1 //===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements integer type expansion and promotion for LegalizeTypes.
11 // Promotion is the act of changing a computation in an illegal type into a
12 // computation in a larger type. For example, implementing i8 arithmetic in an
13 // i32 register (often needed on powerpc).
14 // Expansion is the act of changing a computation in an illegal type into a
15 // computation in two identical registers of a smaller type. For example,
16 // implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17 // targets).
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "LegalizeTypes.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace llvm;
26
27 //===----------------------------------------------------------------------===//
28 // Integer Result Promotion
29 //===----------------------------------------------------------------------===//
30
31 /// PromoteIntegerResult - This method is called when a result of a node is
32 /// found to be in need of promotion to a larger type. At this point, the node
33 /// may also have invalid operands or may have other results that need
34 /// expansion, we just know that (at least) one result needs promotion.
PromoteIntegerResult(SDNode * N,unsigned ResNo)35 void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
36 DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
37 SDValue Res = SDValue();
38
39 // See if the target wants to custom expand this node.
40 if (CustomLowerNode(N, N->getValueType(ResNo), true))
41 return;
42
43 switch (N->getOpcode()) {
44 default:
45 #ifndef NDEBUG
46 dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
47 N->dump(&DAG); dbgs() << "\n";
48 #endif
49 llvm_unreachable("Do not know how to promote this operator!");
50 case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
51 case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break;
52 case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break;
53 case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break;
54 case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break;
55 case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break;
56 case ISD::Constant: Res = PromoteIntRes_Constant(N); break;
57 case ISD::CONVERT_RNDSAT:
58 Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
59 case ISD::CTLZ_ZERO_UNDEF:
60 case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break;
61 case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break;
62 case ISD::CTTZ_ZERO_UNDEF:
63 case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break;
64 case ISD::EXTRACT_VECTOR_ELT:
65 Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
66 case ISD::LOAD: Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
67 case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break;
68 case ISD::VSELECT: Res = PromoteIntRes_VSELECT(N); break;
69 case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break;
70 case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break;
71 case ISD::SHL: Res = PromoteIntRes_SHL(N); break;
72 case ISD::SIGN_EXTEND_INREG:
73 Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
74 case ISD::SRA: Res = PromoteIntRes_SRA(N); break;
75 case ISD::SRL: Res = PromoteIntRes_SRL(N); break;
76 case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break;
77 case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break;
78 case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break;
79
80 case ISD::EXTRACT_SUBVECTOR:
81 Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
82 case ISD::VECTOR_SHUFFLE:
83 Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
84 case ISD::INSERT_VECTOR_ELT:
85 Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
86 case ISD::BUILD_VECTOR:
87 Res = PromoteIntRes_BUILD_VECTOR(N); break;
88 case ISD::SCALAR_TO_VECTOR:
89 Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
90 case ISD::CONCAT_VECTORS:
91 Res = PromoteIntRes_CONCAT_VECTORS(N); break;
92
93 case ISD::SIGN_EXTEND:
94 case ISD::ZERO_EXTEND:
95 case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break;
96
97 case ISD::FP_TO_SINT:
98 case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break;
99
100 case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break;
101
102 case ISD::AND:
103 case ISD::OR:
104 case ISD::XOR:
105 case ISD::ADD:
106 case ISD::SUB:
107 case ISD::MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break;
108
109 case ISD::SDIV:
110 case ISD::SREM: Res = PromoteIntRes_SDIV(N); break;
111
112 case ISD::UDIV:
113 case ISD::UREM: Res = PromoteIntRes_UDIV(N); break;
114
115 case ISD::SADDO:
116 case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
117 case ISD::UADDO:
118 case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
119 case ISD::SMULO:
120 case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break;
121
122 case ISD::ATOMIC_LOAD:
123 Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
124
125 case ISD::ATOMIC_LOAD_ADD:
126 case ISD::ATOMIC_LOAD_SUB:
127 case ISD::ATOMIC_LOAD_AND:
128 case ISD::ATOMIC_LOAD_OR:
129 case ISD::ATOMIC_LOAD_XOR:
130 case ISD::ATOMIC_LOAD_NAND:
131 case ISD::ATOMIC_LOAD_MIN:
132 case ISD::ATOMIC_LOAD_MAX:
133 case ISD::ATOMIC_LOAD_UMIN:
134 case ISD::ATOMIC_LOAD_UMAX:
135 case ISD::ATOMIC_SWAP:
136 Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
137
138 case ISD::ATOMIC_CMP_SWAP:
139 Res = PromoteIntRes_Atomic2(cast<AtomicSDNode>(N)); break;
140 }
141
142 // If the result is null then the sub-method took care of registering it.
143 if (Res.getNode())
144 SetPromotedInteger(SDValue(N, ResNo), Res);
145 }
146
PromoteIntRes_MERGE_VALUES(SDNode * N,unsigned ResNo)147 SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
148 unsigned ResNo) {
149 SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
150 return GetPromotedInteger(Op);
151 }
152
PromoteIntRes_AssertSext(SDNode * N)153 SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
154 // Sign-extend the new bits, and continue the assertion.
155 SDValue Op = SExtPromotedInteger(N->getOperand(0));
156 return DAG.getNode(ISD::AssertSext, N->getDebugLoc(),
157 Op.getValueType(), Op, N->getOperand(1));
158 }
159
PromoteIntRes_AssertZext(SDNode * N)160 SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
161 // Zero the new bits, and continue the assertion.
162 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
163 return DAG.getNode(ISD::AssertZext, N->getDebugLoc(),
164 Op.getValueType(), Op, N->getOperand(1));
165 }
166
PromoteIntRes_Atomic0(AtomicSDNode * N)167 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
168 EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
169 SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
170 N->getMemoryVT(), ResVT,
171 N->getChain(), N->getBasePtr(),
172 N->getMemOperand(), N->getOrdering(),
173 N->getSynchScope());
174 // Legalized the chain result - switch anything that used the old chain to
175 // use the new one.
176 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
177 return Res;
178 }
179
PromoteIntRes_Atomic1(AtomicSDNode * N)180 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
181 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
182 SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
183 N->getMemoryVT(),
184 N->getChain(), N->getBasePtr(),
185 Op2, N->getMemOperand(), N->getOrdering(),
186 N->getSynchScope());
187 // Legalized the chain result - switch anything that used the old chain to
188 // use the new one.
189 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
190 return Res;
191 }
192
PromoteIntRes_Atomic2(AtomicSDNode * N)193 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) {
194 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
195 SDValue Op3 = GetPromotedInteger(N->getOperand(3));
196 SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
197 N->getMemoryVT(), N->getChain(), N->getBasePtr(),
198 Op2, Op3, N->getMemOperand(), N->getOrdering(),
199 N->getSynchScope());
200 // Legalized the chain result - switch anything that used the old chain to
201 // use the new one.
202 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
203 return Res;
204 }
205
PromoteIntRes_BITCAST(SDNode * N)206 SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
207 SDValue InOp = N->getOperand(0);
208 EVT InVT = InOp.getValueType();
209 EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
210 EVT OutVT = N->getValueType(0);
211 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
212 DebugLoc dl = N->getDebugLoc();
213
214 switch (getTypeAction(InVT)) {
215 case TargetLowering::TypeLegal:
216 break;
217 case TargetLowering::TypePromoteInteger:
218 if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
219 // The input promotes to the same size. Convert the promoted value.
220 return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
221 break;
222 case TargetLowering::TypeSoftenFloat:
223 // Promote the integer operand by hand.
224 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
225 case TargetLowering::TypeExpandInteger:
226 case TargetLowering::TypeExpandFloat:
227 break;
228 case TargetLowering::TypeScalarizeVector:
229 // Convert the element to an integer and promote it by hand.
230 if (!NOutVT.isVector())
231 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
232 BitConvertToInteger(GetScalarizedVector(InOp)));
233 break;
234 case TargetLowering::TypeSplitVector: {
235 // For example, i32 = BITCAST v2i16 on alpha. Convert the split
236 // pieces of the input into integers and reassemble in the final type.
237 SDValue Lo, Hi;
238 GetSplitVector(N->getOperand(0), Lo, Hi);
239 Lo = BitConvertToInteger(Lo);
240 Hi = BitConvertToInteger(Hi);
241
242 if (TLI.isBigEndian())
243 std::swap(Lo, Hi);
244
245 InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
246 EVT::getIntegerVT(*DAG.getContext(),
247 NOutVT.getSizeInBits()),
248 JoinIntegers(Lo, Hi));
249 return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
250 }
251 case TargetLowering::TypeWidenVector:
252 // The input is widened to the same size. Convert to the widened value.
253 // Make sure that the outgoing value is not a vector, because this would
254 // make us bitcast between two vectors which are legalized in different ways.
255 if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector())
256 return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
257 }
258
259 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
260 CreateStackStoreLoad(InOp, OutVT));
261 }
262
PromoteIntRes_BSWAP(SDNode * N)263 SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
264 SDValue Op = GetPromotedInteger(N->getOperand(0));
265 EVT OVT = N->getValueType(0);
266 EVT NVT = Op.getValueType();
267 DebugLoc dl = N->getDebugLoc();
268
269 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
270 return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
271 DAG.getConstant(DiffBits, TLI.getPointerTy()));
272 }
273
PromoteIntRes_BUILD_PAIR(SDNode * N)274 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
275 // The pair element type may be legal, or may not promote to the same type as
276 // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
277 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(),
278 TLI.getTypeToTransformTo(*DAG.getContext(),
279 N->getValueType(0)), JoinIntegers(N->getOperand(0),
280 N->getOperand(1)));
281 }
282
PromoteIntRes_Constant(SDNode * N)283 SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
284 EVT VT = N->getValueType(0);
285 // FIXME there is no actual debug info here
286 DebugLoc dl = N->getDebugLoc();
287 // Zero extend things like i1, sign extend everything else. It shouldn't
288 // matter in theory which one we pick, but this tends to give better code?
289 unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
290 SDValue Result = DAG.getNode(Opc, dl,
291 TLI.getTypeToTransformTo(*DAG.getContext(), VT),
292 SDValue(N, 0));
293 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
294 return Result;
295 }
296
PromoteIntRes_CONVERT_RNDSAT(SDNode * N)297 SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
298 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
299 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
300 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
301 CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
302 "can only promote integers");
303 EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
304 return DAG.getConvertRndSat(OutVT, N->getDebugLoc(), N->getOperand(0),
305 N->getOperand(1), N->getOperand(2),
306 N->getOperand(3), N->getOperand(4), CvtCode);
307 }
308
PromoteIntRes_CTLZ(SDNode * N)309 SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
310 // Zero extend to the promoted type and do the count there.
311 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
312 DebugLoc dl = N->getDebugLoc();
313 EVT OVT = N->getValueType(0);
314 EVT NVT = Op.getValueType();
315 Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
316 // Subtract off the extra leading bits in the bigger type.
317 return DAG.getNode(ISD::SUB, dl, NVT, Op,
318 DAG.getConstant(NVT.getSizeInBits() -
319 OVT.getSizeInBits(), NVT));
320 }
321
PromoteIntRes_CTPOP(SDNode * N)322 SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
323 // Zero extend to the promoted type and do the count there.
324 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
325 return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), Op.getValueType(), Op);
326 }
327
PromoteIntRes_CTTZ(SDNode * N)328 SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
329 SDValue Op = GetPromotedInteger(N->getOperand(0));
330 EVT OVT = N->getValueType(0);
331 EVT NVT = Op.getValueType();
332 DebugLoc dl = N->getDebugLoc();
333 if (N->getOpcode() == ISD::CTTZ) {
334 // The count is the same in the promoted type except if the original
335 // value was zero. This can be handled by setting the bit just off
336 // the top of the original type.
337 APInt TopBit(NVT.getSizeInBits(), 0);
338 TopBit.setBit(OVT.getSizeInBits());
339 Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
340 }
341 return DAG.getNode(N->getOpcode(), dl, NVT, Op);
342 }
343
PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode * N)344 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
345 DebugLoc dl = N->getDebugLoc();
346 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
347 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
348 N->getOperand(1));
349 }
350
PromoteIntRes_FP_TO_XINT(SDNode * N)351 SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
352 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
353 unsigned NewOpc = N->getOpcode();
354 DebugLoc dl = N->getDebugLoc();
355
356 // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
357 // not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT
358 // and SINT conversions are Custom, there is no way to tell which is
359 // preferable. We choose SINT because that's the right thing on PPC.)
360 if (N->getOpcode() == ISD::FP_TO_UINT &&
361 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
362 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
363 NewOpc = ISD::FP_TO_SINT;
364
365 SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
366
367 // Assert that the converted value fits in the original type. If it doesn't
368 // (eg: because the value being converted is too big), then the result of the
369 // original operation was undefined anyway, so the assert is still correct.
370 return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
371 ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
372 DAG.getValueType(N->getValueType(0).getScalarType()));
373 }
374
PromoteIntRes_FP32_TO_FP16(SDNode * N)375 SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) {
376 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
377 DebugLoc dl = N->getDebugLoc();
378
379 SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
380
381 return DAG.getNode(ISD::AssertZext, dl,
382 NVT, Res, DAG.getValueType(N->getValueType(0)));
383 }
384
PromoteIntRes_INT_EXTEND(SDNode * N)385 SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
386 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
387 DebugLoc dl = N->getDebugLoc();
388
389 if (getTypeAction(N->getOperand(0).getValueType())
390 == TargetLowering::TypePromoteInteger) {
391 SDValue Res = GetPromotedInteger(N->getOperand(0));
392 assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
393
394 // If the result and operand types are the same after promotion, simplify
395 // to an in-register extension.
