1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36 ASTContext &Context) {
37 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38 return 0;
39
40 // See if this is a string literal or @encode.
41 Init = Init->IgnoreParens();
42
43 // Handle @encode, which is a narrow string.
44 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45 return Init;
46
47 // Otherwise we can only handle string literals.
48 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49 if (SL == 0) return 0;
50
51 QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52
53 switch (SL->getKind()) {
54 case StringLiteral::Ascii:
55 case StringLiteral::UTF8:
56 // char array can be initialized with a narrow string.
57 // Only allow char x[] = "foo"; not char x[] = L"foo";
58 return ElemTy->isCharType() ? Init : 0;
59 case StringLiteral::UTF16:
60 return ElemTy->isChar16Type() ? Init : 0;
61 case StringLiteral::UTF32:
62 return ElemTy->isChar32Type() ? Init : 0;
63 case StringLiteral::Wide:
64 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65 // correction from DR343): "An array with element type compatible with a
66 // qualified or unqualified version of wchar_t may be initialized by a wide
67 // string literal, optionally enclosed in braces."
68 if (Context.typesAreCompatible(Context.getWCharType(),
69 ElemTy.getUnqualifiedType()))
70 return Init;
71
72 return 0;
73 }
74
75 llvm_unreachable("missed a StringLiteral kind?");
76 }
77
IsStringInit(Expr * init,QualType declType,ASTContext & Context)78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79 const ArrayType *arrayType = Context.getAsArrayType(declType);
80 if (!arrayType) return 0;
81
82 return IsStringInit(init, arrayType, Context);
83 }
84
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)85 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86 Sema &S) {
87 // Get the length of the string as parsed.
88 uint64_t StrLength =
89 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90
91
92 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93 // C99 6.7.8p14. We have an array of character type with unknown size
94 // being initialized to a string literal.
95 llvm::APInt ConstVal(32, StrLength);
96 // Return a new array type (C99 6.7.8p22).
97 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
98 ConstVal,
99 ArrayType::Normal, 0);
100 return;
101 }
102
103 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
104
105 // We have an array of character type with known size. However,
106 // the size may be smaller or larger than the string we are initializing.
107 // FIXME: Avoid truncation for 64-bit length strings.
108 if (S.getLangOpts().CPlusPlus) {
109 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
110 // For Pascal strings it's OK to strip off the terminating null character,
111 // so the example below is valid:
112 //
113 // unsigned char a[2] = "\pa";
114 if (SL->isPascal())
115 StrLength--;
116 }
117
118 // [dcl.init.string]p2
119 if (StrLength > CAT->getSize().getZExtValue())
120 S.Diag(Str->getLocStart(),
121 diag::err_initializer_string_for_char_array_too_long)
122 << Str->getSourceRange();
123 } else {
124 // C99 6.7.8p14.
125 if (StrLength-1 > CAT->getSize().getZExtValue())
126 S.Diag(Str->getLocStart(),
127 diag::warn_initializer_string_for_char_array_too_long)
128 << Str->getSourceRange();
129 }
130
131 // Set the type to the actual size that we are initializing. If we have
132 // something like:
133 // char x[1] = "foo";
134 // then this will set the string literal's type to char[1].
135 Str->setType(DeclT);
136 }
137
138 //===----------------------------------------------------------------------===//
139 // Semantic checking for initializer lists.
140 //===----------------------------------------------------------------------===//
141
142 /// @brief Semantic checking for initializer lists.
143 ///
144 /// The InitListChecker class contains a set of routines that each
145 /// handle the initialization of a certain kind of entity, e.g.,
146 /// arrays, vectors, struct/union types, scalars, etc. The
147 /// InitListChecker itself performs a recursive walk of the subobject
148 /// structure of the type to be initialized, while stepping through
149 /// the initializer list one element at a time. The IList and Index
150 /// parameters to each of the Check* routines contain the active
151 /// (syntactic) initializer list and the index into that initializer
152 /// list that represents the current initializer. Each routine is
153 /// responsible for moving that Index forward as it consumes elements.
154 ///
155 /// Each Check* routine also has a StructuredList/StructuredIndex
156 /// arguments, which contains the current "structured" (semantic)
157 /// initializer list and the index into that initializer list where we
158 /// are copying initializers as we map them over to the semantic
159 /// list. Once we have completed our recursive walk of the subobject
160 /// structure, we will have constructed a full semantic initializer
161 /// list.
162 ///
163 /// C99 designators cause changes in the initializer list traversal,
164 /// because they make the initialization "jump" into a specific
165 /// subobject and then continue the initialization from that
166 /// point. CheckDesignatedInitializer() recursively steps into the
167 /// designated subobject and manages backing out the recursion to
168 /// initialize the subobjects after the one designated.
169 namespace {
170 class InitListChecker {
171 Sema &SemaRef;
172 bool hadError;
173 bool VerifyOnly; // no diagnostics, no structure building
174 bool AllowBraceElision;
175 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
176 InitListExpr *FullyStructuredList;
177
178 void CheckImplicitInitList(const InitializedEntity &Entity,
179 InitListExpr *ParentIList, QualType T,
180 unsigned &Index, InitListExpr *StructuredList,
181 unsigned &StructuredIndex);
182 void CheckExplicitInitList(const InitializedEntity &Entity,
183 InitListExpr *IList, QualType &T,
184 unsigned &Index, InitListExpr *StructuredList,
185 unsigned &StructuredIndex,
186 bool TopLevelObject = false);
187 void CheckListElementTypes(const InitializedEntity &Entity,
188 InitListExpr *IList, QualType &DeclType,
189 bool SubobjectIsDesignatorContext,
190 unsigned &Index,
191 InitListExpr *StructuredList,
192 unsigned &StructuredIndex,
193 bool TopLevelObject = false);
194 void CheckSubElementType(const InitializedEntity &Entity,
195 InitListExpr *IList, QualType ElemType,
196 unsigned &Index,
197 InitListExpr *StructuredList,
198 unsigned &StructuredIndex);
199 void CheckComplexType(const InitializedEntity &Entity,
200 InitListExpr *IList, QualType DeclType,
201 unsigned &Index,
202 InitListExpr *StructuredList,
203 unsigned &StructuredIndex);
204 void CheckScalarType(const InitializedEntity &Entity,
205 InitListExpr *IList, QualType DeclType,
206 unsigned &Index,
207 InitListExpr *StructuredList,
208 unsigned &StructuredIndex);
209 void CheckReferenceType(const InitializedEntity &Entity,
210 InitListExpr *IList, QualType DeclType,
211 unsigned &Index,
212 InitListExpr *StructuredList,
213 unsigned &StructuredIndex);
214 void CheckVectorType(const InitializedEntity &Entity,
215 InitListExpr *IList, QualType DeclType, unsigned &Index,
216 InitListExpr *StructuredList,
217 unsigned &StructuredIndex);
218 void CheckStructUnionTypes(const InitializedEntity &Entity,
219 InitListExpr *IList, QualType DeclType,
220 RecordDecl::field_iterator Field,
221 bool SubobjectIsDesignatorContext, unsigned &Index,
222 InitListExpr *StructuredList,
223 unsigned &StructuredIndex,
224 bool TopLevelObject = false);
225 void CheckArrayType(const InitializedEntity &Entity,
226 InitListExpr *IList, QualType &DeclType,
227 llvm::APSInt elementIndex,
228 bool SubobjectIsDesignatorContext, unsigned &Index,
229 InitListExpr *StructuredList,
230 unsigned &StructuredIndex);
231 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
232 InitListExpr *IList, DesignatedInitExpr *DIE,
233 unsigned DesigIdx,
234 QualType &CurrentObjectType,
235 RecordDecl::field_iterator *NextField,
236 llvm::APSInt *NextElementIndex,
237 unsigned &Index,
238 InitListExpr *StructuredList,
239 unsigned &StructuredIndex,
240 bool FinishSubobjectInit,
241 bool TopLevelObject);
242 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
243 QualType CurrentObjectType,
244 InitListExpr *StructuredList,
245 unsigned StructuredIndex,
246 SourceRange InitRange);
247 void UpdateStructuredListElement(InitListExpr *StructuredList,
248 unsigned &StructuredIndex,
249 Expr *expr);
250 int numArrayElements(QualType DeclType);
251 int numStructUnionElements(QualType DeclType);
252
253 void FillInValueInitForField(unsigned Init, FieldDecl *Field,
254 const InitializedEntity &ParentEntity,
255 InitListExpr *ILE, bool &RequiresSecondPass);
256 void FillInValueInitializations(const InitializedEntity &Entity,
257 InitListExpr *ILE, bool &RequiresSecondPass);
258 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
259 Expr *InitExpr, FieldDecl *Field,
260 bool TopLevelObject);
261 void CheckValueInitializable(const InitializedEntity &Entity);
262
263 public:
264 InitListChecker(Sema &S, const InitializedEntity &Entity,
265 InitListExpr *IL, QualType &T, bool VerifyOnly,
266 bool AllowBraceElision);
HadError()267 bool HadError() { return hadError; }
268
269 // @brief Retrieves the fully-structured initializer list used for
270 // semantic analysis and code generation.
getFullyStructuredList() const271 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
272 };
273 } // end anonymous namespace
274
CheckValueInitializable(const InitializedEntity & Entity)275 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
276 assert(VerifyOnly &&
277 "CheckValueInitializable is only inteded for verification mode.");
278
279 SourceLocation Loc;
280 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
281 true);
282 InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
283 if (InitSeq.Failed())
284 hadError = true;
285 }
286
FillInValueInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass)287 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
288 const InitializedEntity &ParentEntity,
289 InitListExpr *ILE,
290 bool &RequiresSecondPass) {
291 SourceLocation Loc = ILE->getLocStart();
292 unsigned NumInits = ILE->getNumInits();
293 InitializedEntity MemberEntity
294 = InitializedEntity::InitializeMember(Field, &ParentEntity);
295 if (Init >= NumInits || !ILE->getInit(Init)) {
296 // FIXME: We probably don't need to handle references
297 // specially here, since value-initialization of references is
298 // handled in InitializationSequence.
299 if (Field->getType()->isReferenceType()) {
300 // C++ [dcl.init.aggr]p9:
301 // If an incomplete or empty initializer-list leaves a
302 // member of reference type uninitialized, the program is
303 // ill-formed.
304 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
305 << Field->getType()
306 << ILE->getSyntacticForm()->getSourceRange();
307 SemaRef.Diag(Field->getLocation(),
308 diag::note_uninit_reference_member);
309 hadError = true;
310 return;
311 }
312
313 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
314 true);
315 InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
316 if (!InitSeq) {
317 InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
318 hadError = true;
319 return;
320 }
321
322 ExprResult MemberInit
323 = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
324 if (MemberInit.isInvalid()) {
325 hadError = true;
326 return;
327 }
328
329 if (hadError) {
330 // Do nothing
331 } else if (Init < NumInits) {
332 ILE->setInit(Init, MemberInit.takeAs<Expr>());
333 } else if (InitSeq.isConstructorInitialization()) {
334 // Value-initialization requires a constructor call, so
335 // extend the initializer list to include the constructor
336 // call and make a note that we'll need to take another pass
337 // through the initializer list.
338 ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
339 RequiresSecondPass = true;
340 }
341 } else if (InitListExpr *InnerILE
342 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
343 FillInValueInitializations(MemberEntity, InnerILE,
344 RequiresSecondPass);
345 }
346
347 /// Recursively replaces NULL values within the given initializer list
348 /// with expressions that perform value-initialization of the
349 /// appropriate type.
350 void
FillInValueInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass)351 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
352 InitListExpr *ILE,
353 bool &RequiresSecondPass) {
354 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
355 "Should not have void type");
356 SourceLocation Loc = ILE->getLocStart();
357 if (ILE->getSyntacticForm())
358 Loc = ILE->getSyntacticForm()->getLocStart();
359
360 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
361 if (RType->getDecl()->isUnion() &&
362 ILE->getInitializedFieldInUnion())
363 FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
364 Entity, ILE, RequiresSecondPass);
365 else {
366 unsigned Init = 0;
367 for (RecordDecl::field_iterator
368 Field = RType->getDecl()->field_begin(),
369 FieldEnd = RType->getDecl()->field_end();
370 Field != FieldEnd; ++Field) {
371 if (Field->isUnnamedBitfield())
372 continue;
373
374 if (hadError)
375 return;
376
377 FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
378 if (hadError)
379 return;
380
381 ++Init;
382
383 // Only look at the first initialization of a union.
384 if (RType->getDecl()->isUnion())
385 break;
386 }
387 }
388
389 return;
390 }
391
392 QualType ElementType;
393
394 InitializedEntity ElementEntity = Entity;
395 unsigned NumInits = ILE->getNumInits();
396 unsigned NumElements = NumInits;
397 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
398 ElementType = AType->getElementType();
399 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
400 NumElements = CAType->getSize().getZExtValue();
401 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
402 0, Entity);
403 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
404 ElementType = VType->getElementType();
405 NumElements = VType->getNumElements();
406 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
407 0, Entity);
408 } else
409 ElementType = ILE->getType();
410
411
412 for (unsigned Init = 0; Init != NumElements; ++Init) {
413 if (hadError)
414 return;
415
416 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
417 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
418 ElementEntity.setElementIndex(Init);
419
420 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
421 if (!InitExpr && !ILE->hasArrayFiller()) {
422 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
423 true);
424 InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
425 if (!InitSeq) {
426 InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
427 hadError = true;
428 return;
429 }
430
431 ExprResult ElementInit
432 = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
433 if (ElementInit.isInvalid()) {
434 hadError = true;
435 return;
436 }
437
438 if (hadError) {
439 // Do nothing
440 } else if (Init < NumInits) {
441 // For arrays, just set the expression used for value-initialization
442 // of the "holes" in the array.
443 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
444 ILE->setArrayFiller(ElementInit.takeAs<Expr>());
445 else
446 ILE->setInit(Init, ElementInit.takeAs<Expr>());
447 } else {
448 // For arrays, just set the expression used for value-initialization
449 // of the rest of elements and exit.
450 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
451 ILE->setArrayFiller(ElementInit.takeAs<Expr>());
452 return;
453 }
454
455 if (InitSeq.isConstructorInitialization()) {
456 // Value-initialization requires a constructor call, so
457 // extend the initializer list to include the constructor
458 // call and make a note that we'll need to take another pass
459 // through the initializer list.
460 ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
461 RequiresSecondPass = true;
462 }
463 }
464 } else if (InitListExpr *InnerILE
465 = dyn_cast_or_null<InitListExpr>(InitExpr))
466 FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
467 }
468 }
469
470
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly,bool AllowBraceElision)471 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
472 InitListExpr *IL, QualType &T,
473 bool VerifyOnly, bool AllowBraceElision)
474 : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
475 hadError = false;
476
477 unsigned newIndex = 0;
478 unsigned newStructuredIndex = 0;
479 FullyStructuredList
480 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
481 CheckExplicitInitList(Entity, IL, T, newIndex,
482 FullyStructuredList, newStructuredIndex,
483 /*TopLevelObject=*/true);
484
485 if (!hadError && !VerifyOnly) {
486 bool RequiresSecondPass = false;
487 FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
488 if (RequiresSecondPass && !hadError)
489 FillInValueInitializations(Entity, FullyStructuredList,
490 RequiresSecondPass);
491 }
492 }
493
numArrayElements(QualType DeclType)494 int InitListChecker::numArrayElements(QualType DeclType) {
495 // FIXME: use a proper constant
496 int maxElements = 0x7FFFFFFF;
497 if (const ConstantArrayType *CAT =
498 SemaRef.Context.getAsConstantArrayType(DeclType)) {
499 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
500 }
501 return maxElements;
502 }
503
numStructUnionElements(QualType DeclType)504 int InitListChecker::numStructUnionElements(QualType DeclType) {
505 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
506 int InitializableMembers = 0;
507 for (RecordDecl::field_iterator
508 Field = structDecl->field_begin(),
509 FieldEnd = structDecl->field_end();
510 Field != FieldEnd; ++Field) {
511 if (!Field->isUnnamedBitfield())
512 ++InitializableMembers;
513 }
514 if (structDecl->isUnion())
515 return std::min(InitializableMembers, 1);
516 return InitializableMembers - structDecl->hasFlexibleArrayMember();
517 }
518
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)519 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
520 InitListExpr *ParentIList,
521 QualType T, unsigned &Index,
522 InitListExpr *StructuredList,
523 unsigned &StructuredIndex) {
524 int maxElements = 0;
525
526 if (T->isArrayType())
527 maxElements = numArrayElements(T);
528 else if (T->isRecordType())
529 maxElements = numStructUnionElements(T);
530 else if (T->isVectorType())
531 maxElements = T->getAs<VectorType>()->getNumElements();
532 else
533 llvm_unreachable("CheckImplicitInitList(): Illegal type");
534
535 if (maxElements == 0) {
536 if (!VerifyOnly)
537 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
538 diag::err_implicit_empty_initializer);
539 ++Index;
540 hadError = true;
541 return;
542 }
543
544 // Build a structured initializer list corresponding to this subobject.
545 InitListExpr *StructuredSubobjectInitList
546 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
547 StructuredIndex,
548 SourceRange(ParentIList->getInit(Index)->getLocStart(),
549 ParentIList->getSourceRange().getEnd()));
550 unsigned StructuredSubobjectInitIndex = 0;
551
552 // Check the element types and build the structural subobject.
