOffParsing();
1951 return ExprError();
1952 }
1953
1954 // Diagnose use of bridge casts in non-arc mode.
1955 bool BridgeCast = (getLangOpts().ObjC2 &&
1956 (Tok.is(tok::kw___bridge) ||
1957 Tok.is(tok::kw___bridge_transfer) ||
1958 Tok.is(tok::kw___bridge_retained) ||
1959 Tok.is(tok::kw___bridge_retain)));
1960 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
1961 StringRef BridgeCastName = Tok.getName();
1962 SourceLocation BridgeKeywordLoc = ConsumeToken();
1963 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
1964 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
1965 << BridgeCastName
1966 << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
1967 BridgeCast = false;
1968 }
1969
1970 // None of these cases should fall through with an invalid Result
1971 // unless they've already reported an error.
1972 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
1973 Diag(Tok, diag::ext_gnu_statement_expr);
1974 Actions.ActOnStartStmtExpr();
1975
1976 StmtResult Stmt(ParseCompoundStatement(true));
1977 ExprType = CompoundStmt;
1978
1979 // If the substmt parsed correctly, build the AST node.
1980 if (!Stmt.isInvalid()) {
1981 Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.take(), Tok.getLocation());
1982 } else {
1983 Actions.ActOnStmtExprError();
1984 }
1985 } else if (ExprType >= CompoundLiteral && BridgeCast) {
1986 tok::TokenKind tokenKind = Tok.getKind();
1987 SourceLocation BridgeKeywordLoc = ConsumeToken();
1988
1989 // Parse an Objective-C ARC ownership cast expression.
1990 ObjCBridgeCastKind Kind;
1991 if (tokenKind == tok::kw___bridge)
1992 Kind = OBC_Bridge;
1993 else if (tokenKind == tok::kw___bridge_transfer)
1994 Kind = OBC_BridgeTransfer;
1995 else if (tokenKind == tok::kw___bridge_retained)
1996 Kind = OBC_BridgeRetained;
1997 else {
1998 // As a hopefully temporary workaround, allow __bridge_retain as
1999 // a synonym for __bridge_retained, but only in system headers.
2000 assert(tokenKind == tok::kw___bridge_retain);
2001 Kind = OBC_BridgeRetained;
2002 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2003 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2004 << FixItHint::CreateReplacement(BridgeKeywordLoc,
2005 "__bridge_retained");
2006 }
2007
2008 TypeResult Ty = ParseTypeName();
2009 T.consumeClose();
2010 RParenLoc = T.getCloseLocation();
2011 ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2012
2013 if (Ty.isInvalid() || SubExpr.isInvalid())
2014 return ExprError();
2015
2016 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2017 BridgeKeywordLoc, Ty.get(),
2018 RParenLoc, SubExpr.get());
2019 } else if (ExprType >= CompoundLiteral &&
2020 isTypeIdInParens(isAmbiguousTypeId)) {
2021
2022 // Otherwise, this is a compound literal expression or cast expression.
2023
2024 // In C++, if the type-id is ambiguous we disambiguate based on context.
2025 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2026 // in which case we should treat it as type-id.
2027 // if stopIfCastExpr is false, we need to determine the context past the
2028 // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2029 if (isAmbiguousTypeId && !stopIfCastExpr) {
2030 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T);
2031 RParenLoc = T.getCloseLocation();
2032 return res;
2033 }
2034
2035 // Parse the type declarator.
2036 DeclSpec DS(AttrFactory);
2037 ParseSpecifierQualifierList(DS);
2038 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2039 ParseDeclarator(DeclaratorInfo);
2040
2041 // If our type is followed by an identifier and either ':' or ']', then
2042 // this is probably an Objective-C message send where the leading '[' is
2043 // missing. Recover as if that were the case.
