1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/AutoUpgrade.h"
17 #include "llvm/IR/CallingConv.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/InlineAsm.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/ValueSymbolTable.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28
getTypeString(Type * T)29 static std::string getTypeString(Type *T) {
30 std::string Result;
31 raw_string_ostream Tmp(Result);
32 Tmp << *T;
33 return Tmp.str();
34 }
35
36 /// Run: module ::= toplevelentity*
Run()37 bool LLParser::Run() {
38 // Prime the lexer.
39 Lex.Lex();
40
41 return ParseTopLevelEntities() ||
42 ValidateEndOfModule();
43 }
44
45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46 /// module.
ValidateEndOfModule()47 bool LLParser::ValidateEndOfModule() {
48 // Handle any instruction metadata forward references.
49 if (!ForwardRefInstMetadata.empty()) {
50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52 I != E; ++I) {
53 Instruction *Inst = I->first;
54 const std::vector<MDRef> &MDList = I->second;
55
56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57 unsigned SlotNo = MDList[i].MDSlot;
58
59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60 return Error(MDList[i].Loc, "use of undefined metadata '!" +
61 Twine(SlotNo) + "'");
62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63 }
64 }
65 ForwardRefInstMetadata.clear();
66 }
67
68 // Handle any function attribute group forward references.
69 for (std::map<Value*, std::vector<unsigned> >::iterator
70 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
71 I != E; ++I) {
72 Value *V = I->first;
73 std::vector<unsigned> &Vec = I->second;
74 AttrBuilder B;
75
76 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
77 VI != VE; ++VI)
78 B.merge(NumberedAttrBuilders[*VI]);
79
80 if (Function *Fn = dyn_cast<Function>(V)) {
81 AttributeSet AS = Fn->getAttributes();
82 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
83 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
84 AS.getFnAttributes());
85
86 FnAttrs.merge(B);
87
88 // If the alignment was parsed as an attribute, move to the alignment
89 // field.
90 if (FnAttrs.hasAlignmentAttr()) {
91 Fn->setAlignment(FnAttrs.getAlignment());
92 FnAttrs.removeAttribute(Attribute::Alignment);
93 }
94
95 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
96 AttributeSet::get(Context,
97 AttributeSet::FunctionIndex,
98 FnAttrs));
99 Fn->setAttributes(AS);
100 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
101 AttributeSet AS = CI->getAttributes();
102 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
103 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
104 AS.getFnAttributes());
105 FnAttrs.merge(B);
106 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
107 AttributeSet::get(Context,
108 AttributeSet::FunctionIndex,
109 FnAttrs));
110 CI->setAttributes(AS);
111 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
112 AttributeSet AS = II->getAttributes();
113 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
114 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
115 AS.getFnAttributes());
116 FnAttrs.merge(B);
117 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
118 AttributeSet::get(Context,
119 AttributeSet::FunctionIndex,
120 FnAttrs));
121 II->setAttributes(AS);
122 } else {
123 llvm_unreachable("invalid object with forward attribute group reference");
124 }
125 }
126
127 // If there are entries in ForwardRefBlockAddresses at this point, they are
128 // references after the function was defined. Resolve those now.
129 while (!ForwardRefBlockAddresses.empty()) {
130 // Okay, we are referencing an already-parsed function, resolve them now.
131 Function *TheFn = 0;
132 const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
133 if (Fn.Kind == ValID::t_GlobalName)
134 TheFn = M->getFunction(Fn.StrVal);
135 else if (Fn.UIntVal < NumberedVals.size())
136 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
137
138 if (TheFn == 0)
139 return Error(Fn.Loc, "unknown function referenced by blockaddress");
140
141 // Resolve all these references.
142 if (ResolveForwardRefBlockAddresses(TheFn,
143 ForwardRefBlockAddresses.begin()->second,
144 0))
145 return true;
146
147 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
148 }
149
150 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
151 if (NumberedTypes[i].second.isValid())
152 return Error(NumberedTypes[i].second,
153 "use of undefined type '%" + Twine(i) + "'");
154
155 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
156 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
157 if (I->second.second.isValid())
158 return Error(I->second.second,
159 "use of undefined type named '" + I->getKey() + "'");
160
161 if (!ForwardRefVals.empty())
162 return Error(ForwardRefVals.begin()->second.second,
163 "use of undefined value '@" + ForwardRefVals.begin()->first +
164 "'");
165
166 if (!ForwardRefValIDs.empty())
167 return Error(ForwardRefValIDs.begin()->second.second,
168 "use of undefined value '@" +
169 Twine(ForwardRefValIDs.begin()->first) + "'");
170
171 if (!ForwardRefMDNodes.empty())
172 return Error(ForwardRefMDNodes.begin()->second.second,
173 "use of undefined metadata '!" +
174 Twine(ForwardRefMDNodes.begin()->first) + "'");
175
176
177 // Look for intrinsic functions and CallInst that need to be upgraded
178 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
179 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
180
181 return false;
182 }
183
ResolveForwardRefBlockAddresses(Function * TheFn,std::vector<std::pair<ValID,GlobalValue * >> & Refs,PerFunctionState * PFS)184 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
185 std::vector<std::pair<ValID, GlobalValue*> > &Refs,
186 PerFunctionState *PFS) {
187 // Loop over all the references, resolving them.
188 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
189 BasicBlock *Res;
190 if (PFS) {
191 if (Refs[i].first.Kind == ValID::t_LocalName)
192 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
193 else
194 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
195 } else if (Refs[i].first.Kind == ValID::t_LocalID) {
196 return Error(Refs[i].first.Loc,
197 "cannot take address of numeric label after the function is defined");
198 } else {
199 Res = dyn_cast_or_null<BasicBlock>(
200 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
201 }
202
203 if (Res == 0)
204 return Error(Refs[i].first.Loc,
205 "referenced value is not a basic block");
206
207 // Get the BlockAddress for this and update references to use it.
208 BlockAddress *BA = BlockAddress::get(TheFn, Res);
209 Refs[i].second->replaceAllUsesWith(BA);
210 Refs[i].second->eraseFromParent();
211 }
212 return false;
213 }
214
215
216 //===----------------------------------------------------------------------===//
217 // Top-Level Entities
218 //===----------------------------------------------------------------------===//
219
ParseTopLevelEntities()220 bool LLParser::ParseTopLevelEntities() {
221 while (1) {
222 switch (Lex.getKind()) {
223 default: return TokError("expected top-level entity");
224 case lltok::Eof: return false;
225 case lltok::kw_declare: if (ParseDeclare()) return true; break;
226 case lltok::kw_define: if (ParseDefine()) return true; break;
227 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
228 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
229 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
230 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
231 case lltok::LocalVar: if (ParseNamedType()) return true; break;
232 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
233 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
234 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
235 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
236
237 // The Global variable production with no name can have many different
238 // optional leading prefixes, the production is:
239 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
240 // OptionalAddrSpace OptionalUnNammedAddr
241 // ('constant'|'global') ...
242 case lltok::kw_private: // OptionalLinkage
243 case lltok::kw_linker_private: // OptionalLinkage
244 case lltok::kw_linker_private_weak: // OptionalLinkage
245 case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
246 case lltok::kw_internal: // OptionalLinkage
247 case lltok::kw_weak: // OptionalLinkage
248 case lltok::kw_weak_odr: // OptionalLinkage
249 case lltok::kw_linkonce: // OptionalLinkage
250 case lltok::kw_linkonce_odr: // OptionalLinkage
251 case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
252 case lltok::kw_appending: // OptionalLinkage
253 case lltok::kw_dllexport: // OptionalLinkage
254 case lltok::kw_common: // OptionalLinkage
255 case lltok::kw_dllimport: // OptionalLinkage
256 case lltok::kw_extern_weak: // OptionalLinkage
257 case lltok::kw_external: { // OptionalLinkage
258 unsigned Linkage, Visibility;
259 if (ParseOptionalLinkage(Linkage) ||
260 ParseOptionalVisibility(Visibility) ||
261 ParseGlobal("", SMLoc(), Linkage, true, Visibility))
262 return true;
263 break;
264 }
265 case lltok::kw_default: // OptionalVisibility
266 case lltok::kw_hidden: // OptionalVisibility
267 case lltok::kw_protected: { // OptionalVisibility
268 unsigned Visibility;
269 if (ParseOptionalVisibility(Visibility) ||
270 ParseGlobal("", SMLoc(), 0, false, Visibility))
271 return true;
272 break;
273 }
274
275 case lltok::kw_thread_local: // OptionalThreadLocal
276 case lltok::kw_addrspace: // OptionalAddrSpace
277 case lltok::kw_constant: // GlobalType
278 case lltok::kw_global: // GlobalType
279 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
280 break;
281
282 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
283 }
284 }
285 }
286
287
288 /// toplevelentity
289 /// ::= 'module' 'asm' STRINGCONSTANT
ParseModuleAsm()290 bool LLParser::ParseModuleAsm() {
291 assert(Lex.getKind() == lltok::kw_module);
292 Lex.Lex();
293
294 std::string AsmStr;
295 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
296 ParseStringConstant(AsmStr)) return true;
297
298 M->appendModuleInlineAsm(AsmStr);
299 return false;
300 }
301
302 /// toplevelentity
303 /// ::= 'target' 'triple' '=' STRINGCONSTANT
304 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
ParseTargetDefinition()305 bool LLParser::ParseTargetDefinition() {
306 assert(Lex.getKind() == lltok::kw_target);
307 std::string Str;
308 switch (Lex.Lex()) {
309 default: return TokError("unknown target property");
310 case lltok::kw_triple:
311 Lex.Lex();
312 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
313 ParseStringConstant(Str))
314 return true;
315 M->setTargetTriple(Str);
316 return false;
317 case lltok::kw_datalayout:
318 Lex.Lex();
319 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
320 ParseStringConstant(Str))
321 return true;
322 M->setDataLayout(Str);
323 return false;
324 }
325 }
326
327 /// toplevelentity
328 /// ::= 'deplibs' '=' '[' ']'
329 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
330 /// FIXME: Remove in 4.0. Currently parse, but ignore.
ParseDepLibs()331 bool LLParser::ParseDepLibs() {
332 assert(Lex.getKind() == lltok::kw_deplibs);
333 Lex.Lex();
334 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
335 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
336 return true;
337
338 if (EatIfPresent(lltok::rsquare))
339 return false;
340
341 do {
342 std::string Str;
343 if (ParseStringConstant(Str)) return true;
344 } while (EatIfPresent(lltok::comma));
345
346 return ParseToken(lltok::rsquare, "expected ']' at end of list");
347 }
348
349 /// ParseUnnamedType:
350 /// ::= LocalVarID '=' 'type' type
ParseUnnamedType()351 bool LLParser::ParseUnnamedType() {
352 LocTy TypeLoc = Lex.getLoc();
353 unsigned TypeID = Lex.getUIntVal();
354 Lex.Lex(); // eat LocalVarID;
355
356 if (ParseToken(lltok::equal, "expected '=' after name") ||
357 ParseToken(lltok::kw_type, "expected 'type' after '='"))
358 return true;
359
360 if (TypeID >= NumberedTypes.size())
361 NumberedTypes.resize(TypeID+1);
362
363 Type *Result = 0;
364 if (ParseStructDefinition(TypeLoc, "",
365 NumberedTypes[TypeID], Result)) return true;
366
367 if (!isa<StructType>(Result)) {
368 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
369 if (Entry.first)
370 return Error(TypeLoc, "non-struct types may not be recursive");
371 Entry.first = Result;
372 Entry.second = SMLoc();
373 }
374
375 return false;
376 }
377
378
379 /// toplevelentity
380 /// ::= LocalVar '=' 'type' type
ParseNamedType()381 bool LLParser::ParseNamedType() {
382 std::string Name = Lex.getStrVal();
383 LocTy NameLoc = Lex.getLoc();
384 Lex.Lex(); // eat LocalVar.
385
386 if (ParseToken(lltok::equal, "expected '=' after name") ||
387 ParseToken(lltok::kw_type, "expected 'type' after name"))
388 return true;
389
390 Type *Result = 0;
391 if (ParseStructDefinition(NameLoc, Name,
392 NamedTypes[Name], Result)) return true;
393
394 if (!isa<StructType>(Result)) {
395 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
396 if (Entry.first)
397 return Error(NameLoc, "non-struct types may not be recursive");
398 Entry.first = Result;
399 Entry.second = SMLoc();
400 }
401
402 return false;
403 }
404
405
406 /// toplevelentity
407 /// ::= 'declare' FunctionHeader
ParseDeclare()408 bool LLParser::ParseDeclare() {
409 assert(Lex.getKind() == lltok::kw_declare);
410 Lex.Lex();
411
412 Function *F;
413 return ParseFunctionHeader(F, false);
414 }
415
416 /// toplevelentity
417 /// ::= 'define' FunctionHeader '{' ...
ParseDefine()418 bool LLParser::ParseDefine() {
419 assert(Lex.getKind() == lltok::kw_define);
420 Lex.Lex();
421
422 Function *F;
423 return ParseFunctionHeader(F, true) ||
424 ParseFunctionBody(*F);
425 }
426
427 /// ParseGlobalType
428 /// ::= 'constant'
429 /// ::= 'global'
ParseGlobalType(bool & IsConstant)430 bool LLParser::ParseGlobalType(bool &IsConstant) {
431 if (Lex.getKind() == lltok::kw_constant)
432 IsConstant = true;
433 else if (Lex.getKind() == lltok::kw_global)
434 IsConstant = false;
435 else {
436 IsConstant = false;
437 return TokError("expected 'global' or 'constant'");
438 }
439 Lex.Lex();
440 return false;
441 }
442
443 /// ParseUnnamedGlobal:
444 /// OptionalVisibility ALIAS ...
445 /// OptionalLinkage OptionalVisibility ... -> global variable
446 /// GlobalID '=' OptionalVisibility ALIAS ...
447 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
ParseUnnamedGlobal()448 bool LLParser::ParseUnnamedGlobal() {
449 unsigned VarID = NumberedVals.size();
450 std::string Name;
451 LocTy NameLoc = Lex.getLoc();
452
453 // Handle the GlobalID form.
454 if (Lex.getKind() == lltok::GlobalID) {
455 if (Lex.getUIntVal() != VarID)
456 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
457 Twine(VarID) + "'");
458 Lex.Lex(); // eat GlobalID;
459
460 if (ParseToken(lltok::equal, "expected '=' after name"))
461 return true;
462 }
463
464 bool HasLinkage;
465 unsigned Linkage, Visibility;
466 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
467 ParseOptionalVisibility(Visibility))
468 return true;
469
470 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
471 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
472 return ParseAlias(Name, NameLoc, Visibility);
473 }
474
475 /// ParseNamedGlobal:
476 /// GlobalVar '=' OptionalVisibility ALIAS ...
477 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
ParseNamedGlobal()478 bool LLParser::ParseNamedGlobal() {
479 assert(Lex.getKind() == lltok::GlobalVar);
480 LocTy NameLoc = Lex.getLoc();
481 std::string Name = Lex.getStrVal();
482 Lex.Lex();
483
484 bool HasLinkage;
485 unsigned Linkage, Visibility;
486 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
487 ParseOptionalLinkage(Linkage, HasLinkage) ||
488 ParseOptionalVisibility(Visibility))
489 return true;
490
491 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
492 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
493 return ParseAlias(Name, NameLoc, Visibility);
494 }
495
496 // MDString:
497 // ::= '!' STRINGCONSTANT
ParseMDString(MDString * & Result)498 bool LLParser::ParseMDString(MDString *&Result) {
499 std::string Str;
500 if (ParseStringConstant(Str)) return true;
501 Result = MDString::get(Context, Str);
502 return false;
503 }
504
505 // MDNode:
506 // ::= '!' MDNodeNumber
507 //
508 /// This version of ParseMDNodeID returns the slot number and null in the case
509 /// of a forward reference.
ParseMDNodeID(MDNode * & Result,unsigned & SlotNo)510 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
511 // !{ ..., !42, ... }
512 if (ParseUInt32(SlotNo)) return true;
513
514 // Check existing MDNode.
515 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
516 Result = NumberedMetadata[SlotNo];
517 else
518 Result = 0;
519 return false;
520 }
521
ParseMDNodeID(MDNode * & Result)522 bool LLParser::ParseMDNodeID(MDNode *&Result) {
523 // !{ ..., !42, ... }
524 unsigned MID = 0;
525 if (ParseMDNodeID(Result, MID)) return true;
526
527 // If not a forward reference, just return it now.
528 if (Result) return false;
529
530 // Otherwise, create MDNode forward reference.
531 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
532 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
533
534 if (NumberedMetadata.size() <= MID)
535 NumberedMetadata.resize(MID+1);
536 NumberedMetadata[MID] = FwdNode;
537 Result = FwdNode;
538 return false;
539 }
540
541 /// ParseNamedMetadata:
542 /// !foo = !{ !1, !2 }
ParseNamedMetadata()543 bool LLParser::ParseNamedMetadata() {
544 assert(Lex.getKind() == lltok::MetadataVar);
545 std::string Name = Lex.getStrVal();
546 Lex.Lex();
547
548 if (ParseToken(lltok::equal, "expected '=' here") ||
549 ParseToken(lltok::exclaim, "Expected '!' here") ||
550 ParseToken(lltok::lbrace, "Expected '{' here"))
551 return true;
552
553 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
554 if (Lex.getKind() != lltok::rbrace)
555 do {
556 if (ParseToken(lltok::exclaim, "Expected '!' here"))
557 return true;
558
559 MDNode *N = 0;
560 if (ParseMDNodeID(N)) return true;
561 NMD->addOperand(N);
562 } while (EatIfPresent(lltok::comma));
563
564 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
565 return true;
566
567 return false;
568 }
569
570 /// ParseStandaloneMetadata:
571 /// !42 = !{...}
ParseStandaloneMetadata()572 bool LLParser::ParseStandaloneMetadata() {
573 assert(Lex.getKind() == lltok::exclaim);
574 Lex.Lex();
575 unsigned MetadataID = 0;
576
577 LocTy TyLoc;
578 Type *Ty = 0;
579 SmallVector<Value *, 16> Elts;
580 if (ParseUInt32(MetadataID) ||
581 ParseToken(lltok::equal, "expected '=' here") ||
582 ParseType(Ty, TyLoc) ||
583 ParseToken(lltok::exclaim, "Expected '!' here") ||
584 ParseToken(lltok::lbrace, "Expected '{' here") ||
585 ParseMDNodeVector(Elts, NULL) ||
586 ParseToken(lltok::rbrace, "expected end of metadata node"))
587 return true;
588
589 MDNode *Init = MDNode::get(Context, Elts);
590
591 // See if this was forward referenced, if so, handle it.