396 if (NVT == Res.getValueType()) {
397 // The high bits are not guaranteed to be anything. Insert an extend.
398 if (N->getOpcode() == ISD::SIGN_EXTEND)
399 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
400 DAG.getValueType(N->getOperand(0).getValueType()));
401 if (N->getOpcode() == ISD::ZERO_EXTEND)
402 return DAG.getZeroExtendInReg(Res, dl,
403 N->getOperand(0).getValueType().getScalarType());
404 assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
405 return Res;
406 }
407 }
408
409 // Otherwise, just extend the original operand all the way to the larger type.
410 return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
411 }
412
PromoteIntRes_LOAD(LoadSDNode * N)413 SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
414 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
415 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
416 ISD::LoadExtType ExtType =
417 ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
418 DebugLoc dl = N->getDebugLoc();
419 SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
420 N->getPointerInfo(),
421 N->getMemoryVT(), N->isVolatile(),
422 N->isNonTemporal(), N->getAlignment());
423
424 // Legalized the chain result - switch anything that used the old chain to
425 // use the new one.
426 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
427 return Res;
428 }
429
430 /// Promote the overflow flag of an overflowing arithmetic node.
PromoteIntRes_Overflow(SDNode * N)431 SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
432 // Simply change the return type of the boolean result.
433 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
434 EVT ValueVTs[] = { N->getValueType(0), NVT };
435 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
436 SDValue Res = DAG.getNode(N->getOpcode(), N->getDebugLoc(),
437 DAG.getVTList(ValueVTs, 2), Ops, 2);
438
439 // Modified the sum result - switch anything that used the old sum to use
440 // the new one.
441 ReplaceValueWith(SDValue(N, 0), Res);
442
443 return SDValue(Res.getNode(), 1);
444 }
445
PromoteIntRes_SADDSUBO(SDNode * N,unsigned ResNo)446 SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
447 if (ResNo == 1)
448 return PromoteIntRes_Overflow(N);
449
450 // The operation overflowed iff the result in the larger type is not the
451 // sign extension of its truncation to the original type.
452 SDValue LHS = SExtPromotedInteger(N->getOperand(0));
453 SDValue RHS = SExtPromotedInteger(N->getOperand(1));
454 EVT OVT = N->getOperand(0).getValueType();
455 EVT NVT = LHS.getValueType();
456 DebugLoc dl = N->getDebugLoc();
457
458 // Do the arithmetic in the larger type.
459 unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
460 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
461
462 // Calculate the overflow flag: sign extend the arithmetic result from
463 // the original type.
464 SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
465 DAG.getValueType(OVT));
466 // Overflowed if and only if this is not equal to Res.
467 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
468
469 // Use the calculated overflow everywhere.
470 ReplaceValueWith(SDValue(N, 1), Ofl);
471
472 return Res;
473 }
474
PromoteIntRes_SDIV(SDNode * N)475 SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
476 // Sign extend the input.
477 SDValue LHS = SExtPromotedInteger(N->getOperand(0));
478 SDValue RHS = SExtPromotedInteger(N->getOperand(1));
479 return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
480 LHS.getValueType(), LHS, RHS);
481 }
482
PromoteIntRes_SELECT(SDNode * N)483 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
484 SDValue LHS = GetPromotedInteger(N->getOperand(1));
485 SDValue RHS = GetPromotedInteger(N->getOperand(2));
486 return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
487 LHS.getValueType(), N->getOperand(0),LHS,RHS);
488 }
489
PromoteIntRes_VSELECT(SDNode * N)490 SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
491 SDValue Mask = N->getOperand(0);
492 EVT OpTy = N->getOperand(1).getValueType();
493
494 // Promote all the way up to the canonical SetCC type.
495 Mask = PromoteTargetBoolean(Mask, TLI.getSetCCResultType(OpTy));
496 SDValue LHS = GetPromotedInteger(N->getOperand(1));
497 SDValue RHS = GetPromotedInteger(N->getOperand(2));
498 return DAG.getNode(ISD::VSELECT, N->getDebugLoc(),
499 LHS.getValueType(), Mask, LHS, RHS);
500 }
501
PromoteIntRes_SELECT_CC(SDNode * N)502 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
503 SDValue LHS = GetPromotedInteger(N->getOperand(2));
504 SDValue RHS = GetPromotedInteger(N->getOperand(3));
505 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
506 LHS.getValueType(), N->getOperand(0),
507 N->getOperand(1), LHS, RHS, N->getOperand(4));
508 }
509
PromoteIntRes_SETCC(SDNode * N)510 SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
511 EVT SVT = TLI.getSetCCResultType(N->getOperand(0).getValueType());
512
513 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
514
515 // Only use the result of getSetCCResultType if it is legal,
516 // otherwise just use the promoted result type (NVT).
517 if (!TLI.isTypeLegal(SVT))
518 SVT = NVT;
519
520 DebugLoc dl = N->getDebugLoc();
521 assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
522 "Vector compare must return a vector result!");
523
524 // Get the SETCC result using the canonical SETCC type.
525 SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, N->getOperand(0),
526 N->getOperand(1), N->getOperand(2));
527
528 assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
529 // Convert to the expected type.
530 return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
531 }
532
PromoteIntRes_SHL(SDNode * N)533 SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
534 SDValue Res = GetPromotedInteger(N->getOperand(0));
535 SDValue Amt = N->getOperand(1);
536 Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
537 return DAG.getNode(ISD::SHL, N->getDebugLoc(), Res.getValueType(), Res, Amt);
538 }
539
PromoteIntRes_SIGN_EXTEND_INREG(SDNode * N)540 SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
541 SDValue Op = GetPromotedInteger(N->getOperand(0));
542 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(),
543 Op.getValueType(), Op, N->getOperand(1));
544 }
545
PromoteIntRes_SimpleIntBinOp(SDNode * N)546 SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
547 // The input may have strange things in the top bits of the registers, but
548 // these operations don't care. They may have weird bits going out, but
549 // that too is okay if they are integer operations.
550 SDValue LHS = GetPromotedInteger(N->getOperand(0));
551 SDValue RHS = GetPromotedInteger(N->getOperand(1));
552 return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
553 LHS.getValueType(), LHS, RHS);
554 }
555
PromoteIntRes_SRA(SDNode * N)556 SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
557 // The input value must be properly sign extended.
558 SDValue Res = SExtPromotedInteger(N->getOperand(0));
559 SDValue Amt = N->getOperand(1);
560 Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
561 return DAG.getNode(ISD::SRA, N->getDebugLoc(), Res.getValueType(), Res, Amt);
562 }
563
PromoteIntRes_SRL(SDNode * N)564 SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
565 // The input value must be properly zero extended.
566 SDValue Res = ZExtPromotedInteger(N->getOperand(0));
567 SDValue Amt = N->getOperand(1);
568 Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
569 return DAG.getNode(ISD::SRL, N->getDebugLoc(), Res.getValueType(), Res, Amt);
570 }
571
PromoteIntRes_TRUNCATE(SDNode * N)572 SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
573 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
574 SDValue Res;
575 SDValue InOp = N->getOperand(0);
576 DebugLoc dl = N->getDebugLoc();
577
578 switch (getTypeAction(InOp.getValueType())) {
579 default: llvm_unreachable("Unknown type action!");
580 case TargetLowering::TypeLegal:
581 case TargetLowering::TypeExpandInteger:
582 Res = InOp;
583 break;
584 case TargetLowering::TypePromoteInteger:
585 Res = GetPromotedInteger(InOp);
586 break;
587 case TargetLowering::TypeSplitVector:
588 EVT InVT = InOp.getValueType();
589 assert(InVT.isVector() && "Cannot split scalar types");
590 unsigned NumElts = InVT.getVectorNumElements();
591 assert(NumElts == NVT.getVectorNumElements() &&
592 "Dst and Src must have the same number of elements");
593 assert(isPowerOf2_32(NumElts) &&
594 "Promoted vector type must be a power of two");
595
596 SDValue EOp1, EOp2;
597 GetSplitVector(InOp, EOp1, EOp2);
598
599 EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
600 NumElts/2);
601 EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
602 EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
603
604 return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
605 }
606
607 // Truncate to NVT instead of VT
608 return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
609 }
610
PromoteIntRes_UADDSUBO(SDNode * N,unsigned ResNo)611 SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
612 if (ResNo == 1)
613 return PromoteIntRes_Overflow(N);
614
615 // The operation overflowed iff the result in the larger type is not the
616 // zero extension of its truncation to the original type.
617 SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
618 SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
619 EVT OVT = N->getOperand(0).getValueType();
620 EVT NVT = LHS.getValueType();
621 DebugLoc dl = N->getDebugLoc();
622
623 // Do the arithmetic in the larger type.
624 unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
625 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
626
627 // Calculate the overflow flag: zero extend the arithmetic result from
628 // the original type.
629 SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
630 // Overflowed if and only if this is not equal to Res.
631 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
632
633 // Use the calculated overflow everywhere.
634 ReplaceValueWith(SDValue(N, 1), Ofl);
635
636 return Res;
637 }
638
PromoteIntRes_XMULO(SDNode * N,unsigned ResNo)639 SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
640 // Promote the overflow bit trivially.
641 if (ResNo == 1)
642 return PromoteIntRes_Overflow(N);
643
644 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
645 DebugLoc DL = N->getDebugLoc();
646 EVT SmallVT = LHS.getValueType();
647
648 // To determine if the result overflowed in a larger type, we extend the
649 // input to the larger type, do the multiply (checking if it overflows),
650 // then also check the high bits of the result to see if overflow happened
651 // there.
652 if (N->getOpcode() == ISD::SMULO) {
653 LHS = SExtPromotedInteger(LHS);
654 RHS = SExtPromotedInteger(RHS);
655 } else {
656 LHS = ZExtPromotedInteger(LHS);
657 RHS = ZExtPromotedInteger(RHS);
658 }
659 SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1));
660 SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS);
661
662 // Overflow occurred if it occurred in the larger type, or if the high part
663 // of the result does not zero/sign-extend the low part. Check this second
664 // possibility first.
665 SDValue Overflow;
666 if (N->getOpcode() == ISD::UMULO) {
667 // Unsigned overflow occurred if the high part is non-zero.
668 SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
669 DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
670 Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
671 DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
672 } else {
673 // Signed overflow occurred if the high part does not sign extend the low.
674 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
675 Mul, DAG.getValueType(SmallVT));
676 Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
677 }
678
679 // The only other way for overflow to occur is if the multiplication in the
680 // larger type itself overflowed.
681 Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow,
682 SDValue(Mul.getNode(), 1));
683
684 // Use the calculated overflow everywhere.
685 ReplaceValueWith(SDValue(N, 1), Overflow);
686 return Mul;
687 }
688
PromoteIntRes_UDIV(SDNode * N)689 SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
690 // Zero extend the input.
691 SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
692 SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
693 return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
694 LHS.getValueType(), LHS, RHS);
695 }
696
PromoteIntRes_UNDEF(SDNode * N)697 SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
698 return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
699 N->getValueType(0)));
700 }
701
PromoteIntRes_VAARG(SDNode * N)702 SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
703 SDValue Chain = N->getOperand(0); // Get the chain.
704 SDValue Ptr = N->getOperand(1); // Get the pointer.
705 EVT VT = N->getValueType(0);
706 DebugLoc dl = N->getDebugLoc();
707
708 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
709 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
710 // The argument is passed as NumRegs registers of type RegVT.
711
712 SmallVector<SDValue, 8> Parts(NumRegs);
713 for (unsigned i = 0; i < NumRegs; ++i) {
714 Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
715 N->getConstantOperandVal(3));
716 Chain = Parts[i].getValue(1);
717 }
718
719 // Handle endianness of the load.
720 if (TLI.isBigEndian())
721 std::reverse(Parts.begin(), Parts.end());
722
723 // Assemble the parts in the promoted type.
724 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
725 SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
726 for (unsigned i = 1; i < NumRegs; ++i) {
727 SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
728 // Shift it to the right position and "or" it in.
729 Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
730 DAG.getConstant(i * RegVT.getSizeInBits(),
731 TLI.getPointerTy()));
732 Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
733 }
734
735 // Modified the chain result - switch anything that used the old chain to
736 // use the new one.
737 ReplaceValueWith(SDValue(N, 1), Chain);
738
739 return Res;
740 }
741
742 //===----------------------------------------------------------------------===//
743 // Integer Operand Promotion
744 //===----------------------------------------------------------------------===//
745
746 /// PromoteIntegerOperand - This method is called when the specified operand of
747 /// the specified node is found to need promotion. At this point, all of the
748 /// result types of the node are known to be legal, but other operands of the
749 /// node may need promotion or expansion as well as the specified one.
PromoteIntegerOperand(SDNode * N,unsigned OpNo)750 bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
751 DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
752 SDValue Res = SDValue();
753
754 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
755 return false;
756
757 switch (N->getOpcode()) {
758 default:
759 #ifndef NDEBUG
760 dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
761 N->dump(&DAG); dbgs() << "\n";
762 #endif
763 llvm_unreachable("Do not know how to promote this operator's operand!");
764
765 case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break;
766 case ISD::ATOMIC_STORE:
767 Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
768 break;
769 case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break;
770 case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break;
771 case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break;
772 case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break;
773 case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
774 case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
775 case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
776 case ISD::CONVERT_RNDSAT:
777 Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
778 case ISD::INSERT_VECTOR_ELT:
779 Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
780 case ISD::MEMBARRIER: Res = PromoteIntOp_MEMBARRIER(N); break;
781 case ISD::SCALAR_TO_VECTOR:
782 Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
783 case ISD::VSELECT:
784 case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break;
785 case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
786 case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break;
787 case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break;
788 case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break;
789 case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
790 OpNo); break;
791 case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
792 case ISD::FP16_TO_FP32:
793 case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break;
794 case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break;
795
796 case ISD::SHL:
797 case ISD::SRA:
798 case ISD::SRL:
799 case ISD::ROTL:
800 case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
801 }
802
803 // If the result is null, the sub-method took care of registering results etc.