2044 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2045 !InMessageExpression && getLangOpts().ObjC1 &&
2046 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2047 TypeResult Ty;
2048 {
2049 InMessageExpressionRAIIObject InMessage(*this, false);
2050 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2051 }
2052 Result = ParseObjCMessageExpressionBody(SourceLocation(),
2053 SourceLocation(),
2054 Ty.get(), 0);
2055 } else {
2056 // Match the ')'.
2057 T.consumeClose();
2058 RParenLoc = T.getCloseLocation();
2059 if (Tok.is(tok::l_brace)) {
2060 ExprType = CompoundLiteral;
2061 TypeResult Ty;
2062 {
2063 InMessageExpressionRAIIObject InMessage(*this, false);
2064 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2065 }
2066 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2067 }
2068
2069 if (ExprType == CastExpr) {
2070 // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2071
2072 if (DeclaratorInfo.isInvalidType())
2073 return ExprError();
2074
2075 // Note that this doesn't parse the subsequent cast-expression, it just
2076 // returns the parsed type to the callee.
2077 if (stopIfCastExpr) {
2078 TypeResult Ty;
2079 {
2080 InMessageExpressionRAIIObject InMessage(*this, false);
2081 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2082 }
2083 CastTy = Ty.get();
2084 return ExprResult();
2085 }
2086
2087 // Reject the cast of super idiom in ObjC.
2088 if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2089 Tok.getIdentifierInfo() == Ident_super &&
2090 getCurScope()->isInObjcMethodScope() &&
2091 GetLookAheadToken(1).isNot(tok::period)) {
2092 Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2093 << SourceRange(OpenLoc, RParenLoc);
2094 return ExprError();
2095 }
2096
2097 // Parse the cast-expression that follows it next.
2098 // TODO: For cast expression with CastTy.
2099 Result = ParseCastExpression(/*isUnaryExpression=*/false,
2100 /*isAddressOfOperand=*/false,
2101 /*isTypeCast=*/IsTypeCast);
2102 if (!Result.isInvalid()) {
2103 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2104 DeclaratorInfo, CastTy,
2105 RParenLoc, Result.take());
2106 }
2107 return Result;
2108 }
2109
2110 Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2111 return ExprError();
2112 }
2113 } else if (isTypeCast) {
2114 // Parse the expression-list.
2115 InMessageExpressionRAIIObject InMessage(*this, false);
2116
2117 ExprVector ArgExprs;
2118 CommaLocsTy CommaLocs;
2119
2120 if (!ParseExpressionList(ArgExprs, CommaLocs)) {
2121 ExprType = SimpleExpr;
2122 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2123 ArgExprs);
2124 }
2125 } else {
2126 InMessageExpressionRAIIObject InMessage(*this, false);
2127
2128 Result = ParseExpression(MaybeTypeCast);
2129 ExprType = SimpleExpr;
2130
2131 // Don't build a paren expression unless we actually match a ')'.
2132 if (!Result.isInvalid() && Tok.is(tok::r_paren))
2133 Result = Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.take());
2134 }
2135
2136 // Match the ')'.
2137 if (Result.isInvalid()) {
2138 SkipUntil(tok::r_paren);
2139 return ExprError();
2140 }
2141
2142 T.consumeClose();
2143 RParenLoc = T.getCloseLocation();
2144 return Result;
2145 }
2146
2147 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2148 /// and we are at the left brace.
2149 ///
2150 /// \verbatim
2151 /// postfix-expression: [C99 6.5.2]
2152 /// '(' type-name ')' '{' initializer-list '}'
2153 /// '(' type-name ')' '{' initializer-list ',' '}'
2154 /// \endverbatim
2155 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)2156 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2157 SourceLocation LParenLoc,
2158 SourceLocation RParenLoc) {
2159 assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2160 if (!getLangOpts().C99) // Compound literals don't exist in C90.
2161 Diag(LParenLoc, diag::ext_c99_compound_literal);
2162 ExprResult Result = ParseInitializer();
2163 if (!Result.isInvalid() && Ty)
2164 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.take());
2165 return Result;
2166 }
2167
2168 /// ParseStringLiteralExpression - This handles the various token types that
2169 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2170 /// translation phase #6].