592 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
593 FI = ForwardRefMDNodes.find(MetadataID);
594 if (FI != ForwardRefMDNodes.end()) {
595 MDNode *Temp = FI->second.first;
596 Temp->replaceAllUsesWith(Init);
597 MDNode::deleteTemporary(Temp);
598 ForwardRefMDNodes.erase(FI);
599
600 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
601 } else {
602 if (MetadataID >= NumberedMetadata.size())
603 NumberedMetadata.resize(MetadataID+1);
604
605 if (NumberedMetadata[MetadataID] != 0)
606 return TokError("Metadata id is already used");
607 NumberedMetadata[MetadataID] = Init;
608 }
609
610 return false;
611 }
612
613 /// ParseAlias:
614 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
615 /// Aliasee
616 /// ::= TypeAndValue
617 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
618 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
619 ///
620 /// Everything through visibility has already been parsed.
621 ///
ParseAlias(const std::string & Name,LocTy NameLoc,unsigned Visibility)622 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
623 unsigned Visibility) {
624 assert(Lex.getKind() == lltok::kw_alias);
625 Lex.Lex();
626 unsigned Linkage;
627 LocTy LinkageLoc = Lex.getLoc();
628 if (ParseOptionalLinkage(Linkage))
629 return true;
630
631 if (Linkage != GlobalValue::ExternalLinkage &&
632 Linkage != GlobalValue::WeakAnyLinkage &&
633 Linkage != GlobalValue::WeakODRLinkage &&
634 Linkage != GlobalValue::InternalLinkage &&
635 Linkage != GlobalValue::PrivateLinkage &&
636 Linkage != GlobalValue::LinkerPrivateLinkage &&
637 Linkage != GlobalValue::LinkerPrivateWeakLinkage)
638 return Error(LinkageLoc, "invalid linkage type for alias");
639
640 Constant *Aliasee;
641 LocTy AliaseeLoc = Lex.getLoc();
642 if (Lex.getKind() != lltok::kw_bitcast &&
643 Lex.getKind() != lltok::kw_getelementptr) {
644 if (ParseGlobalTypeAndValue(Aliasee)) return true;
645 } else {
646 // The bitcast dest type is not present, it is implied by the dest type.
647 ValID ID;
648 if (ParseValID(ID)) return true;
649 if (ID.Kind != ValID::t_Constant)
650 return Error(AliaseeLoc, "invalid aliasee");
651 Aliasee = ID.ConstantVal;
652 }
653
654 if (!Aliasee->getType()->isPointerTy())
655 return Error(AliaseeLoc, "alias must have pointer type");
656
657 // Okay, create the alias but do not insert it into the module yet.
658 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
659 (GlobalValue::LinkageTypes)Linkage, Name,
660 Aliasee);
661 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
662
663 // See if this value already exists in the symbol table. If so, it is either
664 // a redefinition or a definition of a forward reference.
665 if (GlobalValue *Val = M->getNamedValue(Name)) {
666 // See if this was a redefinition. If so, there is no entry in
667 // ForwardRefVals.
668 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
669 I = ForwardRefVals.find(Name);
670 if (I == ForwardRefVals.end())
671 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
672
673 // Otherwise, this was a definition of forward ref. Verify that types
674 // agree.
675 if (Val->getType() != GA->getType())
676 return Error(NameLoc,
677 "forward reference and definition of alias have different types");
678
679 // If they agree, just RAUW the old value with the alias and remove the
680 // forward ref info.
681 Val->replaceAllUsesWith(GA);
682 Val->eraseFromParent();
683 ForwardRefVals.erase(I);
684 }
685
686 // Insert into the module, we know its name won't collide now.
687 M->getAliasList().push_back(GA);
688 assert(GA->getName() == Name && "Should not be a name conflict!");
689
690 return false;
691 }
692
693 /// ParseGlobal
694 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
695 /// OptionalAddrSpace OptionalUnNammedAddr
696 /// OptionalExternallyInitialized GlobalType Type Const
697 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698 /// OptionalAddrSpace OptionalUnNammedAddr
699 /// OptionalExternallyInitialized GlobalType Type Const
700 ///
701 /// Everything through visibility has been parsed already.
702 ///
ParseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility)703 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
704 unsigned Linkage, bool HasLinkage,
705 unsigned Visibility) {
706 unsigned AddrSpace;
707 bool IsConstant, UnnamedAddr, IsExternallyInitialized;
708 GlobalVariable::ThreadLocalMode TLM;
709 LocTy UnnamedAddrLoc;
710 LocTy IsExternallyInitializedLoc;
711 LocTy TyLoc;
712
713 Type *Ty = 0;
714 if (ParseOptionalThreadLocal(TLM) ||
715 ParseOptionalAddrSpace(AddrSpace) ||
716 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
717 &UnnamedAddrLoc) ||
718 ParseOptionalToken(lltok::kw_externally_initialized,
719 IsExternallyInitialized,
720 &IsExternallyInitializedLoc) ||
721 ParseGlobalType(IsConstant) ||
722 ParseType(Ty, TyLoc))
723 return true;
724
725 // If the linkage is specified and is external, then no initializer is
726 // present.
727 Constant *Init = 0;
728 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
729 Linkage != GlobalValue::ExternalWeakLinkage &&
730 Linkage != GlobalValue::ExternalLinkage)) {
731 if (ParseGlobalValue(Ty, Init))
732 return true;
733 }
734
735 if (Ty->isFunctionTy() || Ty->isLabelTy())
736 return Error(TyLoc, "invalid type for global variable");
737
738 GlobalVariable *GV = 0;
739
740 // See if the global was forward referenced, if so, use the global.
741 if (!Name.empty()) {
742 if (GlobalValue *GVal = M->getNamedValue(Name)) {
743 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
744 return Error(NameLoc, "redefinition of global '@" + Name + "'");
745 GV = cast<GlobalVariable>(GVal);
746 }
747 } else {
748 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
749 I = ForwardRefValIDs.find(NumberedVals.size());
750 if (I != ForwardRefValIDs.end()) {
751 GV = cast<GlobalVariable>(I->second.first);
752 ForwardRefValIDs.erase(I);
753 }
754 }
755
756 if (GV == 0) {
757 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
758 Name, 0, GlobalVariable::NotThreadLocal,
759 AddrSpace);
760 } else {
761 if (GV->getType()->getElementType() != Ty)
762 return Error(TyLoc,
763 "forward reference and definition of global have different types");
764
765 // Move the forward-reference to the correct spot in the module.
766 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
767 }
768
769 if (Name.empty())
770 NumberedVals.push_back(GV);
771
772 // Set the parsed properties on the global.
773 if (Init)
774 GV->setInitializer(Init);
775 GV->setConstant(IsConstant);
776 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
777 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
778 GV->setExternallyInitialized(IsExternallyInitialized);
779 GV->setThreadLocalMode(TLM);
780 GV->setUnnamedAddr(UnnamedAddr);
781
782 // Parse attributes on the global.
783 while (Lex.getKind() == lltok::comma) {
784 Lex.Lex();
785
786 if (Lex.getKind() == lltok::kw_section) {
787 Lex.Lex();
788 GV->setSection(Lex.getStrVal());
789 if (ParseToken(lltok::StringConstant, "expected global section string"))
790 return true;
791 } else if (Lex.getKind() == lltok::kw_align) {
792 unsigned Alignment;
793 if (ParseOptionalAlignment(Alignment)) return true;
794 GV->setAlignment(Alignment);
795 } else {
796 TokError("unknown global variable property!");
797 }
798 }
799
800 return false;
801 }
802
803 /// ParseUnnamedAttrGrp
804 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
ParseUnnamedAttrGrp()805 bool LLParser::ParseUnnamedAttrGrp() {
806 assert(Lex.getKind() == lltok::kw_attributes);
807 LocTy AttrGrpLoc = Lex.getLoc();
808 Lex.Lex();
809
810 assert(Lex.getKind() == lltok::AttrGrpID);
811 unsigned VarID = Lex.getUIntVal();
812 std::vector<unsigned> unused;
813 LocTy NoBuiltinLoc;
814 Lex.Lex();
815
816 if (ParseToken(lltok::equal, "expected '=' here") ||
817 ParseToken(lltok::lbrace, "expected '{' here") ||
818 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
819 NoBuiltinLoc) ||
820 ParseToken(lltok::rbrace, "expected end of attribute group"))
821 return true;
822
823 if (!NumberedAttrBuilders[VarID].hasAttributes())
824 return Error(AttrGrpLoc, "attribute group has no attributes");
825
826 return false;
827 }
828
829 /// ParseFnAttributeValuePairs
830 /// ::= <attr> | <attr> '=' <value>
ParseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool inAttrGrp,LocTy & NoBuiltinLoc)831 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
832 std::vector<unsigned> &FwdRefAttrGrps,
833 bool inAttrGrp, LocTy &NoBuiltinLoc) {
834 bool HaveError = false;
835
836 B.clear();
837
838 while (true) {
839 lltok::Kind Token = Lex.getKind();
840 if (Token == lltok::kw_nobuiltin)
841 NoBuiltinLoc = Lex.getLoc();
842 switch (Token) {
843 default:
844 if (!inAttrGrp) return HaveError;
845 return Error(Lex.getLoc(), "unterminated attribute group");
846 case lltok::rbrace:
847 // Finished.
848 return false;
849
850 case lltok::AttrGrpID: {
851 // Allow a function to reference an attribute group:
852 //
853 // define void @foo() #1 { ... }
854 if (inAttrGrp)
855 HaveError |=
856 Error(Lex.getLoc(),
857 "cannot have an attribute group reference in an attribute group");
858
859 unsigned AttrGrpNum = Lex.getUIntVal();
860 if (inAttrGrp) break;
861
862 // Save the reference to the attribute group. We'll fill it in later.
863 FwdRefAttrGrps.push_back(AttrGrpNum);
864 break;
865 }
866 // Target-dependent attributes:
867 case lltok::StringConstant: {
868 std::string Attr = Lex.getStrVal();
869 Lex.Lex();
870 std::string Val;
871 if (EatIfPresent(lltok::equal) &&
872 ParseStringConstant(Val))
873 return true;
874
875 B.addAttribute(Attr, Val);
876 continue;
877 }
878
879 // Target-independent attributes:
880 case lltok::kw_align: {
881 // As a hack, we allow "align 2" on functions as a synonym for "alignstack
882 // 2".
883 unsigned Alignment;
884 if (inAttrGrp) {
885 Lex.Lex();
886 if (ParseToken(lltok::equal, "expected '=' here") ||
887 ParseUInt32(Alignment))
888 return true;
889 } else {
890 if (ParseOptionalAlignment(Alignment))
891 return true;
892 }
893 B.addAlignmentAttr(Alignment);
894 continue;
895 }
896 case lltok::kw_alignstack: {
897 unsigned Alignment;
898 if (inAttrGrp) {
899 Lex.Lex();
900 if (ParseToken(lltok::equal, "expected '=' here") ||
901 ParseUInt32(Alignment))
902 return true;
903 } else {
904 if (ParseOptionalStackAlignment(Alignment))
905 return true;
906 }
907 B.addStackAlignmentAttr(Alignment);
908 continue;
909 }
910 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
911 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
912 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
913 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
914 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
915 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
916 case lltok::kw_noimplicitfloat: B.addAttribute(Attribute::NoImplicitFloat); break;
917 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
918 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
919 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
920 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
921 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
922 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
923 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
924 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
925 case lltok::kw_returns_twice: B.addAttribute(Attribute::ReturnsTwice); break;
926 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
927 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
928 case lltok::kw_sspstrong: B.addAttribute(Attribute::StackProtectStrong); break;
929 case lltok::kw_sanitize_address: B.addAttribute(Attribute::SanitizeAddress); break;
930 case lltok::kw_sanitize_thread: B.addAttribute(Attribute::SanitizeThread); break;
931 case lltok::kw_sanitize_memory: B.addAttribute(Attribute::SanitizeMemory); break;
932 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
933
934 // Error handling.
935 case lltok::kw_inreg:
936 case lltok::kw_signext:
937 case lltok::kw_zeroext:
938 HaveError |=
939 Error(Lex.getLoc(),
940 "invalid use of attribute on a function");
941 break;
942 case lltok::kw_byval:
943 case lltok::kw_nest:
944 case lltok::kw_noalias:
945 case lltok::kw_nocapture:
946 case lltok::kw_sret:
947 HaveError |=
948 Error(Lex.getLoc(),
949 "invalid use of parameter-only attribute on a function");
950 break;
951 }
952
953 Lex.Lex();
954 }
955 }
956
957 //===----------------------------------------------------------------------===//
958 // GlobalValue Reference/Resolution Routines.
959 //===----------------------------------------------------------------------===//
960
961 /// GetGlobalVal - Get a value with the specified name or ID, creating a
962 /// forward reference record if needed. This can return null if the value
963 /// exists but does not have the right type.
GetGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)964 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
965 LocTy Loc) {
966 PointerType *PTy = dyn_cast<PointerType>(Ty);
967 if (PTy == 0) {
968 Error(Loc, "global variable reference must have pointer type");
969 return 0;
970 }
971
972 // Look this name up in the normal function symbol table.
973 GlobalValue *Val =
974 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
975
976 // If this is a forward reference for the value, see if we already created a
977 // forward ref record.
978 if (Val == 0) {
979 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
980 I = ForwardRefVals.find(Name);
981 if (I != ForwardRefVals.end())
982 Val = I->second.first;
983 }
984
985 // If we have the value in the symbol table or fwd-ref table, return it.
986 if (Val) {
987 if (Val->getType() == Ty) return Val;
988 Error(Loc, "'@" + Name + "' defined with type '" +
989 getTypeString(Val->getType()) + "'");
990 return 0;
991 }
992
993 // Otherwise, create a new forward reference for this value and remember it.
994 GlobalValue *FwdVal;
995 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
996 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
997 else
998 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
999 GlobalValue::ExternalWeakLinkage, 0, Name,
1000 0, GlobalVariable::NotThreadLocal,
1001 PTy->getAddressSpace());
1002
1003 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1004 return FwdVal;
1005 }
1006
GetGlobalVal(unsigned ID,Type * Ty,LocTy Loc)1007 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1008 PointerType *PTy = dyn_cast<PointerType>(Ty);
1009 if (PTy == 0) {
1010 Error(Loc, "global variable reference must have pointer type");
1011 return 0;
1012 }
1013
1014 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1015
1016 // If this is a forward reference for the value, see if we already created a
1017 // forward ref record.
1018 if (Val == 0) {
1019 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1020 I = ForwardRefValIDs.find(ID);
1021 if (I != ForwardRefValIDs.end())
1022 Val = I->second.first;
1023 }
1024
1025 // If we have the value in the symbol table or fwd-ref table, return it.
1026 if (Val) {
1027 if (Val->getType() == Ty) return Val;
1028 Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1029 getTypeString(Val->getType()) + "'");
1030 return 0;
1031 }
1032
1033 // Otherwise, create a new forward reference for this value and remember it.
1034 GlobalValue *FwdVal;
1035 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1036 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1037 else
1038 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1039 GlobalValue::ExternalWeakLinkage, 0, "");
1040
1041 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1042 return FwdVal;
1043 }
1044
1045
1046 //===----------------------------------------------------------------------===//
1047 // Helper Routines.
1048 //===----------------------------------------------------------------------===//
1049
1050 /// ParseToken - If the current token has the specified kind, eat it and return
1051 /// success. Otherwise, emit the specified error and return failure.
ParseToken(lltok::Kind T,const char * ErrMsg)1052 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1053 if (Lex.getKind() != T)
1054 return TokError(ErrMsg);
1055 Lex.Lex();
1056 return false;
1057 }
1058
1059 /// ParseStringConstant
1060 /// ::= StringConstant
ParseStringConstant(std::string & Result)1061 bool LLParser::ParseStringConstant(std::string &Result) {
1062 if (Lex.getKind() != lltok::StringConstant)
1063 return TokError("expected string constant");
1064 Result = Lex.getStrVal();
1065 Lex.Lex();
1066 return false;
1067 }
1068
1069 /// ParseUInt32
1070 /// ::= uint32
ParseUInt32(unsigned & Val)1071 bool LLParser::ParseUInt32(unsigned &Val) {
1072 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1073 return TokError("expected integer");
1074 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1075 if (Val64 != unsigned(Val64))
1076 return TokError("expected 32-bit integer (too large)");
1077 Val = Val64;
1078 Lex.Lex();
1079 return false;
1080 }
1081
1082 /// ParseTLSModel
1083 /// := 'localdynamic'
1084 /// := 'initialexec'
1085 /// := 'localexec'
ParseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1086 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1087 switch (Lex.getKind()) {
1088 default:
1089 return TokError("expected localdynamic, initialexec or localexec");
1090 case lltok::kw_localdynamic:
1091 TLM = GlobalVariable::LocalDynamicTLSModel;
1092 break;
1093 case lltok::kw_initialexec:
1094 TLM = GlobalVariable::InitialExecTLSModel;
1095 break;
1096 case lltok::kw_localexec:
1097 TLM = GlobalVariable::LocalExecTLSModel;
1098 break;
1099 }
1100
1101 Lex.Lex();
1102 return false;
1103 }
1104
1105 /// ParseOptionalThreadLocal
1106 /// := /*empty*/
1107 /// := 'thread_local'
1108 /// := 'thread_local' '(' tlsmodel ')'
ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1109 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1110 TLM = GlobalVariable::NotThreadLocal;
1111 if (!EatIfPresent(lltok::kw_thread_local))
1112 return false;
1113
1114 TLM = GlobalVariable::GeneralDynamicTLSModel;
1115 if (Lex.getKind() == lltok::lparen) {
1116 Lex.Lex();
1117 return ParseTLSModel(TLM) ||
1118 ParseToken(lltok::rparen, "expected ')' after thread local model");
1119 }
1120 return false;
1121 }
1122
1123 /// ParseOptionalAddrSpace
1124 /// := /*empty*/
1125 /// := 'addrspace' '(' uint32 ')'
ParseOptionalAddrSpace(unsigned & AddrSpace)1126 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1127 AddrSpace = 0;
1128 if (!EatIfPresent(lltok::kw_addrspace))
1129 return false;
1130 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1131 ParseUInt32(AddrSpace) ||
1132 ParseToken(lltok::rparen, "expected ')' in address space");
1133 }
1134
1135 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
ParseOptionalParamAttrs(AttrBuilder & B)1136 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1137 bool HaveError = false;
1138
1139 B.clear();
1140
1141 while (1) {
1142 lltok::Kind Token = Lex.getKind();
1143 switch (Token) {
1144 default: // End of attributes.