804 if (!Res.getNode()) return false;
805
806 // If the result is N, the sub-method updated N in place. Tell the legalizer
807 // core about this.
808 if (Res.getNode() == N)
809 return true;
810
811 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
812 "Invalid operand expansion");
813
814 ReplaceValueWith(SDValue(N, 0), Res);
815 return false;
816 }
817
818 /// PromoteSetCCOperands - Promote the operands of a comparison. This code is
819 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
PromoteSetCCOperands(SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode CCCode)820 void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
821 ISD::CondCode CCCode) {
822 // We have to insert explicit sign or zero extends. Note that we could
823 // insert sign extends for ALL conditions, but zero extend is cheaper on
824 // many machines (an AND instead of two shifts), so prefer it.
825 switch (CCCode) {
826 default: llvm_unreachable("Unknown integer comparison!");
827 case ISD::SETEQ:
828 case ISD::SETNE:
829 case ISD::SETUGE:
830 case ISD::SETUGT:
831 case ISD::SETULE:
832 case ISD::SETULT:
833 // ALL of these operations will work if we either sign or zero extend
834 // the operands (including the unsigned comparisons!). Zero extend is
835 // usually a simpler/cheaper operation, so prefer it.
836 NewLHS = ZExtPromotedInteger(NewLHS);
837 NewRHS = ZExtPromotedInteger(NewRHS);
838 break;
839 case ISD::SETGE:
840 case ISD::SETGT:
841 case ISD::SETLT:
842 case ISD::SETLE:
843 NewLHS = SExtPromotedInteger(NewLHS);
844 NewRHS = SExtPromotedInteger(NewRHS);
845 break;
846 }
847 }
848
PromoteIntOp_ANY_EXTEND(SDNode * N)849 SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
850 SDValue Op = GetPromotedInteger(N->getOperand(0));
851 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0), Op);
852 }
853
PromoteIntOp_ATOMIC_STORE(AtomicSDNode * N)854 SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
855 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
856 return DAG.getAtomic(N->getOpcode(), N->getDebugLoc(), N->getMemoryVT(),
857 N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
858 N->getOrdering(), N->getSynchScope());
859 }
860
PromoteIntOp_BITCAST(SDNode * N)861 SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
862 // This should only occur in unusual situations like bitcasting to an
863 // x86_fp80, so just turn it into a store+load
864 return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
865 }
866
PromoteIntOp_BR_CC(SDNode * N,unsigned OpNo)867 SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
868 assert(OpNo == 2 && "Don't know how to promote this operand!");
869
870 SDValue LHS = N->getOperand(2);
871 SDValue RHS = N->getOperand(3);
872 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
873
874 // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
875 // legal types.
876 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
877 N->getOperand(1), LHS, RHS, N->getOperand(4)),
878 0);
879 }
880
PromoteIntOp_BRCOND(SDNode * N,unsigned OpNo)881 SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
882 assert(OpNo == 1 && "only know how to promote condition");
883
884 // Promote all the way up to the canonical SetCC type.
885 EVT SVT = TLI.getSetCCResultType(MVT::Other);
886 SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT);
887
888 // The chain (Op#0) and basic block destination (Op#2) are always legal types.
889 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
890 N->getOperand(2)), 0);
891 }
892
PromoteIntOp_BUILD_PAIR(SDNode * N)893 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
894 // Since the result type is legal, the operands must promote to it.
895 EVT OVT = N->getOperand(0).getValueType();
896 SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
897 SDValue Hi = GetPromotedInteger(N->getOperand(1));
898 assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
899 DebugLoc dl = N->getDebugLoc();
900
901 Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
902 DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
903 return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
904 }
905
PromoteIntOp_BUILD_VECTOR(SDNode * N)906 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
907 // The vector type is legal but the element type is not. This implies
908 // that the vector is a power-of-two in length and that the element
909 // type does not have a strange size (eg: it is not i1).
910 EVT VecVT = N->getValueType(0);
911 unsigned NumElts = VecVT.getVectorNumElements();
912 assert(!(NumElts & 1) && "Legal vector of one illegal element?");
913
914 // Promote the inserted value. The type does not need to match the
915 // vector element type. Check that any extra bits introduced will be
916 // truncated away.
917 assert(N->getOperand(0).getValueType().getSizeInBits() >=
918 N->getValueType(0).getVectorElementType().getSizeInBits() &&
919 "Type of inserted value narrower than vector element type!");
920
921 SmallVector<SDValue, 16> NewOps;
922 for (unsigned i = 0; i < NumElts; ++i)
923 NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
924
925 return SDValue(DAG.UpdateNodeOperands(N, &NewOps[0], NumElts), 0);
926 }
927
PromoteIntOp_CONVERT_RNDSAT(SDNode * N)928 SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
929 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
930 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
931 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
932 CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
933 "can only promote integer arguments");
934 SDValue InOp = GetPromotedInteger(N->getOperand(0));
935 return DAG.getConvertRndSat(N->getValueType(0), N->getDebugLoc(), InOp,
936 N->getOperand(1), N->getOperand(2),
937 N->getOperand(3), N->getOperand(4), CvtCode);
938 }
939
PromoteIntOp_INSERT_VECTOR_ELT(SDNode * N,unsigned OpNo)940 SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
941 unsigned OpNo) {
942 if (OpNo == 1) {
943 // Promote the inserted value. This is valid because the type does not
944 // have to match the vector element type.
945
946 // Check that any extra bits introduced will be truncated away.
947 assert(N->getOperand(1).getValueType().getSizeInBits() >=
948 N->getValueType(0).getVectorElementType().getSizeInBits() &&
949 "Type of inserted value narrower than vector element type!");
950 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
951 GetPromotedInteger(N->getOperand(1)),
952 N->getOperand(2)),
953 0);
954 }
955
956 assert(OpNo == 2 && "Different operand and result vector types?");
957
958 // Promote the index.
959 SDValue Idx = ZExtPromotedInteger(N->getOperand(2));
960 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
961 N->getOperand(1), Idx), 0);
962 }
963
PromoteIntOp_MEMBARRIER(SDNode * N)964 SDValue DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) {
965 SDValue NewOps[6];
966 DebugLoc dl = N->getDebugLoc();
967 NewOps[0] = N->getOperand(0);
968 for (unsigned i = 1; i < array_lengthof(NewOps); ++i) {
969 SDValue Flag = GetPromotedInteger(N->getOperand(i));
970 NewOps[i] = DAG.getZeroExtendInReg(Flag, dl, MVT::i1);
971 }
972 return SDValue(DAG.UpdateNodeOperands(N, NewOps, array_lengthof(NewOps)), 0);
973 }
974
PromoteIntOp_SCALAR_TO_VECTOR(SDNode * N)975 SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
976 // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
977 // the operand in place.
978 return SDValue(DAG.UpdateNodeOperands(N,
979 GetPromotedInteger(N->getOperand(0))), 0);
980 }
981
PromoteIntOp_SELECT(SDNode * N,unsigned OpNo)982 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
983 assert(OpNo == 0 && "Only know how to promote the condition!");
984 SDValue Cond = N->getOperand(0);
985 EVT OpTy = N->getOperand(1).getValueType();
986
987 // Promote all the way up to the canonical SetCC type.
988 EVT SVT = TLI.getSetCCResultType(N->getOpcode() == ISD::SELECT ?
989 OpTy.getScalarType() : OpTy);
990 Cond = PromoteTargetBoolean(Cond, SVT);
991
992 return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
993 N->getOperand(2)), 0);
994 }
995
PromoteIntOp_SELECT_CC(SDNode * N,unsigned OpNo)996 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
997 assert(OpNo == 0 && "Don't know how to promote this operand!");
998
999 SDValue LHS = N->getOperand(0);
1000 SDValue RHS = N->getOperand(1);
1001 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
1002
1003 // The CC (#4) and the possible return values (#2 and #3) have legal types.
1004 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
1005 N->getOperand(3), N->getOperand(4)), 0);
1006 }
1007
PromoteIntOp_SETCC(SDNode * N,unsigned OpNo)1008 SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
1009 assert(OpNo == 0 && "Don't know how to promote this operand!");
1010
1011 SDValue LHS = N->getOperand(0);
1012 SDValue RHS = N->getOperand(1);
1013 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1014
1015 // The CC (#2) is always legal.
1016 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
1017 }
1018
PromoteIntOp_Shift(SDNode * N)1019 SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
1020 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1021 ZExtPromotedInteger(N->getOperand(1))), 0);
1022 }
1023
PromoteIntOp_SIGN_EXTEND(SDNode * N)1024 SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
1025 SDValue Op = GetPromotedInteger(N->getOperand(0));
1026 DebugLoc dl = N->getDebugLoc();
1027 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1028 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
1029 Op, DAG.getValueType(N->getOperand(0).getValueType()));
1030 }
1031
PromoteIntOp_SINT_TO_FP(SDNode * N)1032 SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
1033 return SDValue(DAG.UpdateNodeOperands(N,
1034 SExtPromotedInteger(N->getOperand(0))), 0);
1035 }
1036
PromoteIntOp_STORE(StoreSDNode * N,unsigned OpNo)1037 SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
1038 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
1039 SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
1040 unsigned Alignment = N->getAlignment();
1041 bool isVolatile = N->isVolatile();
1042 bool isNonTemporal = N->isNonTemporal();
1043 DebugLoc dl = N->getDebugLoc();
1044
1045 SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value.
1046
1047 // Truncate the value and store the result.
1048 return DAG.getTruncStore(Ch, dl, Val, Ptr, N->getPointerInfo(),
1049 N->getMemoryVT(),
1050 isVolatile, isNonTemporal, Alignment);
1051 }
1052
PromoteIntOp_TRUNCATE(SDNode * N)1053 SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
1054 SDValue Op = GetPromotedInteger(N->getOperand(0));
1055 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), Op);
1056 }
1057
PromoteIntOp_UINT_TO_FP(SDNode * N)1058 SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
1059 return SDValue(DAG.UpdateNodeOperands(N,
1060 ZExtPromotedInteger(N->getOperand(0))), 0);
1061 }
1062
PromoteIntOp_ZERO_EXTEND(SDNode * N)1063 SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
1064 DebugLoc dl = N->getDebugLoc();
1065 SDValue Op = GetPromotedInteger(N->getOperand(0));
1066 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1067 return DAG.getZeroExtendInReg(Op, dl,
1068 N->getOperand(0).getValueType().getScalarType());
1069 }
1070
1071
1072 //===----------------------------------------------------------------------===//
1073 // Integer Result Expansion
1074 //===----------------------------------------------------------------------===//
1075
1076 /// ExpandIntegerResult - This method is called when the specified result of the
1077 /// specified node is found to need expansion. At this point, the node may also
1078 /// have invalid operands or may have other results that need promotion, we just
1079 /// know that (at least) one result needs expansion.
ExpandIntegerResult(SDNode * N,unsigned ResNo)1080 void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1081 DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
1082 SDValue Lo, Hi;
1083 Lo = Hi = SDValue();
1084
1085 // See if the target wants to custom expand this node.
1086 if (CustomLowerNode(N, N->getValueType(ResNo), true))
1087 return;
1088
1089 switch (N->getOpcode()) {
1090 default:
1091 #ifndef NDEBUG
1092 dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1093 N->dump(&DAG); dbgs() << "\n";
1094 #endif
1095 llvm_unreachable("Do not know how to expand the result of this operator!");
1096
1097 case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1098 case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
1099 case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
1100 case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
1101
1102 case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break;
1103 case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1104 case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1105 case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1106 case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break;
1107
1108 case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1109 case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break;
1110 case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break;
1111 case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break;
1112 case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break;
1113 case ISD::CTLZ_ZERO_UNDEF:
1114 case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break;
1115 case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break;
1116 case ISD::CTTZ_ZERO_UNDEF:
1117 case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break;
1118 case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1119 case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1120 case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1121 case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break;
1122 case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break;
1123 case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1124 case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1125 case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break;
1126 case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1127 case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break;
1128 case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break;
1129 case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1130 case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
1131
1132 case ISD::ATOMIC_LOAD_ADD:
1133 case ISD::ATOMIC_LOAD_SUB:
1134 case ISD::ATOMIC_LOAD_AND:
1135 case ISD::ATOMIC_LOAD_OR:
1136 case ISD::ATOMIC_LOAD_XOR:
1137 case ISD::ATOMIC_LOAD_NAND:
1138 case ISD::ATOMIC_LOAD_MIN:
1139 case ISD::ATOMIC_LOAD_MAX:
1140 case ISD::ATOMIC_LOAD_UMIN:
1141 case ISD::ATOMIC_LOAD_UMAX:
1142 case ISD::ATOMIC_SWAP: {
1143 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1144 SplitInteger(Tmp.first, Lo, Hi);
1145 ReplaceValueWith(SDValue(N, 1), Tmp.second);
1146 break;
1147 }
1148
1149 case ISD::AND:
1150 case ISD::OR:
1151 case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1152
1153 case ISD::ADD:
1154 case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1155
1156 case ISD::ADDC:
1157 case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1158
1159 case ISD::ADDE:
1160 case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1161
1162 case ISD::SHL:
1163 case ISD::SRA:
1164 case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1165
1166 case ISD::SADDO:
1167 case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1168 case ISD::UADDO:
1169 case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1170 case ISD::UMULO:
1171 case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1172 }
1173
1174 // If Lo/Hi is null, the sub-method took care of registering results etc.