553 unsigned StartIndex = Index;
554 CheckListElementTypes(Entity, ParentIList, T,
555 /*SubobjectIsDesignatorContext=*/false, Index,
556 StructuredSubobjectInitList,
557 StructuredSubobjectInitIndex);
558
559 if (VerifyOnly) {
560 if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
561 hadError = true;
562 } else {
563 StructuredSubobjectInitList->setType(T);
564
565 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
566 // Update the structured sub-object initializer so that it's ending
567 // range corresponds with the end of the last initializer it used.
568 if (EndIndex < ParentIList->getNumInits()) {
569 SourceLocation EndLoc
570 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
571 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
572 }
573
574 // Complain about missing braces.
575 if (T->isArrayType() || T->isRecordType()) {
576 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
577 AllowBraceElision ? diag::warn_missing_braces :
578 diag::err_missing_braces)
579 << StructuredSubobjectInitList->getSourceRange()
580 << FixItHint::CreateInsertion(
581 StructuredSubobjectInitList->getLocStart(), "{")
582 << FixItHint::CreateInsertion(
583 SemaRef.PP.getLocForEndOfToken(
584 StructuredSubobjectInitList->getLocEnd()),
585 "}");
586 if (!AllowBraceElision)
587 hadError = true;
588 }
589 }
590 }
591
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)592 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
593 InitListExpr *IList, QualType &T,
594 unsigned &Index,
595 InitListExpr *StructuredList,
596 unsigned &StructuredIndex,
597 bool TopLevelObject) {
598 assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
599 if (!VerifyOnly) {
600 SyntacticToSemantic[IList] = StructuredList;
601 StructuredList->setSyntacticForm(IList);
602 }
603 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
604 Index, StructuredList, StructuredIndex, TopLevelObject);
605 if (!VerifyOnly) {
606 QualType ExprTy = T;
607 if (!ExprTy->isArrayType())
608 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
609 IList->setType(ExprTy);
610 StructuredList->setType(ExprTy);
611 }
612 if (hadError)
613 return;
614
615 if (Index < IList->getNumInits()) {
616 // We have leftover initializers
617 if (VerifyOnly) {
618 if (SemaRef.getLangOpts().CPlusPlus ||
619 (SemaRef.getLangOpts().OpenCL &&
620 IList->getType()->isVectorType())) {
621 hadError = true;
622 }
623 return;
624 }
625
626 if (StructuredIndex == 1 &&
627 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
628 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
629 if (SemaRef.getLangOpts().CPlusPlus) {
630 DK = diag::err_excess_initializers_in_char_array_initializer;
631 hadError = true;
632 }
633 // Special-case
634 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
635 << IList->getInit(Index)->getSourceRange();
636 } else if (!T->isIncompleteType()) {
637 // Don't complain for incomplete types, since we'll get an error
638 // elsewhere
639 QualType CurrentObjectType = StructuredList->getType();
640 int initKind =
641 CurrentObjectType->isArrayType()? 0 :
642 CurrentObjectType->isVectorType()? 1 :
643 CurrentObjectType->isScalarType()? 2 :
644 CurrentObjectType->isUnionType()? 3 :
645 4;
646
647 unsigned DK = diag::warn_excess_initializers;
648 if (SemaRef.getLangOpts().CPlusPlus) {
649 DK = diag::err_excess_initializers;
650 hadError = true;
651 }
652 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
653 DK = diag::err_excess_initializers;
654 hadError = true;
655 }
656
657 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
658 << initKind << IList->getInit(Index)->getSourceRange();
659 }
660 }
661
662 if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
663 !TopLevelObject)
664 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
665 << IList->getSourceRange()
666 << FixItHint::CreateRemoval(IList->getLocStart())
667 << FixItHint::CreateRemoval(IList->getLocEnd());
668 }
669
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)670 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
671 InitListExpr *IList,
672 QualType &DeclType,
673 bool SubobjectIsDesignatorContext,
674 unsigned &Index,
675 InitListExpr *StructuredList,
676 unsigned &StructuredIndex,
677 bool TopLevelObject) {
678 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
679 // Explicitly braced initializer for complex type can be real+imaginary
680 // parts.
681 CheckComplexType(Entity, IList, DeclType, Index,
682 StructuredList, StructuredIndex);
683 } else if (DeclType->isScalarType()) {
684 CheckScalarType(Entity, IList, DeclType, Index,
685 StructuredList, StructuredIndex);
686 } else if (DeclType->isVectorType()) {
687 CheckVectorType(Entity, IList, DeclType, Index,
688 StructuredList, StructuredIndex);
689 } else if (DeclType->isRecordType()) {
690 assert(DeclType->isAggregateType() &&
691 "non-aggregate records should be handed in CheckSubElementType");
692 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
693 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
694 SubobjectIsDesignatorContext, Index,
695 StructuredList, StructuredIndex,
696 TopLevelObject);
697 } else if (DeclType->isArrayType()) {
698 llvm::APSInt Zero(
699 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
700 false);
701 CheckArrayType(Entity, IList, DeclType, Zero,
702 SubobjectIsDesignatorContext, Index,
703 StructuredList, StructuredIndex);
704 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
705 // This type is invalid, issue a diagnostic.
706 ++Index;
707 if (!VerifyOnly)
708 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
709 << DeclType;
710 hadError = true;
711 } else if (DeclType->isReferenceType()) {
712 CheckReferenceType(Entity, IList, DeclType, Index,
713 StructuredList, StructuredIndex);
714 } else if (DeclType->isObjCObjectType()) {
715 if (!VerifyOnly)
716 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
717 << DeclType;
718 hadError = true;
719 } else {
720 if (!VerifyOnly)
721 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
722 << DeclType;
723 hadError = true;
724 }
725 }
726
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)727 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
728 InitListExpr *IList,
729 QualType ElemType,
730 unsigned &Index,
731 InitListExpr *StructuredList,
732 unsigned &StructuredIndex) {
733 Expr *expr = IList->getInit(Index);
734 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
735 if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
736 unsigned newIndex = 0;
737 unsigned newStructuredIndex = 0;
738 InitListExpr *newStructuredList
739 = getStructuredSubobjectInit(IList, Index, ElemType,
740 StructuredList, StructuredIndex,
741 SubInitList->getSourceRange());
742 CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
743 newStructuredList, newStructuredIndex);
744 ++StructuredIndex;
745 ++Index;
746 return;
747 }
748 assert(SemaRef.getLangOpts().CPlusPlus &&
749 "non-aggregate records are only possible in C++");
750 // C++ initialization is handled later.
751 }
752
753 if (ElemType->isScalarType()) {
754 return CheckScalarType(Entity, IList, ElemType, Index,
755 StructuredList, StructuredIndex);
756 } else if (ElemType->isReferenceType()) {
757 return CheckReferenceType(Entity, IList, ElemType, Index,
758 StructuredList, StructuredIndex);
759 }
760
761 if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
762 // arrayType can be incomplete if we're initializing a flexible
763 // array member. There's nothing we can do with the completed
764 // type here, though.
765
766 if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
767 if (!VerifyOnly) {
768 CheckStringInit(Str, ElemType, arrayType, SemaRef);
769 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
770 }
771 ++Index;
772 return;
773 }
774
775 // Fall through for subaggregate initialization.
776
777 } else if (SemaRef.getLangOpts().CPlusPlus) {
778 // C++ [dcl.init.aggr]p12:
779 // All implicit type conversions (clause 4) are considered when
780 // initializing the aggregate member with an initializer from
781 // an initializer-list. If the initializer can initialize a
782 // member, the member is initialized. [...]
783
784 // FIXME: Better EqualLoc?
785 InitializationKind Kind =
786 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
787 InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
788
789 if (Seq) {
790 if (!VerifyOnly) {
791 ExprResult Result =
792 Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
793 if (Result.isInvalid())
794 hadError = true;
795
796 UpdateStructuredListElement(StructuredList, StructuredIndex,
797 Result.takeAs<Expr>());
798 }
799 ++Index;
800 return;
801 }
802
803 // Fall through for subaggregate initialization
804 } else {
805 // C99 6.7.8p13:
806 //
807 // The initializer for a structure or union object that has
808 // automatic storage duration shall be either an initializer
809 // list as described below, or a single expression that has
810 // compatible structure or union type. In the latter case, the
811 // initial value of the object, including unnamed members, is
812 // that of the expression.
813 ExprResult ExprRes = SemaRef.Owned(expr);
814 if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
815 SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
816 !VerifyOnly)
817 == Sema::Compatible) {
818 if (ExprRes.isInvalid())
819 hadError = true;
820 else {
821 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
822 if (ExprRes.isInvalid())
823 hadError = true;
824 }
825 UpdateStructuredListElement(StructuredList, StructuredIndex,
826 ExprRes.takeAs<Expr>());
827 ++Index;
828 return;
829 }
830 ExprRes.release();
831 // Fall through for subaggregate initialization
832 }
833
834 // C++ [dcl.init.aggr]p12:
835 //
836 // [...] Otherwise, if the member is itself a non-empty
837 // subaggregate, brace elision is assumed and the initializer is
838 // considered for the initialization of the first member of
839 // the subaggregate.
840 if (!SemaRef.getLangOpts().OpenCL &&
841 (ElemType->isAggregateType() || ElemType->isVectorType())) {
842 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
843 StructuredIndex);
844 ++StructuredIndex;
845 } else {
846 if (!VerifyOnly) {
847 // We cannot initialize this element, so let
848 // PerformCopyInitialization produce the appropriate diagnostic.
849 SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
850 SemaRef.Owned(expr),
851 /*TopLevelOfInitList=*/true);
852 }
853 hadError = true;
854 ++Index;
855 ++StructuredIndex;
856 }
857 }
858
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)859 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
860 InitListExpr *IList, QualType DeclType,
861 unsigned &Index,
862 InitListExpr *StructuredList,
863 unsigned &StructuredIndex) {
864 assert(Index == 0 && "Index in explicit init list must be zero");
865
866 // As an extension, clang supports complex initializers, which initialize
867 // a complex number component-wise. When an explicit initializer list for
868 // a complex number contains two two initializers, this extension kicks in:
869 // it exepcts the initializer list to contain two elements convertible to
870 // the element type of the complex type. The first element initializes
871 // the real part, and the second element intitializes the imaginary part.
872
873 if (IList->getNumInits() != 2)
874 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
875 StructuredIndex);
876
877 // This is an extension in C. (The builtin _Complex type does not exist
878 // in the C++ standard.)
879 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
880 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
881 << IList->getSourceRange();
882
883 // Initialize the complex number.
884 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
885 InitializedEntity ElementEntity =
886 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
887
888 for (unsigned i = 0; i < 2; ++i) {
889 ElementEntity.setElementIndex(Index);
890 CheckSubElementType(ElementEntity, IList, elementType, Index,
891 StructuredList, StructuredIndex);
892 }
893 }
894
895
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)896 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
897 InitListExpr *IList, QualType DeclType,
898 unsigned &Index,
899 InitListExpr *StructuredList,
900 unsigned &StructuredIndex) {
901 if (Index >= IList->getNumInits()) {
902 if (!VerifyOnly)
903 SemaRef.Diag(IList->getLocStart(),
904 SemaRef.getLangOpts().CPlusPlus11 ?
905 diag::warn_cxx98_compat_empty_scalar_initializer :
906 diag::err_empty_scalar_initializer)
907 << IList->getSourceRange();
908 hadError = !SemaRef.getLangOpts().CPlusPlus11;
909 ++Index;
910 ++StructuredIndex;
911 return;
912 }
913
914 Expr *expr = IList->getInit(Index);
915 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
916 if (!VerifyOnly)
917 SemaRef.Diag(SubIList->getLocStart(),
918 diag::warn_many_braces_around_scalar_init)
919 << SubIList->getSourceRange();
920
921 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
922 StructuredIndex);
923 return;
924 } else if (isa<DesignatedInitExpr>(expr)) {
925 if (!VerifyOnly)
926 SemaRef.Diag(expr->getLocStart(),
927 diag::err_designator_for_scalar_init)
928 << DeclType << expr->getSourceRange();
929 hadError = true;
930 ++Index;
931 ++StructuredIndex;
932 return;
933 }
934
935 if (VerifyOnly) {
936 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
937 hadError = true;
938 ++Index;
939 return;
940 }
941
942 ExprResult Result =
943 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
944 SemaRef.Owned(expr),
945 /*TopLevelOfInitList=*/true);
946
947 Expr *ResultExpr = 0;
948
949 if (Result.isInvalid())
950 hadError = true; // types weren't compatible.
951 else {
952 ResultExpr = Result.takeAs<Expr>();
953
954 if (ResultExpr != expr) {
955 // The type was promoted, update initializer list.
956 IList->setInit(Index, ResultExpr);
957 }
958 }
959 if (hadError)
960 ++StructuredIndex;
961 else
962 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
963 ++Index;
964 }
965
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)966 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
967 InitListExpr *IList, QualType DeclType,
968 unsigned &Index,
969 InitListExpr *StructuredList,
970 unsigned &StructuredIndex) {
971 if (Index >= IList->getNumInits()) {
972 // FIXME: It would be wonderful if we could point at the actual member. In
973 // general, it would be useful to pass location information down the stack,
974 // so that we know the location (or decl) of the "current object" being
975 // initialized.
976 if (!VerifyOnly)
977 SemaRef.Diag(IList->getLocStart(),
978 diag::err_init_reference_member_uninitialized)
979 << DeclType
980 << IList->getSourceRange();
981 hadError = true;
982 ++Index;
983 ++StructuredIndex;
984 return;
985 }
986
987 Expr *expr = IList->getInit(Index);
988 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
989 if (!VerifyOnly)
990 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
991 << DeclType << IList->getSourceRange();
992 hadError = true;
993 ++Index;
994 ++StructuredIndex;
995 return;
996 }
997
998 if (VerifyOnly) {
999 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1000 hadError = true;
1001 ++Index;
1002 return;
1003 }
1004
1005 ExprResult Result =
1006 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1007 SemaRef.Owned(expr),
1008 /*TopLevelOfInitList=*/true);
1009
1010 if (Result.isInvalid())
1011 hadError = true;
1012
1013 expr = Result.takeAs<Expr>();
1014 IList->setInit(Index, expr);
1015
1016 if (hadError)
1017 ++StructuredIndex;
1018 else
1019 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1020 ++Index;
1021 }
1022
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1023 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1024 InitListExpr *IList, QualType DeclType,
1025 unsigned &Index,
1026 InitListExpr *StructuredList,
1027 unsigned &StructuredIndex) {
1028 const VectorType *VT = DeclType->getAs<VectorType>();
1029 unsigned maxElements = VT->getNumElements();
1030 unsigned numEltsInit = 0;
1031 QualType elementType = VT->getElementType();
1032
1033 if (Index >= IList->getNumInits()) {
1034 // Make sure the element type can be value-initialized.
1035 if (VerifyOnly)
1036 CheckValueInitializable(
1037 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1038 return;
1039 }
1040
1041 if (!SemaRef.getLangOpts().OpenCL) {
1042 // If the initializing element is a vector, try to copy-initialize
1043 // instead of breaking it apart (which is doomed to failure anyway).
1044 Expr *Init = IList->getInit(Index);
1045 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1046 if (VerifyOnly) {
1047 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1048 hadError = true;
1049 ++Index;
1050 return;
1051 }
1052
1053 ExprResult Result =
1054 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1055 SemaRef.Owned(Init),
1056 /*TopLevelOfInitList=*/true);
1057
1058 Expr *ResultExpr = 0;
1059 if (Result.isInvalid())
1060 hadError = true; // types weren't compatible.
1061 else {
1062 ResultExpr = Result.takeAs<Expr>();
1063
1064 if (ResultExpr != Init) {
1065 // The type was promoted, update initializer list.
1066 IList->setInit(Index, ResultExpr);
1067 }
1068 }
1069 if (hadError)
1070 ++StructuredIndex;
1071 else
1072 UpdateStructuredListElement(StructuredList, StructuredIndex,
1073 ResultExpr);
1074 ++Index;
1075 return;
1076 }
1077
1078 InitializedEntity ElementEntity =
1079 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1080
1081 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1082 // Don't attempt to go past the end of the init list
1083 if (Index >= IList->getNumInits()) {
1084 if (VerifyOnly)
1085 CheckValueInitializable(ElementEntity);
1086 break;
1087 }
1088
1089 ElementEntity.setElementIndex(Index);
1090 CheckSubElementType(ElementEntity, IList, elementType, Index,
1091 StructuredList, StructuredIndex);
1092 }
1093 return;
1094 }
1095
1096 InitializedEntity ElementEntity =
1097 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1098
1099 // OpenCL initializers allows vectors to be constructed from vectors.
1100 for (unsigned i = 0; i < maxElements; ++i) {
1101 // Don't attempt to go past the end of the init list
1102 if (Index >= IList->getNumInits())
1103 break;
1104
1105 ElementEntity.setElementIndex(Index);
1106
1107 QualType IType = IList->getInit(Index)->getType();
1108 if (!IType->isVectorType()) {
1109 CheckSubElementType(ElementEntity, IList, elementType, Index,
1110 StructuredList, StructuredIndex);
1111 ++numEltsInit;
1112 } else {
1113 QualType VecType;
1114 const VectorType *IVT = IType->getAs<VectorType>();
1115 unsigned numIElts = IVT->getNumElements();
1116
1117 if (IType->isExtVectorType())
1118 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1119 else
1120 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1121 IVT->getVectorKind());
1122 CheckSubElementType(ElementEntity, IList, VecType, Index,
1123 StructuredList, StructuredIndex);
1124 numEltsInit += numIElts;
1125 }
1126 }
1127
1128 // OpenCL requires all elements to be initialized.