1145 return HaveError;
1146 case lltok::kw_align: {
1147 unsigned Alignment;
1148 if (ParseOptionalAlignment(Alignment))
1149 return true;
1150 B.addAlignmentAttr(Alignment);
1151 continue;
1152 }
1153 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1154 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1155 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1156 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1157 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1158 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1159 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1160 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1161
1162 case lltok::kw_alignstack: case lltok::kw_nounwind:
1163 case lltok::kw_alwaysinline: case lltok::kw_optsize:
1164 case lltok::kw_inlinehint: case lltok::kw_readnone:
1165 case lltok::kw_minsize: case lltok::kw_readonly:
1166 case lltok::kw_naked: case lltok::kw_returns_twice:
1167 case lltok::kw_nobuiltin: case lltok::kw_sanitize_address:
1168 case lltok::kw_noimplicitfloat: case lltok::kw_sanitize_memory:
1169 case lltok::kw_noinline: case lltok::kw_sanitize_thread:
1170 case lltok::kw_nonlazybind: case lltok::kw_ssp:
1171 case lltok::kw_noredzone: case lltok::kw_sspreq:
1172 case lltok::kw_noreturn: case lltok::kw_uwtable:
1173 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1174 break;
1175 }
1176
1177 Lex.Lex();
1178 }
1179 }
1180
1181 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
ParseOptionalReturnAttrs(AttrBuilder & B)1182 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1183 bool HaveError = false;
1184
1185 B.clear();
1186
1187 while (1) {
1188 lltok::Kind Token = Lex.getKind();
1189 switch (Token) {
1190 default: // End of attributes.
1191 return HaveError;
1192 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1193 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1194 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1195 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1196
1197 // Error handling.
1198 case lltok::kw_sret: case lltok::kw_nocapture:
1199 case lltok::kw_byval: case lltok::kw_nest:
1200 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1201 break;
1202
1203 case lltok::kw_align: case lltok::kw_noreturn:
1204 case lltok::kw_alignstack: case lltok::kw_nounwind:
1205 case lltok::kw_alwaysinline: case lltok::kw_optsize:
1206 case lltok::kw_inlinehint: case lltok::kw_readnone:
1207 case lltok::kw_minsize: case lltok::kw_readonly:
1208 case lltok::kw_naked: case lltok::kw_returns_twice:
1209 case lltok::kw_nobuiltin: case lltok::kw_sanitize_address:
1210 case lltok::kw_noduplicate: case lltok::kw_sanitize_memory:
1211 case lltok::kw_noimplicitfloat: case lltok::kw_sanitize_thread:
1212 case lltok::kw_noinline: case lltok::kw_ssp:
1213 case lltok::kw_nonlazybind: case lltok::kw_sspreq:
1214 case lltok::kw_noredzone: case lltok::kw_sspstrong:
1215 case lltok::kw_uwtable:
1216 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1217 break;
1218 }
1219
1220 Lex.Lex();
1221 }
1222 }
1223
1224 /// ParseOptionalLinkage
1225 /// ::= /*empty*/
1226 /// ::= 'private'
1227 /// ::= 'linker_private'
1228 /// ::= 'linker_private_weak'
1229 /// ::= 'internal'
1230 /// ::= 'weak'
1231 /// ::= 'weak_odr'
1232 /// ::= 'linkonce'
1233 /// ::= 'linkonce_odr'
1234 /// ::= 'linkonce_odr_auto_hide'
1235 /// ::= 'available_externally'
1236 /// ::= 'appending'
1237 /// ::= 'dllexport'
1238 /// ::= 'common'
1239 /// ::= 'dllimport'
1240 /// ::= 'extern_weak'
1241 /// ::= 'external'
ParseOptionalLinkage(unsigned & Res,bool & HasLinkage)1242 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1243 HasLinkage = false;
1244 switch (Lex.getKind()) {
1245 default: Res=GlobalValue::ExternalLinkage; return false;
1246 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
1247 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1248 case lltok::kw_linker_private_weak:
1249 Res = GlobalValue::LinkerPrivateWeakLinkage;
1250 break;
1251 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
1252 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
1253 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
1254 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
1255 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
1256 case lltok::kw_linkonce_odr_auto_hide:
1257 case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1258 Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1259 break;
1260 case lltok::kw_available_externally:
1261 Res = GlobalValue::AvailableExternallyLinkage;
1262 break;
1263 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
1264 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
1265 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
1266 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
1267 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
1268 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
1269 }
1270 Lex.Lex();
1271 HasLinkage = true;
1272 return false;
1273 }
1274
1275 /// ParseOptionalVisibility
1276 /// ::= /*empty*/
1277 /// ::= 'default'
1278 /// ::= 'hidden'
1279 /// ::= 'protected'
1280 ///
ParseOptionalVisibility(unsigned & Res)1281 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1282 switch (Lex.getKind()) {
1283 default: Res = GlobalValue::DefaultVisibility; return false;
1284 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
1285 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
1286 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1287 }
1288 Lex.Lex();
1289 return false;
1290 }
1291
1292 /// ParseOptionalCallingConv
1293 /// ::= /*empty*/
1294 /// ::= 'ccc'
1295 /// ::= 'fastcc'
1296 /// ::= 'kw_intel_ocl_bicc'
1297 /// ::= 'coldcc'
1298 /// ::= 'x86_stdcallcc'
1299 /// ::= 'x86_fastcallcc'
1300 /// ::= 'x86_thiscallcc'
1301 /// ::= 'arm_apcscc'
1302 /// ::= 'arm_aapcscc'
1303 /// ::= 'arm_aapcs_vfpcc'
1304 /// ::= 'msp430_intrcc'
1305 /// ::= 'ptx_kernel'
1306 /// ::= 'ptx_device'
1307 /// ::= 'spir_func'
1308 /// ::= 'spir_kernel'
1309 /// ::= 'cc' UINT
1310 ///
ParseOptionalCallingConv(CallingConv::ID & CC)1311 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1312 switch (Lex.getKind()) {
1313 default: CC = CallingConv::C; return false;
1314 case lltok::kw_ccc: CC = CallingConv::C; break;
1315 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1316 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1317 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1318 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1319 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1320 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1321 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1322 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1323 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1324 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1325 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1326 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1327 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1328 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1329 case lltok::kw_cc: {
1330 unsigned ArbitraryCC;
1331 Lex.Lex();
1332 if (ParseUInt32(ArbitraryCC))
1333 return true;
1334 CC = static_cast<CallingConv::ID>(ArbitraryCC);
1335 return false;
1336 }
1337 }
1338
1339 Lex.Lex();
1340 return false;
1341 }
1342
1343 /// ParseInstructionMetadata
1344 /// ::= !dbg !42 (',' !dbg !57)*
ParseInstructionMetadata(Instruction * Inst,PerFunctionState * PFS)1345 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1346 PerFunctionState *PFS) {
1347 do {
1348 if (Lex.getKind() != lltok::MetadataVar)
1349 return TokError("expected metadata after comma");
1350
1351 std::string Name = Lex.getStrVal();
1352 unsigned MDK = M->getMDKindID(Name);
1353 Lex.Lex();
1354
1355 MDNode *Node;
1356 SMLoc Loc = Lex.getLoc();
1357
1358 if (ParseToken(lltok::exclaim, "expected '!' here"))
1359 return true;
1360
1361 // This code is similar to that of ParseMetadataValue, however it needs to
1362 // have special-case code for a forward reference; see the comments on
1363 // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1364 // at the top level here.
1365 if (Lex.getKind() == lltok::lbrace) {
1366 ValID ID;
1367 if (ParseMetadataListValue(ID, PFS))
1368 return true;
1369 assert(ID.Kind == ValID::t_MDNode);
1370 Inst->setMetadata(MDK, ID.MDNodeVal);
1371 } else {
1372 unsigned NodeID = 0;
1373 if (ParseMDNodeID(Node, NodeID))
1374 return true;
1375 if (Node) {
1376 // If we got the node, add it to the instruction.
1377 Inst->setMetadata(MDK, Node);
1378 } else {
1379 MDRef R = { Loc, MDK, NodeID };
1380 // Otherwise, remember that this should be resolved later.
1381 ForwardRefInstMetadata[Inst].push_back(R);
1382 }
1383 }
1384
1385 // If this is the end of the list, we're done.
1386 } while (EatIfPresent(lltok::comma));
1387 return false;
1388 }
1389
1390 /// ParseOptionalAlignment
1391 /// ::= /* empty */
1392 /// ::= 'align' 4
ParseOptionalAlignment(unsigned & Alignment)1393 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1394 Alignment = 0;
1395 if (!EatIfPresent(lltok::kw_align))
1396 return false;
1397 LocTy AlignLoc = Lex.getLoc();
1398 if (ParseUInt32(Alignment)) return true;
1399 if (!isPowerOf2_32(Alignment))
1400 return Error(AlignLoc, "alignment is not a power of two");
1401 if (Alignment > Value::MaximumAlignment)
1402 return Error(AlignLoc, "huge alignments are not supported yet");
1403 return false;
1404 }
1405
1406 /// ParseOptionalCommaAlign
1407 /// ::=
1408 /// ::= ',' align 4
1409 ///
1410 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1411 /// end.
ParseOptionalCommaAlign(unsigned & Alignment,bool & AteExtraComma)1412 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1413 bool &AteExtraComma) {
1414 AteExtraComma = false;
1415 while (EatIfPresent(lltok::comma)) {
1416 // Metadata at the end is an early exit.
1417 if (Lex.getKind() == lltok::MetadataVar) {
1418 AteExtraComma = true;
1419 return false;
1420 }
1421
1422 if (Lex.getKind() != lltok::kw_align)
1423 return Error(Lex.getLoc(), "expected metadata or 'align'");
1424
1425 if (ParseOptionalAlignment(Alignment)) return true;
1426 }
1427
1428 return false;
1429 }
1430
1431 /// ParseScopeAndOrdering
1432 /// if isAtomic: ::= 'singlethread'? AtomicOrdering
1433 /// else: ::=
1434 ///
1435 /// This sets Scope and Ordering to the parsed values.
ParseScopeAndOrdering(bool isAtomic,SynchronizationScope & Scope,AtomicOrdering & Ordering)1436 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1437 AtomicOrdering &Ordering) {
1438 if (!isAtomic)
1439 return false;
1440
1441 Scope = CrossThread;
1442 if (EatIfPresent(lltok::kw_singlethread))
1443 Scope = SingleThread;
1444 switch (Lex.getKind()) {
1445 default: return TokError("Expected ordering on atomic instruction");
1446 case lltok::kw_unordered: Ordering = Unordered; break;
1447 case lltok::kw_monotonic: Ordering = Monotonic; break;
1448 case lltok::kw_acquire: Ordering = Acquire; break;
1449 case lltok::kw_release: Ordering = Release; break;
1450 case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1451 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1452 }
1453 Lex.Lex();
1454 return false;
1455 }
1456
1457 /// ParseOptionalStackAlignment
1458 /// ::= /* empty */
1459 /// ::= 'alignstack' '(' 4 ')'
ParseOptionalStackAlignment(unsigned & Alignment)1460 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1461 Alignment = 0;
1462 if (!EatIfPresent(lltok::kw_alignstack))
1463 return false;
1464 LocTy ParenLoc = Lex.getLoc();
1465 if (!EatIfPresent(lltok::lparen))
1466 return Error(ParenLoc, "expected '('");
1467 LocTy AlignLoc = Lex.getLoc();
1468 if (ParseUInt32(Alignment)) return true;
1469 ParenLoc = Lex.getLoc();
1470 if (!EatIfPresent(lltok::rparen))
1471 return Error(ParenLoc, "expected ')'");
1472 if (!isPowerOf2_32(Alignment))
1473 return Error(AlignLoc, "stack alignment is not a power of two");
1474 return false;
1475 }
1476
1477 /// ParseIndexList - This parses the index list for an insert/extractvalue
1478 /// instruction. This sets AteExtraComma in the case where we eat an extra
1479 /// comma at the end of the line and find that it is followed by metadata.
1480 /// Clients that don't allow metadata can call the version of this function that
1481 /// only takes one argument.
1482 ///
1483 /// ParseIndexList
1484 /// ::= (',' uint32)+
1485 ///
ParseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)1486 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1487 bool &AteExtraComma) {
1488 AteExtraComma = false;
1489
1490 if (Lex.getKind() != lltok::comma)
1491 return TokError("expected ',' as start of index list");
1492
1493 while (EatIfPresent(lltok::comma)) {
1494 if (Lex.getKind() == lltok::MetadataVar) {
1495 AteExtraComma = true;
1496 return false;
1497 }
1498 unsigned Idx = 0;
1499 if (ParseUInt32(Idx)) return true;
1500 Indices.push_back(Idx);
1501 }
1502
1503 return false;
1504 }
1505
1506 //===----------------------------------------------------------------------===//
1507 // Type Parsing.
1508 //===----------------------------------------------------------------------===//
1509
1510 /// ParseType - Parse a type.
ParseType(Type * & Result,bool AllowVoid)1511 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1512 SMLoc TypeLoc = Lex.getLoc();
1513 switch (Lex.getKind()) {
1514 default:
1515 return TokError("expected type");
1516 case lltok::Type:
1517 // Type ::= 'float' | 'void' (etc)
1518 Result = Lex.getTyVal();
1519 Lex.Lex();
1520 break;
1521 case lltok::lbrace:
1522 // Type ::= StructType
1523 if (ParseAnonStructType(Result, false))
1524 return true;
1525 break;
1526 case lltok::lsquare:
1527 // Type ::= '[' ... ']'
1528 Lex.Lex(); // eat the lsquare.
1529 if (ParseArrayVectorType(Result, false))
1530 return true;
1531 break;
1532 case lltok::less: // Either vector or packed struct.
1533 // Type ::= '<' ... '>'
1534 Lex.Lex();
1535 if (Lex.getKind() == lltok::lbrace) {
1536 if (ParseAnonStructType(Result, true) ||
1537 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1538 return true;
1539 } else if (ParseArrayVectorType(Result, true))
1540 return true;
1541 break;
1542 case lltok::LocalVar: {
1543 // Type ::= %foo
1544 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1545
1546 // If the type hasn't been defined yet, create a forward definition and
1547 // remember where that forward def'n was seen (in case it never is defined).
1548 if (Entry.first == 0) {
1549 Entry.first = StructType::create(Context, Lex.getStrVal());
1550 Entry.second = Lex.getLoc();
1551 }
1552 Result = Entry.first;
1553 Lex.Lex();
1554 break;
1555 }
1556
1557 case lltok::LocalVarID: {
1558 // Type ::= %4
1559 if (Lex.getUIntVal() >= NumberedTypes.size())
1560 NumberedTypes.resize(Lex.getUIntVal()+1);
1561 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1562
1563 // If the type hasn't been defined yet, create a forward definition and
1564 // remember where that forward def'n was seen (in case it never is defined).
1565 if (Entry.first == 0) {
1566 Entry.first = StructType::create(Context);
1567 Entry.second = Lex.getLoc();
1568 }
1569 Result = Entry.first;
1570 Lex.Lex();
1571 break;
1572 }
1573 }
1574
1575 // Parse the type suffixes.
1576 while (1) {
1577 switch (Lex.getKind()) {
1578 // End of type.
1579 default:
1580 if (!AllowVoid && Result->isVoidTy())
1581 return Error(TypeLoc, "void type only allowed for function results");
1582 return false;
1583
1584 // Type ::= Type '*'
1585 case lltok::star:
1586 if (Result->isLabelTy())
1587 return TokError("basic block pointers are invalid");
1588 if (Result->isVoidTy())
1589 return TokError("pointers to void are invalid - use i8* instead");
1590 if (!PointerType::isValidElementType(Result))
1591 return TokError("pointer to this type is invalid");
1592 Result = PointerType::getUnqual(Result);
1593 Lex.Lex();
1594 break;
1595
1596 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1597 case lltok::kw_addrspace: {
1598 if (Result->isLabelTy())
1599 return TokError("basic block pointers are invalid");
1600 if (Result->isVoidTy())
1601 return TokError("pointers to void are invalid; use i8* instead");
1602 if (!PointerType::isValidElementType(Result))
1603 return TokError("pointer to this type is invalid");
1604 unsigned AddrSpace;
1605 if (ParseOptionalAddrSpace(AddrSpace) ||
1606 ParseToken(lltok::star, "expected '*' in address space"))
1607 return true;
1608
1609 Result = PointerType::get(Result, AddrSpace);
1610 break;
1611 }
1612
1613 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1614 case lltok::lparen:
1615 if (ParseFunctionType(Result))
1616 return true;
1617 break;
1618 }
1619 }
1620 }
1621
1622 /// ParseParameterList
1623 /// ::= '(' ')'
1624 /// ::= '(' Arg (',' Arg)* ')'
1625 /// Arg
1626 /// ::= Type OptionalAttributes Value OptionalAttributes
ParseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS)1627 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1628 PerFunctionState &PFS) {
1629 if (ParseToken(lltok::lparen, "expected '(' in call"))
1630 return true;
1631
1632 unsigned AttrIndex = 1;
1633 while (Lex.getKind() != lltok::rparen) {
1634 // If this isn't the first argument, we need a comma.
1635 if (!ArgList.empty() &&
1636 ParseToken(lltok::comma, "expected ',' in argument list"))
1637 return true;
1638
1639 // Parse the argument.
1640 LocTy ArgLoc;
1641 Type *ArgTy = 0;
1642 AttrBuilder ArgAttrs;
1643 Value *V;
1644 if (ParseType(ArgTy, ArgLoc))
1645 return true;
1646
1647 // Otherwise, handle normal operands.
1648 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1649 return true;
1650 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1651 AttrIndex++,
1652 ArgAttrs)));
1653 }
1654
1655 Lex.Lex(); // Lex the ')'.
1656 return false;
1657 }
1658
1659
1660
1661 /// ParseArgumentList - Parse the argument list for a function type or function
1662 /// prototype.