1175 if (Lo.getNode())
1176 SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1177 }
1178
1179 /// Lower an atomic node to the appropriate builtin call.
ExpandAtomic(SDNode * Node)1180 std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1181 unsigned Opc = Node->getOpcode();
1182 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1183 RTLIB::Libcall LC;
1184
1185 switch (Opc) {
1186 default:
1187 llvm_unreachable("Unhandled atomic intrinsic Expand!");
1188 case ISD::ATOMIC_SWAP:
1189 switch (VT.SimpleTy) {
1190 default: llvm_unreachable("Unexpected value type for atomic!");
1191 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
1192 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
1193 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
1194 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1195 }
1196 break;
1197 case ISD::ATOMIC_CMP_SWAP:
1198 switch (VT.SimpleTy) {
1199 default: llvm_unreachable("Unexpected value type for atomic!");
1200 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
1201 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
1202 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
1203 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1204 }
1205 break;
1206 case ISD::ATOMIC_LOAD_ADD:
1207 switch (VT.SimpleTy) {
1208 default: llvm_unreachable("Unexpected value type for atomic!");
1209 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
1210 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
1211 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
1212 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1213 }
1214 break;
1215 case ISD::ATOMIC_LOAD_SUB:
1216 switch (VT.SimpleTy) {
1217 default: llvm_unreachable("Unexpected value type for atomic!");
1218 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
1219 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
1220 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
1221 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1222 }
1223 break;
1224 case ISD::ATOMIC_LOAD_AND:
1225 switch (VT.SimpleTy) {
1226 default: llvm_unreachable("Unexpected value type for atomic!");
1227 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
1228 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
1229 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
1230 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1231 }
1232 break;
1233 case ISD::ATOMIC_LOAD_OR:
1234 switch (VT.SimpleTy) {
1235 default: llvm_unreachable("Unexpected value type for atomic!");
1236 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
1237 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
1238 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
1239 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1240 }
1241 break;
1242 case ISD::ATOMIC_LOAD_XOR:
1243 switch (VT.SimpleTy) {
1244 default: llvm_unreachable("Unexpected value type for atomic!");
1245 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
1246 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
1247 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
1248 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1249 }
1250 break;
1251 case ISD::ATOMIC_LOAD_NAND:
1252 switch (VT.SimpleTy) {
1253 default: llvm_unreachable("Unexpected value type for atomic!");
1254 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
1255 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
1256 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
1257 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1258 }
1259 break;
1260 }
1261
1262 return ExpandChainLibCall(LC, Node, false);
1263 }
1264
1265 /// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1266 /// and the shift amount is a constant 'Amt'. Expand the operation.
ExpandShiftByConstant(SDNode * N,unsigned Amt,SDValue & Lo,SDValue & Hi)1267 void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1268 SDValue &Lo, SDValue &Hi) {
1269 DebugLoc DL = N->getDebugLoc();
1270 // Expand the incoming operand to be shifted, so that we have its parts
1271 SDValue InL, InH;
1272 GetExpandedInteger(N->getOperand(0), InL, InH);
1273
1274 EVT NVT = InL.getValueType();
1275 unsigned VTBits = N->getValueType(0).getSizeInBits();
1276 unsigned NVTBits = NVT.getSizeInBits();
1277 EVT ShTy = N->getOperand(1).getValueType();
1278
1279 if (N->getOpcode() == ISD::SHL) {
1280 if (Amt > VTBits) {
1281 Lo = Hi = DAG.getConstant(0, NVT);
1282 } else if (Amt > NVTBits) {
1283 Lo = DAG.getConstant(0, NVT);
1284 Hi = DAG.getNode(ISD::SHL, DL,
1285 NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy));
1286 } else if (Amt == NVTBits) {
1287 Lo = DAG.getConstant(0, NVT);
1288 Hi = InL;
1289 } else if (Amt == 1 &&
1290 TLI.isOperationLegalOrCustom(ISD::ADDC,
1291 TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1292 // Emit this X << 1 as X+X.
1293 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1294 SDValue LoOps[2] = { InL, InL };
1295 Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps, 2);
1296 SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1297 Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps, 3);
1298 } else {
1299 Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy));
1300 Hi = DAG.getNode(ISD::OR, DL, NVT,
1301 DAG.getNode(ISD::SHL, DL, NVT, InH,
1302 DAG.getConstant(Amt, ShTy)),
1303 DAG.getNode(ISD::SRL, DL, NVT, InL,
1304 DAG.getConstant(NVTBits-Amt, ShTy)));
1305 }
1306 return;
1307 }
1308
1309 if (N->getOpcode() == ISD::SRL) {
1310 if (Amt > VTBits) {
1311 Lo = DAG.getConstant(0, NVT);
1312 Hi = DAG.getConstant(0, NVT);
1313 } else if (Amt > NVTBits) {
1314 Lo = DAG.getNode(ISD::SRL, DL,
1315 NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1316 Hi = DAG.getConstant(0, NVT);
1317 } else if (Amt == NVTBits) {
1318 Lo = InH;
1319 Hi = DAG.getConstant(0, NVT);
1320 } else {
1321 Lo = DAG.getNode(ISD::OR, DL, NVT,
1322 DAG.getNode(ISD::SRL, DL, NVT, InL,
1323 DAG.getConstant(Amt, ShTy)),
1324 DAG.getNode(ISD::SHL, DL, NVT, InH,
1325 DAG.getConstant(NVTBits-Amt, ShTy)));
1326 Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1327 }
1328 return;
1329 }
1330
1331 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1332 if (Amt > VTBits) {
1333 Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1334 DAG.getConstant(NVTBits-1, ShTy));
1335 } else if (Amt > NVTBits) {
1336 Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1337 DAG.getConstant(Amt-NVTBits, ShTy));
1338 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1339 DAG.getConstant(NVTBits-1, ShTy));
1340 } else if (Amt == NVTBits) {
1341 Lo = InH;
1342 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1343 DAG.getConstant(NVTBits-1, ShTy));
1344 } else {
1345 Lo = DAG.getNode(ISD::OR, DL, NVT,
1346 DAG.getNode(ISD::SRL, DL, NVT, InL,
1347 DAG.getConstant(Amt, ShTy)),
1348 DAG.getNode(ISD::SHL, DL, NVT, InH,
1349 DAG.getConstant(NVTBits-Amt, ShTy)));
1350 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1351 }
1352 }
1353
1354 /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1355 /// this shift based on knowledge of the high bit of the shift amount. If we
1356 /// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1357 /// shift amount.
1358 bool DAGTypeLegalizer::
ExpandShiftWithKnownAmountBit(SDNode * N,SDValue & Lo,SDValue & Hi)1359 ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1360 SDValue Amt = N->getOperand(1);
1361 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1362 EVT ShTy = Amt.getValueType();
1363 unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1364 unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1365 assert(isPowerOf2_32(NVTBits) &&
1366 "Expanded integer type size not a power of two!");
1367 DebugLoc dl = N->getDebugLoc();
1368
1369 APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1370 APInt KnownZero, KnownOne;
1371 DAG.ComputeMaskedBits(N->getOperand(1), KnownZero, KnownOne);
1372
1373 // If we don't know anything about the high bits, exit.
1374 if (((KnownZero|KnownOne) & HighBitMask) == 0)
1375 return false;
1376
1377 // Get the incoming operand to be shifted.
1378 SDValue InL, InH;
1379 GetExpandedInteger(N->getOperand(0), InL, InH);
1380
1381 // If we know that any of the high bits of the shift amount are one, then we
1382 // can do this as a couple of simple shifts.
1383 if (KnownOne.intersects(HighBitMask)) {
1384 // Mask out the high bit, which we know is set.
1385 Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1386 DAG.getConstant(~HighBitMask, ShTy));
1387
1388 switch (N->getOpcode()) {
1389 default: llvm_unreachable("Unknown shift");
1390 case ISD::SHL:
1391 Lo = DAG.getConstant(0, NVT); // Low part is zero.
1392 Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1393 return true;
1394 case ISD::SRL:
1395 Hi = DAG.getConstant(0, NVT); // Hi part is zero.
1396 Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1397 return true;
1398 case ISD::SRA:
1399 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part.
1400 DAG.getConstant(NVTBits-1, ShTy));
1401 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1402 return true;
1403 }
1404 }
1405
1406 // If we know that all of the high bits of the shift amount are zero, then we
1407 // can do this as a couple of simple shifts.
1408 if ((KnownZero & HighBitMask) == HighBitMask) {
1409 // Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined
1410 // shift if x is zero. We can use XOR here because x is known to be smaller
1411 // than 32.
1412 SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt,
1413 DAG.getConstant(NVTBits-1, ShTy));
1414
1415 unsigned Op1, Op2;
1416 switch (N->getOpcode()) {
1417 default: llvm_unreachable("Unknown shift");
1418 case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1419 case ISD::SRL:
1420 case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1421 }
1422
1423 // When shifting right the arithmetic for Lo and Hi is swapped.
1424 if (N->getOpcode() != ISD::SHL)
1425 std::swap(InL, InH);
1426
1427 // Use a little trick to get the bits that move from Lo to Hi. First
1428 // shift by one bit.
1429 SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, ShTy));
1430 // Then compute the remaining shift with amount-1.
1431 SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2);
1432
1433 Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt);
1434 Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2);
1435
1436 if (N->getOpcode() != ISD::SHL)
1437 std::swap(Hi, Lo);
1438 return true;
1439 }
1440
1441 return false;
1442 }
1443
1444 /// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1445 /// of any size.
1446 bool DAGTypeLegalizer::
ExpandShiftWithUnknownAmountBit(SDNode * N,SDValue & Lo,SDValue & Hi)1447 ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1448 SDValue Amt = N->getOperand(1);
1449 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1450 EVT ShTy = Amt.getValueType();
1451 unsigned NVTBits = NVT.getSizeInBits();
1452 assert(isPowerOf2_32(NVTBits) &&
1453 "Expanded integer type size not a power of two!");
1454 DebugLoc dl = N->getDebugLoc();
1455
1456 // Get the incoming operand to be shifted.
1457 SDValue InL, InH;
1458 GetExpandedInteger(N->getOperand(0), InL, InH);
1459
1460 SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy);
1461 SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1462 SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1463 SDValue isShort = DAG.getSetCC(dl, TLI.getSetCCResultType(ShTy),
1464 Amt, NVBitsNode, ISD::SETULT);
1465
1466 SDValue LoS, HiS, LoL, HiL;
1467 switch (N->getOpcode()) {
1468 default: llvm_unreachable("Unknown shift");
1469 case ISD::SHL:
1470 // Short: ShAmt < NVTBits
1471 LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1472 HiS = DAG.getNode(ISD::OR, dl, NVT,
1473 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1474 // FIXME: If Amt is zero, the following shift generates an undefined result
1475 // on some architectures.
1476 DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1477
1478 // Long: ShAmt >= NVTBits
1479 LoL = DAG.getConstant(0, NVT); // Lo part is zero.
1480 HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1481
1482 Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1483 Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1484 return true;
1485 case ISD::SRL:
1486 // Short: ShAmt < NVTBits
1487 HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1488 LoS = DAG.getNode(ISD::OR, dl, NVT,
1489 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1490 // FIXME: If Amt is zero, the following shift generates an undefined result
1491 // on some architectures.
1492 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1493
1494 // Long: ShAmt >= NVTBits
1495 HiL = DAG.getConstant(0, NVT); // Hi part is zero.
1496 LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1497
1498 Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1499 Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1500 return true;
1501 case ISD::SRA:
1502 // Short: ShAmt < NVTBits
1503 HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1504 LoS = DAG.getNode(ISD::OR, dl, NVT,
1505 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1506 // FIXME: If Amt is zero, the following shift generates an undefined result
1507 // on some architectures.
1508 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1509
1510 // Long: ShAmt >= NVTBits
1511 HiL = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign of Hi part.
1512 DAG.getConstant(NVTBits-1, ShTy));
1513 LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1514
1515 Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1516 Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1517 return true;
1518 }
1519 }
1520
ExpandIntRes_ADDSUB(SDNode * N,SDValue & Lo,SDValue & Hi)1521 void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1522 SDValue &Lo, SDValue &Hi) {
1523 DebugLoc dl = N->getDebugLoc();
1524 // Expand the subcomponents.
1525 SDValue LHSL, LHSH, RHSL, RHSH;
1526 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1527 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1528
1529 EVT NVT = LHSL.getValueType();
1530 SDValue LoOps[2] = { LHSL, RHSL };
1531 SDValue HiOps[3] = { LHSH, RHSH };
1532
1533 // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1534 // them. TODO: Teach operation legalization how to expand unsupported
1535 // ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate
1536 // a carry of type MVT::Glue, but there doesn't seem to be any way to
1537 // generate a value of this type in the expanded code sequence.