1129 if (numEltsInit != maxElements) {
1130 if (!VerifyOnly)
1131 SemaRef.Diag(IList->getLocStart(),
1132 diag::err_vector_incorrect_num_initializers)
1133 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1134 hadError = true;
1135 }
1136 }
1137
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1138 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1139 InitListExpr *IList, QualType &DeclType,
1140 llvm::APSInt elementIndex,
1141 bool SubobjectIsDesignatorContext,
1142 unsigned &Index,
1143 InitListExpr *StructuredList,
1144 unsigned &StructuredIndex) {
1145 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1146
1147 // Check for the special-case of initializing an array with a string.
1148 if (Index < IList->getNumInits()) {
1149 if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1150 SemaRef.Context)) {
1151 // We place the string literal directly into the resulting
1152 // initializer list. This is the only place where the structure
1153 // of the structured initializer list doesn't match exactly,
1154 // because doing so would involve allocating one character
1155 // constant for each string.
1156 if (!VerifyOnly) {
1157 CheckStringInit(Str, DeclType, arrayType, SemaRef);
1158 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1159 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1160 }
1161 ++Index;
1162 return;
1163 }
1164 }
1165 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1166 // Check for VLAs; in standard C it would be possible to check this
1167 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1168 // them in all sorts of strange places).
1169 if (!VerifyOnly)
1170 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1171 diag::err_variable_object_no_init)
1172 << VAT->getSizeExpr()->getSourceRange();
1173 hadError = true;
1174 ++Index;
1175 ++StructuredIndex;
1176 return;
1177 }
1178
1179 // We might know the maximum number of elements in advance.
1180 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1181 elementIndex.isUnsigned());
1182 bool maxElementsKnown = false;
1183 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1184 maxElements = CAT->getSize();
1185 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1186 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1187 maxElementsKnown = true;
1188 }
1189
1190 QualType elementType = arrayType->getElementType();
1191 while (Index < IList->getNumInits()) {
1192 Expr *Init = IList->getInit(Index);
1193 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1194 // If we're not the subobject that matches up with the '{' for
1195 // the designator, we shouldn't be handling the
1196 // designator. Return immediately.
1197 if (!SubobjectIsDesignatorContext)
1198 return;
1199
1200 // Handle this designated initializer. elementIndex will be
1201 // updated to be the next array element we'll initialize.
1202 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1203 DeclType, 0, &elementIndex, Index,
1204 StructuredList, StructuredIndex, true,
1205 false)) {
1206 hadError = true;
1207 continue;
1208 }
1209
1210 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1211 maxElements = maxElements.extend(elementIndex.getBitWidth());
1212 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1213 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1214 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1215
1216 // If the array is of incomplete type, keep track of the number of
1217 // elements in the initializer.
1218 if (!maxElementsKnown && elementIndex > maxElements)
1219 maxElements = elementIndex;
1220
1221 continue;
1222 }
1223
1224 // If we know the maximum number of elements, and we've already
1225 // hit it, stop consuming elements in the initializer list.
1226 if (maxElementsKnown && elementIndex == maxElements)
1227 break;
1228
1229 InitializedEntity ElementEntity =
1230 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1231 Entity);
1232 // Check this element.
1233 CheckSubElementType(ElementEntity, IList, elementType, Index,
1234 StructuredList, StructuredIndex);
1235 ++elementIndex;
1236
1237 // If the array is of incomplete type, keep track of the number of
1238 // elements in the initializer.
1239 if (!maxElementsKnown && elementIndex > maxElements)
1240 maxElements = elementIndex;
1241 }
1242 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1243 // If this is an incomplete array type, the actual type needs to
1244 // be calculated here.
1245 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1246 if (maxElements == Zero) {
1247 // Sizing an array implicitly to zero is not allowed by ISO C,
1248 // but is supported by GNU.
1249 SemaRef.Diag(IList->getLocStart(),
1250 diag::ext_typecheck_zero_array_size);
1251 }
1252
1253 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1254 ArrayType::Normal, 0);
1255 }
1256 if (!hadError && VerifyOnly) {
1257 // Check if there are any members of the array that get value-initialized.
1258 // If so, check if doing that is possible.
1259 // FIXME: This needs to detect holes left by designated initializers too.
1260 if (maxElementsKnown && elementIndex < maxElements)
1261 CheckValueInitializable(InitializedEntity::InitializeElement(
1262 SemaRef.Context, 0, Entity));
1263 }
1264 }
1265
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1266 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1267 Expr *InitExpr,
1268 FieldDecl *Field,
1269 bool TopLevelObject) {
1270 // Handle GNU flexible array initializers.
1271 unsigned FlexArrayDiag;
1272 if (isa<InitListExpr>(InitExpr) &&
1273 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1274 // Empty flexible array init always allowed as an extension
1275 FlexArrayDiag = diag::ext_flexible_array_init;
1276 } else if (SemaRef.getLangOpts().CPlusPlus) {
1277 // Disallow flexible array init in C++; it is not required for gcc
1278 // compatibility, and it needs work to IRGen correctly in general.
1279 FlexArrayDiag = diag::err_flexible_array_init;
1280 } else if (!TopLevelObject) {
1281 // Disallow flexible array init on non-top-level object
1282 FlexArrayDiag = diag::err_flexible_array_init;
1283 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1284 // Disallow flexible array init on anything which is not a variable.
1285 FlexArrayDiag = diag::err_flexible_array_init;
1286 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1287 // Disallow flexible array init on local variables.
1288 FlexArrayDiag = diag::err_flexible_array_init;
1289 } else {
1290 // Allow other cases.
1291 FlexArrayDiag = diag::ext_flexible_array_init;
1292 }
1293
1294 if (!VerifyOnly) {
1295 SemaRef.Diag(InitExpr->getLocStart(),
1296 FlexArrayDiag)
1297 << InitExpr->getLocStart();
1298 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1299 << Field;
1300 }
1301
1302 return FlexArrayDiag != diag::ext_flexible_array_init;
1303 }
1304
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1305 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1306 InitListExpr *IList,
1307 QualType DeclType,
1308 RecordDecl::field_iterator Field,
1309 bool SubobjectIsDesignatorContext,
1310 unsigned &Index,
1311 InitListExpr *StructuredList,
1312 unsigned &StructuredIndex,
1313 bool TopLevelObject) {
1314 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1315
1316 // If the record is invalid, some of it's members are invalid. To avoid
1317 // confusion, we forgo checking the intializer for the entire record.
1318 if (structDecl->isInvalidDecl()) {
1319 // Assume it was supposed to consume a single initializer.
1320 ++Index;
1321 hadError = true;
1322 return;
1323 }
1324
1325 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1326 // Value-initialize the first named member of the union.
1327 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1328 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1329 Field != FieldEnd; ++Field) {
1330 if (Field->getDeclName()) {
1331 if (VerifyOnly)
1332 CheckValueInitializable(
1333 InitializedEntity::InitializeMember(*Field, &Entity));
1334 else
1335 StructuredList->setInitializedFieldInUnion(*Field);
1336 break;
1337 }
1338 }
1339 return;
1340 }
1341
1342 // If structDecl is a forward declaration, this loop won't do
1343 // anything except look at designated initializers; That's okay,
1344 // because an error should get printed out elsewhere. It might be
1345 // worthwhile to skip over the rest of the initializer, though.
1346 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1347 RecordDecl::field_iterator FieldEnd = RD->field_end();
1348 bool InitializedSomething = false;
1349 bool CheckForMissingFields = true;
1350 while (Index < IList->getNumInits()) {
1351 Expr *Init = IList->getInit(Index);
1352
1353 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1354 // If we're not the subobject that matches up with the '{' for
1355 // the designator, we shouldn't be handling the
1356 // designator. Return immediately.
1357 if (!SubobjectIsDesignatorContext)
1358 return;
1359
1360 // Handle this designated initializer. Field will be updated to
1361 // the next field that we'll be initializing.
1362 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1363 DeclType, &Field, 0, Index,
1364 StructuredList, StructuredIndex,
1365 true, TopLevelObject))
1366 hadError = true;
1367
1368 InitializedSomething = true;
1369
1370 // Disable check for missing fields when designators are used.
1371 // This matches gcc behaviour.
1372 CheckForMissingFields = false;
1373 continue;
1374 }
1375
1376 if (Field == FieldEnd) {
1377 // We've run out of fields. We're done.
1378 break;
1379 }
1380
1381 // We've already initialized a member of a union. We're done.
1382 if (InitializedSomething && DeclType->isUnionType())
1383 break;
1384
1385 // If we've hit the flexible array member at the end, we're done.
1386 if (Field->getType()->isIncompleteArrayType())
1387 break;
1388
1389 if (Field->isUnnamedBitfield()) {
1390 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1391 ++Field;
1392 continue;
1393 }
1394
1395 // Make sure we can use this declaration.
1396 bool InvalidUse;
1397 if (VerifyOnly)
1398 InvalidUse = !SemaRef.CanUseDecl(*Field);
1399 else
1400 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1401 IList->getInit(Index)->getLocStart());
1402 if (InvalidUse) {
1403 ++Index;
1404 ++Field;
1405 hadError = true;
1406 continue;
1407 }
1408
1409 InitializedEntity MemberEntity =
1410 InitializedEntity::InitializeMember(*Field, &Entity);
1411 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1412 StructuredList, StructuredIndex);
1413 InitializedSomething = true;
1414
1415 if (DeclType->isUnionType() && !VerifyOnly) {
1416 // Initialize the first field within the union.
1417 StructuredList->setInitializedFieldInUnion(*Field);
1418 }
1419
1420 ++Field;
1421 }
1422
1423 // Emit warnings for missing struct field initializers.
1424 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1425 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1426 !DeclType->isUnionType()) {
1427 // It is possible we have one or more unnamed bitfields remaining.
1428 // Find first (if any) named field and emit warning.
1429 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1430 it != end; ++it) {
1431 if (!it->isUnnamedBitfield()) {
1432 SemaRef.Diag(IList->getSourceRange().getEnd(),
1433 diag::warn_missing_field_initializers) << it->getName();
1434 break;
1435 }
1436 }
1437 }
1438
1439 // Check that any remaining fields can be value-initialized.
1440 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1441 !Field->getType()->isIncompleteArrayType()) {
1442 // FIXME: Should check for holes left by designated initializers too.
1443 for (; Field != FieldEnd && !hadError; ++Field) {
1444 if (!Field->isUnnamedBitfield())
1445 CheckValueInitializable(
1446 InitializedEntity::InitializeMember(*Field, &Entity));
1447 }
1448 }
1449
1450 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1451 Index >= IList->getNumInits())
1452 return;
1453
1454 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1455 TopLevelObject)) {
1456 hadError = true;
1457 ++Index;
1458 return;
1459 }
1460
1461 InitializedEntity MemberEntity =
1462 InitializedEntity::InitializeMember(*Field, &Entity);
1463
1464 if (isa<InitListExpr>(IList->getInit(Index)))
1465 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1466 StructuredList, StructuredIndex);
1467 else
1468 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1469 StructuredList, StructuredIndex);
1470 }
1471
1472 /// \brief Expand a field designator that refers to a member of an
1473 /// anonymous struct or union into a series of field designators that
1474 /// refers to the field within the appropriate subobject.
1475 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)1476 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1477 DesignatedInitExpr *DIE,
1478 unsigned DesigIdx,
1479 IndirectFieldDecl *IndirectField) {
1480 typedef DesignatedInitExpr::Designator Designator;
1481
1482 // Build the replacement designators.
1483 SmallVector<Designator, 4> Replacements;
1484 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1485 PE = IndirectField->chain_end(); PI != PE; ++PI) {
1486 if (PI + 1 == PE)
1487 Replacements.push_back(Designator((IdentifierInfo *)0,
1488 DIE->getDesignator(DesigIdx)->getDotLoc(),
1489 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1490 else
1491 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1492 SourceLocation()));
1493 assert(isa<FieldDecl>(*PI));
1494 Replacements.back().setField(cast<FieldDecl>(*PI));
1495 }
1496
1497 // Expand the current designator into the set of replacement
1498 // designators, so we have a full subobject path down to where the
1499 // member of the anonymous struct/union is actually stored.
1500 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1501 &Replacements[0] + Replacements.size());
1502 }
1503
1504 /// \brief Given an implicit anonymous field, search the IndirectField that
1505 /// corresponds to FieldName.
FindIndirectFieldDesignator(FieldDecl * AnonField,IdentifierInfo * FieldName)1506 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1507 IdentifierInfo *FieldName) {
1508 if (!FieldName)
1509 return 0;
1510
1511 assert(AnonField->isAnonymousStructOrUnion());
1512 Decl *NextDecl = AnonField->getNextDeclInContext();
1513 while (IndirectFieldDecl *IF =
1514 dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1515 if (FieldName == IF->getAnonField()->getIdentifier())
1516 return IF;
1517 NextDecl = NextDecl->getNextDeclInContext();
1518 }
1519 return 0;
1520 }
1521
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)1522 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1523 DesignatedInitExpr *DIE) {
1524 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1525 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1526 for (unsigned I = 0; I < NumIndexExprs; ++I)
1527 IndexExprs[I] = DIE->getSubExpr(I + 1);
1528 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1529 DIE->size(), IndexExprs,
1530 DIE->getEqualOrColonLoc(),
1531 DIE->usesGNUSyntax(), DIE->getInit());
1532 }
1533
1534 namespace {
1535
1536 // Callback to only accept typo corrections that are for field members of
1537 // the given struct or union.
1538 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1539 public:
FieldInitializerValidatorCCC(RecordDecl * RD)1540 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1541 : Record(RD) {}
1542
ValidateCandidate(const TypoCorrection & candidate)1543 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1544 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1545 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1546 }
1547
1548 private:
1549 RecordDecl *Record;
1550 };
1551
1552 }
1553
1554 /// @brief Check the well-formedness of a C99 designated initializer.
1555 ///
1556 /// Determines whether the designated initializer @p DIE, which
1557 /// resides at the given @p Index within the initializer list @p
1558 /// IList, is well-formed for a current object of type @p DeclType
1559 /// (C99 6.7.8). The actual subobject that this designator refers to
1560 /// within the current subobject is returned in either
1561 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1562 ///
1563 /// @param IList The initializer list in which this designated
1564 /// initializer occurs.
1565 ///
1566 /// @param DIE The designated initializer expression.
1567 ///
1568 /// @param DesigIdx The index of the current designator.
1569 ///
1570 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1571 /// into which the designation in @p DIE should refer.
1572 ///
1573 /// @param NextField If non-NULL and the first designator in @p DIE is
1574 /// a field, this will be set to the field declaration corresponding
1575 /// to the field named by the designator.
1576 ///
1577 /// @param NextElementIndex If non-NULL and the first designator in @p
1578 /// DIE is an array designator or GNU array-range designator, this
1579 /// will be set to the last index initialized by this designator.
1580 ///
1581 /// @param Index Index into @p IList where the designated initializer
1582 /// @p DIE occurs.
1583 ///
1584 /// @param StructuredList The initializer list expression that
1585 /// describes all of the subobject initializers in the order they'll
1586 /// actually be initialized.
1587 ///
1588 /// @returns true if there was an error, false otherwise.
1589 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)1590 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1591 InitListExpr *IList,
1592 DesignatedInitExpr *DIE,
1593 unsigned DesigIdx,
1594 QualType &CurrentObjectType,
1595 RecordDecl::field_iterator *NextField,
1596 llvm::APSInt *NextElementIndex,
1597 unsigned &Index,
1598 InitListExpr *StructuredList,
1599 unsigned &StructuredIndex,
1600 bool FinishSubobjectInit,
1601 bool TopLevelObject) {
1602 if (DesigIdx == DIE->size()) {
1603 // Check the actual initialization for the designated object type.
1604 bool prevHadError = hadError;
1605
1606 // Temporarily remove the designator expression from the
1607 // initializer list that the child calls see, so that we don't try
1608 // to re-process the designator.
1609 unsigned OldIndex = Index;
1610 IList->setInit(OldIndex, DIE->getInit());
1611
1612 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1613 StructuredList, StructuredIndex);
1614
1615 // Restore the designated initializer expression in the syntactic
1616 // form of the initializer list.
1617 if (IList->getInit(OldIndex) != DIE->getInit())
1618 DIE->setInit(IList->getInit(OldIndex));
1619 IList->setInit(OldIndex, DIE);
1620
1621 return hadError && !prevHadError;
1622 }
1623
1624 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1625 bool IsFirstDesignator = (DesigIdx == 0);
1626 if (!VerifyOnly) {
1627 assert((IsFirstDesignator || StructuredList) &&
1628 "Need a non-designated initializer list to start from");
1629
1630 // Determine the structural initializer list that corresponds to the
1631 // current subobject.
1632 StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1633 : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1634 StructuredList, StructuredIndex,
1635 SourceRange(D->getLocStart(),
1636 DIE->getLocEnd()));
1637 assert(StructuredList && "Expected a structured initializer list");
1638 }
1639
1640 if (D->isFieldDesignator()) {
1641 // C99 6.7.8p7:
1642 //
1643 // If a designator has the form
1644 //
1645 // . identifier
1646 //
1647 // then the current object (defined below) shall have
1648 // structure or union type and the identifier shall be the
1649 // name of a member of that type.