1663 /// ::= '(' ArgTypeListI ')'
1664 /// ArgTypeListI
1665 /// ::= /*empty*/
1666 /// ::= '...'
1667 /// ::= ArgTypeList ',' '...'
1668 /// ::= ArgType (',' ArgType)*
1669 ///
ParseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & isVarArg)1670 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1671 bool &isVarArg){
1672 isVarArg = false;
1673 assert(Lex.getKind() == lltok::lparen);
1674 Lex.Lex(); // eat the (.
1675
1676 if (Lex.getKind() == lltok::rparen) {
1677 // empty
1678 } else if (Lex.getKind() == lltok::dotdotdot) {
1679 isVarArg = true;
1680 Lex.Lex();
1681 } else {
1682 LocTy TypeLoc = Lex.getLoc();
1683 Type *ArgTy = 0;
1684 AttrBuilder Attrs;
1685 std::string Name;
1686
1687 if (ParseType(ArgTy) ||
1688 ParseOptionalParamAttrs(Attrs)) return true;
1689
1690 if (ArgTy->isVoidTy())
1691 return Error(TypeLoc, "argument can not have void type");
1692
1693 if (Lex.getKind() == lltok::LocalVar) {
1694 Name = Lex.getStrVal();
1695 Lex.Lex();
1696 }
1697
1698 if (!FunctionType::isValidArgumentType(ArgTy))
1699 return Error(TypeLoc, "invalid type for function argument");
1700
1701 unsigned AttrIndex = 1;
1702 ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1703 AttributeSet::get(ArgTy->getContext(),
1704 AttrIndex++, Attrs), Name));
1705
1706 while (EatIfPresent(lltok::comma)) {
1707 // Handle ... at end of arg list.
1708 if (EatIfPresent(lltok::dotdotdot)) {
1709 isVarArg = true;
1710 break;
1711 }
1712
1713 // Otherwise must be an argument type.
1714 TypeLoc = Lex.getLoc();
1715 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1716
1717 if (ArgTy->isVoidTy())
1718 return Error(TypeLoc, "argument can not have void type");
1719
1720 if (Lex.getKind() == lltok::LocalVar) {
1721 Name = Lex.getStrVal();
1722 Lex.Lex();
1723 } else {
1724 Name = "";
1725 }
1726
1727 if (!ArgTy->isFirstClassType())
1728 return Error(TypeLoc, "invalid type for function argument");
1729
1730 ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1731 AttributeSet::get(ArgTy->getContext(),
1732 AttrIndex++, Attrs),
1733 Name));
1734 }
1735 }
1736
1737 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1738 }
1739
1740 /// ParseFunctionType
1741 /// ::= Type ArgumentList OptionalAttrs
ParseFunctionType(Type * & Result)1742 bool LLParser::ParseFunctionType(Type *&Result) {
1743 assert(Lex.getKind() == lltok::lparen);
1744
1745 if (!FunctionType::isValidReturnType(Result))
1746 return TokError("invalid function return type");
1747
1748 SmallVector<ArgInfo, 8> ArgList;
1749 bool isVarArg;
1750 if (ParseArgumentList(ArgList, isVarArg))
1751 return true;
1752
1753 // Reject names on the arguments lists.
1754 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1755 if (!ArgList[i].Name.empty())
1756 return Error(ArgList[i].Loc, "argument name invalid in function type");
1757 if (ArgList[i].Attrs.hasAttributes(i + 1))
1758 return Error(ArgList[i].Loc,
1759 "argument attributes invalid in function type");
1760 }
1761
1762 SmallVector<Type*, 16> ArgListTy;
1763 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1764 ArgListTy.push_back(ArgList[i].Ty);
1765
1766 Result = FunctionType::get(Result, ArgListTy, isVarArg);
1767 return false;
1768 }
1769
1770 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1771 /// other structs.
ParseAnonStructType(Type * & Result,bool Packed)1772 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1773 SmallVector<Type*, 8> Elts;
1774 if (ParseStructBody(Elts)) return true;
1775
1776 Result = StructType::get(Context, Elts, Packed);
1777 return false;
1778 }
1779
1780 /// ParseStructDefinition - Parse a struct in a 'type' definition.
ParseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)1781 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1782 std::pair<Type*, LocTy> &Entry,
1783 Type *&ResultTy) {
1784 // If the type was already defined, diagnose the redefinition.
1785 if (Entry.first && !Entry.second.isValid())
1786 return Error(TypeLoc, "redefinition of type");
1787
1788 // If we have opaque, just return without filling in the definition for the
1789 // struct. This counts as a definition as far as the .ll file goes.
1790 if (EatIfPresent(lltok::kw_opaque)) {
1791 // This type is being defined, so clear the location to indicate this.
1792 Entry.second = SMLoc();
1793
1794 // If this type number has never been uttered, create it.
1795 if (Entry.first == 0)
1796 Entry.first = StructType::create(Context, Name);
1797 ResultTy = Entry.first;
1798 return false;
1799 }
1800
1801 // If the type starts with '<', then it is either a packed struct or a vector.
1802 bool isPacked = EatIfPresent(lltok::less);
1803
1804 // If we don't have a struct, then we have a random type alias, which we
1805 // accept for compatibility with old files. These types are not allowed to be
1806 // forward referenced and not allowed to be recursive.
1807 if (Lex.getKind() != lltok::lbrace) {
1808 if (Entry.first)
1809 return Error(TypeLoc, "forward references to non-struct type");
1810
1811 ResultTy = 0;
1812 if (isPacked)
1813 return ParseArrayVectorType(ResultTy, true);
1814 return ParseType(ResultTy);
1815 }
1816
1817 // This type is being defined, so clear the location to indicate this.
1818 Entry.second = SMLoc();
1819
1820 // If this type number has never been uttered, create it.
1821 if (Entry.first == 0)
1822 Entry.first = StructType::create(Context, Name);
1823
1824 StructType *STy = cast<StructType>(Entry.first);
1825
1826 SmallVector<Type*, 8> Body;
1827 if (ParseStructBody(Body) ||
1828 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1829 return true;
1830
1831 STy->setBody(Body, isPacked);
1832 ResultTy = STy;
1833 return false;
1834 }
1835
1836
1837 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1838 /// StructType
1839 /// ::= '{' '}'
1840 /// ::= '{' Type (',' Type)* '}'
1841 /// ::= '<' '{' '}' '>'
1842 /// ::= '<' '{' Type (',' Type)* '}' '>'
ParseStructBody(SmallVectorImpl<Type * > & Body)1843 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1844 assert(Lex.getKind() == lltok::lbrace);
1845 Lex.Lex(); // Consume the '{'
1846
1847 // Handle the empty struct.
1848 if (EatIfPresent(lltok::rbrace))
1849 return false;
1850
1851 LocTy EltTyLoc = Lex.getLoc();
1852 Type *Ty = 0;
1853 if (ParseType(Ty)) return true;
1854 Body.push_back(Ty);
1855
1856 if (!StructType::isValidElementType(Ty))
1857 return Error(EltTyLoc, "invalid element type for struct");
1858
1859 while (EatIfPresent(lltok::comma)) {
1860 EltTyLoc = Lex.getLoc();
1861 if (ParseType(Ty)) return true;
1862
1863 if (!StructType::isValidElementType(Ty))
1864 return Error(EltTyLoc, "invalid element type for struct");
1865
1866 Body.push_back(Ty);
1867 }
1868
1869 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1870 }
1871
1872 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1873 /// token has already been consumed.
1874 /// Type
1875 /// ::= '[' APSINTVAL 'x' Types ']'
1876 /// ::= '<' APSINTVAL 'x' Types '>'
ParseArrayVectorType(Type * & Result,bool isVector)1877 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1878 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1879 Lex.getAPSIntVal().getBitWidth() > 64)
1880 return TokError("expected number in address space");
1881
1882 LocTy SizeLoc = Lex.getLoc();
1883 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1884 Lex.Lex();
1885
1886 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1887 return true;
1888
1889 LocTy TypeLoc = Lex.getLoc();
1890 Type *EltTy = 0;
1891 if (ParseType(EltTy)) return true;
1892
1893 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1894 "expected end of sequential type"))
1895 return true;
1896
1897 if (isVector) {
1898 if (Size == 0)
1899 return Error(SizeLoc, "zero element vector is illegal");
1900 if ((unsigned)Size != Size)
1901 return Error(SizeLoc, "size too large for vector");
1902 if (!VectorType::isValidElementType(EltTy))
1903 return Error(TypeLoc, "invalid vector element type");
1904 Result = VectorType::get(EltTy, unsigned(Size));
1905 } else {
1906 if (!ArrayType::isValidElementType(EltTy))
1907 return Error(TypeLoc, "invalid array element type");
1908 Result = ArrayType::get(EltTy, Size);
1909 }
1910 return false;
1911 }
1912
1913 //===----------------------------------------------------------------------===//
1914 // Function Semantic Analysis.
1915 //===----------------------------------------------------------------------===//
1916
PerFunctionState(LLParser & p,Function & f,int functionNumber)1917 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1918 int functionNumber)
1919 : P(p), F(f), FunctionNumber(functionNumber) {
1920
1921 // Insert unnamed arguments into the NumberedVals list.
1922 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1923 AI != E; ++AI)
1924 if (!AI->hasName())
1925 NumberedVals.push_back(AI);
1926 }
1927
~PerFunctionState()1928 LLParser::PerFunctionState::~PerFunctionState() {
1929 // If there were any forward referenced non-basicblock values, delete them.
1930 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1931 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1932 if (!isa<BasicBlock>(I->second.first)) {
1933 I->second.first->replaceAllUsesWith(
1934 UndefValue::get(I->second.first->getType()));
1935 delete I->second.first;
1936 I->second.first = 0;
1937 }
1938
1939 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1940 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1941 if (!isa<BasicBlock>(I->second.first)) {
1942 I->second.first->replaceAllUsesWith(
1943 UndefValue::get(I->second.first->getType()));
1944 delete I->second.first;
1945 I->second.first = 0;
1946 }
1947 }
1948
FinishFunction()1949 bool LLParser::PerFunctionState::FinishFunction() {
1950 // Check to see if someone took the address of labels in this block.
1951 if (!P.ForwardRefBlockAddresses.empty()) {
1952 ValID FunctionID;
1953 if (!F.getName().empty()) {
1954 FunctionID.Kind = ValID::t_GlobalName;
1955 FunctionID.StrVal = F.getName();
1956 } else {
1957 FunctionID.Kind = ValID::t_GlobalID;
1958 FunctionID.UIntVal = FunctionNumber;
1959 }
1960
1961 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1962 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1963 if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1964 // Resolve all these references.
1965 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1966 return true;
1967
1968 P.ForwardRefBlockAddresses.erase(FRBAI);
1969 }
1970 }
1971
1972 if (!ForwardRefVals.empty())
1973 return P.Error(ForwardRefVals.begin()->second.second,
1974 "use of undefined value '%" + ForwardRefVals.begin()->first +
1975 "'");
1976 if (!ForwardRefValIDs.empty())
1977 return P.Error(ForwardRefValIDs.begin()->second.second,
1978 "use of undefined value '%" +
1979 Twine(ForwardRefValIDs.begin()->first) + "'");
1980 return false;
1981 }
1982
1983
1984 /// GetVal - Get a value with the specified name or ID, creating a
1985 /// forward reference record if needed. This can return null if the value
1986 /// exists but does not have the right type.
GetVal(const std::string & Name,Type * Ty,LocTy Loc)1987 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1988 Type *Ty, LocTy Loc) {
1989 // Look this name up in the normal function symbol table.
1990 Value *Val = F.getValueSymbolTable().lookup(Name);
1991
1992 // If this is a forward reference for the value, see if we already created a
1993 // forward ref record.
1994 if (Val == 0) {
1995 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1996 I = ForwardRefVals.find(Name);
1997 if (I != ForwardRefVals.end())
1998 Val = I->second.first;
1999 }
2000
2001 // If we have the value in the symbol table or fwd-ref table, return it.
2002 if (Val) {
2003 if (Val->getType() == Ty) return Val;
2004 if (Ty->isLabelTy())
2005 P.Error(Loc, "'%" + Name + "' is not a basic block");
2006 else
2007 P.Error(Loc, "'%" + Name + "' defined with type '" +
2008 getTypeString(Val->getType()) + "'");
2009 return 0;
2010 }
2011
2012 // Don't make placeholders with invalid type.
2013 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2014 P.Error(Loc, "invalid use of a non-first-class type");
2015 return 0;
2016 }
2017
2018 // Otherwise, create a new forward reference for this value and remember it.
2019 Value *FwdVal;
2020 if (Ty->isLabelTy())
2021 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2022 else
2023 FwdVal = new Argument(Ty, Name);
2024
2025 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2026 return FwdVal;
2027 }
2028
GetVal(unsigned ID,Type * Ty,LocTy Loc)2029 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2030 LocTy Loc) {
2031 // Look this name up in the normal function symbol table.
2032 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
2033
2034 // If this is a forward reference for the value, see if we already created a
2035 // forward ref record.
2036 if (Val == 0) {
2037 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2038 I = ForwardRefValIDs.find(ID);
2039 if (I != ForwardRefValIDs.end())
2040 Val = I->second.first;
2041 }
2042
2043 // If we have the value in the symbol table or fwd-ref table, return it.
2044 if (Val) {
2045 if (Val->getType() == Ty) return Val;
2046 if (Ty->isLabelTy())
2047 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2048 else
2049 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2050 getTypeString(Val->getType()) + "'");
2051 return 0;
2052 }
2053
2054 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2055 P.Error(Loc, "invalid use of a non-first-class type");
2056 return 0;
2057 }
2058
2059 // Otherwise, create a new forward reference for this value and remember it.
2060 Value *FwdVal;
2061 if (Ty->isLabelTy())
2062 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2063 else
2064 FwdVal = new Argument(Ty);
2065
2066 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2067 return FwdVal;
2068 }
2069
2070 /// SetInstName - After an instruction is parsed and inserted into its
2071 /// basic block, this installs its name.
SetInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)2072 bool LLParser::PerFunctionState::SetInstName(int NameID,
2073 const std::string &NameStr,
2074 LocTy NameLoc, Instruction *Inst) {
2075 // If this instruction has void type, it cannot have a name or ID specified.
2076 if (Inst->getType()->isVoidTy()) {
2077 if (NameID != -1 || !NameStr.empty())
2078 return P.Error(NameLoc, "instructions returning void cannot have a name");
2079 return false;
2080 }
2081
2082 // If this was a numbered instruction, verify that the instruction is the
2083 // expected value and resolve any forward references.
2084 if (NameStr.empty()) {
2085 // If neither a name nor an ID was specified, just use the next ID.
2086 if (NameID == -1)
2087 NameID = NumberedVals.size();
2088
2089 if (unsigned(NameID) != NumberedVals.size())
2090 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2091 Twine(NumberedVals.size()) + "'");
2092
2093 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2094 ForwardRefValIDs.find(NameID);
2095 if (FI != ForwardRefValIDs.end()) {
2096 if (FI->second.first->getType() != Inst->getType())
2097 return P.Error(NameLoc, "instruction forward referenced with type '" +
2098 getTypeString(FI->second.first->getType()) + "'");
2099 FI->second.first->replaceAllUsesWith(Inst);
2100 delete FI->second.first;
2101 ForwardRefValIDs.erase(FI);
2102 }
2103
2104 NumberedVals.push_back(Inst);
2105 return false;
2106 }
2107
2108 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2109 std::map<std::string, std::pair<Value*, LocTy> >::iterator
2110 FI = ForwardRefVals.find(NameStr);
2111 if (FI != ForwardRefVals.end()) {
2112 if (FI->second.first->getType() != Inst->getType())
2113 return P.Error(NameLoc, "instruction forward referenced with type '" +
2114 getTypeString(FI->second.first->getType()) + "'");
2115 FI->second.first->replaceAllUsesWith(Inst);
2116 delete FI->second.first;
2117 ForwardRefVals.erase(FI);
2118 }
2119
2120 // Set the name on the instruction.
2121 Inst->setName(NameStr);
2122
2123 if (Inst->getName() != NameStr)
2124 return P.Error(NameLoc, "multiple definition of local value named '" +
2125 NameStr + "'");
2126 return false;
2127 }
2128
2129 /// GetBB - Get a basic block with the specified name or ID, creating a
2130 /// forward reference record if needed.
GetBB(const std::string & Name,LocTy Loc)2131 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2132 LocTy Loc) {
2133 return cast_or_null<BasicBlock>(GetVal(Name,
2134 Type::getLabelTy(F.getContext()), Loc));
2135 }
2136
GetBB(unsigned ID,LocTy Loc)2137 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2138 return cast_or_null<BasicBlock>(GetVal(ID,
2139 Type::getLabelTy(F.getContext()), Loc));
2140 }
2141
2142 /// DefineBB - Define the specified basic block, which is either named or
2143 /// unnamed. If there is an error, this returns null otherwise it returns
2144 /// the block being defined.
DefineBB(const std::string & Name,LocTy Loc)2145 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2146 LocTy Loc) {
2147 BasicBlock *BB;
2148 if (Name.empty())
2149 BB = GetBB(NumberedVals.size(), Loc);
2150 else
2151 BB = GetBB(Name, Loc);
2152 if (BB == 0) return 0; // Already diagnosed error.
2153
2154 // Move the block to the end of the function. Forward ref'd blocks are
2155 // inserted wherever they happen to be referenced.
2156 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2157
2158 // Remove the block from forward ref sets.
2159 if (Name.empty()) {
2160 ForwardRefValIDs.erase(NumberedVals.size());
2161 NumberedVals.push_back(BB);
2162 } else {
2163 // BB forward references are already in the function symbol table.
2164 ForwardRefVals.erase(Name);
2165 }
2166
2167 return BB;
2168 }
2169
2170 //===----------------------------------------------------------------------===//
2171 // Constants.
2172 //===----------------------------------------------------------------------===//
2173
2174 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2175 /// type implied. For example, if we parse "4" we don't know what integer type
2176 /// it has. The value will later be combined with its type and checked for
2177 /// sanity. PFS is used to convert function-local operands of metadata (since
2178 /// metadata operands are not just parsed here but also converted to values).
2179 /// PFS can be null when we are not parsing metadata values inside a function.