1538 bool hasCarry =
1539 TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1540 ISD::ADDC : ISD::SUBC,
1541 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1542
1543 if (hasCarry) {
1544 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1545 if (N->getOpcode() == ISD::ADD) {
1546 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1547 HiOps[2] = Lo.getValue(1);
1548 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1549 } else {
1550 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1551 HiOps[2] = Lo.getValue(1);
1552 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1553 }
1554 return;
1555 }
1556
1557 if (N->getOpcode() == ISD::ADD) {
1558 Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2);
1559 Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2);
1560 SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[0],
1561 ISD::SETULT);
1562 SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1,
1563 DAG.getConstant(1, NVT),
1564 DAG.getConstant(0, NVT));
1565 SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[1],
1566 ISD::SETULT);
1567 SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2,
1568 DAG.getConstant(1, NVT), Carry1);
1569 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1570 } else {
1571 Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2);
1572 Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2);
1573 SDValue Cmp =
1574 DAG.getSetCC(dl, TLI.getSetCCResultType(LoOps[0].getValueType()),
1575 LoOps[0], LoOps[1], ISD::SETULT);
1576 SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp,
1577 DAG.getConstant(1, NVT),
1578 DAG.getConstant(0, NVT));
1579 Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1580 }
1581 }
1582
ExpandIntRes_ADDSUBC(SDNode * N,SDValue & Lo,SDValue & Hi)1583 void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1584 SDValue &Lo, SDValue &Hi) {
1585 // Expand the subcomponents.
1586 SDValue LHSL, LHSH, RHSL, RHSH;
1587 DebugLoc dl = N->getDebugLoc();
1588 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1589 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1590 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1591 SDValue LoOps[2] = { LHSL, RHSL };
1592 SDValue HiOps[3] = { LHSH, RHSH };
1593
1594 if (N->getOpcode() == ISD::ADDC) {
1595 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1596 HiOps[2] = Lo.getValue(1);
1597 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1598 } else {
1599 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1600 HiOps[2] = Lo.getValue(1);
1601 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1602 }
1603
1604 // Legalized the flag result - switch anything that used the old flag to
1605 // use the new one.
1606 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1607 }
1608
ExpandIntRes_ADDSUBE(SDNode * N,SDValue & Lo,SDValue & Hi)1609 void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1610 SDValue &Lo, SDValue &Hi) {
1611 // Expand the subcomponents.
1612 SDValue LHSL, LHSH, RHSL, RHSH;
1613 DebugLoc dl = N->getDebugLoc();
1614 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1615 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1616 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1617 SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1618 SDValue HiOps[3] = { LHSH, RHSH };
1619
1620 Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps, 3);
1621 HiOps[2] = Lo.getValue(1);
1622 Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps, 3);
1623
1624 // Legalized the flag result - switch anything that used the old flag to
1625 // use the new one.
1626 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1627 }
1628
ExpandIntRes_MERGE_VALUES(SDNode * N,unsigned ResNo,SDValue & Lo,SDValue & Hi)1629 void DAGTypeLegalizer::ExpandIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1630 SDValue &Lo, SDValue &Hi) {
1631 SDValue Res = DisintegrateMERGE_VALUES(N, ResNo);
1632 SplitInteger(Res, Lo, Hi);
1633 }
1634
ExpandIntRes_ANY_EXTEND(SDNode * N,SDValue & Lo,SDValue & Hi)1635 void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1636 SDValue &Lo, SDValue &Hi) {
1637 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1638 DebugLoc dl = N->getDebugLoc();
1639 SDValue Op = N->getOperand(0);
1640 if (Op.getValueType().bitsLE(NVT)) {
1641 // The low part is any extension of the input (which degenerates to a copy).
1642 Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1643 Hi = DAG.getUNDEF(NVT); // The high part is undefined.
1644 } else {
1645 // For example, extension of an i48 to an i64. The operand type necessarily
1646 // promotes to the result type, so will end up being expanded too.
1647 assert(getTypeAction(Op.getValueType()) ==
1648 TargetLowering::TypePromoteInteger &&
1649 "Only know how to promote this result!");
1650 SDValue Res = GetPromotedInteger(Op);
1651 assert(Res.getValueType() == N->getValueType(0) &&
1652 "Operand over promoted?");
1653 // Split the promoted operand. This will simplify when it is expanded.
1654 SplitInteger(Res, Lo, Hi);
1655 }
1656 }
1657
ExpandIntRes_AssertSext(SDNode * N,SDValue & Lo,SDValue & Hi)1658 void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1659 SDValue &Lo, SDValue &Hi) {
1660 DebugLoc dl = N->getDebugLoc();
1661 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1662 EVT NVT = Lo.getValueType();
1663 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1664 unsigned NVTBits = NVT.getSizeInBits();
1665 unsigned EVTBits = EVT.getSizeInBits();
1666
1667 if (NVTBits < EVTBits) {
1668 Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1669 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1670 EVTBits - NVTBits)));
1671 } else {
1672 Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1673 // The high part replicates the sign bit of Lo, make it explicit.
1674 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1675 DAG.getConstant(NVTBits-1, TLI.getPointerTy()));
1676 }
1677 }
1678
ExpandIntRes_AssertZext(SDNode * N,SDValue & Lo,SDValue & Hi)1679 void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1680 SDValue &Lo, SDValue &Hi) {
1681 DebugLoc dl = N->getDebugLoc();
1682 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1683 EVT NVT = Lo.getValueType();
1684 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1685 unsigned NVTBits = NVT.getSizeInBits();
1686 unsigned EVTBits = EVT.getSizeInBits();
1687
1688 if (NVTBits < EVTBits) {
1689 Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1690 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1691 EVTBits - NVTBits)));
1692 } else {
1693 Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1694 // The high part must be zero, make it explicit.
1695 Hi = DAG.getConstant(0, NVT);
1696 }
1697 }
1698
ExpandIntRes_BSWAP(SDNode * N,SDValue & Lo,SDValue & Hi)1699 void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1700 SDValue &Lo, SDValue &Hi) {
1701 DebugLoc dl = N->getDebugLoc();
1702 GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands.
1703 Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1704 Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1705 }
1706
ExpandIntRes_Constant(SDNode * N,SDValue & Lo,SDValue & Hi)1707 void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1708 SDValue &Lo, SDValue &Hi) {
1709 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1710 unsigned NBitWidth = NVT.getSizeInBits();
1711 const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
1712 Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT);
1713 Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT);
1714 }
1715
ExpandIntRes_CTLZ(SDNode * N,SDValue & Lo,SDValue & Hi)1716 void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1717 SDValue &Lo, SDValue &Hi) {
1718 DebugLoc dl = N->getDebugLoc();
1719 // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1720 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1721 EVT NVT = Lo.getValueType();
1722
1723 SDValue HiNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Hi,
1724 DAG.getConstant(0, NVT), ISD::SETNE);
1725
1726 SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo);
1727 SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi);
1728
1729 Lo = DAG.getNode(ISD::SELECT, dl, NVT, HiNotZero, HiLZ,
1730 DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1731 DAG.getConstant(NVT.getSizeInBits(), NVT)));
1732 Hi = DAG.getConstant(0, NVT);
1733 }
1734
ExpandIntRes_CTPOP(SDNode * N,SDValue & Lo,SDValue & Hi)1735 void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1736 SDValue &Lo, SDValue &Hi) {
1737 DebugLoc dl = N->getDebugLoc();
1738 // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1739 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1740 EVT NVT = Lo.getValueType();
1741 Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1742 DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1743 Hi = DAG.getConstant(0, NVT);
1744 }
1745
ExpandIntRes_CTTZ(SDNode * N,SDValue & Lo,SDValue & Hi)1746 void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1747 SDValue &Lo, SDValue &Hi) {
1748 DebugLoc dl = N->getDebugLoc();
1749 // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1750 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1751 EVT NVT = Lo.getValueType();
1752
1753 SDValue LoNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo,
1754 DAG.getConstant(0, NVT), ISD::SETNE);
1755
1756 SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo);
1757 SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi);
1758
1759 Lo = DAG.getNode(ISD::SELECT, dl, NVT, LoNotZero, LoLZ,
1760 DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1761 DAG.getConstant(NVT.getSizeInBits(), NVT)));
1762 Hi = DAG.getConstant(0, NVT);
1763 }
1764
ExpandIntRes_FP_TO_SINT(SDNode * N,SDValue & Lo,SDValue & Hi)1765 void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1766 SDValue &Hi) {
1767 DebugLoc dl = N->getDebugLoc();
1768 EVT VT = N->getValueType(0);
1769 SDValue Op = N->getOperand(0);
1770 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1771 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1772 SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, true/*irrelevant*/, dl),
1773 Lo, Hi);
1774 }
1775
ExpandIntRes_FP_TO_UINT(SDNode * N,SDValue & Lo,SDValue & Hi)1776 void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1777 SDValue &Hi) {
1778 DebugLoc dl = N->getDebugLoc();
1779 EVT VT = N->getValueType(0);
1780 SDValue Op = N->getOperand(0);
1781 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1782 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1783 SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, false/*irrelevant*/, dl),
1784 Lo, Hi);
1785 }
1786
ExpandIntRes_LOAD(LoadSDNode * N,SDValue & Lo,SDValue & Hi)1787 void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1788 SDValue &Lo, SDValue &Hi) {
1789 if (ISD::isNormalLoad(N)) {
1790 ExpandRes_NormalLoad(N, Lo, Hi);
1791 return;
1792 }
1793
1794 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1795
1796 EVT VT = N->getValueType(0);
1797 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1798 SDValue Ch = N->getChain();
1799 SDValue Ptr = N->getBasePtr();
1800 ISD::LoadExtType ExtType = N->getExtensionType();
1801 unsigned Alignment = N->getAlignment();
1802 bool isVolatile = N->isVolatile();
1803 bool isNonTemporal = N->isNonTemporal();
1804 bool isInvariant = N->isInvariant();
1805 DebugLoc dl = N->getDebugLoc();
1806
1807 assert(NVT.isByteSized() && "Expanded type not byte sized!");
1808
1809 if (N->getMemoryVT().bitsLE(NVT)) {
1810 EVT MemVT = N->getMemoryVT();
1811
1812 Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1813 MemVT, isVolatile, isNonTemporal, Alignment);
1814
1815 // Remember the chain.
1816 Ch = Lo.getValue(1);
1817
1818 if (ExtType == ISD::SEXTLOAD) {
1819 // The high part is obtained by SRA'ing all but one of the bits of the
1820 // lo part.
1821 unsigned LoSize = Lo.getValueType().getSizeInBits();
1822 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1823 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
1824 } else if (ExtType == ISD::ZEXTLOAD) {
1825 // The high part is just a zero.
1826 Hi = DAG.getConstant(0, NVT);
1827 } else {
1828 assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
1829 // The high part is undefined.
1830 Hi = DAG.getUNDEF(NVT);
1831 }
1832 } else if (TLI.isLittleEndian()) {
1833 // Little-endian - low bits are at low addresses.
1834 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
1835 isVolatile, isNonTemporal, isInvariant, Alignment);
1836
1837 unsigned ExcessBits =
1838 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
1839 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
1840
1841 // Increment the pointer to the other half.
1842 unsigned IncrementSize = NVT.getSizeInBits()/8;
1843 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1844 DAG.getIntPtrConstant(IncrementSize));
1845 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
1846 N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
1847 isVolatile, isNonTemporal,
1848 MinAlign(Alignment, IncrementSize));
1849
1850 // Build a factor node to remember that this load is independent of the
1851 // other one.
1852 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1853 Hi.getValue(1));
1854 } else {
1855 // Big-endian - high bits are at low addresses. Favor aligned loads at
1856 // the cost of some bit-fiddling.
1857 EVT MemVT = N->getMemoryVT();
1858 unsigned EBytes = MemVT.getStoreSize();
1859 unsigned IncrementSize = NVT.getSizeInBits()/8;
1860 unsigned ExcessBits = (EBytes - IncrementSize)*8;
1861
1862 // Load both the high bits and maybe some of the low bits.
1863 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1864 EVT::getIntegerVT(*DAG.getContext(),
1865 MemVT.getSizeInBits() - ExcessBits),
1866 isVolatile, isNonTemporal, Alignment);
1867
1868 // Increment the pointer to the other half.
1869 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1870 DAG.getIntPtrConstant(IncrementSize));
1871 // Load the rest of the low bits.
1872 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
1873 N->getPointerInfo().getWithOffset(IncrementSize),
1874 EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
1875 isVolatile, isNonTemporal,
1876 MinAlign(Alignment, IncrementSize));
1877
1878 // Build a factor node to remember that this load is independent of the
1879 // other one.
1880 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1881 Hi.getValue(1));
1882
1883 if (ExcessBits < NVT.getSizeInBits()) {
1884 // Transfer low bits from the bottom of Hi to the top of Lo.
1885 Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
1886 DAG.getNode(ISD::SHL, dl, NVT, Hi,
1887 DAG.getConstant(ExcessBits,
1888 TLI.getPointerTy())));
1889 // Move high bits to the right position in Hi.
1890 Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl,
1891 NVT, Hi,
1892 DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
1893 TLI.getPointerTy()));
1894 }
1895 }
1896
1897 // Legalized the chain result - switch anything that used the old chain to
1898 // use the new one.
1899 ReplaceValueWith(SDValue(N, 1), Ch);
1900 }
1901
ExpandIntRes_Logical(SDNode * N,SDValue & Lo,SDValue & Hi)1902 void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
1903 SDValue &Lo, SDValue &Hi) {
1904 DebugLoc dl = N->getDebugLoc();
1905 SDValue LL, LH, RL, RH;
1906 GetExpandedInteger(N->getOperand(0), LL, LH);
1907 GetExpandedInteger(N->getOperand(1), RL, RH);
1908 Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
1909 Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
1910 }
1911
ExpandIntRes_MUL(SDNode * N,SDValue & Lo,SDValue & Hi)1912 void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
1913 SDValue &Lo, SDValue &Hi) {
1914 EVT VT = N->getValueType(0);
1915 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1916 DebugLoc dl = N->getDebugLoc();
1917
1918 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
1919 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT);
1920 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT);
1921 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT);
1922 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
1923 SDValue LL, LH, RL, RH;
1924 GetExpandedInteger(N->getOperand(0), LL, LH);
1925 GetExpandedInteger(N->getOperand(1), RL, RH);
1926 unsigned OuterBitSize = VT.getSizeInBits();
1927 unsigned InnerBitSize = NVT.getSizeInBits();
1928 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
1929 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
1930
1931 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
1932 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
1933 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
1934 // The inputs are both zero-extended.