1650 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1651 if (!RT) {
1652 SourceLocation Loc = D->getDotLoc();
1653 if (Loc.isInvalid())
1654 Loc = D->getFieldLoc();
1655 if (!VerifyOnly)
1656 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1657 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1658 ++Index;
1659 return true;
1660 }
1661
1662 // Note: we perform a linear search of the fields here, despite
1663 // the fact that we have a faster lookup method, because we always
1664 // need to compute the field's index.
1665 FieldDecl *KnownField = D->getField();
1666 IdentifierInfo *FieldName = D->getFieldName();
1667 unsigned FieldIndex = 0;
1668 RecordDecl::field_iterator
1669 Field = RT->getDecl()->field_begin(),
1670 FieldEnd = RT->getDecl()->field_end();
1671 for (; Field != FieldEnd; ++Field) {
1672 if (Field->isUnnamedBitfield())
1673 continue;
1674
1675 // If we find a field representing an anonymous field, look in the
1676 // IndirectFieldDecl that follow for the designated initializer.
1677 if (!KnownField && Field->isAnonymousStructOrUnion()) {
1678 if (IndirectFieldDecl *IF =
1679 FindIndirectFieldDesignator(*Field, FieldName)) {
1680 // In verify mode, don't modify the original.
1681 if (VerifyOnly)
1682 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1683 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1684 D = DIE->getDesignator(DesigIdx);
1685 break;
1686 }
1687 }
1688 if (KnownField && KnownField == *Field)
1689 break;
1690 if (FieldName && FieldName == Field->getIdentifier())
1691 break;
1692
1693 ++FieldIndex;
1694 }
1695
1696 if (Field == FieldEnd) {
1697 if (VerifyOnly) {
1698 ++Index;
1699 return true; // No typo correction when just trying this out.
1700 }
1701
1702 // There was no normal field in the struct with the designated
1703 // name. Perform another lookup for this name, which may find
1704 // something that we can't designate (e.g., a member function),
1705 // may find nothing, or may find a member of an anonymous
1706 // struct/union.
1707 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1708 FieldDecl *ReplacementField = 0;
1709 if (Lookup.empty()) {
1710 // Name lookup didn't find anything. Determine whether this
1711 // was a typo for another field name.
1712 FieldInitializerValidatorCCC Validator(RT->getDecl());
1713 TypoCorrection Corrected = SemaRef.CorrectTypo(
1714 DeclarationNameInfo(FieldName, D->getFieldLoc()),
1715 Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1716 RT->getDecl());
1717 if (Corrected) {
1718 std::string CorrectedStr(
1719 Corrected.getAsString(SemaRef.getLangOpts()));
1720 std::string CorrectedQuotedStr(
1721 Corrected.getQuoted(SemaRef.getLangOpts()));
1722 ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1723 SemaRef.Diag(D->getFieldLoc(),
1724 diag::err_field_designator_unknown_suggest)
1725 << FieldName << CurrentObjectType << CorrectedQuotedStr
1726 << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1727 SemaRef.Diag(ReplacementField->getLocation(),
1728 diag::note_previous_decl) << CorrectedQuotedStr;
1729 hadError = true;
1730 } else {
1731 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1732 << FieldName << CurrentObjectType;
1733 ++Index;
1734 return true;
1735 }
1736 }
1737
1738 if (!ReplacementField) {
1739 // Name lookup found something, but it wasn't a field.
1740 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1741 << FieldName;
1742 SemaRef.Diag(Lookup.front()->getLocation(),
1743 diag::note_field_designator_found);
1744 ++Index;
1745 return true;
1746 }
1747
1748 if (!KnownField) {
1749 // The replacement field comes from typo correction; find it
1750 // in the list of fields.
1751 FieldIndex = 0;
1752 Field = RT->getDecl()->field_begin();
1753 for (; Field != FieldEnd; ++Field) {
1754 if (Field->isUnnamedBitfield())
1755 continue;
1756
1757 if (ReplacementField == *Field ||
1758 Field->getIdentifier() == ReplacementField->getIdentifier())
1759 break;
1760
1761 ++FieldIndex;
1762 }
1763 }
1764 }
1765
1766 // All of the fields of a union are located at the same place in
1767 // the initializer list.
1768 if (RT->getDecl()->isUnion()) {
1769 FieldIndex = 0;
1770 if (!VerifyOnly)
1771 StructuredList->setInitializedFieldInUnion(*Field);
1772 }
1773
1774 // Make sure we can use this declaration.
1775 bool InvalidUse;
1776 if (VerifyOnly)
1777 InvalidUse = !SemaRef.CanUseDecl(*Field);
1778 else
1779 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1780 if (InvalidUse) {
1781 ++Index;
1782 return true;
1783 }
1784
1785 if (!VerifyOnly) {
1786 // Update the designator with the field declaration.
1787 D->setField(*Field);
1788
1789 // Make sure that our non-designated initializer list has space
1790 // for a subobject corresponding to this field.
1791 if (FieldIndex >= StructuredList->getNumInits())
1792 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1793 }
1794
1795 // This designator names a flexible array member.
1796 if (Field->getType()->isIncompleteArrayType()) {
1797 bool Invalid = false;
1798 if ((DesigIdx + 1) != DIE->size()) {
1799 // We can't designate an object within the flexible array
1800 // member (because GCC doesn't allow it).
1801 if (!VerifyOnly) {
1802 DesignatedInitExpr::Designator *NextD
1803 = DIE->getDesignator(DesigIdx + 1);
1804 SemaRef.Diag(NextD->getLocStart(),
1805 diag::err_designator_into_flexible_array_member)
1806 << SourceRange(NextD->getLocStart(),
1807 DIE->getLocEnd());
1808 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1809 << *Field;
1810 }
1811 Invalid = true;
1812 }
1813
1814 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1815 !isa<StringLiteral>(DIE->getInit())) {
1816 // The initializer is not an initializer list.
1817 if (!VerifyOnly) {
1818 SemaRef.Diag(DIE->getInit()->getLocStart(),
1819 diag::err_flexible_array_init_needs_braces)
1820 << DIE->getInit()->getSourceRange();
1821 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1822 << *Field;
1823 }
1824 Invalid = true;
1825 }
1826
1827 // Check GNU flexible array initializer.
1828 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1829 TopLevelObject))
1830 Invalid = true;
1831
1832 if (Invalid) {
1833 ++Index;
1834 return true;
1835 }
1836
1837 // Initialize the array.
1838 bool prevHadError = hadError;
1839 unsigned newStructuredIndex = FieldIndex;
1840 unsigned OldIndex = Index;
1841 IList->setInit(Index, DIE->getInit());
1842
1843 InitializedEntity MemberEntity =
1844 InitializedEntity::InitializeMember(*Field, &Entity);
1845 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1846 StructuredList, newStructuredIndex);
1847
1848 IList->setInit(OldIndex, DIE);
1849 if (hadError && !prevHadError) {
1850 ++Field;
1851 ++FieldIndex;
1852 if (NextField)
1853 *NextField = Field;
1854 StructuredIndex = FieldIndex;
1855 return true;
1856 }
1857 } else {
1858 // Recurse to check later designated subobjects.
1859 QualType FieldType = Field->getType();
1860 unsigned newStructuredIndex = FieldIndex;
1861
1862 InitializedEntity MemberEntity =
1863 InitializedEntity::InitializeMember(*Field, &Entity);
1864 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1865 FieldType, 0, 0, Index,
1866 StructuredList, newStructuredIndex,
1867 true, false))
1868 return true;
1869 }
1870
1871 // Find the position of the next field to be initialized in this
1872 // subobject.
1873 ++Field;
1874 ++FieldIndex;
1875
1876 // If this the first designator, our caller will continue checking
1877 // the rest of this struct/class/union subobject.
1878 if (IsFirstDesignator) {
1879 if (NextField)
1880 *NextField = Field;
1881 StructuredIndex = FieldIndex;
1882 return false;
1883 }
1884
1885 if (!FinishSubobjectInit)
1886 return false;
1887
1888 // We've already initialized something in the union; we're done.
1889 if (RT->getDecl()->isUnion())
1890 return hadError;
1891
1892 // Check the remaining fields within this class/struct/union subobject.
1893 bool prevHadError = hadError;
1894
1895 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1896 StructuredList, FieldIndex);
1897 return hadError && !prevHadError;
1898 }
1899
1900 // C99 6.7.8p6:
1901 //
1902 // If a designator has the form
1903 //
1904 // [ constant-expression ]
1905 //
1906 // then the current object (defined below) shall have array
1907 // type and the expression shall be an integer constant
1908 // expression. If the array is of unknown size, any
1909 // nonnegative value is valid.
1910 //
1911 // Additionally, cope with the GNU extension that permits
1912 // designators of the form
1913 //
1914 // [ constant-expression ... constant-expression ]
1915 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1916 if (!AT) {
1917 if (!VerifyOnly)
1918 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1919 << CurrentObjectType;
1920 ++Index;
1921 return true;
1922 }
1923
1924 Expr *IndexExpr = 0;
1925 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1926 if (D->isArrayDesignator()) {
1927 IndexExpr = DIE->getArrayIndex(*D);
1928 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1929 DesignatedEndIndex = DesignatedStartIndex;
1930 } else {
1931 assert(D->isArrayRangeDesignator() && "Need array-range designator");
1932
1933 DesignatedStartIndex =
1934 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1935 DesignatedEndIndex =
1936 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1937 IndexExpr = DIE->getArrayRangeEnd(*D);
1938
1939 // Codegen can't handle evaluating array range designators that have side
1940 // effects, because we replicate the AST value for each initialized element.
1941 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1942 // elements with something that has a side effect, so codegen can emit an
1943 // "error unsupported" error instead of miscompiling the app.
1944 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1945 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1946 FullyStructuredList->sawArrayRangeDesignator();
1947 }
1948
1949 if (isa<ConstantArrayType>(AT)) {
1950 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1951 DesignatedStartIndex
1952 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1953 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1954 DesignatedEndIndex
1955 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1956 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1957 if (DesignatedEndIndex >= MaxElements) {
1958 if (!VerifyOnly)
1959 SemaRef.Diag(IndexExpr->getLocStart(),
1960 diag::err_array_designator_too_large)
1961 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1962 << IndexExpr->getSourceRange();
1963 ++Index;
1964 return true;
1965 }
1966 } else {
1967 // Make sure the bit-widths and signedness match.
1968 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1969 DesignatedEndIndex
1970 = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1971 else if (DesignatedStartIndex.getBitWidth() <
1972 DesignatedEndIndex.getBitWidth())
1973 DesignatedStartIndex
1974 = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1975 DesignatedStartIndex.setIsUnsigned(true);
1976 DesignatedEndIndex.setIsUnsigned(true);
1977 }
1978
1979 // Make sure that our non-designated initializer list has space
1980 // for a subobject corresponding to this array element.
1981 if (!VerifyOnly &&
1982 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1983 StructuredList->resizeInits(SemaRef.Context,
1984 DesignatedEndIndex.getZExtValue() + 1);
1985
1986 // Repeatedly perform subobject initializations in the range
1987 // [DesignatedStartIndex, DesignatedEndIndex].
1988
1989 // Move to the next designator
1990 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1991 unsigned OldIndex = Index;
1992
1993 InitializedEntity ElementEntity =
1994 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1995
1996 while (DesignatedStartIndex <= DesignatedEndIndex) {
1997 // Recurse to check later designated subobjects.
1998 QualType ElementType = AT->getElementType();
1999 Index = OldIndex;
2000
2001 ElementEntity.setElementIndex(ElementIndex);
2002 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2003 ElementType, 0, 0, Index,
2004 StructuredList, ElementIndex,
2005 (DesignatedStartIndex == DesignatedEndIndex),
2006 false))
2007 return true;
2008
2009 // Move to the next index in the array that we'll be initializing.
2010 ++DesignatedStartIndex;
2011 ElementIndex = DesignatedStartIndex.getZExtValue();
2012 }
2013
2014 // If this the first designator, our caller will continue checking
2015 // the rest of this array subobject.
2016 if (IsFirstDesignator) {
2017 if (NextElementIndex)
2018 *NextElementIndex = DesignatedStartIndex;
2019 StructuredIndex = ElementIndex;
2020 return false;
2021 }
2022
2023 if (!FinishSubobjectInit)
2024 return false;
2025
2026 // Check the remaining elements within this array subobject.
2027 bool prevHadError = hadError;
2028 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2029 /*SubobjectIsDesignatorContext=*/false, Index,
2030 StructuredList, ElementIndex);
2031 return hadError && !prevHadError;
2032 }
2033
2034 // Get the structured initializer list for a subobject of type
2035 // @p CurrentObjectType.
2036 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange)2037 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2038 QualType CurrentObjectType,
2039 InitListExpr *StructuredList,
2040 unsigned StructuredIndex,
2041 SourceRange InitRange) {
2042 if (VerifyOnly)
2043 return 0; // No structured list in verification-only mode.
2044 Expr *ExistingInit = 0;
2045 if (!StructuredList)
2046 ExistingInit = SyntacticToSemantic.lookup(IList);
2047 else if (StructuredIndex < StructuredList->getNumInits())
2048 ExistingInit = StructuredList->getInit(StructuredIndex);
2049
2050 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2051 return Result;
2052
2053 if (ExistingInit) {
2054 // We are creating an initializer list that initializes the
2055 // subobjects of the current object, but there was already an
2056 // initialization that completely initialized the current
2057 // subobject, e.g., by a compound literal:
2058 //
2059 // struct X { int a, b; };
2060 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2061 //
2062 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2063 // designated initializer re-initializes the whole
2064 // subobject [0], overwriting previous initializers.
2065 SemaRef.Diag(InitRange.getBegin(),
2066 diag::warn_subobject_initializer_overrides)
2067 << InitRange;
2068 SemaRef.Diag(ExistingInit->getLocStart(),
2069 diag::note_previous_initializer)
2070 << /*FIXME:has side effects=*/0
2071 << ExistingInit->getSourceRange();
2072 }
2073
2074 InitListExpr *Result
2075 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2076 InitRange.getBegin(), MultiExprArg(),
2077 InitRange.getEnd());
2078
2079 QualType ResultType = CurrentObjectType;
2080 if (!ResultType->isArrayType())
2081 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2082 Result->setType(ResultType);
2083
2084 // Pre-allocate storage for the structured initializer list.
2085 unsigned NumElements = 0;
2086 unsigned NumInits = 0;
2087 bool GotNumInits = false;
2088 if (!StructuredList) {
2089 NumInits = IList->getNumInits();
2090 GotNumInits = true;
2091 } else if (Index < IList->getNumInits()) {
2092 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2093 NumInits = SubList->getNumInits();
2094 GotNumInits = true;
2095 }
2096 }
2097
2098 if (const ArrayType *AType
2099 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2100 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2101 NumElements = CAType->getSize().getZExtValue();
2102 // Simple heuristic so that we don't allocate a very large
2103 // initializer with many empty entries at the end.
2104 if (GotNumInits && NumElements > NumInits)
2105 NumElements = 0;
2106 }
2107 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2108 NumElements = VType->getNumElements();
2109 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2110 RecordDecl *RDecl = RType->getDecl();
2111 if (RDecl->isUnion())
2112 NumElements = 1;
2113 else
2114 NumElements = std::distance(RDecl->field_begin(),
2115 RDecl->field_end());
2116 }
2117
2118 Result->reserveInits(SemaRef.Context, NumElements);
2119
2120 // Link this new initializer list into the structured initializer
2121 // lists.
2122 if (StructuredList)
2123 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2124 else {
2125 Result->setSyntacticForm(IList);
2126 SyntacticToSemantic[IList] = Result;
2127 }
2128
2129 return Result;
2130 }
2131
2132 /// Update the initializer at index @p StructuredIndex within the
2133 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)2134 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2135 unsigned &StructuredIndex,
2136 Expr *expr) {
2137 // No structured initializer list to update
2138 if (!StructuredList)
2139 return;
2140
2141 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2142 StructuredIndex, expr)) {
2143 // This initializer overwrites a previous initializer. Warn.
2144 SemaRef.Diag(expr->getLocStart(),
2145 diag::warn_initializer_overrides)
2146 << expr->getSourceRange();
2147 SemaRef.Diag(PrevInit->getLocStart(),
2148 diag::note_previous_initializer)
2149 << /*FIXME:has side effects=*/0
2150 << PrevInit->getSourceRange();
2151 }
2152
2153 ++StructuredIndex;
2154 }
2155
2156 /// Check that the given Index expression is a valid array designator
2157 /// value. This is essentially just a wrapper around
2158 /// VerifyIntegerConstantExpression that also checks for negative values
2159 /// and produces a reasonable diagnostic if there is a
2160 /// failure. Returns the index expression, possibly with an implicit cast
2161 /// added, on success. If everything went okay, Value will receive the
2162 /// value of the constant expression.
2163 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)2164 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2165 SourceLocation Loc = Index->getLocStart();
2166
2167 // Make sure this is an integer constant expression.