ParseValID(ValID & ID,PerFunctionState * PFS)2180 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2181 ID.Loc = Lex.getLoc();
2182 switch (Lex.getKind()) {
2183 default: return TokError("expected value token");
2184 case lltok::GlobalID: // @42
2185 ID.UIntVal = Lex.getUIntVal();
2186 ID.Kind = ValID::t_GlobalID;
2187 break;
2188 case lltok::GlobalVar: // @foo
2189 ID.StrVal = Lex.getStrVal();
2190 ID.Kind = ValID::t_GlobalName;
2191 break;
2192 case lltok::LocalVarID: // %42
2193 ID.UIntVal = Lex.getUIntVal();
2194 ID.Kind = ValID::t_LocalID;
2195 break;
2196 case lltok::LocalVar: // %foo
2197 ID.StrVal = Lex.getStrVal();
2198 ID.Kind = ValID::t_LocalName;
2199 break;
2200 case lltok::exclaim: // !42, !{...}, or !"foo"
2201 return ParseMetadataValue(ID, PFS);
2202 case lltok::APSInt:
2203 ID.APSIntVal = Lex.getAPSIntVal();
2204 ID.Kind = ValID::t_APSInt;
2205 break;
2206 case lltok::APFloat:
2207 ID.APFloatVal = Lex.getAPFloatVal();
2208 ID.Kind = ValID::t_APFloat;
2209 break;
2210 case lltok::kw_true:
2211 ID.ConstantVal = ConstantInt::getTrue(Context);
2212 ID.Kind = ValID::t_Constant;
2213 break;
2214 case lltok::kw_false:
2215 ID.ConstantVal = ConstantInt::getFalse(Context);
2216 ID.Kind = ValID::t_Constant;
2217 break;
2218 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2219 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2220 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2221
2222 case lltok::lbrace: {
2223 // ValID ::= '{' ConstVector '}'
2224 Lex.Lex();
2225 SmallVector<Constant*, 16> Elts;
2226 if (ParseGlobalValueVector(Elts) ||
2227 ParseToken(lltok::rbrace, "expected end of struct constant"))
2228 return true;
2229
2230 ID.ConstantStructElts = new Constant*[Elts.size()];
2231 ID.UIntVal = Elts.size();
2232 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2233 ID.Kind = ValID::t_ConstantStruct;
2234 return false;
2235 }
2236 case lltok::less: {
2237 // ValID ::= '<' ConstVector '>' --> Vector.
2238 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2239 Lex.Lex();
2240 bool isPackedStruct = EatIfPresent(lltok::lbrace);
2241
2242 SmallVector<Constant*, 16> Elts;
2243 LocTy FirstEltLoc = Lex.getLoc();
2244 if (ParseGlobalValueVector(Elts) ||
2245 (isPackedStruct &&
2246 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2247 ParseToken(lltok::greater, "expected end of constant"))
2248 return true;
2249
2250 if (isPackedStruct) {
2251 ID.ConstantStructElts = new Constant*[Elts.size()];
2252 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2253 ID.UIntVal = Elts.size();
2254 ID.Kind = ValID::t_PackedConstantStruct;
2255 return false;
2256 }
2257
2258 if (Elts.empty())
2259 return Error(ID.Loc, "constant vector must not be empty");
2260
2261 if (!Elts[0]->getType()->isIntegerTy() &&
2262 !Elts[0]->getType()->isFloatingPointTy() &&
2263 !Elts[0]->getType()->isPointerTy())
2264 return Error(FirstEltLoc,
2265 "vector elements must have integer, pointer or floating point type");
2266
2267 // Verify that all the vector elements have the same type.
2268 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2269 if (Elts[i]->getType() != Elts[0]->getType())
2270 return Error(FirstEltLoc,
2271 "vector element #" + Twine(i) +
2272 " is not of type '" + getTypeString(Elts[0]->getType()));
2273
2274 ID.ConstantVal = ConstantVector::get(Elts);
2275 ID.Kind = ValID::t_Constant;
2276 return false;
2277 }
2278 case lltok::lsquare: { // Array Constant
2279 Lex.Lex();
2280 SmallVector<Constant*, 16> Elts;
2281 LocTy FirstEltLoc = Lex.getLoc();
2282 if (ParseGlobalValueVector(Elts) ||
2283 ParseToken(lltok::rsquare, "expected end of array constant"))
2284 return true;
2285
2286 // Handle empty element.
2287 if (Elts.empty()) {
2288 // Use undef instead of an array because it's inconvenient to determine
2289 // the element type at this point, there being no elements to examine.
2290 ID.Kind = ValID::t_EmptyArray;
2291 return false;
2292 }
2293
2294 if (!Elts[0]->getType()->isFirstClassType())
2295 return Error(FirstEltLoc, "invalid array element type: " +
2296 getTypeString(Elts[0]->getType()));
2297
2298 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2299
2300 // Verify all elements are correct type!
2301 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2302 if (Elts[i]->getType() != Elts[0]->getType())
2303 return Error(FirstEltLoc,
2304 "array element #" + Twine(i) +
2305 " is not of type '" + getTypeString(Elts[0]->getType()));
2306 }
2307
2308 ID.ConstantVal = ConstantArray::get(ATy, Elts);
2309 ID.Kind = ValID::t_Constant;
2310 return false;
2311 }
2312 case lltok::kw_c: // c "foo"
2313 Lex.Lex();
2314 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2315 false);
2316 if (ParseToken(lltok::StringConstant, "expected string")) return true;
2317 ID.Kind = ValID::t_Constant;
2318 return false;
2319
2320 case lltok::kw_asm: {
2321 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2322 // STRINGCONSTANT
2323 bool HasSideEffect, AlignStack, AsmDialect;
2324 Lex.Lex();
2325 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2326 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2327 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2328 ParseStringConstant(ID.StrVal) ||
2329 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2330 ParseToken(lltok::StringConstant, "expected constraint string"))
2331 return true;
2332 ID.StrVal2 = Lex.getStrVal();
2333 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2334 (unsigned(AsmDialect)<<2);
2335 ID.Kind = ValID::t_InlineAsm;
2336 return false;
2337 }
2338
2339 case lltok::kw_blockaddress: {
2340 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2341 Lex.Lex();
2342
2343 ValID Fn, Label;
2344 LocTy FnLoc, LabelLoc;
2345
2346 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2347 ParseValID(Fn) ||
2348 ParseToken(lltok::comma, "expected comma in block address expression")||
2349 ParseValID(Label) ||
2350 ParseToken(lltok::rparen, "expected ')' in block address expression"))
2351 return true;
2352
2353 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2354 return Error(Fn.Loc, "expected function name in blockaddress");
2355 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2356 return Error(Label.Loc, "expected basic block name in blockaddress");
2357
2358 // Make a global variable as a placeholder for this reference.
2359 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2360 false, GlobalValue::InternalLinkage,
2361 0, "");
2362 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2363 ID.ConstantVal = FwdRef;
2364 ID.Kind = ValID::t_Constant;
2365 return false;
2366 }
2367
2368 case lltok::kw_trunc:
2369 case lltok::kw_zext:
2370 case lltok::kw_sext:
2371 case lltok::kw_fptrunc:
2372 case lltok::kw_fpext:
2373 case lltok::kw_bitcast:
2374 case lltok::kw_uitofp:
2375 case lltok::kw_sitofp:
2376 case lltok::kw_fptoui:
2377 case lltok::kw_fptosi:
2378 case lltok::kw_inttoptr:
2379 case lltok::kw_ptrtoint: {
2380 unsigned Opc = Lex.getUIntVal();
2381 Type *DestTy = 0;
2382 Constant *SrcVal;
2383 Lex.Lex();
2384 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2385 ParseGlobalTypeAndValue(SrcVal) ||
2386 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2387 ParseType(DestTy) ||
2388 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2389 return true;
2390 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2391 return Error(ID.Loc, "invalid cast opcode for cast from '" +
2392 getTypeString(SrcVal->getType()) + "' to '" +
2393 getTypeString(DestTy) + "'");
2394 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2395 SrcVal, DestTy);
2396 ID.Kind = ValID::t_Constant;
2397 return false;
2398 }
2399 case lltok::kw_extractvalue: {
2400 Lex.Lex();
2401 Constant *Val;
2402 SmallVector<unsigned, 4> Indices;
2403 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2404 ParseGlobalTypeAndValue(Val) ||
2405 ParseIndexList(Indices) ||
2406 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2407 return true;
2408
2409 if (!Val->getType()->isAggregateType())
2410 return Error(ID.Loc, "extractvalue operand must be aggregate type");
2411 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2412 return Error(ID.Loc, "invalid indices for extractvalue");
2413 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2414 ID.Kind = ValID::t_Constant;
2415 return false;
2416 }
2417 case lltok::kw_insertvalue: {
2418 Lex.Lex();
2419 Constant *Val0, *Val1;
2420 SmallVector<unsigned, 4> Indices;
2421 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2422 ParseGlobalTypeAndValue(Val0) ||
2423 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2424 ParseGlobalTypeAndValue(Val1) ||
2425 ParseIndexList(Indices) ||
2426 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2427 return true;
2428 if (!Val0->getType()->isAggregateType())
2429 return Error(ID.Loc, "insertvalue operand must be aggregate type");
2430 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2431 return Error(ID.Loc, "invalid indices for insertvalue");
2432 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2433 ID.Kind = ValID::t_Constant;
2434 return false;
2435 }
2436 case lltok::kw_icmp:
2437 case lltok::kw_fcmp: {
2438 unsigned PredVal, Opc = Lex.getUIntVal();
2439 Constant *Val0, *Val1;
2440 Lex.Lex();
2441 if (ParseCmpPredicate(PredVal, Opc) ||
2442 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2443 ParseGlobalTypeAndValue(Val0) ||
2444 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2445 ParseGlobalTypeAndValue(Val1) ||
2446 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2447 return true;
2448
2449 if (Val0->getType() != Val1->getType())
2450 return Error(ID.Loc, "compare operands must have the same type");
2451
2452 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2453
2454 if (Opc == Instruction::FCmp) {
2455 if (!Val0->getType()->isFPOrFPVectorTy())
2456 return Error(ID.Loc, "fcmp requires floating point operands");
2457 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2458 } else {
2459 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2460 if (!Val0->getType()->isIntOrIntVectorTy() &&
2461 !Val0->getType()->getScalarType()->isPointerTy())
2462 return Error(ID.Loc, "icmp requires pointer or integer operands");
2463 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2464 }
2465 ID.Kind = ValID::t_Constant;
2466 return false;
2467 }
2468
2469 // Binary Operators.
2470 case lltok::kw_add:
2471 case lltok::kw_fadd:
2472 case lltok::kw_sub:
2473 case lltok::kw_fsub:
2474 case lltok::kw_mul:
2475 case lltok::kw_fmul:
2476 case lltok::kw_udiv:
2477 case lltok::kw_sdiv:
2478 case lltok::kw_fdiv:
2479 case lltok::kw_urem:
2480 case lltok::kw_srem:
2481 case lltok::kw_frem:
2482 case lltok::kw_shl:
2483 case lltok::kw_lshr:
2484 case lltok::kw_ashr: {
2485 bool NUW = false;
2486 bool NSW = false;
2487 bool Exact = false;
2488 unsigned Opc = Lex.getUIntVal();
2489 Constant *Val0, *Val1;
2490 Lex.Lex();
2491 LocTy ModifierLoc = Lex.getLoc();
2492 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2493 Opc == Instruction::Mul || Opc == Instruction::Shl) {
2494 if (EatIfPresent(lltok::kw_nuw))
2495 NUW = true;
2496 if (EatIfPresent(lltok::kw_nsw)) {
2497 NSW = true;
2498 if (EatIfPresent(lltok::kw_nuw))
2499 NUW = true;
2500 }
2501 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2502 Opc == Instruction::LShr || Opc == Instruction::AShr) {
2503 if (EatIfPresent(lltok::kw_exact))
2504 Exact = true;
2505 }
2506 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2507 ParseGlobalTypeAndValue(Val0) ||
2508 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2509 ParseGlobalTypeAndValue(Val1) ||
2510 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2511 return true;
2512 if (Val0->getType() != Val1->getType())
2513 return Error(ID.Loc, "operands of constexpr must have same type");
2514 if (!Val0->getType()->isIntOrIntVectorTy()) {
2515 if (NUW)
2516 return Error(ModifierLoc, "nuw only applies to integer operations");
2517 if (NSW)
2518 return Error(ModifierLoc, "nsw only applies to integer operations");
2519 }
2520 // Check that the type is valid for the operator.
2521 switch (Opc) {
2522 case Instruction::Add:
2523 case Instruction::Sub:
2524 case Instruction::Mul:
2525 case Instruction::UDiv:
2526 case Instruction::SDiv:
2527 case Instruction::URem:
2528 case Instruction::SRem:
2529 case Instruction::Shl:
2530 case Instruction::AShr:
2531 case Instruction::LShr:
2532 if (!Val0->getType()->isIntOrIntVectorTy())
2533 return Error(ID.Loc, "constexpr requires integer operands");
2534 break;
2535 case Instruction::FAdd:
2536 case Instruction::FSub:
2537 case Instruction::FMul:
2538 case Instruction::FDiv:
2539 case Instruction::FRem:
2540 if (!Val0->getType()->isFPOrFPVectorTy())
2541 return Error(ID.Loc, "constexpr requires fp operands");
2542 break;
2543 default: llvm_unreachable("Unknown binary operator!");
2544 }
2545 unsigned Flags = 0;
2546 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2547 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
2548 if (Exact) Flags |= PossiblyExactOperator::IsExact;
2549 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2550 ID.ConstantVal = C;
2551 ID.Kind = ValID::t_Constant;
2552 return false;
2553 }
2554
2555 // Logical Operations
2556 case lltok::kw_and:
2557 case lltok::kw_or:
2558 case lltok::kw_xor: {
2559 unsigned Opc = Lex.getUIntVal();
2560 Constant *Val0, *Val1;
2561 Lex.Lex();
2562 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2563 ParseGlobalTypeAndValue(Val0) ||
2564 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2565 ParseGlobalTypeAndValue(Val1) ||
2566 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2567 return true;
2568 if (Val0->getType() != Val1->getType())
2569 return Error(ID.Loc, "operands of constexpr must have same type");
2570 if (!Val0->getType()->isIntOrIntVectorTy())
2571 return Error(ID.Loc,
2572 "constexpr requires integer or integer vector operands");
2573 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2574 ID.Kind = ValID::t_Constant;
2575 return false;
2576 }
2577
2578 case lltok::kw_getelementptr:
2579 case lltok::kw_shufflevector:
2580 case lltok::kw_insertelement:
2581 case lltok::kw_extractelement:
2582 case lltok::kw_select: {
2583 unsigned Opc = Lex.getUIntVal();
2584 SmallVector<Constant*, 16> Elts;
2585 bool InBounds = false;
2586 Lex.Lex();
2587 if (Opc == Instruction::GetElementPtr)
2588 InBounds = EatIfPresent(lltok::kw_inbounds);
2589 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2590 ParseGlobalValueVector(Elts) ||
2591 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2592 return true;
2593
2594 if (Opc == Instruction::GetElementPtr) {
2595 if (Elts.size() == 0 ||
2596 !Elts[0]->getType()->getScalarType()->isPointerTy())
2597 return Error(ID.Loc, "getelementptr requires pointer operand");
2598
2599 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2600 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2601 return Error(ID.Loc, "invalid indices for getelementptr");
2602 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2603 InBounds);
2604 } else if (Opc == Instruction::Select) {
2605 if (Elts.size() != 3)
2606 return Error(ID.Loc, "expected three operands to select");
2607 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2608 Elts[2]))
2609 return Error(ID.Loc, Reason);
2610 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2611 } else if (Opc == Instruction::ShuffleVector) {
2612 if (Elts.size() != 3)
2613 return Error(ID.Loc, "expected three operands to shufflevector");
2614 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2615 return Error(ID.Loc, "invalid operands to shufflevector");
2616 ID.ConstantVal =
2617 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2618 } else if (Opc == Instruction::ExtractElement) {
2619 if (Elts.size() != 2)
2620 return Error(ID.Loc, "expected two operands to extractelement");
2621 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2622 return Error(ID.Loc, "invalid extractelement operands");
2623 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2624 } else {
2625 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2626 if (Elts.size() != 3)
2627 return Error(ID.Loc, "expected three operands to insertelement");
2628 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2629 return Error(ID.Loc, "invalid insertelement operands");
2630 ID.ConstantVal =
2631 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2632 }
2633
2634 ID.Kind = ValID::t_Constant;
2635 return false;
2636 }
2637 }
2638
2639 Lex.Lex();
2640 return false;
2641 }
2642
2643 /// ParseGlobalValue - Parse a global value with the specified type.
ParseGlobalValue(Type * Ty,Constant * & C)2644 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2645 C = 0;
2646 ValID ID;
2647 Value *V = NULL;
2648 bool Parsed = ParseValID(ID) ||
2649 ConvertValIDToValue(Ty, ID, V, NULL);
2650 if (V && !(C = dyn_cast<Constant>(V)))
2651 return Error(ID.Loc, "global values must be constants");
2652 return Parsed;
2653 }
2654
ParseGlobalTypeAndValue(Constant * & V)2655 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2656 Type *Ty = 0;
2657 return ParseType(Ty) ||
2658 ParseGlobalValue(Ty, V);
2659 }
2660
2661 /// ParseGlobalValueVector
2662 /// ::= /*empty*/
2663 /// ::= TypeAndValue (',' TypeAndValue)*
ParseGlobalValueVector(SmallVectorImpl<Constant * > & Elts)2664 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2665 // Empty list.