2171 ///
2172 /// \verbatim
2173 /// primary-expression: [C99 6.5.1]
2174 /// string-literal
2175 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)2176 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2177 assert(isTokenStringLiteral() && "Not a string literal!");
2178
2179 // String concat. Note that keywords like __func__ and __FUNCTION__ are not
2180 // considered to be strings for concatenation purposes.
2181 SmallVector<Token, 4> StringToks;
2182
2183 do {
2184 StringToks.push_back(Tok);
2185 ConsumeStringToken();
2186 } while (isTokenStringLiteral());
2187
2188 // Pass the set of string tokens, ready for concatenation, to the actions.
2189 return Actions.ActOnStringLiteral(&StringToks[0], StringToks.size(),
2190 AllowUserDefinedLiteral ? getCurScope() : 0);
2191 }
2192
2193 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2194 /// [C11 6.5.1.1].
2195 ///
2196 /// \verbatim
2197 /// generic-selection:
2198 /// _Generic ( assignment-expression , generic-assoc-list )
2199 /// generic-assoc-list:
2200 /// generic-association
2201 /// generic-assoc-list , generic-association
2202 /// generic-association:
2203 /// type-name : assignment-expression
2204 /// default : assignment-expression
2205 /// \endverbatim
ParseGenericSelectionExpression()2206 ExprResult Parser::ParseGenericSelectionExpression() {
2207 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2208 SourceLocation KeyLoc = ConsumeToken();
2209
2210 if (!getLangOpts().C11)
2211 Diag(KeyLoc, diag::ext_c11_generic_selection);
2212
2213 BalancedDelimiterTracker T(*this, tok::l_paren);
2214 if (T.expectAndConsume(diag::err_expected_lparen))
2215 return ExprError();
2216
2217 ExprResult ControllingExpr;
2218 {
2219 // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2220 // not evaluated."
2221 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2222 ControllingExpr = ParseAssignmentExpression();
2223 if (ControllingExpr.isInvalid()) {
2224 SkipUntil(tok::r_paren);
2225 return ExprError();
2226 }
2227 }
2228
2229 if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "")) {
2230 SkipUntil(tok::r_paren);
2231 return ExprError();
2232 }
2233
2234 SourceLocation DefaultLoc;
2235 TypeVector Types;
2236 ExprVector Exprs;
2237 while (1) {
2238 ParsedType Ty;
2239 if (Tok.is(tok::kw_default)) {
2240 // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2241 // generic association."
2242 if (!DefaultLoc.isInvalid()) {
2243 Diag(Tok, diag::err_duplicate_default_assoc);
2244 Diag(DefaultLoc, diag::note_previous_default_assoc);
2245 SkipUntil(tok::r_paren);
2246 return ExprError();
2247 }
2248 DefaultLoc = ConsumeToken();
2249 Ty = ParsedType();
2250 } else {
2251 ColonProtectionRAIIObject X(*this);
2252 TypeResult TR = ParseTypeName();
2253 if (TR.isInvalid()) {
2254 SkipUntil(tok::r_paren);
2255 return ExprError();
2256 }
2257 Ty = TR.release();
2258 }
2259 Types.push_back(Ty);
2260
2261 if (ExpectAndConsume(tok::colon, diag::err_expected_colon, "")) {
2262 SkipUntil(tok::r_paren);
2263 return ExprError();
2264 }
2265
2266 // FIXME: These expressions should be parsed in a potentially potentially
2267 // evaluated context.