2168 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2169 if (Result.isInvalid())
2170 return Result;
2171
2172 if (Value.isSigned() && Value.isNegative())
2173 return S.Diag(Loc, diag::err_array_designator_negative)
2174 << Value.toString(10) << Index->getSourceRange();
2175
2176 Value.setIsUnsigned(true);
2177 return Result;
2178 }
2179
ActOnDesignatedInitializer(Designation & Desig,SourceLocation Loc,bool GNUSyntax,ExprResult Init)2180 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2181 SourceLocation Loc,
2182 bool GNUSyntax,
2183 ExprResult Init) {
2184 typedef DesignatedInitExpr::Designator ASTDesignator;
2185
2186 bool Invalid = false;
2187 SmallVector<ASTDesignator, 32> Designators;
2188 SmallVector<Expr *, 32> InitExpressions;
2189
2190 // Build designators and check array designator expressions.
2191 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2192 const Designator &D = Desig.getDesignator(Idx);
2193 switch (D.getKind()) {
2194 case Designator::FieldDesignator:
2195 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2196 D.getFieldLoc()));
2197 break;
2198
2199 case Designator::ArrayDesignator: {
2200 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2201 llvm::APSInt IndexValue;
2202 if (!Index->isTypeDependent() && !Index->isValueDependent())
2203 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2204 if (!Index)
2205 Invalid = true;
2206 else {
2207 Designators.push_back(ASTDesignator(InitExpressions.size(),
2208 D.getLBracketLoc(),
2209 D.getRBracketLoc()));
2210 InitExpressions.push_back(Index);
2211 }
2212 break;
2213 }
2214
2215 case Designator::ArrayRangeDesignator: {
2216 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2217 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2218 llvm::APSInt StartValue;
2219 llvm::APSInt EndValue;
2220 bool StartDependent = StartIndex->isTypeDependent() ||
2221 StartIndex->isValueDependent();
2222 bool EndDependent = EndIndex->isTypeDependent() ||
2223 EndIndex->isValueDependent();
2224 if (!StartDependent)
2225 StartIndex =
2226 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2227 if (!EndDependent)
2228 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2229
2230 if (!StartIndex || !EndIndex)
2231 Invalid = true;
2232 else {
2233 // Make sure we're comparing values with the same bit width.
2234 if (StartDependent || EndDependent) {
2235 // Nothing to compute.
2236 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2237 EndValue = EndValue.extend(StartValue.getBitWidth());
2238 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2239 StartValue = StartValue.extend(EndValue.getBitWidth());
2240
2241 if (!StartDependent && !EndDependent && EndValue < StartValue) {
2242 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2243 << StartValue.toString(10) << EndValue.toString(10)
2244 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2245 Invalid = true;
2246 } else {
2247 Designators.push_back(ASTDesignator(InitExpressions.size(),
2248 D.getLBracketLoc(),
2249 D.getEllipsisLoc(),
2250 D.getRBracketLoc()));
2251 InitExpressions.push_back(StartIndex);
2252 InitExpressions.push_back(EndIndex);
2253 }
2254 }
2255 break;
2256 }
2257 }
2258 }
2259
2260 if (Invalid || Init.isInvalid())
2261 return ExprError();
2262
2263 // Clear out the expressions within the designation.
2264 Desig.ClearExprs(*this);
2265
2266 DesignatedInitExpr *DIE
2267 = DesignatedInitExpr::Create(Context,
2268 Designators.data(), Designators.size(),
2269 InitExpressions, Loc, GNUSyntax,
2270 Init.takeAs<Expr>());
2271
2272 if (!getLangOpts().C99)
2273 Diag(DIE->getLocStart(), diag::ext_designated_init)
2274 << DIE->getSourceRange();
2275
2276 return Owned(DIE);
2277 }
2278
2279 //===----------------------------------------------------------------------===//
2280 // Initialization entity
2281 //===----------------------------------------------------------------------===//
2282
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)2283 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2284 const InitializedEntity &Parent)
2285 : Parent(&Parent), Index(Index)
2286 {
2287 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2288 Kind = EK_ArrayElement;
2289 Type = AT->getElementType();
2290 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2291 Kind = EK_VectorElement;
2292 Type = VT->getElementType();
2293 } else {
2294 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2295 assert(CT && "Unexpected type");
2296 Kind = EK_ComplexElement;
2297 Type = CT->getElementType();
2298 }
2299 }
2300
InitializeBase(ASTContext & Context,CXXBaseSpecifier * Base,bool IsInheritedVirtualBase)2301 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2302 CXXBaseSpecifier *Base,
2303 bool IsInheritedVirtualBase)
2304 {
2305 InitializedEntity Result;
2306 Result.Kind = EK_Base;
2307 Result.Base = reinterpret_cast<uintptr_t>(Base);
2308 if (IsInheritedVirtualBase)
2309 Result.Base |= 0x01;
2310
2311 Result.Type = Base->getType();
2312 return Result;
2313 }
2314
getName() const2315 DeclarationName InitializedEntity::getName() const {
2316 switch (getKind()) {
2317 case EK_Parameter: {
2318 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2319 return (D ? D->getDeclName() : DeclarationName());
2320 }
2321
2322 case EK_Variable:
2323 case EK_Member:
2324 return VariableOrMember->getDeclName();
2325
2326 case EK_LambdaCapture:
2327 return Capture.Var->getDeclName();
2328
2329 case EK_Result:
2330 case EK_Exception:
2331 case EK_New:
2332 case EK_Temporary:
2333 case EK_Base:
2334 case EK_Delegating:
2335 case EK_ArrayElement:
2336 case EK_VectorElement:
2337 case EK_ComplexElement:
2338 case EK_BlockElement:
2339 return DeclarationName();
2340 }
2341
2342 llvm_unreachable("Invalid EntityKind!");
2343 }
2344
getDecl() const2345 DeclaratorDecl *InitializedEntity::getDecl() const {
2346 switch (getKind()) {
2347 case EK_Variable:
2348 case EK_Member:
2349 return VariableOrMember;
2350
2351 case EK_Parameter:
2352 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2353
2354 case EK_Result:
2355 case EK_Exception:
2356 case EK_New:
2357 case EK_Temporary:
2358 case EK_Base:
2359 case EK_Delegating:
2360 case EK_ArrayElement:
2361 case EK_VectorElement:
2362 case EK_ComplexElement:
2363 case EK_BlockElement:
2364 case EK_LambdaCapture:
2365 return 0;
2366 }
2367
2368 llvm_unreachable("Invalid EntityKind!");
2369 }
2370
allowsNRVO() const2371 bool InitializedEntity::allowsNRVO() const {
2372 switch (getKind()) {
2373 case EK_Result:
2374 case EK_Exception:
2375 return LocAndNRVO.NRVO;
2376
2377 case EK_Variable:
2378 case EK_Parameter:
2379 case EK_Member:
2380 case EK_New:
2381 case EK_Temporary:
2382 case EK_Base:
2383 case EK_Delegating:
2384 case EK_ArrayElement:
2385 case EK_VectorElement:
2386 case EK_ComplexElement:
2387 case EK_BlockElement:
2388 case EK_LambdaCapture:
2389 break;
2390 }
2391
2392 return false;
2393 }
2394
2395 //===----------------------------------------------------------------------===//
2396 // Initialization sequence
2397 //===----------------------------------------------------------------------===//
2398
Destroy()2399 void InitializationSequence::Step::Destroy() {
2400 switch (Kind) {
2401 case SK_ResolveAddressOfOverloadedFunction:
2402 case SK_CastDerivedToBaseRValue:
2403 case SK_CastDerivedToBaseXValue:
2404 case SK_CastDerivedToBaseLValue:
2405 case SK_BindReference:
2406 case SK_BindReferenceToTemporary:
2407 case SK_ExtraneousCopyToTemporary:
2408 case SK_UserConversion:
2409 case SK_QualificationConversionRValue:
2410 case SK_QualificationConversionXValue:
2411 case SK_QualificationConversionLValue:
2412 case SK_ListInitialization:
2413 case SK_ListConstructorCall:
2414 case SK_UnwrapInitList:
2415 case SK_RewrapInitList:
2416 case SK_ConstructorInitialization:
2417 case SK_ZeroInitialization:
2418 case SK_CAssignment:
2419 case SK_StringInit:
2420 case SK_ObjCObjectConversion:
2421 case SK_ArrayInit:
2422 case SK_ParenthesizedArrayInit:
2423 case SK_PassByIndirectCopyRestore:
2424 case SK_PassByIndirectRestore:
2425 case SK_ProduceObjCObject:
2426 case SK_StdInitializerList:
2427 case SK_OCLSamplerInit:
2428 case SK_OCLZeroEvent:
2429 break;
2430
2431 case SK_ConversionSequence:
2432 delete ICS;
2433 }
2434 }
2435
isDirectReferenceBinding() const2436 bool InitializationSequence::isDirectReferenceBinding() const {
2437 return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2438 }
2439
isAmbiguous() const2440 bool InitializationSequence::isAmbiguous() const {
2441 if (!Failed())
2442 return false;
2443
2444 switch (getFailureKind()) {
2445 case FK_TooManyInitsForReference:
2446 case FK_ArrayNeedsInitList:
2447 case FK_ArrayNeedsInitListOrStringLiteral:
2448 case FK_AddressOfOverloadFailed: // FIXME: Could do better
2449 case FK_NonConstLValueReferenceBindingToTemporary:
2450 case FK_NonConstLValueReferenceBindingToUnrelated:
2451 case FK_RValueReferenceBindingToLValue:
2452 case FK_ReferenceInitDropsQualifiers:
2453 case FK_ReferenceInitFailed:
2454 case FK_ConversionFailed:
2455 case FK_ConversionFromPropertyFailed:
2456 case FK_TooManyInitsForScalar:
2457 case FK_ReferenceBindingToInitList:
2458 case FK_InitListBadDestinationType:
2459 case FK_DefaultInitOfConst:
2460 case FK_Incomplete:
2461 case FK_ArrayTypeMismatch:
2462 case FK_NonConstantArrayInit:
2463 case FK_ListInitializationFailed:
2464 case FK_VariableLengthArrayHasInitializer:
2465 case FK_PlaceholderType:
2466 case FK_InitListElementCopyFailure:
2467 case FK_ExplicitConstructor:
2468 return false;
2469
2470 case FK_ReferenceInitOverloadFailed:
2471 case FK_UserConversionOverloadFailed:
2472 case FK_ConstructorOverloadFailed:
2473 case FK_ListConstructorOverloadFailed:
2474 return FailedOverloadResult == OR_Ambiguous;
2475 }
2476
2477 llvm_unreachable("Invalid EntityKind!");
2478 }
2479
isConstructorInitialization() const2480 bool InitializationSequence::isConstructorInitialization() const {
2481 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2482 }
2483
2484 void
2485 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)2486 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2487 DeclAccessPair Found,
2488 bool HadMultipleCandidates) {
2489 Step S;
2490 S.Kind = SK_ResolveAddressOfOverloadedFunction;
2491 S.Type = Function->getType();
2492 S.Function.HadMultipleCandidates = HadMultipleCandidates;
2493 S.Function.Function = Function;
2494 S.Function.FoundDecl = Found;
2495 Steps.push_back(S);
2496 }
2497
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)2498 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2499 ExprValueKind VK) {
2500 Step S;
2501 switch (VK) {
2502 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2503 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2504 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2505 }
2506 S.Type = BaseType;
2507 Steps.push_back(S);
2508 }
2509
AddReferenceBindingStep(QualType T,bool BindingTemporary)2510 void InitializationSequence::AddReferenceBindingStep(QualType T,
2511 bool BindingTemporary) {
2512 Step S;
2513 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2514 S.Type = T;
2515 Steps.push_back(S);
2516 }
2517
AddExtraneousCopyToTemporary(QualType T)2518 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2519 Step S;
2520 S.Kind = SK_ExtraneousCopyToTemporary;
2521 S.Type = T;
2522 Steps.push_back(S);
2523 }
2524
2525 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)2526 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2527 DeclAccessPair FoundDecl,
2528 QualType T,
2529 bool HadMultipleCandidates) {
2530 Step S;
2531 S.Kind = SK_UserConversion;
2532 S.Type = T;
2533 S.Function.HadMultipleCandidates = HadMultipleCandidates;
2534 S.Function.Function = Function;
2535 S.Function.FoundDecl = FoundDecl;
2536 Steps.push_back(S);
2537 }
2538
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)2539 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2540 ExprValueKind VK) {
2541 Step S;
2542 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2543 switch (VK) {
2544 case VK_RValue:
2545 S.Kind = SK_QualificationConversionRValue;
2546 break;
2547 case VK_XValue:
2548 S.Kind = SK_QualificationConversionXValue;
2549 break;
2550 case VK_LValue:
2551 S.Kind = SK_QualificationConversionLValue;
2552 break;
2553 }
2554 S.Type = Ty;
2555 Steps.push_back(S);
2556 }
2557
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T)2558 void InitializationSequence::AddConversionSequenceStep(
2559 const ImplicitConversionSequence &ICS,
2560 QualType T) {
2561 Step S;
2562 S.Kind = SK_ConversionSequence;
2563 S.Type = T;
2564 S.ICS = new ImplicitConversionSequence(ICS);
2565 Steps.push_back(S);
2566 }
2567
AddListInitializationStep(QualType T)2568 void InitializationSequence::AddListInitializationStep(QualType T) {
2569 Step S;
2570 S.Kind = SK_ListInitialization;
2571 S.Type = T;
2572 Steps.push_back(S);
2573 }
2574
2575 void
2576 InitializationSequence
AddConstructorInitializationStep(CXXConstructorDecl * Constructor,AccessSpecifier Access,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)2577 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2578 AccessSpecifier Access,
2579 QualType T,
2580 bool HadMultipleCandidates,
2581 bool FromInitList, bool AsInitList) {
2582 Step S;
2583 S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2584 : SK_ConstructorInitialization;
2585 S.Type = T;
2586 S.Function.HadMultipleCandidates = HadMultipleCandidates;
2587 S.Function.Function = Constructor;
2588 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2589 Steps.push_back(S);
2590 }
2591
AddZeroInitializationStep(QualType T)2592 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2593 Step S;
2594 S.Kind = SK_ZeroInitialization;
2595 S.Type = T;
2596 Steps.push_back(S);
2597 }
2598
AddCAssignmentStep(QualType T)2599 void InitializationSequence::AddCAssignmentStep(QualType T) {
2600 Step S;
2601 S.Kind = SK_CAssignment;
2602 S.Type = T;
2603 Steps.push_back(S);
2604 }
2605
AddStringInitStep(QualType T)2606 void InitializationSequence::AddStringInitStep(QualType T) {
2607 Step S;
2608 S.Kind = SK_StringInit;
2609 S.Type = T;
2610 Steps.push_back(S);
2611 }
2612
AddObjCObjectConversionStep(QualType T)2613 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2614 Step S;
2615 S.Kind = SK_ObjCObjectConversion;
2616 S.Type = T;
2617 Steps.push_back(S);
2618 }
2619
AddArrayInitStep(QualType T)2620 void InitializationSequence::AddArrayInitStep(QualType T) {
2621 Step S;
2622 S.Kind = SK_ArrayInit;
2623 S.Type = T;
2624 Steps.push_back(S);
2625 }
2626
AddParenthesizedArrayInitStep(QualType T)2627 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2628 Step S;
2629 S.Kind = SK_ParenthesizedArrayInit;
2630 S.Type = T;
2631 Steps.push_back(S);
2632 }
2633
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)2634 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2635 bool shouldCopy) {
2636 Step s;
2637 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2638 : SK_PassByIndirectRestore);
2639 s.Type = type;
2640 Steps.push_back(s);
2641 }
2642
AddProduceObjCObjectStep(QualType T)2643 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2644 Step S;
2645 S.Kind = SK_ProduceObjCObject;
2646 S.Type = T;
2647 Steps.push_back(S);
2648 }
2649
AddStdInitializerListConstructionStep(QualType T)2650 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2651 Step S;
2652 S.Kind = SK_StdInitializerList;
2653 S.Type = T;
2654 Steps.push_back(S);
2655 }
2656
AddOCLSamplerInitStep(QualType T)2657 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2658 Step S;
2659 S.Kind = SK_OCLSamplerInit;
2660 S.Type = T;
2661 Steps.push_back(S);
2662 }
2663
AddOCLZeroEventStep(QualType T)2664 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2665 Step S;
2666 S.Kind = SK_OCLZeroEvent;
2667 S.Type = T;
2668 Steps.push_back(S);
2669 }
2670
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)2671 void InitializationSequence::RewrapReferenceInitList(QualType T,
2672 InitListExpr *Syntactic) {
2673 assert(Syntactic->getNumInits() == 1 &&
2674 "Can only rewrap trivial init lists.");
2675 Step S;
2676 S.Kind = SK_UnwrapInitList;
2677 S.Type = Syntactic->getInit(0)->getType();
2678 Steps.insert(Steps.begin(), S);
2679
2680 S.Kind = SK_RewrapInitList;
2681 S.Type = T;
2682 S.WrappingSyntacticList = Syntactic;
2683 Steps.push_back(S);
2684 }
2685
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)2686 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2687 OverloadingResult Result) {
2688 setSequenceKind(FailedSequence);
2689 this->Failure = Failure;
2690 this->FailedOverloadResult = Result;
2691 }
2692
2693 //===----------------------------------------------------------------------===//
2694 // Attempt initialization
2695 //===----------------------------------------------------------------------===//
2696
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)2697 static void MaybeProduceObjCObject(Sema &S,
2698 InitializationSequence &Sequence,
2699 const InitializedEntity &Entity) {
2700 if (!S.getLangOpts().ObjCAutoRefCount) return;
2701
2702 /// When initializing a parameter, produce the value if it's marked
2703 /// __attribute__((ns_consumed)).