2666 if (Lex.getKind() == lltok::rbrace ||
2667 Lex.getKind() == lltok::rsquare ||
2668 Lex.getKind() == lltok::greater ||
2669 Lex.getKind() == lltok::rparen)
2670 return false;
2671
2672 Constant *C;
2673 if (ParseGlobalTypeAndValue(C)) return true;
2674 Elts.push_back(C);
2675
2676 while (EatIfPresent(lltok::comma)) {
2677 if (ParseGlobalTypeAndValue(C)) return true;
2678 Elts.push_back(C);
2679 }
2680
2681 return false;
2682 }
2683
ParseMetadataListValue(ValID & ID,PerFunctionState * PFS)2684 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2685 assert(Lex.getKind() == lltok::lbrace);
2686 Lex.Lex();
2687
2688 SmallVector<Value*, 16> Elts;
2689 if (ParseMDNodeVector(Elts, PFS) ||
2690 ParseToken(lltok::rbrace, "expected end of metadata node"))
2691 return true;
2692
2693 ID.MDNodeVal = MDNode::get(Context, Elts);
2694 ID.Kind = ValID::t_MDNode;
2695 return false;
2696 }
2697
2698 /// ParseMetadataValue
2699 /// ::= !42
2700 /// ::= !{...}
2701 /// ::= !"string"
ParseMetadataValue(ValID & ID,PerFunctionState * PFS)2702 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2703 assert(Lex.getKind() == lltok::exclaim);
2704 Lex.Lex();
2705
2706 // MDNode:
2707 // !{ ... }
2708 if (Lex.getKind() == lltok::lbrace)
2709 return ParseMetadataListValue(ID, PFS);
2710
2711 // Standalone metadata reference
2712 // !42
2713 if (Lex.getKind() == lltok::APSInt) {
2714 if (ParseMDNodeID(ID.MDNodeVal)) return true;
2715 ID.Kind = ValID::t_MDNode;
2716 return false;
2717 }
2718
2719 // MDString:
2720 // ::= '!' STRINGCONSTANT
2721 if (ParseMDString(ID.MDStringVal)) return true;
2722 ID.Kind = ValID::t_MDString;
2723 return false;
2724 }
2725
2726
2727 //===----------------------------------------------------------------------===//
2728 // Function Parsing.
2729 //===----------------------------------------------------------------------===//
2730
ConvertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS)2731 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2732 PerFunctionState *PFS) {
2733 if (Ty->isFunctionTy())
2734 return Error(ID.Loc, "functions are not values, refer to them as pointers");
2735
2736 switch (ID.Kind) {
2737 case ValID::t_LocalID:
2738 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2739 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2740 return (V == 0);
2741 case ValID::t_LocalName:
2742 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2743 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2744 return (V == 0);
2745 case ValID::t_InlineAsm: {
2746 PointerType *PTy = dyn_cast<PointerType>(Ty);
2747 FunctionType *FTy =
2748 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2749 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2750 return Error(ID.Loc, "invalid type for inline asm constraint string");
2751 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2752 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2753 return false;
2754 }
2755 case ValID::t_MDNode:
2756 if (!Ty->isMetadataTy())
2757 return Error(ID.Loc, "metadata value must have metadata type");
2758 V = ID.MDNodeVal;
2759 return false;
2760 case ValID::t_MDString:
2761 if (!Ty->isMetadataTy())
2762 return Error(ID.Loc, "metadata value must have metadata type");
2763 V = ID.MDStringVal;
2764 return false;
2765 case ValID::t_GlobalName:
2766 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2767 return V == 0;
2768 case ValID::t_GlobalID:
2769 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2770 return V == 0;
2771 case ValID::t_APSInt:
2772 if (!Ty->isIntegerTy())
2773 return Error(ID.Loc, "integer constant must have integer type");
2774 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2775 V = ConstantInt::get(Context, ID.APSIntVal);
2776 return false;
2777 case ValID::t_APFloat:
2778 if (!Ty->isFloatingPointTy() ||
2779 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2780 return Error(ID.Loc, "floating point constant invalid for type");
2781
2782 // The lexer has no type info, so builds all half, float, and double FP
2783 // constants as double. Fix this here. Long double does not need this.
2784 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2785 bool Ignored;
2786 if (Ty->isHalfTy())
2787 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2788 &Ignored);
2789 else if (Ty->isFloatTy())
2790 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2791 &Ignored);
2792 }
2793 V = ConstantFP::get(Context, ID.APFloatVal);
2794
2795 if (V->getType() != Ty)
2796 return Error(ID.Loc, "floating point constant does not have type '" +
2797 getTypeString(Ty) + "'");
2798
2799 return false;
2800 case ValID::t_Null:
2801 if (!Ty->isPointerTy())
2802 return Error(ID.Loc, "null must be a pointer type");
2803 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2804 return false;
2805 case ValID::t_Undef:
2806 // FIXME: LabelTy should not be a first-class type.
2807 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2808 return Error(ID.Loc, "invalid type for undef constant");
2809 V = UndefValue::get(Ty);
2810 return false;
2811 case ValID::t_EmptyArray:
2812 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2813 return Error(ID.Loc, "invalid empty array initializer");
2814 V = UndefValue::get(Ty);
2815 return false;
2816 case ValID::t_Zero:
2817 // FIXME: LabelTy should not be a first-class type.
2818 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2819 return Error(ID.Loc, "invalid type for null constant");
2820 V = Constant::getNullValue(Ty);
2821 return false;
2822 case ValID::t_Constant:
2823 if (ID.ConstantVal->getType() != Ty)
2824 return Error(ID.Loc, "constant expression type mismatch");
2825
2826 V = ID.ConstantVal;
2827 return false;
2828 case ValID::t_ConstantStruct:
2829 case ValID::t_PackedConstantStruct:
2830 if (StructType *ST = dyn_cast<StructType>(Ty)) {
2831 if (ST->getNumElements() != ID.UIntVal)
2832 return Error(ID.Loc,
2833 "initializer with struct type has wrong # elements");
2834 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2835 return Error(ID.Loc, "packed'ness of initializer and type don't match");
2836
2837 // Verify that the elements are compatible with the structtype.
2838 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2839 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2840 return Error(ID.Loc, "element " + Twine(i) +
2841 " of struct initializer doesn't match struct element type");
2842
2843 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2844 ID.UIntVal));
2845 } else
2846 return Error(ID.Loc, "constant expression type mismatch");
2847 return false;
2848 }
2849 llvm_unreachable("Invalid ValID");
2850 }
2851
ParseValue(Type * Ty,Value * & V,PerFunctionState * PFS)2852 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2853 V = 0;
2854 ValID ID;
2855 return ParseValID(ID, PFS) ||
2856 ConvertValIDToValue(Ty, ID, V, PFS);
2857 }
2858
ParseTypeAndValue(Value * & V,PerFunctionState * PFS)2859 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2860 Type *Ty = 0;
2861 return ParseType(Ty) ||
2862 ParseValue(Ty, V, PFS);
2863 }
2864
ParseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)2865 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2866 PerFunctionState &PFS) {
2867 Value *V;
2868 Loc = Lex.getLoc();
2869 if (ParseTypeAndValue(V, PFS)) return true;
2870 if (!isa<BasicBlock>(V))
2871 return Error(Loc, "expected a basic block");
2872 BB = cast<BasicBlock>(V);
2873 return false;
2874 }
2875
2876
2877 /// FunctionHeader
2878 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2879 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2880 /// OptionalAlign OptGC
ParseFunctionHeader(Function * & Fn,bool isDefine)2881 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2882 // Parse the linkage.
2883 LocTy LinkageLoc = Lex.getLoc();
2884 unsigned Linkage;
2885
2886 unsigned Visibility;
2887 AttrBuilder RetAttrs;
2888 CallingConv::ID CC;
2889 Type *RetType = 0;
2890 LocTy RetTypeLoc = Lex.getLoc();
2891 if (ParseOptionalLinkage(Linkage) ||
2892 ParseOptionalVisibility(Visibility) ||
2893 ParseOptionalCallingConv(CC) ||
2894 ParseOptionalReturnAttrs(RetAttrs) ||
2895 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2896 return true;
2897
2898 // Verify that the linkage is ok.
2899 switch ((GlobalValue::LinkageTypes)Linkage) {
2900 case GlobalValue::ExternalLinkage:
2901 break; // always ok.
2902 case GlobalValue::DLLImportLinkage:
2903 case GlobalValue::ExternalWeakLinkage:
2904 if (isDefine)
2905 return Error(LinkageLoc, "invalid linkage for function definition");
2906 break;
2907 case GlobalValue::PrivateLinkage:
2908 case GlobalValue::LinkerPrivateLinkage:
2909 case GlobalValue::LinkerPrivateWeakLinkage:
2910 case GlobalValue::InternalLinkage:
2911 case GlobalValue::AvailableExternallyLinkage:
2912 case GlobalValue::LinkOnceAnyLinkage:
2913 case GlobalValue::LinkOnceODRLinkage:
2914 case GlobalValue::LinkOnceODRAutoHideLinkage:
2915 case GlobalValue::WeakAnyLinkage:
2916 case GlobalValue::WeakODRLinkage:
2917 case GlobalValue::DLLExportLinkage:
2918 if (!isDefine)
2919 return Error(LinkageLoc, "invalid linkage for function declaration");
2920 break;
2921 case GlobalValue::AppendingLinkage:
2922 case GlobalValue::CommonLinkage:
2923 return Error(LinkageLoc, "invalid function linkage type");
2924 }
2925
2926 if (!FunctionType::isValidReturnType(RetType))
2927 return Error(RetTypeLoc, "invalid function return type");
2928
2929 LocTy NameLoc = Lex.getLoc();
2930
2931 std::string FunctionName;
2932 if (Lex.getKind() == lltok::GlobalVar) {
2933 FunctionName = Lex.getStrVal();
2934 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2935 unsigned NameID = Lex.getUIntVal();
2936
2937 if (NameID != NumberedVals.size())
2938 return TokError("function expected to be numbered '%" +
2939 Twine(NumberedVals.size()) + "'");
2940 } else {
2941 return TokError("expected function name");
2942 }
2943
2944 Lex.Lex();
2945
2946 if (Lex.getKind() != lltok::lparen)
2947 return TokError("expected '(' in function argument list");
2948
2949 SmallVector<ArgInfo, 8> ArgList;
2950 bool isVarArg;
2951 AttrBuilder FuncAttrs;
2952 std::vector<unsigned> FwdRefAttrGrps;
2953 LocTy NoBuiltinLoc;
2954 std::string Section;
2955 unsigned Alignment;
2956 std::string GC;
2957 bool UnnamedAddr;
2958 LocTy UnnamedAddrLoc;
2959
2960 if (ParseArgumentList(ArgList, isVarArg) ||
2961 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2962 &UnnamedAddrLoc) ||
2963 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
2964 NoBuiltinLoc) ||
2965 (EatIfPresent(lltok::kw_section) &&
2966 ParseStringConstant(Section)) ||
2967 ParseOptionalAlignment(Alignment) ||
2968 (EatIfPresent(lltok::kw_gc) &&
2969 ParseStringConstant(GC)))
2970 return true;
2971
2972 if (FuncAttrs.contains(Attribute::NoBuiltin))
2973 return Error(NoBuiltinLoc, "'nobuiltin' attribute not valid on function");
2974
2975 // If the alignment was parsed as an attribute, move to the alignment field.
2976 if (FuncAttrs.hasAlignmentAttr()) {
2977 Alignment = FuncAttrs.getAlignment();
2978 FuncAttrs.removeAttribute(Attribute::Alignment);
2979 }
2980
2981 // Okay, if we got here, the function is syntactically valid. Convert types
2982 // and do semantic checks.
2983 std::vector<Type*> ParamTypeList;
2984 SmallVector<AttributeSet, 8> Attrs;
2985
2986 if (RetAttrs.hasAttributes())
2987 Attrs.push_back(AttributeSet::get(RetType->getContext(),
2988 AttributeSet::ReturnIndex,
2989 RetAttrs));
2990
2991 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2992 ParamTypeList.push_back(ArgList[i].Ty);
2993 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
2994 AttrBuilder B(ArgList[i].Attrs, i + 1);
2995 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
2996 }
2997 }
2998
2999 if (FuncAttrs.hasAttributes())
3000 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3001 AttributeSet::FunctionIndex,
3002 FuncAttrs));
3003
3004 AttributeSet PAL = AttributeSet::get(Context, Attrs);
3005
3006 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
3007 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
3008
3009 FunctionType *FT =
3010 FunctionType::get(RetType, ParamTypeList, isVarArg);
3011 PointerType *PFT = PointerType::getUnqual(FT);
3012
3013 Fn = 0;
3014 if (!FunctionName.empty()) {
3015 // If this was a definition of a forward reference, remove the definition
3016 // from the forward reference table and fill in the forward ref.
3017 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
3018 ForwardRefVals.find(FunctionName);
3019 if (FRVI != ForwardRefVals.end()) {
3020 Fn = M->getFunction(FunctionName);
3021 if (!Fn)
3022 return Error(FRVI->second.second, "invalid forward reference to "
3023 "function as global value!");
3024 if (Fn->getType() != PFT)
3025 return Error(FRVI->second.second, "invalid forward reference to "
3026 "function '" + FunctionName + "' with wrong type!");
3027
3028 ForwardRefVals.erase(FRVI);
3029 } else if ((Fn = M->getFunction(FunctionName))) {
3030 // Reject redefinitions.
3031 return Error(NameLoc, "invalid redefinition of function '" +
3032 FunctionName + "'");
3033 } else if (M->getNamedValue(FunctionName)) {
3034 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
3035 }
3036
3037 } else {
3038 // If this is a definition of a forward referenced function, make sure the
3039 // types agree.
3040 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
3041 = ForwardRefValIDs.find(NumberedVals.size());
3042 if (I != ForwardRefValIDs.end()) {
3043 Fn = cast<Function>(I->second.first);
3044 if (Fn->getType() != PFT)
3045 return Error(NameLoc, "type of definition and forward reference of '@" +
3046 Twine(NumberedVals.size()) + "' disagree");
3047 ForwardRefValIDs.erase(I);
3048 }
3049 }
3050
3051 if (Fn == 0)
3052 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
3053 else // Move the forward-reference to the correct spot in the module.
3054 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
3055
3056 if (FunctionName.empty())
3057 NumberedVals.push_back(Fn);
3058
3059 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
3060 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
3061 Fn->setCallingConv(CC);
3062 Fn->setAttributes(PAL);
3063 Fn->setUnnamedAddr(UnnamedAddr);
3064 Fn->setAlignment(Alignment);
3065 Fn->setSection(Section);
3066 if (!GC.empty()) Fn->setGC(GC.c_str());
3067 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
3068
3069 // Add all of the arguments we parsed to the function.
3070 Function::arg_iterator ArgIt = Fn->arg_begin();
3071 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
3072 // If the argument has a name, insert it into the argument symbol table.
3073 if (ArgList[i].Name.empty()) continue;
3074
3075 // Set the name, if it conflicted, it will be auto-renamed.
3076 ArgIt->setName(ArgList[i].Name);
3077
3078 if (ArgIt->getName() != ArgList[i].Name)
3079 return Error(ArgList[i].Loc, "redefinition of argument '%" +
3080 ArgList[i].Name + "'");
3081 }
3082
3083 return false;
3084 }
3085
3086
3087 /// ParseFunctionBody
3088 /// ::= '{' BasicBlock+ '}'
3089 ///
ParseFunctionBody(Function & Fn)3090 bool LLParser::ParseFunctionBody(Function &Fn) {
3091 if (Lex.getKind() != lltok::lbrace)
3092 return TokError("expected '{' in function body");
3093 Lex.Lex(); // eat the {.
3094
3095 int FunctionNumber = -1;
3096 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
3097
3098 PerFunctionState PFS(*this, Fn, FunctionNumber);
3099
3100 // We need at least one basic block.
3101 if (Lex.getKind() == lltok::rbrace)
3102 return TokError("function body requires at least one basic block");
3103
3104 while (Lex.getKind() != lltok::rbrace)
3105 if (ParseBasicBlock(PFS)) return true;
3106
3107 // Eat the }.
3108 Lex.Lex();
3109
3110 // Verify function is ok.
3111 return PFS.FinishFunction();
3112 }
3113
3114 /// ParseBasicBlock
3115 /// ::= LabelStr? Instruction*
ParseBasicBlock(PerFunctionState & PFS)3116 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
3117 // If this basic block starts out with a name, remember it.
3118 std::string Name;
3119 LocTy NameLoc = Lex.getLoc();
3120 if (Lex.getKind() == lltok::LabelStr) {
3121 Name = Lex.getStrVal();
3122 Lex.Lex();
3123 }
3124
3125 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
3126 if (BB == 0) return true;
3127
3128 std::string NameStr;
3129
3130 // Parse the instructions in this block until we get a terminator.
3131 Instruction *Inst;
3132 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
3133 do {
3134 // This instruction may have three possibilities for a name: a) none
3135 // specified, b) name specified "%foo =", c) number specified: "%4 =".
3136 LocTy NameLoc = Lex.getLoc();
3137 int NameID = -1;
3138 NameStr = "";
3139
3140 if (Lex.getKind() == lltok::LocalVarID) {
3141 NameID = Lex.getUIntVal();
3142 Lex.Lex();
3143 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
3144 return true;
3145 } else if (Lex.getKind() == lltok::LocalVar) {
3146 NameStr = Lex.getStrVal();
3147 Lex.Lex();
3148 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
3149 return true;
3150 }
3151
3152 switch (ParseInstruction(Inst, BB, PFS)) {
3153 default: llvm_unreachable("Unknown ParseInstruction result!");
3154 case InstError: return true;
3155 case InstNormal:
3156 BB->getInstList().push_back(Inst);
3157
3158 // With a normal result, we check to see if the instruction is followed by
3159 // a comma and metadata.
3160 if (EatIfPresent(lltok::comma))
3161 if (ParseInstructionMetadata(Inst, &PFS))
3162 return true;
3163 break;
3164 case InstExtraComma:
3165 BB->getInstList().push_back(Inst);
3166
3167 // If the instruction parser ate an extra comma at the end of it, it
3168 // *must* be followed by metadata.
3169 if (ParseInstructionMetadata(Inst, &PFS))
3170 return true;
3171 break;
3172 }
3173
3174 // Set the name on the instruction.
3175 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
3176 } while (!isa<TerminatorInst>(Inst));
3177
3178 return false;
3179 }
3180
3181 //===----------------------------------------------------------------------===//
3182 // Instruction Parsing.
3183 //===----------------------------------------------------------------------===//
3184
3185 /// ParseInstruction - Parse one of the many different instructions.
3186 ///
ParseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)3187 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3188 PerFunctionState &PFS) {
3189 lltok::Kind Token = Lex.getKind();
3190 if (Token == lltok::Eof)
3191 return TokError("found end of file when expecting more instructions");
3192 LocTy Loc = Lex.getLoc();
3193 unsigned KeywordVal = Lex.getUIntVal();
3194 Lex.Lex(); // Eat the keyword.
3195
3196 switch (Token) {
3197 default: return Error(Loc, "expected instruction opcode");
3198 // Terminator Instructions.