2268 ExprResult ER(ParseAssignmentExpression());
2269 if (ER.isInvalid()) {
2270 SkipUntil(tok::r_paren);
2271 return ExprError();
2272 }
2273 Exprs.push_back(ER.release());
2274
2275 if (Tok.isNot(tok::comma))
2276 break;
2277 ConsumeToken();
2278 }
2279
2280 T.consumeClose();
2281 if (T.getCloseLocation().isInvalid())
2282 return ExprError();
2283
2284 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2285 T.getCloseLocation(),
2286 ControllingExpr.release(),
2287 Types, Exprs);
2288 }
2289
2290 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2291 ///
2292 /// \verbatim
2293 /// argument-expression-list:
2294 /// assignment-expression
2295 /// argument-expression-list , assignment-expression
2296 ///
2297 /// [C++] expression-list:
2298 /// [C++] assignment-expression
2299 /// [C++] expression-list , assignment-expression
2300 ///
2301 /// [C++0x] expression-list:
2302 /// [C++0x] initializer-list
2303 ///
2304 /// [C++0x] initializer-list
2305 /// [C++0x] initializer-clause ...[opt]
2306 /// [C++0x] initializer-list , initializer-clause ...[opt]
2307 ///
2308 /// [C++0x] initializer-clause:
2309 /// [C++0x] assignment-expression
2310 /// [C++0x] braced-init-list
2311 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs,void (Sema::* Completer)(Scope * S,Expr * Data,ArrayRef<Expr * > Args),Expr * Data)2312 bool Parser::ParseExpressionList(SmallVectorImpl<Expr*> &Exprs,
2313 SmallVectorImpl<SourceLocation> &CommaLocs,
2314 void (Sema::*Completer)(Scope *S,
2315 Expr *Data,
2316 ArrayRef<Expr *> Args),
2317 Expr *Data) {
2318 while (1) {
2319 if (Tok.is(tok::code_completion)) {
2320 if (Completer)
2321 (Actions.*Completer)(getCurScope(), Data, Exprs);
2322 else
2323 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2324 cutOffParsing();
2325 return true;
2326 }
2327
2328 ExprResult Expr;
2329 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2330 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2331 Expr = ParseBraceInitializer();
2332 } else
2333 Expr = ParseAssignmentExpression();
2334
2335 if (Tok.is(tok::ellipsis))
2336 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2337 if (Expr.isInvalid())
2338 return true;
2339
2340 Exprs.push_back(Expr.release());
2341
2342 if (Tok.isNot(tok::comma))
2343 return false;
2344 // Move to the next argument, remember where the comma was.
2345 CommaLocs.push_back(ConsumeToken());
2346 }
2347 }
2348
2349 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2350 ///
2351 /// \verbatim
2352 /// [clang] block-id:
2353 /// [clang] specifier-qualifier-list block-declarator
2354 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)2355 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2356 if (Tok.is(tok::code_completion)) {
2357 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2358 return cutOffParsing();
2359 }
2360
2361 // Parse the specifier-qualifier-list piece.
2362 DeclSpec DS(AttrFactory);
2363 ParseSpecifierQualifierList(DS);
2364
2365 // Parse the block-declarator.
2366 Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2367 ParseDeclarator(DeclaratorInfo);
2368
2369 // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2370 DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2371
2372 MaybeParseGNUAttributes(DeclaratorInfo);
2373
2374 // Inform sema that we are starting a block.
2375 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2376 }
2377
2378 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2379 /// like ^(int x){ return x+1; }
2380 ///
2381 /// \verbatim
2382 /// block-literal:
2383 /// [clang] '^' block-args[opt] compound-statement
2384 /// [clang] '^' block-id compound-statement
2385 /// [clang] block-args:
2386 /// [clang] '(' parameter-list ')'
2387 /// \endverbatim
ParseBlockLiteralExpression()2388 ExprResult Parser::ParseBlockLiteralExpression() {
2389 assert(Tok.is(tok::caret) && "block literal starts with ^");
2390 SourceLocation CaretLoc = ConsumeToken();
2391
2392 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2393 "block literal parsing");
2394
2395 // Enter a scope to hold everything within the block. This includes the
2396 // argument decls, decls within the compound expression, etc. This also
2397 // allows determining whether a variable reference inside the block is
2398 // within or outside of the block.