2704 if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2705 if (!Entity.isParameterConsumed())
2706 return;
2707
2708 assert(Entity.getType()->isObjCRetainableType() &&
2709 "consuming an object of unretainable type?");
2710 Sequence.AddProduceObjCObjectStep(Entity.getType());
2711
2712 /// When initializing a return value, if the return type is a
2713 /// retainable type, then returns need to immediately retain the
2714 /// object. If an autorelease is required, it will be done at the
2715 /// last instant.
2716 } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2717 if (!Entity.getType()->isObjCRetainableType())
2718 return;
2719
2720 Sequence.AddProduceObjCObjectStep(Entity.getType());
2721 }
2722 }
2723
2724 /// \brief When initializing from init list via constructor, handle
2725 /// initialization of an object of type std::initializer_list<T>.
2726 ///
2727 /// \return true if we have handled initialization of an object of type
2728 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence)2729 static bool TryInitializerListConstruction(Sema &S,
2730 InitListExpr *List,
2731 QualType DestType,
2732 InitializationSequence &Sequence) {
2733 QualType E;
2734 if (!S.isStdInitializerList(DestType, &E))
2735 return false;
2736
2737 // Check that each individual element can be copy-constructed. But since we
2738 // have no place to store further information, we'll recalculate everything
2739 // later.
2740 InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2741 S.Context.getConstantArrayType(E,
2742 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2743 List->getNumInits()),
2744 ArrayType::Normal, 0));
2745 InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2746 0, HiddenArray);
2747 for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2748 Element.setElementIndex(i);
2749 if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2750 Sequence.SetFailed(
2751 InitializationSequence::FK_InitListElementCopyFailure);
2752 return true;
2753 }
2754 }
2755 Sequence.AddStdInitializerListConstructionStep(DestType);
2756 return true;
2757 }
2758
2759 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,ArrayRef<NamedDecl * > Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool InitListSyntax)2760 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2761 Expr **Args, unsigned NumArgs,
2762 OverloadCandidateSet &CandidateSet,
2763 ArrayRef<NamedDecl *> Ctors,
2764 OverloadCandidateSet::iterator &Best,
2765 bool CopyInitializing, bool AllowExplicit,
2766 bool OnlyListConstructors, bool InitListSyntax) {
2767 CandidateSet.clear();
2768
2769 for (ArrayRef<NamedDecl *>::iterator
2770 Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2771 NamedDecl *D = *Con;
2772 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2773 bool SuppressUserConversions = false;
2774
2775 // Find the constructor (which may be a template).
2776 CXXConstructorDecl *Constructor = 0;
2777 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2778 if (ConstructorTmpl)
2779 Constructor = cast<CXXConstructorDecl>(
2780 ConstructorTmpl->getTemplatedDecl());
2781 else {
2782 Constructor = cast<CXXConstructorDecl>(D);
2783
2784 // If we're performing copy initialization using a copy constructor, we
2785 // suppress user-defined conversions on the arguments. We do the same for
2786 // move constructors.
2787 if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2788 Constructor->isCopyOrMoveConstructor())
2789 SuppressUserConversions = true;
2790 }
2791
2792 if (!Constructor->isInvalidDecl() &&
2793 (AllowExplicit || !Constructor->isExplicit()) &&
2794 (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2795 if (ConstructorTmpl)
2796 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2797 /*ExplicitArgs*/ 0,
2798 llvm::makeArrayRef(Args, NumArgs),
2799 CandidateSet, SuppressUserConversions);
2800 else {
2801 // C++ [over.match.copy]p1:
2802 // - When initializing a temporary to be bound to the first parameter
2803 // of a constructor that takes a reference to possibly cv-qualified
2804 // T as its first argument, called with a single argument in the
2805 // context of direct-initialization, explicit conversion functions
2806 // are also considered.
2807 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
2808 NumArgs == 1 &&
2809 Constructor->isCopyOrMoveConstructor();
2810 S.AddOverloadCandidate(Constructor, FoundDecl,
2811 llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2812 SuppressUserConversions,
2813 /*PartialOverloading=*/false,
2814 /*AllowExplicit=*/AllowExplicitConv);
2815 }
2816 }
2817 }
2818
2819 // Perform overload resolution and return the result.
2820 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2821 }
2822
2823 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2824 /// enumerates the constructors of the initialized entity and performs overload
2825 /// resolution to select the best.
2826 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2827 /// class type.
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs,QualType DestType,InitializationSequence & Sequence,bool InitListSyntax=false)2828 static void TryConstructorInitialization(Sema &S,
2829 const InitializedEntity &Entity,
2830 const InitializationKind &Kind,
2831 Expr **Args, unsigned NumArgs,
2832 QualType DestType,
2833 InitializationSequence &Sequence,
2834 bool InitListSyntax = false) {
2835 assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2836 "InitListSyntax must come with a single initializer list argument.");
2837
2838 // The type we're constructing needs to be complete.
2839 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2840 Sequence.setIncompleteTypeFailure(DestType);
2841 return;
2842 }
2843
2844 const RecordType *DestRecordType = DestType->getAs<RecordType>();
2845 assert(DestRecordType && "Constructor initialization requires record type");
2846 CXXRecordDecl *DestRecordDecl
2847 = cast<CXXRecordDecl>(DestRecordType->getDecl());
2848
2849 // Build the candidate set directly in the initialization sequence
2850 // structure, so that it will persist if we fail.
2851 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2852
2853 // Determine whether we are allowed to call explicit constructors or
2854 // explicit conversion operators.
2855 bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2856 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2857
2858 // - Otherwise, if T is a class type, constructors are considered. The
2859 // applicable constructors are enumerated, and the best one is chosen
2860 // through overload resolution.
2861 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
2862 // The container holding the constructors can under certain conditions
2863 // be changed while iterating (e.g. because of deserialization).
2864 // To be safe we copy the lookup results to a new container.
2865 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
2866
2867 OverloadingResult Result = OR_No_Viable_Function;
2868 OverloadCandidateSet::iterator Best;
2869 bool AsInitializerList = false;
2870
2871 // C++11 [over.match.list]p1:
2872 // When objects of non-aggregate type T are list-initialized, overload
2873 // resolution selects the constructor in two phases:
2874 // - Initially, the candidate functions are the initializer-list
2875 // constructors of the class T and the argument list consists of the
2876 // initializer list as a single argument.
2877 if (InitListSyntax) {
2878 InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2879 AsInitializerList = true;
2880
2881 // If the initializer list has no elements and T has a default constructor,
2882 // the first phase is omitted.
2883 if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
2884 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2885 CandidateSet, Ctors, Best,
2886 CopyInitialization, AllowExplicit,
2887 /*OnlyListConstructor=*/true,
2888 InitListSyntax);
2889
2890 // Time to unwrap the init list.
2891 Args = ILE->getInits();
2892 NumArgs = ILE->getNumInits();
2893 }
2894
2895 // C++11 [over.match.list]p1:
2896 // - If no viable initializer-list constructor is found, overload resolution
2897 // is performed again, where the candidate functions are all the
2898 // constructors of the class T and the argument list consists of the
2899 // elements of the initializer list.
2900 if (Result == OR_No_Viable_Function) {
2901 AsInitializerList = false;
2902 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2903 CandidateSet, Ctors, Best,
2904 CopyInitialization, AllowExplicit,
2905 /*OnlyListConstructors=*/false,
2906 InitListSyntax);
2907 }
2908 if (Result) {
2909 Sequence.SetOverloadFailure(InitListSyntax ?
2910 InitializationSequence::FK_ListConstructorOverloadFailed :
2911 InitializationSequence::FK_ConstructorOverloadFailed,
2912 Result);
2913 return;
2914 }
2915
2916 // C++11 [dcl.init]p6:
2917 // If a program calls for the default initialization of an object
2918 // of a const-qualified type T, T shall be a class type with a
2919 // user-provided default constructor.
2920 if (Kind.getKind() == InitializationKind::IK_Default &&
2921 Entity.getType().isConstQualified() &&
2922 !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
2923 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2924 return;
2925 }
2926
2927 // C++11 [over.match.list]p1:
2928 // In copy-list-initialization, if an explicit constructor is chosen, the
2929 // initializer is ill-formed.
2930 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2931 if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2932 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2933 return;
2934 }
2935
2936 // Add the constructor initialization step. Any cv-qualification conversion is
2937 // subsumed by the initialization.
2938 bool HadMultipleCandidates = (CandidateSet.size() > 1);
2939 Sequence.AddConstructorInitializationStep(CtorDecl,
2940 Best->FoundDecl.getAccess(),
2941 DestType, HadMultipleCandidates,
2942 InitListSyntax, AsInitializerList);
2943 }
2944
2945 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)2946 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2947 Expr *Initializer,
2948 QualType &SourceType,
2949 QualType &UnqualifiedSourceType,
2950 QualType UnqualifiedTargetType,
2951 InitializationSequence &Sequence) {
2952 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2953 S.Context.OverloadTy) {
2954 DeclAccessPair Found;
2955 bool HadMultipleCandidates = false;
2956 if (FunctionDecl *Fn
2957 = S.ResolveAddressOfOverloadedFunction(Initializer,
2958 UnqualifiedTargetType,
2959 false, Found,
2960 &HadMultipleCandidates)) {
2961 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
2962 HadMultipleCandidates);
2963 SourceType = Fn->getType();
2964 UnqualifiedSourceType = SourceType.getUnqualifiedType();
2965 } else if (!UnqualifiedTargetType->isRecordType()) {
2966 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2967 return true;
2968 }
2969 }
2970 return false;
2971 }
2972
2973 static void TryReferenceInitializationCore(Sema &S,
2974 const InitializedEntity &Entity,
2975 const InitializationKind &Kind,
2976 Expr *Initializer,
2977 QualType cv1T1, QualType T1,
2978 Qualifiers T1Quals,
2979 QualType cv2T2, QualType T2,
2980 Qualifiers T2Quals,
2981 InitializationSequence &Sequence);
2982
2983 static void TryValueInitialization(Sema &S,
2984 const InitializedEntity &Entity,
2985 const InitializationKind &Kind,
2986 InitializationSequence &Sequence,
2987 InitListExpr *InitList = 0);
2988
2989 static void TryListInitialization(Sema &S,
2990 const InitializedEntity &Entity,
2991 const InitializationKind &Kind,
2992 InitListExpr *InitList,
2993 InitializationSequence &Sequence);
2994
2995 /// \brief Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)2996 static void TryReferenceListInitialization(Sema &S,
2997 const InitializedEntity &Entity,
2998 const InitializationKind &Kind,
2999 InitListExpr *InitList,
3000 InitializationSequence &Sequence)
3001 {
3002 // First, catch C++03 where this isn't possible.
3003 if (!S.getLangOpts().CPlusPlus11) {
3004 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3005 return;
3006 }
3007
3008 QualType DestType = Entity.getType();
3009 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3010 Qualifiers T1Quals;
3011 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3012
3013 // Reference initialization via an initializer list works thus:
3014 // If the initializer list consists of a single element that is
3015 // reference-related to the referenced type, bind directly to that element
3016 // (possibly creating temporaries).
3017 // Otherwise, initialize a temporary with the initializer list and
3018 // bind to that.
3019 if (InitList->getNumInits() == 1) {
3020 Expr *Initializer = InitList->getInit(0);
3021 QualType cv2T2 = Initializer->getType();
3022 Qualifiers T2Quals;
3023 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3024
3025 // If this fails, creating a temporary wouldn't work either.
3026 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3027 T1, Sequence))
3028 return;
3029
3030 SourceLocation DeclLoc = Initializer->getLocStart();
3031 bool dummy1, dummy2, dummy3;
3032 Sema::ReferenceCompareResult RefRelationship
3033 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3034 dummy2, dummy3);
3035 if (RefRelationship >= Sema::Ref_Related) {
3036 // Try to bind the reference here.
3037 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3038 T1Quals, cv2T2, T2, T2Quals, Sequence);
3039 if (Sequence)
3040 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3041 return;
3042 }
3043
3044 // Update the initializer if we've resolved an overloaded function.
3045 if (Sequence.step_begin() != Sequence.step_end())
3046 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3047 }
3048
3049 // Not reference-related. Create a temporary and bind to that.
3050 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3051
3052 TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3053 if (Sequence) {
3054 if (DestType->isRValueReferenceType() ||
3055 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3056 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3057 else
3058 Sequence.SetFailed(
3059 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3060 }
3061 }
3062
3063 /// \brief Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3064 static void TryListInitialization(Sema &S,
3065 const InitializedEntity &Entity,
3066 const InitializationKind &Kind,
3067 InitListExpr *InitList,
3068 InitializationSequence &Sequence) {
3069 QualType DestType = Entity.getType();
3070
3071 // C++ doesn't allow scalar initialization with more than one argument.
3072 // But C99 complex numbers are scalars and it makes sense there.
3073 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3074 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3075 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3076 return;
3077 }
3078 if (DestType->isReferenceType()) {
3079 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3080 return;
3081 }
3082 if (DestType->isRecordType()) {
3083 if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3084 Sequence.setIncompleteTypeFailure(DestType);
3085 return;
3086 }
3087
3088 // C++11 [dcl.init.list]p3:
3089 // - If T is an aggregate, aggregate initialization is performed.
3090 if (!DestType->isAggregateType()) {
3091 if (S.getLangOpts().CPlusPlus11) {
3092 // - Otherwise, if the initializer list has no elements and T is a
3093 // class type with a default constructor, the object is
3094 // value-initialized.
3095 if (InitList->getNumInits() == 0) {
3096 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3097 if (RD->hasDefaultConstructor()) {
3098 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3099 return;
3100 }
3101 }
3102
3103 // - Otherwise, if T is a specialization of std::initializer_list<E>,
3104 // an initializer_list object constructed [...]
3105 if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3106 return;
3107
3108 // - Otherwise, if T is a class type, constructors are considered.
3109 Expr *Arg = InitList;
3110 TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType,
3111 Sequence, /*InitListSyntax*/true);
3112 } else
3113 Sequence.SetFailed(
3114 InitializationSequence::FK_InitListBadDestinationType);
3115 return;
3116 }
3117 }
3118
3119 InitListChecker CheckInitList(S, Entity, InitList,
3120 DestType, /*VerifyOnly=*/true,
3121 Kind.getKind() != InitializationKind::IK_DirectList ||
3122 !S.getLangOpts().CPlusPlus11);
3123 if (CheckInitList.HadError()) {
3124 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3125 return;
3126 }
3127
3128 // Add the list initialization step with the built init list.
3129 Sequence.AddListInitializationStep(DestType);
3130 }
3131
3132 /// \brief Try a reference initialization that involves calling a conversion
3133 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,InitializationSequence & Sequence)3134 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3135 const InitializedEntity &Entity,
3136 const InitializationKind &Kind,
3137 Expr *Initializer,
3138 bool AllowRValues,
3139 InitializationSequence &Sequence) {
3140 QualType DestType = Entity.getType();
3141 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3142 QualType T1 = cv1T1.getUnqualifiedType();
3143 QualType cv2T2 = Initializer->getType();
3144 QualType T2 = cv2T2.getUnqualifiedType();
3145
3146 bool DerivedToBase;
3147 bool ObjCConversion;
3148 bool ObjCLifetimeConversion;
3149 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3150 T1, T2, DerivedToBase,
3151 ObjCConversion,
3152 ObjCLifetimeConversion) &&
3153 "Must have incompatible references when binding via conversion");
3154 (void)DerivedToBase;
3155 (void)ObjCConversion;
3156 (void)ObjCLifetimeConversion;
3157
3158 // Build the candidate set directly in the initialization sequence
3159 // structure, so that it will persist if we fail.
3160 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3161 CandidateSet.clear();
3162
3163 // Determine whether we are allowed to call explicit constructors or
3164 // explicit conversion operators.
3165 bool AllowExplicit = Kind.AllowExplicit();
3166 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3167
3168 const RecordType *T1RecordType = 0;
3169 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3170 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3171 // The type we're converting to is a class type. Enumerate its constructors
3172 // to see if there is a suitable conversion.
3173 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3174
3175 DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3176 // The container holding the constructors can under certain conditions
3177 // be changed while iterating (e.g. because of deserialization).
3178 // To be safe we copy the lookup results to a new container.
3179 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3180 for (SmallVector<NamedDecl*, 16>::iterator
3181 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3182 NamedDecl *D = *CI;
3183 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3184
3185 // Find the constructor (which may be a template).
3186 CXXConstructorDecl *Constructor = 0;
3187 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3188 if (ConstructorTmpl)
3189 Constructor = cast<CXXConstructorDecl>(
3190 ConstructorTmpl->getTemplatedDecl());
3191 else
3192 Constructor = cast<CXXConstructorDecl>(D);
3193
3194 if (!Constructor->isInvalidDecl() &&
3195 Constructor->isConvertingConstructor(AllowExplicit)) {
3196 if (ConstructorTmpl)
3197 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3198 /*ExplicitArgs*/ 0,
3199 Initializer, CandidateSet,
3200 /*SuppressUserConversions=*/true);
3201 else
3202 S.AddOverloadCandidate(Constructor, FoundDecl,
3203 Initializer, CandidateSet,
3204 /*SuppressUserConversions=*/true);
3205 }
3206 }
3207 }
3208 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3209 return OR_No_Viable_Function;
3210
3211 const RecordType *T2RecordType = 0;
3212 if ((T2RecordType = T2->getAs<RecordType>()) &&
3213 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3214 // The type we're converting from is a class type, enumerate its conversion
3215 // functions.