1935 if (HasUMUL_LOHI) {
1936 // We can emit a umul_lohi.
1937 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1938 Hi = SDValue(Lo.getNode(), 1);
1939 return;
1940 }
1941 if (HasMULHU) {
1942 // We can emit a mulhu+mul.
1943 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1944 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1945 return;
1946 }
1947 }
1948 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
1949 // The input values are both sign-extended.
1950 if (HasSMUL_LOHI) {
1951 // We can emit a smul_lohi.
1952 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1953 Hi = SDValue(Lo.getNode(), 1);
1954 return;
1955 }
1956 if (HasMULHS) {
1957 // We can emit a mulhs+mul.
1958 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1959 Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL);
1960 return;
1961 }
1962 }
1963 if (HasUMUL_LOHI) {
1964 // Lo,Hi = umul LHS, RHS.
1965 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
1966 DAG.getVTList(NVT, NVT), LL, RL);
1967 Lo = UMulLOHI;
1968 Hi = UMulLOHI.getValue(1);
1969 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1970 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1971 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1972 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1973 return;
1974 }
1975 if (HasMULHU) {
1976 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1977 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1978 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1979 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1980 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1981 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1982 return;
1983 }
1984 }
1985
1986 // If nothing else, we can make a libcall.
1987 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1988 if (VT == MVT::i16)
1989 LC = RTLIB::MUL_I16;
1990 else if (VT == MVT::i32)
1991 LC = RTLIB::MUL_I32;
1992 else if (VT == MVT::i64)
1993 LC = RTLIB::MUL_I64;
1994 else if (VT == MVT::i128)
1995 LC = RTLIB::MUL_I128;
1996 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
1997
1998 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1999 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true/*irrelevant*/, dl),
2000 Lo, Hi);
2001 }
2002
ExpandIntRes_SADDSUBO(SDNode * Node,SDValue & Lo,SDValue & Hi)2003 void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
2004 SDValue &Lo, SDValue &Hi) {
2005 SDValue LHS = Node->getOperand(0);
2006 SDValue RHS = Node->getOperand(1);
2007 DebugLoc dl = Node->getDebugLoc();
2008
2009 // Expand the result by simply replacing it with the equivalent
2010 // non-overflow-checking operation.
2011 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2012 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2013 LHS, RHS);
2014 SplitInteger(Sum, Lo, Hi);
2015
2016 // Compute the overflow.
2017 //
2018 // LHSSign -> LHS >= 0
2019 // RHSSign -> RHS >= 0
2020 // SumSign -> Sum >= 0
2021 //
2022 // Add:
2023 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2024 // Sub:
2025 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2026 //
2027 EVT OType = Node->getValueType(1);
2028 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2029
2030 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2031 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2032 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2033 Node->getOpcode() == ISD::SADDO ?
2034 ISD::SETEQ : ISD::SETNE);
2035
2036 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2037 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2038
2039 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2040
2041 // Use the calculated overflow everywhere.
2042 ReplaceValueWith(SDValue(Node, 1), Cmp);
2043 }
2044
ExpandIntRes_SDIV(SDNode * N,SDValue & Lo,SDValue & Hi)2045 void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
2046 SDValue &Lo, SDValue &Hi) {
2047 EVT VT = N->getValueType(0);
2048 DebugLoc dl = N->getDebugLoc();
2049
2050 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2051 if (VT == MVT::i16)
2052 LC = RTLIB::SDIV_I16;
2053 else if (VT == MVT::i32)
2054 LC = RTLIB::SDIV_I32;
2055 else if (VT == MVT::i64)
2056 LC = RTLIB::SDIV_I64;
2057 else if (VT == MVT::i128)
2058 LC = RTLIB::SDIV_I128;
2059 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
2060
2061 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2062 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl), Lo, Hi);
2063 }
2064
ExpandIntRes_Shift(SDNode * N,SDValue & Lo,SDValue & Hi)2065 void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
2066 SDValue &Lo, SDValue &Hi) {
2067 EVT VT = N->getValueType(0);
2068 DebugLoc dl = N->getDebugLoc();
2069
2070 // If we can emit an efficient shift operation, do so now. Check to see if
2071 // the RHS is a constant.
2072 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2073 return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi);
2074
2075 // If we can determine that the high bit of the shift is zero or one, even if
2076 // the low bits are variable, emit this shift in an optimized form.
2077 if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
2078 return;
2079
2080 // If this target supports shift_PARTS, use it. First, map to the _PARTS opc.
2081 unsigned PartsOpc;
2082 if (N->getOpcode() == ISD::SHL) {
2083 PartsOpc = ISD::SHL_PARTS;
2084 } else if (N->getOpcode() == ISD::SRL) {
2085 PartsOpc = ISD::SRL_PARTS;
2086 } else {
2087 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2088 PartsOpc = ISD::SRA_PARTS;
2089 }
2090
2091 // Next check to see if the target supports this SHL_PARTS operation or if it
2092 // will custom expand it.
2093 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2094 TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
2095 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
2096 Action == TargetLowering::Custom) {
2097 // Expand the subcomponents.
2098 SDValue LHSL, LHSH;
2099 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2100 EVT VT = LHSL.getValueType();
2101
2102 // If the shift amount operand is coming from a vector legalization it may
2103 // have an illegal type. Fix that first by casting the operand, otherwise
2104 // the new SHL_PARTS operation would need further legalization.
2105 SDValue ShiftOp = N->getOperand(1);
2106 EVT ShiftTy = TLI.getShiftAmountTy(VT);
2107 assert(ShiftTy.getScalarType().getSizeInBits() >=
2108 Log2_32_Ceil(VT.getScalarType().getSizeInBits()) &&
2109 "ShiftAmountTy is too small to cover the range of this type!");
2110 if (ShiftOp.getValueType() != ShiftTy)
2111 ShiftOp = DAG.getZExtOrTrunc(ShiftOp, dl, ShiftTy);
2112
2113 SDValue Ops[] = { LHSL, LHSH, ShiftOp };
2114 Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3);
2115 Hi = Lo.getValue(1);
2116 return;
2117 }
2118
2119 // Otherwise, emit a libcall.
2120 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2121 bool isSigned;
2122 if (N->getOpcode() == ISD::SHL) {
2123 isSigned = false; /*sign irrelevant*/
2124 if (VT == MVT::i16)
2125 LC = RTLIB::SHL_I16;
2126 else if (VT == MVT::i32)
2127 LC = RTLIB::SHL_I32;
2128 else if (VT == MVT::i64)
2129 LC = RTLIB::SHL_I64;
2130 else if (VT == MVT::i128)
2131 LC = RTLIB::SHL_I128;
2132 } else if (N->getOpcode() == ISD::SRL) {
2133 isSigned = false;
2134 if (VT == MVT::i16)
2135 LC = RTLIB::SRL_I16;
2136 else if (VT == MVT::i32)
2137 LC = RTLIB::SRL_I32;
2138 else if (VT == MVT::i64)
2139 LC = RTLIB::SRL_I64;
2140 else if (VT == MVT::i128)
2141 LC = RTLIB::SRL_I128;
2142 } else {
2143 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2144 isSigned = true;
2145 if (VT == MVT::i16)
2146 LC = RTLIB::SRA_I16;
2147 else if (VT == MVT::i32)
2148 LC = RTLIB::SRA_I32;
2149 else if (VT == MVT::i64)
2150 LC = RTLIB::SRA_I64;
2151 else if (VT == MVT::i128)
2152 LC = RTLIB::SRA_I128;
2153 }
2154
2155 if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2156 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2157 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, isSigned, dl), Lo, Hi);
2158 return;
2159 }
2160
2161 if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2162 llvm_unreachable("Unsupported shift!");
2163 }
2164
ExpandIntRes_SIGN_EXTEND(SDNode * N,SDValue & Lo,SDValue & Hi)2165 void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2166 SDValue &Lo, SDValue &Hi) {
2167 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2168 DebugLoc dl = N->getDebugLoc();
2169 SDValue Op = N->getOperand(0);
2170 if (Op.getValueType().bitsLE(NVT)) {
2171 // The low part is sign extension of the input (degenerates to a copy).
2172 Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2173 // The high part is obtained by SRA'ing all but one of the bits of low part.
2174 unsigned LoSize = NVT.getSizeInBits();
2175 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2176 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
2177 } else {
2178 // For example, extension of an i48 to an i64. The operand type necessarily
2179 // promotes to the result type, so will end up being expanded too.
2180 assert(getTypeAction(Op.getValueType()) ==
2181 TargetLowering::TypePromoteInteger &&
2182 "Only know how to promote this result!");
2183 SDValue Res = GetPromotedInteger(Op);
2184 assert(Res.getValueType() == N->getValueType(0) &&
2185 "Operand over promoted?");
2186 // Split the promoted operand. This will simplify when it is expanded.
2187 SplitInteger(Res, Lo, Hi);
2188 unsigned ExcessBits =
2189 Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2190 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2191 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2192 ExcessBits)));
2193 }
2194 }
2195
2196 void DAGTypeLegalizer::
ExpandIntRes_SIGN_EXTEND_INREG(SDNode * N,SDValue & Lo,SDValue & Hi)2197 ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2198 DebugLoc dl = N->getDebugLoc();
2199 GetExpandedInteger(N->getOperand(0), Lo, Hi);
2200 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2201
2202 if (EVT.bitsLE(Lo.getValueType())) {
2203 // sext_inreg the low part if needed.
2204 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2205 N->getOperand(1));
2206
2207 // The high part gets the sign extension from the lo-part. This handles
2208 // things like sextinreg V:i64 from i8.
2209 Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2210 DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
2211 TLI.getPointerTy()));
2212 } else {
2213 // For example, extension of an i48 to an i64. Leave the low part alone,
2214 // sext_inreg the high part.
2215 unsigned ExcessBits =
2216 EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2217 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2218 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2219 ExcessBits)));
2220 }
2221 }
2222
ExpandIntRes_SREM(SDNode * N,SDValue & Lo,SDValue & Hi)2223 void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2224 SDValue &Lo, SDValue &Hi) {
2225 EVT VT = N->getValueType(0);
2226 DebugLoc dl = N->getDebugLoc();
2227
2228 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2229 if (VT == MVT::i16)
2230 LC = RTLIB::SREM_I16;
2231 else if (VT == MVT::i32)
2232 LC = RTLIB::SREM_I32;
2233 else if (VT == MVT::i64)
2234 LC = RTLIB::SREM_I64;
2235 else if (VT == MVT::i128)
2236 LC = RTLIB::SREM_I128;
2237 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2238
2239 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2240 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl), Lo, Hi);
2241 }
2242
ExpandIntRes_TRUNCATE(SDNode * N,SDValue & Lo,SDValue & Hi)2243 void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2244 SDValue &Lo, SDValue &Hi) {
2245 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2246 DebugLoc dl = N->getDebugLoc();
2247 Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2248 Hi = DAG.getNode(ISD::SRL, dl,
2249 N->getOperand(0).getValueType(), N->getOperand(0),
2250 DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy()));
2251 Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2252 }
2253
ExpandIntRes_UADDSUBO(SDNode * N,SDValue & Lo,SDValue & Hi)2254 void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2255 SDValue &Lo, SDValue &Hi) {
2256 SDValue LHS = N->getOperand(0);
2257 SDValue RHS = N->getOperand(1);
2258 DebugLoc dl = N->getDebugLoc();
2259
2260 // Expand the result by simply replacing it with the equivalent
2261 // non-overflow-checking operation.
2262 SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2263 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2264 LHS, RHS);
2265 SplitInteger(Sum, Lo, Hi);
2266
2267 // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2268 // overflows iff a - b > a.
2269 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2270 N->getOpcode () == ISD::UADDO ?
2271 ISD::SETULT : ISD::SETUGT);
2272
2273 // Use the calculated overflow everywhere.
2274 ReplaceValueWith(SDValue(N, 1), Ofl);
2275 }
2276
ExpandIntRes_XMULO(SDNode * N,SDValue & Lo,SDValue & Hi)2277 void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2278 SDValue &Lo, SDValue &Hi) {
2279 EVT VT = N->getValueType(0);
2280 DebugLoc dl = N->getDebugLoc();
2281
2282 // A divide for UMULO should be faster than a function call.
2283 if (N->getOpcode() == ISD::UMULO) {
2284 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
2285
2286 SDValue MUL = DAG.getNode(ISD::MUL, dl, LHS.getValueType(), LHS, RHS);
2287 SplitInteger(MUL, Lo, Hi);
2288
2289 // A divide for UMULO will be faster than a function call. Select to
2290 // make sure we aren't using 0.