3199 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3200 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
3201 case lltok::kw_br: return ParseBr(Inst, PFS);
3202 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
3203 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
3204 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
3205 case lltok::kw_resume: return ParseResume(Inst, PFS);
3206 // Binary Operators.
3207 case lltok::kw_add:
3208 case lltok::kw_sub:
3209 case lltok::kw_mul:
3210 case lltok::kw_shl: {
3211 bool NUW = EatIfPresent(lltok::kw_nuw);
3212 bool NSW = EatIfPresent(lltok::kw_nsw);
3213 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3214
3215 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3216
3217 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3218 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3219 return false;
3220 }
3221 case lltok::kw_fadd:
3222 case lltok::kw_fsub:
3223 case lltok::kw_fmul:
3224 case lltok::kw_fdiv:
3225 case lltok::kw_frem: {
3226 FastMathFlags FMF = EatFastMathFlagsIfPresent();
3227 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
3228 if (Res != 0)
3229 return Res;
3230 if (FMF.any())
3231 Inst->setFastMathFlags(FMF);
3232 return 0;
3233 }
3234
3235 case lltok::kw_sdiv:
3236 case lltok::kw_udiv:
3237 case lltok::kw_lshr:
3238 case lltok::kw_ashr: {
3239 bool Exact = EatIfPresent(lltok::kw_exact);
3240
3241 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3242 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3243 return false;
3244 }
3245
3246 case lltok::kw_urem:
3247 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3248 case lltok::kw_and:
3249 case lltok::kw_or:
3250 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
3251 case lltok::kw_icmp:
3252 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
3253 // Casts.
3254 case lltok::kw_trunc:
3255 case lltok::kw_zext:
3256 case lltok::kw_sext:
3257 case lltok::kw_fptrunc:
3258 case lltok::kw_fpext:
3259 case lltok::kw_bitcast:
3260 case lltok::kw_uitofp:
3261 case lltok::kw_sitofp:
3262 case lltok::kw_fptoui:
3263 case lltok::kw_fptosi:
3264 case lltok::kw_inttoptr:
3265 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
3266 // Other.
3267 case lltok::kw_select: return ParseSelect(Inst, PFS);
3268 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
3269 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3270 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
3271 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
3272 case lltok::kw_phi: return ParsePHI(Inst, PFS);
3273 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
3274 case lltok::kw_call: return ParseCall(Inst, PFS, false);
3275 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
3276 // Memory.
3277 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
3278 case lltok::kw_load: return ParseLoad(Inst, PFS);
3279 case lltok::kw_store: return ParseStore(Inst, PFS);
3280 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
3281 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
3282 case lltok::kw_fence: return ParseFence(Inst, PFS);
3283 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3284 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
3285 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
3286 }
3287 }
3288
3289 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
ParseCmpPredicate(unsigned & P,unsigned Opc)3290 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3291 if (Opc == Instruction::FCmp) {
3292 switch (Lex.getKind()) {
3293 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
3294 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3295 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3296 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3297 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3298 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3299 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3300 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3301 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3302 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3303 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3304 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3305 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3306 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3307 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3308 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3309 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3310 }
3311 } else {
3312 switch (Lex.getKind()) {
3313 default: return TokError("expected icmp predicate (e.g. 'eq')");
3314 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
3315 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
3316 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3317 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3318 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3319 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3320 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3321 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3322 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3323 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3324 }
3325 }
3326 Lex.Lex();
3327 return false;
3328 }
3329
3330 //===----------------------------------------------------------------------===//
3331 // Terminator Instructions.
3332 //===----------------------------------------------------------------------===//
3333
3334 /// ParseRet - Parse a return instruction.
3335 /// ::= 'ret' void (',' !dbg, !1)*
3336 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
ParseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)3337 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3338 PerFunctionState &PFS) {
3339 SMLoc TypeLoc = Lex.getLoc();
3340 Type *Ty = 0;
3341 if (ParseType(Ty, true /*void allowed*/)) return true;
3342
3343 Type *ResType = PFS.getFunction().getReturnType();
3344
3345 if (Ty->isVoidTy()) {
3346 if (!ResType->isVoidTy())
3347 return Error(TypeLoc, "value doesn't match function result type '" +
3348 getTypeString(ResType) + "'");
3349
3350 Inst = ReturnInst::Create(Context);
3351 return false;
3352 }
3353
3354 Value *RV;
3355 if (ParseValue(Ty, RV, PFS)) return true;
3356
3357 if (ResType != RV->getType())
3358 return Error(TypeLoc, "value doesn't match function result type '" +
3359 getTypeString(ResType) + "'");
3360
3361 Inst = ReturnInst::Create(Context, RV);
3362 return false;
3363 }
3364
3365
3366 /// ParseBr
3367 /// ::= 'br' TypeAndValue
3368 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseBr(Instruction * & Inst,PerFunctionState & PFS)3369 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3370 LocTy Loc, Loc2;
3371 Value *Op0;
3372 BasicBlock *Op1, *Op2;
3373 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3374
3375 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3376 Inst = BranchInst::Create(BB);
3377 return false;
3378 }
3379
3380 if (Op0->getType() != Type::getInt1Ty(Context))
3381 return Error(Loc, "branch condition must have 'i1' type");
3382
3383 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3384 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3385 ParseToken(lltok::comma, "expected ',' after true destination") ||
3386 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3387 return true;
3388
3389 Inst = BranchInst::Create(Op1, Op2, Op0);
3390 return false;
3391 }
3392
3393 /// ParseSwitch
3394 /// Instruction
3395 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3396 /// JumpTable
3397 /// ::= (TypeAndValue ',' TypeAndValue)*
ParseSwitch(Instruction * & Inst,PerFunctionState & PFS)3398 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3399 LocTy CondLoc, BBLoc;
3400 Value *Cond;
3401 BasicBlock *DefaultBB;
3402 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3403 ParseToken(lltok::comma, "expected ',' after switch condition") ||
3404 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3405 ParseToken(lltok::lsquare, "expected '[' with switch table"))
3406 return true;
3407
3408 if (!Cond->getType()->isIntegerTy())
3409 return Error(CondLoc, "switch condition must have integer type");
3410
3411 // Parse the jump table pairs.
3412 SmallPtrSet<Value*, 32> SeenCases;
3413 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3414 while (Lex.getKind() != lltok::rsquare) {
3415 Value *Constant;
3416 BasicBlock *DestBB;
3417
3418 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3419 ParseToken(lltok::comma, "expected ',' after case value") ||
3420 ParseTypeAndBasicBlock(DestBB, PFS))
3421 return true;
3422
3423 if (!SeenCases.insert(Constant))
3424 return Error(CondLoc, "duplicate case value in switch");
3425 if (!isa<ConstantInt>(Constant))
3426 return Error(CondLoc, "case value is not a constant integer");
3427
3428 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3429 }
3430
3431 Lex.Lex(); // Eat the ']'.
3432
3433 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3434 for (unsigned i = 0, e = Table.size(); i != e; ++i)
3435 SI->addCase(Table[i].first, Table[i].second);
3436 Inst = SI;
3437 return false;
3438 }
3439
3440 /// ParseIndirectBr
3441 /// Instruction
3442 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
ParseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)3443 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3444 LocTy AddrLoc;
3445 Value *Address;
3446 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3447 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3448 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3449 return true;
3450
3451 if (!Address->getType()->isPointerTy())
3452 return Error(AddrLoc, "indirectbr address must have pointer type");
3453
3454 // Parse the destination list.
3455 SmallVector<BasicBlock*, 16> DestList;
3456
3457 if (Lex.getKind() != lltok::rsquare) {
3458 BasicBlock *DestBB;
3459 if (ParseTypeAndBasicBlock(DestBB, PFS))
3460 return true;
3461 DestList.push_back(DestBB);
3462
3463 while (EatIfPresent(lltok::comma)) {
3464 if (ParseTypeAndBasicBlock(DestBB, PFS))
3465 return true;
3466 DestList.push_back(DestBB);
3467 }
3468 }
3469
3470 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3471 return true;
3472
3473 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3474 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3475 IBI->addDestination(DestList[i]);
3476 Inst = IBI;
3477 return false;
3478 }
3479
3480
3481 /// ParseInvoke
3482 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3483 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
ParseInvoke(Instruction * & Inst,PerFunctionState & PFS)3484 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3485 LocTy CallLoc = Lex.getLoc();
3486 AttrBuilder RetAttrs, FnAttrs;
3487 std::vector<unsigned> FwdRefAttrGrps;
3488 LocTy NoBuiltinLoc;
3489 CallingConv::ID CC;
3490 Type *RetType = 0;
3491 LocTy RetTypeLoc;
3492 ValID CalleeID;
3493 SmallVector<ParamInfo, 16> ArgList;
3494
3495 BasicBlock *NormalBB, *UnwindBB;
3496 if (ParseOptionalCallingConv(CC) ||
3497 ParseOptionalReturnAttrs(RetAttrs) ||
3498 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3499 ParseValID(CalleeID) ||
3500 ParseParameterList(ArgList, PFS) ||
3501 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3502 NoBuiltinLoc) ||
3503 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3504 ParseTypeAndBasicBlock(NormalBB, PFS) ||
3505 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3506 ParseTypeAndBasicBlock(UnwindBB, PFS))
3507 return true;
3508
3509 // If RetType is a non-function pointer type, then this is the short syntax
3510 // for the call, which means that RetType is just the return type. Infer the
3511 // rest of the function argument types from the arguments that are present.
3512 PointerType *PFTy = 0;
3513 FunctionType *Ty = 0;
3514 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3515 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3516 // Pull out the types of all of the arguments...
3517 std::vector<Type*> ParamTypes;
3518 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3519 ParamTypes.push_back(ArgList[i].V->getType());
3520
3521 if (!FunctionType::isValidReturnType(RetType))
3522 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3523
3524 Ty = FunctionType::get(RetType, ParamTypes, false);
3525 PFTy = PointerType::getUnqual(Ty);
3526 }
3527
3528 // Look up the callee.
3529 Value *Callee;
3530 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3531
3532 // Set up the Attribute for the function.
3533 SmallVector<AttributeSet, 8> Attrs;
3534 if (RetAttrs.hasAttributes())
3535 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3536 AttributeSet::ReturnIndex,
3537 RetAttrs));
3538
3539 SmallVector<Value*, 8> Args;
3540
3541 // Loop through FunctionType's arguments and ensure they are specified
3542 // correctly. Also, gather any parameter attributes.
3543 FunctionType::param_iterator I = Ty->param_begin();
3544 FunctionType::param_iterator E = Ty->param_end();
3545 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3546 Type *ExpectedTy = 0;
3547 if (I != E) {
3548 ExpectedTy = *I++;
3549 } else if (!Ty->isVarArg()) {
3550 return Error(ArgList[i].Loc, "too many arguments specified");
3551 }
3552
3553 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3554 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3555 getTypeString(ExpectedTy) + "'");
3556 Args.push_back(ArgList[i].V);
3557 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3558 AttrBuilder B(ArgList[i].Attrs, i + 1);
3559 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3560 }
3561 }
3562
3563 if (I != E)
3564 return Error(CallLoc, "not enough parameters specified for call");
3565
3566 if (FnAttrs.hasAttributes())
3567 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3568 AttributeSet::FunctionIndex,
3569 FnAttrs));
3570
3571 // Finish off the Attribute and check them
3572 AttributeSet PAL = AttributeSet::get(Context, Attrs);
3573
3574 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3575 II->setCallingConv(CC);
3576 II->setAttributes(PAL);
3577 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
3578 Inst = II;
3579 return false;
3580 }
3581
3582 /// ParseResume
3583 /// ::= 'resume' TypeAndValue
ParseResume(Instruction * & Inst,PerFunctionState & PFS)3584 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3585 Value *Exn; LocTy ExnLoc;
3586 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3587 return true;
3588
3589 ResumeInst *RI = ResumeInst::Create(Exn);
3590 Inst = RI;
3591 return false;
3592 }
3593
3594 //===----------------------------------------------------------------------===//
3595 // Binary Operators.
3596 //===----------------------------------------------------------------------===//
3597
3598 /// ParseArithmetic
3599 /// ::= ArithmeticOps TypeAndValue ',' Value
3600 ///
3601 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3602 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
ParseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,unsigned OperandType)3603 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3604 unsigned Opc, unsigned OperandType) {
3605 LocTy Loc; Value *LHS, *RHS;
3606 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3607 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3608 ParseValue(LHS->getType(), RHS, PFS))
3609 return true;
3610
3611 bool Valid;
3612 switch (OperandType) {
3613 default: llvm_unreachable("Unknown operand type!");
3614 case 0: // int or FP.
3615 Valid = LHS->getType()->isIntOrIntVectorTy() ||
3616 LHS->getType()->isFPOrFPVectorTy();
3617 break;
3618 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3619 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3620 }
3621
3622 if (!Valid)
3623 return Error(Loc, "invalid operand type for instruction");
3624
3625 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3626 return false;
3627 }
3628
3629 /// ParseLogical
3630 /// ::= ArithmeticOps TypeAndValue ',' Value {
ParseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3631 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3632 unsigned Opc) {
3633 LocTy Loc; Value *LHS, *RHS;
3634 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3635 ParseToken(lltok::comma, "expected ',' in logical operation") ||
3636 ParseValue(LHS->getType(), RHS, PFS))
3637 return true;
3638
3639 if (!LHS->getType()->isIntOrIntVectorTy())
3640 return Error(Loc,"instruction requires integer or integer vector operands");
3641
3642 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3643 return false;
3644 }
3645
3646
3647 /// ParseCompare
3648 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3649 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
ParseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3650 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3651 unsigned Opc) {
3652 // Parse the integer/fp comparison predicate.
3653 LocTy Loc;
3654 unsigned Pred;
3655 Value *LHS, *RHS;
3656 if (ParseCmpPredicate(Pred, Opc) ||
3657 ParseTypeAndValue(LHS, Loc, PFS) ||
3658 ParseToken(lltok::comma, "expected ',' after compare value") ||
3659 ParseValue(LHS->getType(), RHS, PFS))
3660 return true;
3661
3662 if (Opc == Instruction::FCmp) {
3663 if (!LHS->getType()->isFPOrFPVectorTy())
3664 return Error(Loc, "fcmp requires floating point operands");
3665 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3666 } else {
3667 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3668 if (!LHS->getType()->isIntOrIntVectorTy() &&
3669 !LHS->getType()->getScalarType()->isPointerTy())
3670 return Error(Loc, "icmp requires integer operands");
3671 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3672 }
3673 return false;
3674 }
3675
3676 //===----------------------------------------------------------------------===//
3677 // Other Instructions.
3678 //===----------------------------------------------------------------------===//
3679
3680
3681 /// ParseCast
3682 /// ::= CastOpc TypeAndValue 'to' Type
ParseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)3683 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3684 unsigned Opc) {
3685 LocTy Loc;
3686 Value *Op;
3687 Type *DestTy = 0;
3688 if (ParseTypeAndValue(Op, Loc, PFS) ||
3689 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3690 ParseType(DestTy))
3691 return true;
3692
3693 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3694 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3695 return Error(Loc, "invalid cast opcode for cast from '" +
3696 getTypeString(Op->getType()) + "' to '" +
3697 getTypeString(DestTy) + "'");
3698 }
3699 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3700 return false;
3701 }
3702
3703 /// ParseSelect
3704 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseSelect(Instruction * & Inst,PerFunctionState & PFS)3705 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3706 LocTy Loc;
3707 Value *Op0, *Op1, *Op2;
3708 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3709 ParseToken(lltok::comma, "expected ',' after select condition") ||
3710 ParseTypeAndValue(Op1, PFS) ||
3711 ParseToken(lltok::comma, "expected ',' after select value") ||
3712 ParseTypeAndValue(Op2, PFS))
3713 return true;
3714
3715 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3716 return Error(Loc, Reason);
3717
3718 Inst = SelectInst::Create(Op0, Op1, Op2);
3719 return false;
3720 }
3721
3722 /// ParseVA_Arg
3723 /// ::= 'va_arg' TypeAndValue ',' Type
ParseVA_Arg(Instruction * & Inst,PerFunctionState & PFS)3724 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3725 Value *Op;
3726 Type *EltTy = 0;
3727 LocTy TypeLoc;
3728 if (ParseTypeAndValue(Op, PFS) ||
3729 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3730 ParseType(EltTy, TypeLoc))
3731 return true;
3732
3733 if (!EltTy->isFirstClassType())
3734 return Error(TypeLoc, "va_arg requires operand with first class type");
3735
3736 Inst = new VAArgInst(Op, EltTy);
3737 return false;
3738 }
3739
3740 /// ParseExtractElement
3741 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
ParseExtractElement(Instruction * & Inst,PerFunctionState & PFS)3742 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3743 LocTy Loc;
3744 Value *Op0, *Op1;
3745 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3746 ParseToken(lltok::comma, "expected ',' after extract value") ||
3747 ParseTypeAndValue(Op1, PFS))
3748 return true;
3749
3750 if (!ExtractElementInst::isValidOperands(Op0, Op1))
3751 return Error(Loc, "invalid extractelement operands");
3752
3753 Inst = ExtractElementInst::Create(Op0, Op1);
3754 return false;
3755 }
3756
3757 /// ParseInsertElement
3758 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseInsertElement(Instruction * & Inst,PerFunctionState & PFS)3759 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3760 LocTy Loc;
3761 Value *Op0, *Op1, *Op2;
3762 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3763 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3764 ParseTypeAndValue(Op1, PFS) ||
3765 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3766 ParseTypeAndValue(Op2, PFS))
3767 return true;
3768
3769 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3770 return Error(Loc, "invalid insertelement operands");
3771
3772 Inst = InsertElementInst::Create(Op0, Op1, Op2);
3773 return false;
3774 }
3775
3776 /// ParseShuffleVector
3777 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)3778 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3779 LocTy Loc;
3780 Value *Op0, *Op1, *Op2;
3781 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3782 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3783 ParseTypeAndValue(Op1, PFS) ||
3784 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3785 ParseTypeAndValue(Op2, PFS))
3786 return true;
3787
3788 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3789 return Error(Loc, "invalid shufflevector operands");
3790
3791 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3792 return false;
3793 }
3794
3795 /// ParsePHI
3796 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
ParsePHI(Instruction * & Inst,PerFunctionState & PFS)3797 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3798 Type *Ty = 0; LocTy TypeLoc;
3799 Value *Op0, *Op1;
3800
3801 if (ParseType(Ty, TypeLoc) ||
3802 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3803 ParseValue(Ty, Op0, PFS) ||
3804 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3805 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3806 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3807 return true;
3808
3809 bool AteExtraComma = false;
3810 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3811 while (1) {
3812 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3813
3814 if (!EatIfPresent(lltok::comma))
3815 break;
3816
3817 if (Lex.getKind() == lltok::MetadataVar) {
3818 AteExtraComma = true;
3819 break;
3820 }
3821
3822 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3823 ParseValue(Ty, Op0, PFS) ||
3824 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3825 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3826 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3827 return true;
3828 }
3829
3830 if (!Ty->isFirstClassType())
3831 return Error(TypeLoc, "phi node must have first class type");
3832
3833 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3834 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3835 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3836 Inst = PN;
3837 return AteExtraComma ? InstExtraComma : InstNormal;
3838 }
3839
3840 /// ParseLandingPad
3841 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3842 /// Clause
3843 /// ::= 'catch' TypeAndValue
3844 /// ::= 'filter'
3845 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
ParseLandingPad(Instruction * & Inst,PerFunctionState & PFS)3846 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3847 Type *Ty = 0; LocTy TyLoc;
3848 Value *PersFn; LocTy PersFnLoc;
3849
3850 if (ParseType(Ty, TyLoc) ||
3851 ParseToken(lltok::kw_personality, "expected 'personality'") ||
3852 ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3853 return true;
3854
3855 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3856 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3857
3858 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3859 LandingPadInst::ClauseType CT;
3860 if (EatIfPresent(lltok::kw_catch))
3861 CT = LandingPadInst::Catch;
3862 else if (EatIfPresent(lltok::kw_filter))
3863 CT = LandingPadInst::Filter;
3864 else
3865 return TokError("expected 'catch' or 'filter' clause type");
3866
3867 Value *V; LocTy VLoc;
3868 if (ParseTypeAndValue(V, VLoc, PFS)) {
3869 delete LP;
3870 return true;
3871 }
3872
3873 // A 'catch' type expects a non-array constant. A filter clause expects an
3874 // array constant.