3216 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3217
3218 std::pair<CXXRecordDecl::conversion_iterator,
3219 CXXRecordDecl::conversion_iterator>
3220 Conversions = T2RecordDecl->getVisibleConversionFunctions();
3221 for (CXXRecordDecl::conversion_iterator
3222 I = Conversions.first, E = Conversions.second; I != E; ++I) {
3223 NamedDecl *D = *I;
3224 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3225 if (isa<UsingShadowDecl>(D))
3226 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3227
3228 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3229 CXXConversionDecl *Conv;
3230 if (ConvTemplate)
3231 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3232 else
3233 Conv = cast<CXXConversionDecl>(D);
3234
3235 // If the conversion function doesn't return a reference type,
3236 // it can't be considered for this conversion unless we're allowed to
3237 // consider rvalues.
3238 // FIXME: Do we need to make sure that we only consider conversion
3239 // candidates with reference-compatible results? That might be needed to
3240 // break recursion.
3241 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3242 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3243 if (ConvTemplate)
3244 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3245 ActingDC, Initializer,
3246 DestType, CandidateSet);
3247 else
3248 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3249 Initializer, DestType, CandidateSet);
3250 }
3251 }
3252 }
3253 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3254 return OR_No_Viable_Function;
3255
3256 SourceLocation DeclLoc = Initializer->getLocStart();
3257
3258 // Perform overload resolution. If it fails, return the failed result.
3259 OverloadCandidateSet::iterator Best;
3260 if (OverloadingResult Result
3261 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3262 return Result;
3263
3264 FunctionDecl *Function = Best->Function;
3265 // This is the overload that will be used for this initialization step if we
3266 // use this initialization. Mark it as referenced.
3267 Function->setReferenced();
3268
3269 // Compute the returned type of the conversion.
3270 if (isa<CXXConversionDecl>(Function))
3271 T2 = Function->getResultType();
3272 else
3273 T2 = cv1T1;
3274
3275 // Add the user-defined conversion step.
3276 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3277 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3278 T2.getNonLValueExprType(S.Context),
3279 HadMultipleCandidates);
3280
3281 // Determine whether we need to perform derived-to-base or
3282 // cv-qualification adjustments.
3283 ExprValueKind VK = VK_RValue;
3284 if (T2->isLValueReferenceType())
3285 VK = VK_LValue;
3286 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3287 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3288
3289 bool NewDerivedToBase = false;
3290 bool NewObjCConversion = false;
3291 bool NewObjCLifetimeConversion = false;
3292 Sema::ReferenceCompareResult NewRefRelationship
3293 = S.CompareReferenceRelationship(DeclLoc, T1,
3294 T2.getNonLValueExprType(S.Context),
3295 NewDerivedToBase, NewObjCConversion,
3296 NewObjCLifetimeConversion);
3297 if (NewRefRelationship == Sema::Ref_Incompatible) {
3298 // If the type we've converted to is not reference-related to the
3299 // type we're looking for, then there is another conversion step
3300 // we need to perform to produce a temporary of the right type
3301 // that we'll be binding to.
3302 ImplicitConversionSequence ICS;
3303 ICS.setStandard();
3304 ICS.Standard = Best->FinalConversion;
3305 T2 = ICS.Standard.getToType(2);
3306 Sequence.AddConversionSequenceStep(ICS, T2);
3307 } else if (NewDerivedToBase)
3308 Sequence.AddDerivedToBaseCastStep(
3309 S.Context.getQualifiedType(T1,
3310 T2.getNonReferenceType().getQualifiers()),
3311 VK);
3312 else if (NewObjCConversion)
3313 Sequence.AddObjCObjectConversionStep(
3314 S.Context.getQualifiedType(T1,
3315 T2.getNonReferenceType().getQualifiers()));
3316
3317 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3318 Sequence.AddQualificationConversionStep(cv1T1, VK);
3319
3320 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3321 return OR_Success;
3322 }
3323
3324 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3325 const InitializedEntity &Entity,
3326 Expr *CurInitExpr);
3327
3328 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3329 static void TryReferenceInitialization(Sema &S,
3330 const InitializedEntity &Entity,
3331 const InitializationKind &Kind,
3332 Expr *Initializer,
3333 InitializationSequence &Sequence) {
3334 QualType DestType = Entity.getType();
3335 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3336 Qualifiers T1Quals;
3337 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3338 QualType cv2T2 = Initializer->getType();
3339 Qualifiers T2Quals;
3340 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3341
3342 // If the initializer is the address of an overloaded function, try
3343 // to resolve the overloaded function. If all goes well, T2 is the
3344 // type of the resulting function.
3345 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3346 T1, Sequence))
3347 return;
3348
3349 // Delegate everything else to a subfunction.
3350 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3351 T1Quals, cv2T2, T2, T2Quals, Sequence);
3352 }
3353
3354 /// \brief Reference initialization without resolving overloaded functions.
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)3355 static void TryReferenceInitializationCore(Sema &S,
3356 const InitializedEntity &Entity,
3357 const InitializationKind &Kind,
3358 Expr *Initializer,
3359 QualType cv1T1, QualType T1,
3360 Qualifiers T1Quals,
3361 QualType cv2T2, QualType T2,
3362 Qualifiers T2Quals,
3363 InitializationSequence &Sequence) {
3364 QualType DestType = Entity.getType();
3365 SourceLocation DeclLoc = Initializer->getLocStart();
3366 // Compute some basic properties of the types and the initializer.
3367 bool isLValueRef = DestType->isLValueReferenceType();
3368 bool isRValueRef = !isLValueRef;
3369 bool DerivedToBase = false;
3370 bool ObjCConversion = false;
3371 bool ObjCLifetimeConversion = false;
3372 Expr::Classification InitCategory = Initializer->Classify(S.Context);
3373 Sema::ReferenceCompareResult RefRelationship
3374 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3375 ObjCConversion, ObjCLifetimeConversion);
3376
3377 // C++0x [dcl.init.ref]p5:
3378 // A reference to type "cv1 T1" is initialized by an expression of type
3379 // "cv2 T2" as follows:
3380 //
3381 // - If the reference is an lvalue reference and the initializer
3382 // expression
3383 // Note the analogous bullet points for rvlaue refs to functions. Because
3384 // there are no function rvalues in C++, rvalue refs to functions are treated
3385 // like lvalue refs.
3386 OverloadingResult ConvOvlResult = OR_Success;
3387 bool T1Function = T1->isFunctionType();
3388 if (isLValueRef || T1Function) {
3389 if (InitCategory.isLValue() &&
3390 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3391 (Kind.isCStyleOrFunctionalCast() &&
3392 RefRelationship == Sema::Ref_Related))) {
3393 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
3394 // reference-compatible with "cv2 T2," or
3395 //
3396 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3397 // bit-field when we're determining whether the reference initialization
3398 // can occur. However, we do pay attention to whether it is a bit-field
3399 // to decide whether we're actually binding to a temporary created from
3400 // the bit-field.
3401 if (DerivedToBase)
3402 Sequence.AddDerivedToBaseCastStep(
3403 S.Context.getQualifiedType(T1, T2Quals),
3404 VK_LValue);
3405 else if (ObjCConversion)
3406 Sequence.AddObjCObjectConversionStep(
3407 S.Context.getQualifiedType(T1, T2Quals));
3408
3409 if (T1Quals != T2Quals)
3410 Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3411 bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3412 (Initializer->getBitField() || Initializer->refersToVectorElement());
3413 Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3414 return;
3415 }
3416
3417 // - has a class type (i.e., T2 is a class type), where T1 is not
3418 // reference-related to T2, and can be implicitly converted to an
3419 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3420 // with "cv3 T3" (this conversion is selected by enumerating the
3421 // applicable conversion functions (13.3.1.6) and choosing the best
3422 // one through overload resolution (13.3)),
3423 // If we have an rvalue ref to function type here, the rhs must be
3424 // an rvalue.
3425 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3426 (isLValueRef || InitCategory.isRValue())) {
3427 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3428 Initializer,
3429 /*AllowRValues=*/isRValueRef,
3430 Sequence);
3431 if (ConvOvlResult == OR_Success)
3432 return;
3433 if (ConvOvlResult != OR_No_Viable_Function) {
3434 Sequence.SetOverloadFailure(
3435 InitializationSequence::FK_ReferenceInitOverloadFailed,
3436 ConvOvlResult);
3437 }
3438 }
3439 }
3440
3441 // - Otherwise, the reference shall be an lvalue reference to a
3442 // non-volatile const type (i.e., cv1 shall be const), or the reference
3443 // shall be an rvalue reference.
3444 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3445 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3446 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3447 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3448 Sequence.SetOverloadFailure(
3449 InitializationSequence::FK_ReferenceInitOverloadFailed,
3450 ConvOvlResult);
3451 else
3452 Sequence.SetFailed(InitCategory.isLValue()
3453 ? (RefRelationship == Sema::Ref_Related
3454 ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3455 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3456 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3457
3458 return;
3459 }
3460
3461 // - If the initializer expression
3462 // - is an xvalue, class prvalue, array prvalue, or function lvalue and
3463 // "cv1 T1" is reference-compatible with "cv2 T2"
3464 // Note: functions are handled below.
3465 if (!T1Function &&
3466 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3467 (Kind.isCStyleOrFunctionalCast() &&
3468 RefRelationship == Sema::Ref_Related)) &&
3469 (InitCategory.isXValue() ||
3470 (InitCategory.isPRValue() && T2->isRecordType()) ||
3471 (InitCategory.isPRValue() && T2->isArrayType()))) {
3472 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3473 if (InitCategory.isPRValue() && T2->isRecordType()) {
3474 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3475 // compiler the freedom to perform a copy here or bind to the
3476 // object, while C++0x requires that we bind directly to the
3477 // object. Hence, we always bind to the object without making an
3478 // extra copy. However, in C++03 requires that we check for the
3479 // presence of a suitable copy constructor:
3480 //
3481 // The constructor that would be used to make the copy shall
3482 // be callable whether or not the copy is actually done.
3483 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3484 Sequence.AddExtraneousCopyToTemporary(cv2T2);
3485 else if (S.getLangOpts().CPlusPlus11)
3486 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3487 }
3488
3489 if (DerivedToBase)
3490 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3491 ValueKind);
3492 else if (ObjCConversion)
3493 Sequence.AddObjCObjectConversionStep(
3494 S.Context.getQualifiedType(T1, T2Quals));
3495
3496 if (T1Quals != T2Quals)
3497 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3498 Sequence.AddReferenceBindingStep(cv1T1,
3499 /*bindingTemporary=*/InitCategory.isPRValue());
3500 return;
3501 }
3502
3503 // - has a class type (i.e., T2 is a class type), where T1 is not
3504 // reference-related to T2, and can be implicitly converted to an
3505 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
3506 // where "cv1 T1" is reference-compatible with "cv3 T3",
3507 if (T2->isRecordType()) {
3508 if (RefRelationship == Sema::Ref_Incompatible) {
3509 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3510 Kind, Initializer,
3511 /*AllowRValues=*/true,
3512 Sequence);
3513 if (ConvOvlResult)
3514 Sequence.SetOverloadFailure(
3515 InitializationSequence::FK_ReferenceInitOverloadFailed,
3516 ConvOvlResult);
3517
3518 return;
3519 }
3520
3521 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3522 return;
3523 }
3524
3525 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
3526 // from the initializer expression using the rules for a non-reference
3527 // copy initialization (8.5). The reference is then bound to the
3528 // temporary. [...]
3529
3530 // Determine whether we are allowed to call explicit constructors or
3531 // explicit conversion operators.
3532 bool AllowExplicit = Kind.AllowExplicit();
3533
3534 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3535
3536 ImplicitConversionSequence ICS
3537 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3538 /*SuppressUserConversions*/ false,
3539 AllowExplicit,
3540 /*FIXME:InOverloadResolution=*/false,
3541 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3542 /*AllowObjCWritebackConversion=*/false);
3543
3544 if (ICS.isBad()) {
3545 // FIXME: Use the conversion function set stored in ICS to turn
3546 // this into an overloading ambiguity diagnostic. However, we need
3547 // to keep that set as an OverloadCandidateSet rather than as some
3548 // other kind of set.
3549 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3550 Sequence.SetOverloadFailure(
3551 InitializationSequence::FK_ReferenceInitOverloadFailed,
3552 ConvOvlResult);
3553 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3554 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3555 else
3556 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3557 return;
3558 } else {
3559 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3560 }
3561
3562 // [...] If T1 is reference-related to T2, cv1 must be the
3563 // same cv-qualification as, or greater cv-qualification
3564 // than, cv2; otherwise, the program is ill-formed.
3565 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3566 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3567 if (RefRelationship == Sema::Ref_Related &&
3568 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3569 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3570 return;
3571 }
3572
3573 // [...] If T1 is reference-related to T2 and the reference is an rvalue
3574 // reference, the initializer expression shall not be an lvalue.
3575 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3576 InitCategory.isLValue()) {
3577 Sequence.SetFailed(
3578 InitializationSequence::FK_RValueReferenceBindingToLValue);
3579 return;
3580 }
3581
3582 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3583 return;
3584 }
3585
3586 /// \brief Attempt character array initialization from a string literal
3587 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3588 static void TryStringLiteralInitialization(Sema &S,
3589 const InitializedEntity &Entity,
3590 const InitializationKind &Kind,
3591 Expr *Initializer,
3592 InitializationSequence &Sequence) {
3593 Sequence.AddStringInitStep(Entity.getType());
3594 }
3595
3596 /// \brief Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)3597 static void TryValueInitialization(Sema &S,
3598 const InitializedEntity &Entity,
3599 const InitializationKind &Kind,
3600 InitializationSequence &Sequence,
3601 InitListExpr *InitList) {
3602 assert((!InitList || InitList->getNumInits() == 0) &&
3603 "Shouldn't use value-init for non-empty init lists");
3604
3605 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3606 //
3607 // To value-initialize an object of type T means:
3608 QualType T = Entity.getType();
3609
3610 // -- if T is an array type, then each element is value-initialized;
3611 T = S.Context.getBaseElementType(T);
3612
3613 if (const RecordType *RT = T->getAs<RecordType>()) {
3614 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3615 bool NeedZeroInitialization = true;
3616 if (!S.getLangOpts().CPlusPlus11) {
3617 // C++98:
3618 // -- if T is a class type (clause 9) with a user-declared constructor
3619 // (12.1), then the default constructor for T is called (and the
3620 // initialization is ill-formed if T has no accessible default
3621 // constructor);
3622 if (ClassDecl->hasUserDeclaredConstructor())
3623 NeedZeroInitialization = false;
3624 } else {
3625 // C++11:
3626 // -- if T is a class type (clause 9) with either no default constructor
3627 // (12.1 [class.ctor]) or a default constructor that is user-provided
3628 // or deleted, then the object is default-initialized;
3629 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3630 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3631 NeedZeroInitialization = false;
3632 }
3633
3634 // -- if T is a (possibly cv-qualified) non-union class type without a
3635 // user-provided or deleted default constructor, then the object is
3636 // zero-initialized and, if T has a non-trivial default constructor,
3637 // default-initialized;
3638 // The 'non-union' here was removed by DR1502. The 'non-trivial default
3639 // constructor' part was removed by DR1507.
3640 if (NeedZeroInitialization)
3641 Sequence.AddZeroInitializationStep(Entity.getType());
3642
3643 // C++03:
3644 // -- if T is a non-union class type without a user-declared constructor,
3645 // then every non-static data member and base class component of T is
3646 // value-initialized;
3647 // [...] A program that calls for [...] value-initialization of an
3648 // entity of reference type is ill-formed.
3649 //
3650 // C++11 doesn't need this handling, because value-initialization does not
3651 // occur recursively there, and the implicit default constructor is
3652 // defined as deleted in the problematic cases.
3653 if (!S.getLangOpts().CPlusPlus11 &&
3654 ClassDecl->hasUninitializedReferenceMember()) {
3655 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3656 return;
3657 }
3658
3659 // If this is list-value-initialization, pass the empty init list on when
3660 // building the constructor call. This affects the semantics of a few
3661 // things (such as whether an explicit default constructor can be called).
3662 Expr *InitListAsExpr = InitList;
3663 Expr **Args = InitList ? &InitListAsExpr : 0;
3664 unsigned NumArgs = InitList ? 1 : 0;
3665 bool InitListSyntax = InitList;
3666
3667 return TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, T,
3668 Sequence, InitListSyntax);
3669 }
3670 }
3671
3672 Sequence.AddZeroInitializationStep(Entity.getType());
3673 }
3674
3675 /// \brief Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)3676 static void TryDefaultInitialization(Sema &S,
3677 const InitializedEntity &Entity,
3678 const InitializationKind &Kind,
3679 InitializationSequence &Sequence) {
3680 assert(Kind.getKind() == InitializationKind::IK_Default);
3681
3682 // C++ [dcl.init]p6:
3683 // To default-initialize an object of type T means:
3684 // - if T is an array type, each element is default-initialized;
3685 QualType DestType = S.Context.getBaseElementType(Entity.getType());
3686
3687 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
3688 // constructor for T is called (and the initialization is ill-formed if
3689 // T has no accessible default constructor);
3690 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3691 TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3692 return;
3693 }
3694
3695 // - otherwise, no initialization is performed.
3696
3697 // If a program calls for the default initialization of an object of
3698 // a const-qualified type T, T shall be a class type with a user-provided
3699 // default constructor.