2291 SDValue isZero = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2292 RHS, DAG.getConstant(0, VT), ISD::SETEQ);
2293 SDValue NotZero = DAG.getNode(ISD::SELECT, dl, VT, isZero,
2294 DAG.getConstant(1, VT), RHS);
2295 SDValue DIV = DAG.getNode(ISD::UDIV, dl, VT, MUL, NotZero);
2296 SDValue Overflow = DAG.getSetCC(dl, N->getValueType(1), DIV, LHS,
2297 ISD::SETNE);
2298 Overflow = DAG.getNode(ISD::SELECT, dl, N->getValueType(1), isZero,
2299 DAG.getConstant(0, N->getValueType(1)),
2300 Overflow);
2301 ReplaceValueWith(SDValue(N, 1), Overflow);
2302 return;
2303 }
2304
2305 Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2306 EVT PtrVT = TLI.getPointerTy();
2307 Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2308
2309 // Replace this with a libcall that will check overflow.
2310 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2311 if (VT == MVT::i32)
2312 LC = RTLIB::MULO_I32;
2313 else if (VT == MVT::i64)
2314 LC = RTLIB::MULO_I64;
2315 else if (VT == MVT::i128)
2316 LC = RTLIB::MULO_I128;
2317 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2318
2319 SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2320 // Temporary for the overflow value, default it to zero.
2321 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2322 DAG.getConstant(0, PtrVT), Temp,
2323 MachinePointerInfo(), false, false, 0);
2324
2325 TargetLowering::ArgListTy Args;
2326 TargetLowering::ArgListEntry Entry;
2327 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2328 EVT ArgVT = N->getOperand(i).getValueType();
2329 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2330 Entry.Node = N->getOperand(i);
2331 Entry.Ty = ArgTy;
2332 Entry.isSExt = true;
2333 Entry.isZExt = false;
2334 Args.push_back(Entry);
2335 }
2336
2337 // Also pass the address of the overflow check.
2338 Entry.Node = Temp;
2339 Entry.Ty = PtrTy->getPointerTo();
2340 Entry.isSExt = true;
2341 Entry.isZExt = false;
2342 Args.push_back(Entry);
2343
2344 SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2345 TargetLowering::
2346 CallLoweringInfo CLI(Chain, RetTy, true, false, false, false,
2347 0, TLI.getLibcallCallingConv(LC),
2348 /*isTailCall=*/false,
2349 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2350 Func, Args, DAG, dl);
2351 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2352
2353 SplitInteger(CallInfo.first, Lo, Hi);
2354 SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2355 MachinePointerInfo(), false, false, false, 0);
2356 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2357 DAG.getConstant(0, PtrVT),
2358 ISD::SETNE);
2359 // Use the overflow from the libcall everywhere.
2360 ReplaceValueWith(SDValue(N, 1), Ofl);
2361 }
2362
ExpandIntRes_UDIV(SDNode * N,SDValue & Lo,SDValue & Hi)2363 void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2364 SDValue &Lo, SDValue &Hi) {
2365 EVT VT = N->getValueType(0);
2366 DebugLoc dl = N->getDebugLoc();
2367
2368 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2369 if (VT == MVT::i16)
2370 LC = RTLIB::UDIV_I16;
2371 else if (VT == MVT::i32)
2372 LC = RTLIB::UDIV_I32;
2373 else if (VT == MVT::i64)
2374 LC = RTLIB::UDIV_I64;
2375 else if (VT == MVT::i128)
2376 LC = RTLIB::UDIV_I128;
2377 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2378
2379 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2380 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl), Lo, Hi);
2381 }
2382
ExpandIntRes_UREM(SDNode * N,SDValue & Lo,SDValue & Hi)2383 void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2384 SDValue &Lo, SDValue &Hi) {
2385 EVT VT = N->getValueType(0);
2386 DebugLoc dl = N->getDebugLoc();
2387
2388 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2389 if (VT == MVT::i16)
2390 LC = RTLIB::UREM_I16;
2391 else if (VT == MVT::i32)
2392 LC = RTLIB::UREM_I32;
2393 else if (VT == MVT::i64)
2394 LC = RTLIB::UREM_I64;
2395 else if (VT == MVT::i128)
2396 LC = RTLIB::UREM_I128;
2397 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2398
2399 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2400 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl), Lo, Hi);
2401 }
2402
ExpandIntRes_ZERO_EXTEND(SDNode * N,SDValue & Lo,SDValue & Hi)2403 void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2404 SDValue &Lo, SDValue &Hi) {
2405 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2406 DebugLoc dl = N->getDebugLoc();
2407 SDValue Op = N->getOperand(0);
2408 if (Op.getValueType().bitsLE(NVT)) {
2409 // The low part is zero extension of the input (degenerates to a copy).
2410 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2411 Hi = DAG.getConstant(0, NVT); // The high part is just a zero.
2412 } else {
2413 // For example, extension of an i48 to an i64. The operand type necessarily
2414 // promotes to the result type, so will end up being expanded too.
2415 assert(getTypeAction(Op.getValueType()) ==
2416 TargetLowering::TypePromoteInteger &&
2417 "Only know how to promote this result!");
2418 SDValue Res = GetPromotedInteger(Op);
2419 assert(Res.getValueType() == N->getValueType(0) &&
2420 "Operand over promoted?");
2421 // Split the promoted operand. This will simplify when it is expanded.
2422 SplitInteger(Res, Lo, Hi);
2423 unsigned ExcessBits =
2424 Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2425 Hi = DAG.getZeroExtendInReg(Hi, dl,
2426 EVT::getIntegerVT(*DAG.getContext(),
2427 ExcessBits));
2428 }
2429 }
2430
ExpandIntRes_ATOMIC_LOAD(SDNode * N,SDValue & Lo,SDValue & Hi)2431 void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
2432 SDValue &Lo, SDValue &Hi) {
2433 DebugLoc dl = N->getDebugLoc();
2434 EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
2435 SDValue Zero = DAG.getConstant(0, VT);
2436 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
2437 N->getOperand(0),
2438 N->getOperand(1), Zero, Zero,
2439 cast<AtomicSDNode>(N)->getMemOperand(),
2440 cast<AtomicSDNode>(N)->getOrdering(),
2441 cast<AtomicSDNode>(N)->getSynchScope());
2442 ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
2443 ReplaceValueWith(SDValue(N, 1), Swap.getValue(1));
2444 }
2445
2446 //===----------------------------------------------------------------------===//
2447 // Integer Operand Expansion
2448 //===----------------------------------------------------------------------===//
2449
2450 /// ExpandIntegerOperand - This method is called when the specified operand of
2451 /// the specified node is found to need expansion. At this point, all of the
2452 /// result types of the node are known to be legal, but other operands of the
2453 /// node may need promotion or expansion as well as the specified one.
ExpandIntegerOperand(SDNode * N,unsigned OpNo)2454 bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2455 DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2456 SDValue Res = SDValue();
2457
2458 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2459 return false;
2460
2461 switch (N->getOpcode()) {
2462 default:
2463 #ifndef NDEBUG
2464 dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2465 N->dump(&DAG); dbgs() << "\n";
2466 #endif
2467 llvm_unreachable("Do not know how to expand this operator's operand!");
2468
2469 case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break;
2470 case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break;
2471 case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break;
2472 case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2473 case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2474 case ISD::SCALAR_TO_VECTOR: Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2475 case ISD::SELECT_CC: Res = ExpandIntOp_SELECT_CC(N); break;
2476 case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break;
2477 case ISD::SINT_TO_FP: Res = ExpandIntOp_SINT_TO_FP(N); break;
2478 case ISD::STORE: Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2479 case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break;
2480 case ISD::UINT_TO_FP: Res = ExpandIntOp_UINT_TO_FP(N); break;
2481
2482 case ISD::SHL:
2483 case ISD::SRA:
2484 case ISD::SRL:
2485 case ISD::ROTL:
2486 case ISD::ROTR: Res = ExpandIntOp_Shift(N); break;
2487 case ISD::RETURNADDR:
2488 case ISD::FRAMEADDR: Res = ExpandIntOp_RETURNADDR(N); break;
2489
2490 case ISD::ATOMIC_STORE: Res = ExpandIntOp_ATOMIC_STORE(N); break;
2491 }
2492
2493 // If the result is null, the sub-method took care of registering results etc.
2494 if (!Res.getNode()) return false;
2495
2496 // If the result is N, the sub-method updated N in place. Tell the legalizer
2497 // core about this.
2498 if (Res.getNode() == N)
2499 return true;
2500
2501 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2502 "Invalid operand expansion");
2503
2504 ReplaceValueWith(SDValue(N, 0), Res);
2505 return false;
2506 }
2507
2508 /// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code
2509 /// is shared among BR_CC, SELECT_CC, and SETCC handlers.
IntegerExpandSetCCOperands(SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,DebugLoc dl)2510 void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2511 SDValue &NewRHS,
2512 ISD::CondCode &CCCode,
2513 DebugLoc dl) {
2514 SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2515 GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2516 GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2517
2518 if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2519 if (RHSLo == RHSHi) {
2520 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2521 if (RHSCST->isAllOnesValue()) {
2522 // Equality comparison to -1.
2523 NewLHS = DAG.getNode(ISD::AND, dl,
2524 LHSLo.getValueType(), LHSLo, LHSHi);
2525 NewRHS = RHSLo;
2526 return;
2527 }
2528 }
2529 }
2530
2531 NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2532 NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2533 NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2534 NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2535 return;
2536 }
2537
2538 // If this is a comparison of the sign bit, just look at the top part.
2539 // X > -1, x < 0
2540 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2541 if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0
2542 (CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1
2543 NewLHS = LHSHi;
2544 NewRHS = RHSHi;
2545 return;
2546 }
2547
2548 // FIXME: This generated code sucks.
2549 ISD::CondCode LowCC;
2550 switch (CCCode) {
2551 default: llvm_unreachable("Unknown integer setcc!");
2552 case ISD::SETLT:
2553 case ISD::SETULT: LowCC = ISD::SETULT; break;
2554 case ISD::SETGT:
2555 case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2556 case ISD::SETLE:
2557 case ISD::SETULE: LowCC = ISD::SETULE; break;
2558 case ISD::SETGE:
2559 case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2560 }
2561
2562 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
2563 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
2564 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2565
2566 // NOTE: on targets without efficient SELECT of bools, we can always use
2567 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2568 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true, NULL);
2569 SDValue Tmp1, Tmp2;
2570 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()),
2571 LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2572 if (!Tmp1.getNode())
2573 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()),
2574 LHSLo, RHSLo, LowCC);
2575 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2576 LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2577 if (!Tmp2.getNode())
2578 Tmp2 = DAG.getNode(ISD::SETCC, dl,
2579 TLI.getSetCCResultType(LHSHi.getValueType()),
2580 LHSHi, RHSHi, DAG.getCondCode(CCCode));
2581
2582 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2583 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2584 if ((Tmp1C && Tmp1C->isNullValue()) ||
2585 (Tmp2C && Tmp2C->isNullValue() &&
2586 (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2587 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2588 (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2589 (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2590 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2591 // low part is known false, returns high part.
2592 // For LE / GE, if high part is known false, ignore the low part.
2593 // For LT / GT, if high part is known true, ignore the low part.
2594 NewLHS = Tmp2;
2595 NewRHS = SDValue();
2596 return;
2597 }
2598
2599 NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2600 LHSHi, RHSHi, ISD::SETEQ, false,
2601 DagCombineInfo, dl);
2602 if (!NewLHS.getNode())
2603 NewLHS = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
2604 LHSHi, RHSHi, ISD::SETEQ);
2605 NewLHS = DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(),
2606 NewLHS, Tmp1, Tmp2);
2607 NewRHS = SDValue();
2608 }
2609
ExpandIntOp_BR_CC(SDNode * N)2610 SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2611 SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2612 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2613 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2614
2615 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2616 // against zero to select between true and false values.
2617 if (NewRHS.getNode() == 0) {
2618 NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2619 CCCode = ISD::SETNE;
2620 }
2621
2622 // Update N to have the operands specified.
2623 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2624 DAG.getCondCode(CCCode), NewLHS, NewRHS,
2625 N->getOperand(4)), 0);
2626 }
2627
ExpandIntOp_SELECT_CC(SDNode * N)2628 SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2629 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2630 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2631 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2632
2633 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2634 // against zero to select between true and false values.
2635 if (NewRHS.getNode() == 0) {
2636 NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2637 CCCode = ISD::SETNE;
2638 }
2639
2640 // Update N to have the operands specified.
2641 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2642 N->getOperand(2), N->getOperand(3),
2643 DAG.getCondCode(CCCode)), 0);
2644 }
2645
ExpandIntOp_SETCC(SDNode * N)2646 SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2647 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2648 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2649 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2650
2651 // If ExpandSetCCOperands returned a scalar, use it.
2652 if (NewRHS.getNode() == 0) {
2653 assert(NewLHS.getValueType() == N->getValueType(0) &&
2654 "Unexpected setcc expansion!");
2655 return NewLHS;
2656 }
2657
2658 // Otherwise, update N to have the operands specified.
2659 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2660 DAG.getCondCode(CCCode)), 0);
2661 }
2662
ExpandIntOp_Shift(SDNode * N)2663 SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2664 // The value being shifted is legal, but the shift amount is too big.
2665 // It follows that either the result of the shift is undefined, or the
2666 // upper half of the shift amount is zero. Just use the lower half.
2667 SDValue Lo, Hi;
2668 GetExpandedInteger(N->getOperand(1), Lo, Hi);
2669 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2670 }
2671
ExpandIntOp_RETURNADDR(SDNode * N)2672 SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2673 // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant. This
2674 // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2675 // constant to valid type.