2399 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2400 Scope::DeclScope);
2401
2402 // Inform sema that we are starting a block.
2403 Actions.ActOnBlockStart(CaretLoc, getCurScope());
2404
2405 // Parse the return type if present.
2406 DeclSpec DS(AttrFactory);
2407 Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2408 // FIXME: Since the return type isn't actually parsed, it can't be used to
2409 // fill ParamInfo with an initial valid range, so do it manually.
2410 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2411
2412 // If this block has arguments, parse them. There is no ambiguity here with
2413 // the expression case, because the expression case requires a parameter list.
2414 if (Tok.is(tok::l_paren)) {
2415 ParseParenDeclarator(ParamInfo);
2416 // Parse the pieces after the identifier as if we had "int(...)".
2417 // SetIdentifier sets the source range end, but in this case we're past
2418 // that location.
2419 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2420 ParamInfo.SetIdentifier(0, CaretLoc);
2421 ParamInfo.SetRangeEnd(Tmp);
2422 if (ParamInfo.isInvalidType()) {
2423 // If there was an error parsing the arguments, they may have
2424 // tried to use ^(x+y) which requires an argument list. Just
2425 // skip the whole block literal.
2426 Actions.ActOnBlockError(CaretLoc, getCurScope());
2427 return ExprError();
2428 }
2429
2430 MaybeParseGNUAttributes(ParamInfo);
2431
2432 // Inform sema that we are starting a block.
2433 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2434 } else if (!Tok.is(tok::l_brace)) {
2435 ParseBlockId(CaretLoc);
2436 } else {
2437 // Otherwise, pretend we saw (void).
2438 ParsedAttributes attrs(AttrFactory);
2439 SourceLocation NoLoc;
2440 ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2441 /*IsAmbiguous=*/false,
2442 /*RParenLoc=*/NoLoc,
2443 /*ArgInfo=*/0,
2444 /*NumArgs=*/0,
2445 /*EllipsisLoc=*/NoLoc,
2446 /*RParenLoc=*/NoLoc,
2447 /*TypeQuals=*/0,
2448 /*RefQualifierIsLvalueRef=*/true,
2449 /*RefQualifierLoc=*/NoLoc,
2450 /*ConstQualifierLoc=*/NoLoc,
2451 /*VolatileQualifierLoc=*/NoLoc,
2452 /*MutableLoc=*/NoLoc,
2453 EST_None,
2454 /*ESpecLoc=*/NoLoc,
2455 /*Exceptions=*/0,
2456 /*ExceptionRanges=*/0,
2457 /*NumExceptions=*/0,
2458 /*NoexceptExpr=*/0,
2459 CaretLoc, CaretLoc,
2460 ParamInfo),
2461 attrs, CaretLoc);
2462
2463 MaybeParseGNUAttributes(ParamInfo);
2464
2465 // Inform sema that we are starting a block.
2466 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2467 }
2468
2469
2470 ExprResult Result(true);
2471 if (!Tok.is(tok::l_brace)) {
2472 // Saw something like: ^expr
2473 Diag(Tok, diag::err_expected_expression);
2474 Actions.ActOnBlockError(CaretLoc, getCurScope());
2475 return ExprError();
2476 }
2477
2478 StmtResult Stmt(ParseCompoundStatementBody());
2479 BlockScope.Exit();
2480 if (!Stmt.isInvalid())
2481 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.take(), getCurScope());
2482 else
2483 Actions.ActOnBlockError(CaretLoc, getCurScope());
2484 return Result;
2485 }
2486
2487 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2488 ///
2489 /// '__objc_yes'
2490 /// '__objc_no'
ParseObjCBoolLiteral()2491 ExprResult Parser::ParseObjCBoolLiteral() {
2492 tok::TokenKind Kind = Tok.getKind();
2493 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2494 }
2495