3875 if (CT == LandingPadInst::Catch) {
3876 if (isa<ArrayType>(V->getType()))
3877 Error(VLoc, "'catch' clause has an invalid type");
3878 } else {
3879 if (!isa<ArrayType>(V->getType()))
3880 Error(VLoc, "'filter' clause has an invalid type");
3881 }
3882
3883 LP->addClause(V);
3884 }
3885
3886 Inst = LP;
3887 return false;
3888 }
3889
3890 /// ParseCall
3891 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3892 /// ParameterList OptionalAttrs
ParseCall(Instruction * & Inst,PerFunctionState & PFS,bool isTail)3893 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3894 bool isTail) {
3895 AttrBuilder RetAttrs, FnAttrs;
3896 std::vector<unsigned> FwdRefAttrGrps;
3897 LocTy NoBuiltinLoc;
3898 CallingConv::ID CC;
3899 Type *RetType = 0;
3900 LocTy RetTypeLoc;
3901 ValID CalleeID;
3902 SmallVector<ParamInfo, 16> ArgList;
3903 LocTy CallLoc = Lex.getLoc();
3904
3905 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3906 ParseOptionalCallingConv(CC) ||
3907 ParseOptionalReturnAttrs(RetAttrs) ||
3908 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3909 ParseValID(CalleeID) ||
3910 ParseParameterList(ArgList, PFS) ||
3911 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3912 NoBuiltinLoc))
3913 return true;
3914
3915 // If RetType is a non-function pointer type, then this is the short syntax
3916 // for the call, which means that RetType is just the return type. Infer the
3917 // rest of the function argument types from the arguments that are present.
3918 PointerType *PFTy = 0;
3919 FunctionType *Ty = 0;
3920 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3921 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3922 // Pull out the types of all of the arguments...
3923 std::vector<Type*> ParamTypes;
3924 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3925 ParamTypes.push_back(ArgList[i].V->getType());
3926
3927 if (!FunctionType::isValidReturnType(RetType))
3928 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3929
3930 Ty = FunctionType::get(RetType, ParamTypes, false);
3931 PFTy = PointerType::getUnqual(Ty);
3932 }
3933
3934 // Look up the callee.
3935 Value *Callee;
3936 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3937
3938 // Set up the Attribute for the function.
3939 SmallVector<AttributeSet, 8> Attrs;
3940 if (RetAttrs.hasAttributes())
3941 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3942 AttributeSet::ReturnIndex,
3943 RetAttrs));
3944
3945 SmallVector<Value*, 8> Args;
3946
3947 // Loop through FunctionType's arguments and ensure they are specified
3948 // correctly. Also, gather any parameter attributes.
3949 FunctionType::param_iterator I = Ty->param_begin();
3950 FunctionType::param_iterator E = Ty->param_end();
3951 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3952 Type *ExpectedTy = 0;
3953 if (I != E) {
3954 ExpectedTy = *I++;
3955 } else if (!Ty->isVarArg()) {
3956 return Error(ArgList[i].Loc, "too many arguments specified");
3957 }
3958
3959 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3960 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3961 getTypeString(ExpectedTy) + "'");
3962 Args.push_back(ArgList[i].V);
3963 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3964 AttrBuilder B(ArgList[i].Attrs, i + 1);
3965 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3966 }
3967 }
3968
3969 if (I != E)
3970 return Error(CallLoc, "not enough parameters specified for call");
3971
3972 if (FnAttrs.hasAttributes())
3973 Attrs.push_back(AttributeSet::get(RetType->getContext(),
3974 AttributeSet::FunctionIndex,
3975 FnAttrs));
3976
3977 // Finish off the Attribute and check them
3978 AttributeSet PAL = AttributeSet::get(Context, Attrs);
3979
3980 CallInst *CI = CallInst::Create(Callee, Args);
3981 CI->setTailCall(isTail);
3982 CI->setCallingConv(CC);
3983 CI->setAttributes(PAL);
3984 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
3985 Inst = CI;
3986 return false;
3987 }
3988
3989 //===----------------------------------------------------------------------===//
3990 // Memory Instructions.
3991 //===----------------------------------------------------------------------===//
3992
3993 /// ParseAlloc
3994 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
ParseAlloc(Instruction * & Inst,PerFunctionState & PFS)3995 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3996 Value *Size = 0;
3997 LocTy SizeLoc;
3998 unsigned Alignment = 0;
3999 Type *Ty = 0;
4000 if (ParseType(Ty)) return true;
4001
4002 bool AteExtraComma = false;
4003 if (EatIfPresent(lltok::comma)) {
4004 if (Lex.getKind() == lltok::kw_align) {
4005 if (ParseOptionalAlignment(Alignment)) return true;
4006 } else if (Lex.getKind() == lltok::MetadataVar) {
4007 AteExtraComma = true;
4008 } else {
4009 if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
4010 ParseOptionalCommaAlign(Alignment, AteExtraComma))
4011 return true;
4012 }
4013 }
4014
4015 if (Size && !Size->getType()->isIntegerTy())
4016 return Error(SizeLoc, "element count must have integer type");
4017
4018 Inst = new AllocaInst(Ty, Size, Alignment);
4019 return AteExtraComma ? InstExtraComma : InstNormal;
4020 }
4021
4022 /// ParseLoad
4023 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
4024 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
4025 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseLoad(Instruction * & Inst,PerFunctionState & PFS)4026 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
4027 Value *Val; LocTy Loc;
4028 unsigned Alignment = 0;
4029 bool AteExtraComma = false;
4030 bool isAtomic = false;
4031 AtomicOrdering Ordering = NotAtomic;
4032 SynchronizationScope Scope = CrossThread;
4033
4034 if (Lex.getKind() == lltok::kw_atomic) {
4035 isAtomic = true;
4036 Lex.Lex();
4037 }
4038
4039 bool isVolatile = false;
4040 if (Lex.getKind() == lltok::kw_volatile) {
4041 isVolatile = true;
4042 Lex.Lex();
4043 }
4044
4045 if (ParseTypeAndValue(Val, Loc, PFS) ||
4046 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4047 ParseOptionalCommaAlign(Alignment, AteExtraComma))
4048 return true;
4049
4050 if (!Val->getType()->isPointerTy() ||
4051 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
4052 return Error(Loc, "load operand must be a pointer to a first class type");
4053 if (isAtomic && !Alignment)
4054 return Error(Loc, "atomic load must have explicit non-zero alignment");
4055 if (Ordering == Release || Ordering == AcquireRelease)
4056 return Error(Loc, "atomic load cannot use Release ordering");
4057
4058 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
4059 return AteExtraComma ? InstExtraComma : InstNormal;
4060 }
4061
4062 /// ParseStore
4063
4064 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
4065 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
4066 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseStore(Instruction * & Inst,PerFunctionState & PFS)4067 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
4068 Value *Val, *Ptr; LocTy Loc, PtrLoc;
4069 unsigned Alignment = 0;
4070 bool AteExtraComma = false;
4071 bool isAtomic = false;
4072 AtomicOrdering Ordering = NotAtomic;
4073 SynchronizationScope Scope = CrossThread;
4074
4075 if (Lex.getKind() == lltok::kw_atomic) {
4076 isAtomic = true;
4077 Lex.Lex();
4078 }
4079
4080 bool isVolatile = false;
4081 if (Lex.getKind() == lltok::kw_volatile) {
4082 isVolatile = true;
4083 Lex.Lex();
4084 }
4085
4086 if (ParseTypeAndValue(Val, Loc, PFS) ||
4087 ParseToken(lltok::comma, "expected ',' after store operand") ||
4088 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4089 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4090 ParseOptionalCommaAlign(Alignment, AteExtraComma))
4091 return true;
4092
4093 if (!Ptr->getType()->isPointerTy())
4094 return Error(PtrLoc, "store operand must be a pointer");
4095 if (!Val->getType()->isFirstClassType())
4096 return Error(Loc, "store operand must be a first class value");
4097 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4098 return Error(Loc, "stored value and pointer type do not match");
4099 if (isAtomic && !Alignment)
4100 return Error(Loc, "atomic store must have explicit non-zero alignment");
4101 if (Ordering == Acquire || Ordering == AcquireRelease)
4102 return Error(Loc, "atomic store cannot use Acquire ordering");
4103
4104 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
4105 return AteExtraComma ? InstExtraComma : InstNormal;
4106 }
4107
4108 /// ParseCmpXchg
4109 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
4110 /// 'singlethread'? AtomicOrdering
ParseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)4111 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
4112 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
4113 bool AteExtraComma = false;
4114 AtomicOrdering Ordering = NotAtomic;
4115 SynchronizationScope Scope = CrossThread;
4116 bool isVolatile = false;
4117
4118 if (EatIfPresent(lltok::kw_volatile))
4119 isVolatile = true;
4120
4121 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4122 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
4123 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
4124 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
4125 ParseTypeAndValue(New, NewLoc, PFS) ||
4126 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4127 return true;
4128
4129 if (Ordering == Unordered)
4130 return TokError("cmpxchg cannot be unordered");
4131 if (!Ptr->getType()->isPointerTy())
4132 return Error(PtrLoc, "cmpxchg operand must be a pointer");
4133 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
4134 return Error(CmpLoc, "compare value and pointer type do not match");
4135 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
4136 return Error(NewLoc, "new value and pointer type do not match");
4137 if (!New->getType()->isIntegerTy())
4138 return Error(NewLoc, "cmpxchg operand must be an integer");
4139 unsigned Size = New->getType()->getPrimitiveSizeInBits();
4140 if (Size < 8 || (Size & (Size - 1)))
4141 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
4142 " integer");
4143
4144 AtomicCmpXchgInst *CXI =
4145 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
4146 CXI->setVolatile(isVolatile);
4147 Inst = CXI;
4148 return AteExtraComma ? InstExtraComma : InstNormal;
4149 }
4150
4151 /// ParseAtomicRMW
4152 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
4153 /// 'singlethread'? AtomicOrdering
ParseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)4154 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
4155 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
4156 bool AteExtraComma = false;
4157 AtomicOrdering Ordering = NotAtomic;
4158 SynchronizationScope Scope = CrossThread;
4159 bool isVolatile = false;
4160 AtomicRMWInst::BinOp Operation;
4161
4162 if (EatIfPresent(lltok::kw_volatile))
4163 isVolatile = true;
4164
4165 switch (Lex.getKind()) {
4166 default: return TokError("expected binary operation in atomicrmw");
4167 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
4168 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
4169 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
4170 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
4171 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
4172 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
4173 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
4174 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
4175 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
4176 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
4177 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
4178 }
4179 Lex.Lex(); // Eat the operation.
4180
4181 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4182 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
4183 ParseTypeAndValue(Val, ValLoc, PFS) ||
4184 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4185 return true;
4186
4187 if (Ordering == Unordered)
4188 return TokError("atomicrmw cannot be unordered");
4189 if (!Ptr->getType()->isPointerTy())
4190 return Error(PtrLoc, "atomicrmw operand must be a pointer");
4191 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4192 return Error(ValLoc, "atomicrmw value and pointer type do not match");
4193 if (!Val->getType()->isIntegerTy())
4194 return Error(ValLoc, "atomicrmw operand must be an integer");
4195 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
4196 if (Size < 8 || (Size & (Size - 1)))
4197 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
4198 " integer");
4199
4200 AtomicRMWInst *RMWI =
4201 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
4202 RMWI->setVolatile(isVolatile);
4203 Inst = RMWI;
4204 return AteExtraComma ? InstExtraComma : InstNormal;
4205 }
4206
4207 /// ParseFence
4208 /// ::= 'fence' 'singlethread'? AtomicOrdering
ParseFence(Instruction * & Inst,PerFunctionState & PFS)4209 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
4210 AtomicOrdering Ordering = NotAtomic;
4211 SynchronizationScope Scope = CrossThread;
4212 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4213 return true;
4214
4215 if (Ordering == Unordered)
4216 return TokError("fence cannot be unordered");
4217 if (Ordering == Monotonic)
4218 return TokError("fence cannot be monotonic");
4219
4220 Inst = new FenceInst(Context, Ordering, Scope);
4221 return InstNormal;
4222 }
4223
4224 /// ParseGetElementPtr
4225 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
ParseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)4226 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4227 Value *Ptr = 0;
4228 Value *Val = 0;
4229 LocTy Loc, EltLoc;
4230
4231 bool InBounds = EatIfPresent(lltok::kw_inbounds);
4232
4233 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4234
4235 if (!Ptr->getType()->getScalarType()->isPointerTy())
4236 return Error(Loc, "base of getelementptr must be a pointer");
4237
4238 SmallVector<Value*, 16> Indices;
4239 bool AteExtraComma = false;
4240 while (EatIfPresent(lltok::comma)) {
4241 if (Lex.getKind() == lltok::MetadataVar) {
4242 AteExtraComma = true;
4243 break;
4244 }
4245 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4246 if (!Val->getType()->getScalarType()->isIntegerTy())
4247 return Error(EltLoc, "getelementptr index must be an integer");
4248 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4249 return Error(EltLoc, "getelementptr index type missmatch");
4250 if (Val->getType()->isVectorTy()) {
4251 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4252 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4253 if (ValNumEl != PtrNumEl)
4254 return Error(EltLoc,
4255 "getelementptr vector index has a wrong number of elements");
4256 }
4257 Indices.push_back(Val);
4258 }
4259
4260 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
4261 return Error(Loc, "invalid getelementptr indices");
4262 Inst = GetElementPtrInst::Create(Ptr, Indices);
4263 if (InBounds)
4264 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4265 return AteExtraComma ? InstExtraComma : InstNormal;
4266 }
4267
4268 /// ParseExtractValue
4269 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
ParseExtractValue(Instruction * & Inst,PerFunctionState & PFS)4270 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4271 Value *Val; LocTy Loc;
4272 SmallVector<unsigned, 4> Indices;
4273 bool AteExtraComma;
4274 if (ParseTypeAndValue(Val, Loc, PFS) ||
4275 ParseIndexList(Indices, AteExtraComma))
4276 return true;
4277
4278 if (!Val->getType()->isAggregateType())
4279 return Error(Loc, "extractvalue operand must be aggregate type");
4280
4281 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4282 return Error(Loc, "invalid indices for extractvalue");
4283 Inst = ExtractValueInst::Create(Val, Indices);
4284 return AteExtraComma ? InstExtraComma : InstNormal;
4285 }
4286
4287 /// ParseInsertValue
4288 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
ParseInsertValue(Instruction * & Inst,PerFunctionState & PFS)4289 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4290 Value *Val0, *Val1; LocTy Loc0, Loc1;
4291 SmallVector<unsigned, 4> Indices;
4292 bool AteExtraComma;
4293 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4294 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4295 ParseTypeAndValue(Val1, Loc1, PFS) ||
4296 ParseIndexList(Indices, AteExtraComma))
4297 return true;
4298
4299 if (!Val0->getType()->isAggregateType())
4300 return Error(Loc0, "insertvalue operand must be aggregate type");
4301
4302 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4303 return Error(Loc0, "invalid indices for insertvalue");
4304 Inst = InsertValueInst::Create(Val0, Val1, Indices);
4305 return AteExtraComma ? InstExtraComma : InstNormal;
4306 }
4307
4308 //===----------------------------------------------------------------------===//
4309 // Embedded metadata.
4310 //===----------------------------------------------------------------------===//
4311
4312 /// ParseMDNodeVector
4313 /// ::= Element (',' Element)*
4314 /// Element
4315 /// ::= 'null' | TypeAndValue
ParseMDNodeVector(SmallVectorImpl<Value * > & Elts,PerFunctionState * PFS)4316 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4317 PerFunctionState *PFS) {
4318 // Check for an empty list.
4319 if (Lex.getKind() == lltok::rbrace)
4320 return false;
4321
4322 do {
4323 // Null is a special case since it is typeless.
4324 if (EatIfPresent(lltok::kw_null)) {
4325 Elts.push_back(0);
4326 continue;
4327 }
4328
4329 Value *V = 0;
4330 if (ParseTypeAndValue(V, PFS)) return true;
4331 Elts.push_back(V);
4332 } while (EatIfPresent(lltok::comma));
4333
4334 return false;
4335 }
4336