2676 SDValue Lo, Hi;
2677 GetExpandedInteger(N->getOperand(0), Lo, Hi);
2678 return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2679 }
2680
ExpandIntOp_SINT_TO_FP(SDNode * N)2681 SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2682 SDValue Op = N->getOperand(0);
2683 EVT DstVT = N->getValueType(0);
2684 RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2685 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2686 "Don't know how to expand this SINT_TO_FP!");
2687 return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, N->getDebugLoc());
2688 }
2689
ExpandIntOp_STORE(StoreSDNode * N,unsigned OpNo)2690 SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2691 if (ISD::isNormalStore(N))
2692 return ExpandOp_NormalStore(N, OpNo);
2693
2694 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2695 assert(OpNo == 1 && "Can only expand the stored value so far");
2696
2697 EVT VT = N->getOperand(1).getValueType();
2698 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2699 SDValue Ch = N->getChain();
2700 SDValue Ptr = N->getBasePtr();
2701 unsigned Alignment = N->getAlignment();
2702 bool isVolatile = N->isVolatile();
2703 bool isNonTemporal = N->isNonTemporal();
2704 DebugLoc dl = N->getDebugLoc();
2705 SDValue Lo, Hi;
2706
2707 assert(NVT.isByteSized() && "Expanded type not byte sized!");
2708
2709 if (N->getMemoryVT().bitsLE(NVT)) {
2710 GetExpandedInteger(N->getValue(), Lo, Hi);
2711 return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2712 N->getMemoryVT(), isVolatile, isNonTemporal,
2713 Alignment);
2714 }
2715
2716 if (TLI.isLittleEndian()) {
2717 // Little-endian - low bits are at low addresses.
2718 GetExpandedInteger(N->getValue(), Lo, Hi);
2719
2720 Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2721 isVolatile, isNonTemporal, Alignment);
2722
2723 unsigned ExcessBits =
2724 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2725 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2726
2727 // Increment the pointer to the other half.
2728 unsigned IncrementSize = NVT.getSizeInBits()/8;
2729 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2730 DAG.getIntPtrConstant(IncrementSize));
2731 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2732 N->getPointerInfo().getWithOffset(IncrementSize),
2733 NEVT, isVolatile, isNonTemporal,
2734 MinAlign(Alignment, IncrementSize));
2735 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2736 }
2737
2738 // Big-endian - high bits are at low addresses. Favor aligned stores at
2739 // the cost of some bit-fiddling.
2740 GetExpandedInteger(N->getValue(), Lo, Hi);
2741
2742 EVT ExtVT = N->getMemoryVT();
2743 unsigned EBytes = ExtVT.getStoreSize();
2744 unsigned IncrementSize = NVT.getSizeInBits()/8;
2745 unsigned ExcessBits = (EBytes - IncrementSize)*8;
2746 EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
2747 ExtVT.getSizeInBits() - ExcessBits);
2748
2749 if (ExcessBits < NVT.getSizeInBits()) {
2750 // Transfer high bits from the top of Lo to the bottom of Hi.
2751 Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
2752 DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
2753 TLI.getPointerTy()));
2754 Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2755 DAG.getNode(ISD::SRL, dl, NVT, Lo,
2756 DAG.getConstant(ExcessBits,
2757 TLI.getPointerTy())));
2758 }
2759
2760 // Store both the high bits and maybe some of the low bits.
2761 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
2762 HiVT, isVolatile, isNonTemporal, Alignment);
2763
2764 // Increment the pointer to the other half.
2765 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2766 DAG.getIntPtrConstant(IncrementSize));
2767 // Store the lowest ExcessBits bits in the second half.
2768 Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
2769 N->getPointerInfo().getWithOffset(IncrementSize),
2770 EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2771 isVolatile, isNonTemporal,
2772 MinAlign(Alignment, IncrementSize));
2773 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2774 }
2775
ExpandIntOp_TRUNCATE(SDNode * N)2776 SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
2777 SDValue InL, InH;
2778 GetExpandedInteger(N->getOperand(0), InL, InH);
2779 // Just truncate the low part of the source.
2780 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), InL);
2781 }
2782
ExpandIntOp_UINT_TO_FP(SDNode * N)2783 SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
2784 SDValue Op = N->getOperand(0);
2785 EVT SrcVT = Op.getValueType();
2786 EVT DstVT = N->getValueType(0);
2787 DebugLoc dl = N->getDebugLoc();
2788
2789 // The following optimization is valid only if every value in SrcVT (when
2790 // treated as signed) is representable in DstVT. Check that the mantissa
2791 // size of DstVT is >= than the number of bits in SrcVT -1.
2792 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(DstVT);
2793 if (APFloat::semanticsPrecision(sem) >= SrcVT.getSizeInBits()-1 &&
2794 TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
2795 // Do a signed conversion then adjust the result.
2796 SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
2797 SignedConv = TLI.LowerOperation(SignedConv, DAG);
2798
2799 // The result of the signed conversion needs adjusting if the 'sign bit' of
2800 // the incoming integer was set. To handle this, we dynamically test to see
2801 // if it is set, and, if so, add a fudge factor.
2802
2803 const uint64_t F32TwoE32 = 0x4F800000ULL;
2804 const uint64_t F32TwoE64 = 0x5F800000ULL;
2805 const uint64_t F32TwoE128 = 0x7F800000ULL;
2806
2807 APInt FF(32, 0);
2808 if (SrcVT == MVT::i32)
2809 FF = APInt(32, F32TwoE32);
2810 else if (SrcVT == MVT::i64)
2811 FF = APInt(32, F32TwoE64);
2812 else if (SrcVT == MVT::i128)
2813 FF = APInt(32, F32TwoE128);
2814 else
2815 llvm_unreachable("Unsupported UINT_TO_FP!");
2816
2817 // Check whether the sign bit is set.
2818 SDValue Lo, Hi;
2819 GetExpandedInteger(Op, Lo, Hi);
2820 SDValue SignSet = DAG.getSetCC(dl,
2821 TLI.getSetCCResultType(Hi.getValueType()),
2822 Hi, DAG.getConstant(0, Hi.getValueType()),
2823 ISD::SETLT);
2824
2825 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2826 SDValue FudgePtr = DAG.getConstantPool(
2827 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
2828 TLI.getPointerTy());
2829
2830 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2831 SDValue Zero = DAG.getIntPtrConstant(0);
2832 SDValue Four = DAG.getIntPtrConstant(4);
2833 if (TLI.isBigEndian()) std::swap(Zero, Four);
2834 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
2835 Zero, Four);
2836 unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
2837 FudgePtr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), FudgePtr, Offset);
2838 Alignment = std::min(Alignment, 4u);
2839
2840 // Load the value out, extending it from f32 to the destination float type.
2841 // FIXME: Avoid the extend by constructing the right constant pool?
2842 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(),
2843 FudgePtr,
2844 MachinePointerInfo::getConstantPool(),
2845 MVT::f32,
2846 false, false, Alignment);
2847 return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
2848 }
2849
2850 // Otherwise, use a libcall.
2851 RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
2852 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2853 "Don't know how to expand this UINT_TO_FP!");
2854 return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, dl);
2855 }
2856
ExpandIntOp_ATOMIC_STORE(SDNode * N)2857 SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
2858 DebugLoc dl = N->getDebugLoc();
2859 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2860 cast<AtomicSDNode>(N)->getMemoryVT(),
2861 N->getOperand(0),
2862 N->getOperand(1), N->getOperand(2),
2863 cast<AtomicSDNode>(N)->getMemOperand(),
2864 cast<AtomicSDNode>(N)->getOrdering(),
2865 cast<AtomicSDNode>(N)->getSynchScope());
2866 return Swap.getValue(1);
2867 }
2868
2869
PromoteIntRes_EXTRACT_SUBVECTOR(SDNode * N)2870 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
2871 SDValue InOp0 = N->getOperand(0);
2872 EVT InVT = InOp0.getValueType();
2873
2874 EVT OutVT = N->getValueType(0);
2875 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2876 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2877 unsigned OutNumElems = OutVT.getVectorNumElements();
2878 EVT NOutVTElem = NOutVT.getVectorElementType();
2879
2880 DebugLoc dl = N->getDebugLoc();
2881 SDValue BaseIdx = N->getOperand(1);
2882
2883 SmallVector<SDValue, 8> Ops;
2884 Ops.reserve(OutNumElems);
2885 for (unsigned i = 0; i != OutNumElems; ++i) {
2886
2887 // Extract the element from the original vector.
2888 SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
2889 BaseIdx, DAG.getIntPtrConstant(i));
2890 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2891 InVT.getVectorElementType(), N->getOperand(0), Index);
2892
2893 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
2894 // Insert the converted element to the new vector.
2895 Ops.push_back(Op);
2896 }
2897
2898 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2899 }
2900
2901
PromoteIntRes_VECTOR_SHUFFLE(SDNode * N)2902 SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
2903 ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
2904 EVT VT = N->getValueType(0);
2905 DebugLoc dl = N->getDebugLoc();
2906
2907 unsigned NumElts = VT.getVectorNumElements();
2908 SmallVector<int, 8> NewMask;
2909 for (unsigned i = 0; i != NumElts; ++i) {
2910 NewMask.push_back(SV->getMaskElt(i));
2911 }
2912
2913 SDValue V0 = GetPromotedInteger(N->getOperand(0));
2914 SDValue V1 = GetPromotedInteger(N->getOperand(1));
2915 EVT OutVT = V0.getValueType();
2916
2917 return DAG.getVectorShuffle(OutVT, dl, V0, V1, &NewMask[0]);
2918 }
2919
2920
PromoteIntRes_BUILD_VECTOR(SDNode * N)2921 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
2922 EVT OutVT = N->getValueType(0);
2923 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2924 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2925 unsigned NumElems = N->getNumOperands();
2926 EVT NOutVTElem = NOutVT.getVectorElementType();
2927
2928 DebugLoc dl = N->getDebugLoc();
2929
2930 SmallVector<SDValue, 8> Ops;
2931 Ops.reserve(NumElems);
2932 for (unsigned i = 0; i != NumElems; ++i) {
2933 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
2934 Ops.push_back(Op);
2935 }
2936
2937 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2938 }
2939
PromoteIntRes_SCALAR_TO_VECTOR(SDNode * N)2940 SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
2941
2942 DebugLoc dl = N->getDebugLoc();
2943
2944 assert(!N->getOperand(0).getValueType().isVector() &&
2945 "Input must be a scalar");
2946
2947 EVT OutVT = N->getValueType(0);
2948 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2949 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2950 EVT NOutVTElem = NOutVT.getVectorElementType();
2951
2952 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
2953
2954 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
2955 }
2956
PromoteIntRes_CONCAT_VECTORS(SDNode * N)2957 SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
2958 DebugLoc dl = N->getDebugLoc();
2959
2960 EVT OutVT = N->getValueType(0);
2961 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2962 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2963
2964 EVT InElemTy = OutVT.getVectorElementType();
2965 EVT OutElemTy = NOutVT.getVectorElementType();
2966
2967 unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements();
2968 unsigned NumOutElem = NOutVT.getVectorNumElements();
2969 unsigned NumOperands = N->getNumOperands();
2970 assert(NumElem * NumOperands == NumOutElem &&
2971 "Unexpected number of elements");
2972
2973 // Take the elements from the first vector.
2974 SmallVector<SDValue, 8> Ops(NumOutElem);
2975 for (unsigned i = 0; i < NumOperands; ++i) {
2976 SDValue Op = N->getOperand(i);
2977 for (unsigned j = 0; j < NumElem; ++j) {
2978 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2979 InElemTy, Op, DAG.getIntPtrConstant(j));
2980 Ops[i * NumElem + j] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext);
2981 }
2982 }
2983
2984 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2985 }
2986
PromoteIntRes_INSERT_VECTOR_ELT(SDNode * N)2987 SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
2988 EVT OutVT = N->getValueType(0);
2989 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2990 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2991
2992 EVT NOutVTElem = NOutVT.getVectorElementType();
2993
2994 DebugLoc dl = N->getDebugLoc();
2995 SDValue V0 = GetPromotedInteger(N->getOperand(0));
2996
2997 SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
2998 NOutVTElem, N->getOperand(1));
2999 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
3000 V0, ConvElem, N->getOperand(2));
3001 }
3002
PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode * N)3003 SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
3004 DebugLoc dl = N->getDebugLoc();
3005 SDValue V0 = GetPromotedInteger(N->getOperand(0));
3006 SDValue V1 = N->getOperand(1);
3007 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3008 V0->getValueType(0).getScalarType(), V0, V1);
3009
3010 // EXTRACT_VECTOR_ELT can return types which are wider than the incoming
3011 // element types. If this is the case then we need to expand the outgoing
3012 // value and not truncate it.
3013 return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
3014 }
3015
PromoteIntOp_CONCAT_VECTORS(SDNode * N)3016 SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
3017 DebugLoc dl = N->getDebugLoc();
3018 unsigned NumElems = N->getNumOperands();
3019
3020 EVT RetSclrTy = N->getValueType(0).getVectorElementType();
3021
3022 SmallVector<SDValue, 8> NewOps;
3023 NewOps.reserve(NumElems);
3024
3025 // For each incoming vector
3026 for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
3027 SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
3028 EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
3029 unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
3030
3031 for (unsigned i=0; i<NumElem; ++i) {
3032 // Extract element from incoming vector
3033 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SclrTy,
3034 Incoming, DAG.getIntPtrConstant(i));
3035 SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
3036 NewOps.push_back(Tr);
3037 }
3038 }
3039
3040 return DAG.getNode(ISD::BUILD_VECTOR, dl, N->getValueType(0),
3041 &NewOps[0], NewOps.size());
3042 }
3043