3700 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3701 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3702 return;
3703 }
3704
3705 // If the destination type has a lifetime property, zero-initialize it.
3706 if (DestType.getQualifiers().hasObjCLifetime()) {
3707 Sequence.AddZeroInitializationStep(Entity.getType());
3708 return;
3709 }
3710 }
3711
3712 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3713 /// which enumerates all conversion functions and performs overload resolution
3714 /// to select the best.
TryUserDefinedConversion(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3715 static void TryUserDefinedConversion(Sema &S,
3716 const InitializedEntity &Entity,
3717 const InitializationKind &Kind,
3718 Expr *Initializer,
3719 InitializationSequence &Sequence) {
3720 QualType DestType = Entity.getType();
3721 assert(!DestType->isReferenceType() && "References are handled elsewhere");
3722 QualType SourceType = Initializer->getType();
3723 assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3724 "Must have a class type to perform a user-defined conversion");
3725
3726 // Build the candidate set directly in the initialization sequence
3727 // structure, so that it will persist if we fail.
3728 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3729 CandidateSet.clear();
3730
3731 // Determine whether we are allowed to call explicit constructors or
3732 // explicit conversion operators.
3733 bool AllowExplicit = Kind.AllowExplicit();
3734
3735 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3736 // The type we're converting to is a class type. Enumerate its constructors
3737 // to see if there is a suitable conversion.
3738 CXXRecordDecl *DestRecordDecl
3739 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3740
3741 // Try to complete the type we're converting to.
3742 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3743 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3744 // The container holding the constructors can under certain conditions
3745 // be changed while iterating. To be safe we copy the lookup results
3746 // to a new container.
3747 SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
3748 for (SmallVector<NamedDecl*, 8>::iterator
3749 Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
3750 Con != ConEnd; ++Con) {
3751 NamedDecl *D = *Con;
3752 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3753
3754 // Find the constructor (which may be a template).
3755 CXXConstructorDecl *Constructor = 0;
3756 FunctionTemplateDecl *ConstructorTmpl
3757 = dyn_cast<FunctionTemplateDecl>(D);
3758 if (ConstructorTmpl)
3759 Constructor = cast<CXXConstructorDecl>(
3760 ConstructorTmpl->getTemplatedDecl());
3761 else
3762 Constructor = cast<CXXConstructorDecl>(D);
3763
3764 if (!Constructor->isInvalidDecl() &&
3765 Constructor->isConvertingConstructor(AllowExplicit)) {
3766 if (ConstructorTmpl)
3767 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3768 /*ExplicitArgs*/ 0,
3769 Initializer, CandidateSet,
3770 /*SuppressUserConversions=*/true);
3771 else
3772 S.AddOverloadCandidate(Constructor, FoundDecl,
3773 Initializer, CandidateSet,
3774 /*SuppressUserConversions=*/true);
3775 }
3776 }
3777 }
3778 }
3779
3780 SourceLocation DeclLoc = Initializer->getLocStart();
3781
3782 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3783 // The type we're converting from is a class type, enumerate its conversion
3784 // functions.
3785
3786 // We can only enumerate the conversion functions for a complete type; if
3787 // the type isn't complete, simply skip this step.
3788 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3789 CXXRecordDecl *SourceRecordDecl
3790 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3791
3792 std::pair<CXXRecordDecl::conversion_iterator,
3793 CXXRecordDecl::conversion_iterator>
3794 Conversions = SourceRecordDecl->getVisibleConversionFunctions();
3795 for (CXXRecordDecl::conversion_iterator
3796 I = Conversions.first, E = Conversions.second; I != E; ++I) {
3797 NamedDecl *D = *I;
3798 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3799 if (isa<UsingShadowDecl>(D))
3800 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3801
3802 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3803 CXXConversionDecl *Conv;
3804 if (ConvTemplate)
3805 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3806 else
3807 Conv = cast<CXXConversionDecl>(D);
3808
3809 if (AllowExplicit || !Conv->isExplicit()) {
3810 if (ConvTemplate)
3811 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3812 ActingDC, Initializer, DestType,
3813 CandidateSet);
3814 else
3815 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3816 Initializer, DestType, CandidateSet);
3817 }
3818 }
3819 }
3820 }
3821
3822 // Perform overload resolution. If it fails, return the failed result.
3823 OverloadCandidateSet::iterator Best;
3824 if (OverloadingResult Result
3825 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3826 Sequence.SetOverloadFailure(
3827 InitializationSequence::FK_UserConversionOverloadFailed,
3828 Result);
3829 return;
3830 }
3831
3832 FunctionDecl *Function = Best->Function;
3833 Function->setReferenced();
3834 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3835
3836 if (isa<CXXConstructorDecl>(Function)) {
3837 // Add the user-defined conversion step. Any cv-qualification conversion is
3838 // subsumed by the initialization. Per DR5, the created temporary is of the
3839 // cv-unqualified type of the destination.
3840 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3841 DestType.getUnqualifiedType(),
3842 HadMultipleCandidates);
3843 return;
3844 }
3845
3846 // Add the user-defined conversion step that calls the conversion function.
3847 QualType ConvType = Function->getCallResultType();
3848 if (ConvType->getAs<RecordType>()) {
3849 // If we're converting to a class type, there may be an copy of
3850 // the resulting temporary object (possible to create an object of
3851 // a base class type). That copy is not a separate conversion, so
3852 // we just make a note of the actual destination type (possibly a
3853 // base class of the type returned by the conversion function) and
3854 // let the user-defined conversion step handle the conversion.
3855 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3856 HadMultipleCandidates);
3857 return;
3858 }
3859
3860 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3861 HadMultipleCandidates);
3862
3863 // If the conversion following the call to the conversion function
3864 // is interesting, add it as a separate step.
3865 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3866 Best->FinalConversion.Third) {
3867 ImplicitConversionSequence ICS;
3868 ICS.setStandard();
3869 ICS.Standard = Best->FinalConversion;
3870 Sequence.AddConversionSequenceStep(ICS, DestType);
3871 }
3872 }
3873
3874 /// The non-zero enum values here are indexes into diagnostic alternatives.
3875 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3876
3877 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)3878 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3879 bool isAddressOf, bool &isWeakAccess) {
3880 // Skip parens.
3881 e = e->IgnoreParens();
3882
3883 // Skip address-of nodes.
3884 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3885 if (op->getOpcode() == UO_AddrOf)
3886 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
3887 isWeakAccess);
3888
3889 // Skip certain casts.
3890 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3891 switch (ce->getCastKind()) {
3892 case CK_Dependent:
3893 case CK_BitCast:
3894 case CK_LValueBitCast:
3895 case CK_NoOp:
3896 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
3897
3898 case CK_ArrayToPointerDecay:
3899 return IIK_nonscalar;
3900
3901 case CK_NullToPointer:
3902 return IIK_okay;
3903
3904 default:
3905 break;
3906 }
3907
3908 // If we have a declaration reference, it had better be a local variable.
3909 } else if (isa<DeclRefExpr>(e)) {
3910 // set isWeakAccess to true, to mean that there will be an implicit
3911 // load which requires a cleanup.
3912 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
3913 isWeakAccess = true;
3914
3915 if (!isAddressOf) return IIK_nonlocal;
3916
3917 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3918 if (!var) return IIK_nonlocal;
3919
3920 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3921
3922 // If we have a conditional operator, check both sides.
3923 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3924 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
3925 isWeakAccess))
3926 return iik;
3927
3928 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
3929
3930 // These are never scalar.
3931 } else if (isa<ArraySubscriptExpr>(e)) {
3932 return IIK_nonscalar;
3933
3934 // Otherwise, it needs to be a null pointer constant.
3935 } else {
3936 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3937 ? IIK_okay : IIK_nonlocal);
3938 }
3939
3940 return IIK_nonlocal;
3941 }
3942
3943 /// Check whether the given expression is a valid operand for an
3944 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)3945 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3946 assert(src->isRValue());
3947 bool isWeakAccess = false;
3948 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
3949 // If isWeakAccess to true, there will be an implicit
3950 // load which requires a cleanup.
3951 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
3952 S.ExprNeedsCleanups = true;
3953
3954 if (iik == IIK_okay) return;
3955
3956 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3957 << ((unsigned) iik - 1) // shift index into diagnostic explanations
3958 << src->getSourceRange();
3959 }
3960
3961 /// \brief Determine whether we have compatible array types for the
3962 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)3963 static bool hasCompatibleArrayTypes(ASTContext &Context,
3964 const ArrayType *Dest,
3965 const ArrayType *Source) {
3966 // If the source and destination array types are equivalent, we're
3967 // done.
3968 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3969 return true;
3970
3971 // Make sure that the element types are the same.
3972 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3973 return false;
3974
3975 // The only mismatch we allow is when the destination is an
3976 // incomplete array type and the source is a constant array type.
3977 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3978 }
3979
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)3980 static bool tryObjCWritebackConversion(Sema &S,
3981 InitializationSequence &Sequence,
3982 const InitializedEntity &Entity,
3983 Expr *Initializer) {
3984 bool ArrayDecay = false;
3985 QualType ArgType = Initializer->getType();
3986 QualType ArgPointee;
3987 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3988 ArrayDecay = true;
3989 ArgPointee = ArgArrayType->getElementType();
3990 ArgType = S.Context.getPointerType(ArgPointee);
3991 }
3992
3993 // Handle write-back conversion.
3994 QualType ConvertedArgType;
3995 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3996 ConvertedArgType))
3997 return false;
3998
3999 // We should copy unless we're passing to an argument explicitly
4000 // marked 'out'.
4001 bool ShouldCopy = true;
4002 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4003 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4004
4005 // Do we need an lvalue conversion?
4006 if (ArrayDecay || Initializer->isGLValue()) {
4007 ImplicitConversionSequence ICS;
4008 ICS.setStandard();
4009 ICS.Standard.setAsIdentityConversion();
4010
4011 QualType ResultType;
4012 if (ArrayDecay) {
4013 ICS.Standard.First = ICK_Array_To_Pointer;
4014 ResultType = S.Context.getPointerType(ArgPointee);
4015 } else {
4016 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4017 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4018 }
4019
4020 Sequence.AddConversionSequenceStep(ICS, ResultType);
4021 }
4022
4023 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4024 return true;
4025 }
4026
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4027 static bool TryOCLSamplerInitialization(Sema &S,
4028 InitializationSequence &Sequence,
4029 QualType DestType,
4030 Expr *Initializer) {
4031 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4032 !Initializer->isIntegerConstantExpr(S.getASTContext()))
4033 return false;
4034
4035 Sequence.AddOCLSamplerInitStep(DestType);
4036 return true;
4037 }
4038
4039 //
4040 // OpenCL 1.2 spec, s6.12.10
4041 //
4042 // The event argument can also be used to associate the
4043 // async_work_group_copy with a previous async copy allowing
4044 // an event to be shared by multiple async copies; otherwise
4045 // event should be zero.
4046 //
TryOCLZeroEventInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4047 static bool TryOCLZeroEventInitialization(Sema &S,
4048 InitializationSequence &Sequence,
4049 QualType DestType,
4050 Expr *Initializer) {
4051 if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4052 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4053 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4054 return false;
4055
4056 Sequence.AddOCLZeroEventStep(DestType);
4057 return true;
4058 }
4059
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs)4060 InitializationSequence::InitializationSequence(Sema &S,
4061 const InitializedEntity &Entity,
4062 const InitializationKind &Kind,
4063 Expr **Args,
4064 unsigned NumArgs)
4065 : FailedCandidateSet(Kind.getLocation()) {
4066 ASTContext &Context = S.Context;
4067
4068 // C++0x [dcl.init]p16:
4069 // The semantics of initializers are as follows. The destination type is
4070 // the type of the object or reference being initialized and the source
4071 // type is the type of the initializer expression. The source type is not
4072 // defined when the initializer is a braced-init-list or when it is a
4073 // parenthesized list of expressions.
4074 QualType DestType = Entity.getType();
4075
4076 if (DestType->isDependentType() ||
4077 Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
4078 SequenceKind = DependentSequence;
4079 return;
4080 }
4081
4082 // Almost everything is a normal sequence.
4083 setSequenceKind(NormalSequence);
4084
4085 for (unsigned I = 0; I != NumArgs; ++I)
4086 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4087 // FIXME: should we be doing this here?
4088 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4089 if (result.isInvalid()) {
4090 SetFailed(FK_PlaceholderType);
4091 return;
4092 }
4093 Args[I] = result.take();
4094 }
4095
4096
4097 QualType SourceType;
4098 Expr *Initializer = 0;
4099 if (NumArgs == 1) {
4100 Initializer = Args[0];
4101 if (!isa<InitListExpr>(Initializer))
4102 SourceType = Initializer->getType();
4103 }
4104
4105 // - If the initializer is a (non-parenthesized) braced-init-list, the
4106 // object is list-initialized (8.5.4).
4107 if (Kind.getKind() != InitializationKind::IK_Direct) {
4108 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4109 TryListInitialization(S, Entity, Kind, InitList, *this);
4110 return;
4111 }
4112 }
4113
4114 // - If the destination type is a reference type, see 8.5.3.
4115 if (DestType->isReferenceType()) {
4116 // C++0x [dcl.init.ref]p1:
4117 // A variable declared to be a T& or T&&, that is, "reference to type T"
4118 // (8.3.2), shall be initialized by an object, or function, of type T or
4119 // by an object that can be converted into a T.
4120 // (Therefore, multiple arguments are not permitted.)
4121 if (NumArgs != 1)
4122 SetFailed(FK_TooManyInitsForReference);
4123 else
4124 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4125 return;
4126 }
4127
4128 // - If the initializer is (), the object is value-initialized.
4129 if (Kind.getKind() == InitializationKind::IK_Value ||
4130 (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4131 TryValueInitialization(S, Entity, Kind, *this);
4132 return;
4133 }
4134
4135 // Handle default initialization.
4136 if (Kind.getKind() == InitializationKind::IK_Default) {
4137 TryDefaultInitialization(S, Entity, Kind, *this);
4138 return;
4139 }
4140
4141 // - If the destination type is an array of characters, an array of
4142 // char16_t, an array of char32_t, or an array of wchar_t, and the
4143 // initializer is a string literal, see 8.5.2.
4144 // - Otherwise, if the destination type is an array, the program is
4145 // ill-formed.
4146 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4147 if (Initializer && isa<VariableArrayType>(DestAT)) {
4148 SetFailed(FK_VariableLengthArrayHasInitializer);
4149 return;
4150 }
4151
4152 if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4153 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4154 return;
4155 }
4156
4157 // Note: as an GNU C extension, we allow initialization of an
4158 // array from a compound literal that creates an array of the same
4159 // type, so long as the initializer has no side effects.
4160 if (!S.getLangOpts().CPlusPlus && Initializer &&
4161 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4162 Initializer->getType()->isArrayType()) {
4163 const ArrayType *SourceAT
4164 = Context.getAsArrayType(Initializer->getType());
4165 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4166 SetFailed(FK_ArrayTypeMismatch);
4167 else if (Initializer->HasSideEffects(S.Context))
4168 SetFailed(FK_NonConstantArrayInit);
4169 else {
4170 AddArrayInitStep(DestType);
4171 }
4172 }
4173 // Note: as a GNU C++ extension, we allow list-initialization of a
4174 // class member of array type from a parenthesized initializer list.
4175 else if (S.getLangOpts().CPlusPlus &&
4176 Entity.getKind() == InitializedEntity::EK_Member &&
4177 Initializer && isa<InitListExpr>(Initializer)) {
4178 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4179 *this);
4180 AddParenthesizedArrayInitStep(DestType);
4181 } else if (DestAT->getElementType()->isAnyCharacterType())
4182 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4183 else
4184 SetFailed(FK_ArrayNeedsInitList);
4185
4186 return;
4187 }
4188
4189 // Determine whether we should consider writeback conversions for
4190 // Objective-C ARC.
4191 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4192 Entity.getKind() == InitializedEntity::EK_Parameter;
4193
4194 // We're at the end of the line for C: it's either a write-back conversion
4195 // or it's a C assignment. There's no need to check anything else.
4196 if (!S.getLangOpts().CPlusPlus) {
4197 // If allowed, check whether this is an Objective-C writeback conversion.
4198 if (allowObjCWritebackConversion &&
4199 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4200 return;
4201 }
4202
4203 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4204 return;
4205
4206 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4207 return;
4208
4209 // Handle initialization in C
4210 AddCAssignmentStep(DestType);
4211 MaybeProduceObjCObject(S, *this, Entity);
4212 return;
4213 }
4214
4215 assert(S.getLangOpts().CPlusPlus);
4216
4217 // - If the destination type is a (possibly cv-qualified) class type:
4218 if (DestType->isRecordType()) {
4219 // - If the initialization is direct-initialization, or if it is
4220 // copy-initialization where the cv-unqualified version of the
4221 // source type is the same class as, or a derived class of, the
4222 // class of the destination, constructors are considered. [...]
4223 if (Kind.getKind() == InitializationKind::IK_Direct ||
4224 (Kind.getKind() == InitializationKind::IK_Copy &&
4225 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4226 S.IsDerivedFrom(SourceType, DestType))))
4227 TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4228 Entity.getType(), *this);
4229 // - Otherwise (i.e., for the remaining copy-initialization cases),
4230 // user-defined conversion sequences that can convert from the source
4231 // type to the destination type or (when a conversion function is
4232 // used) to a derived class thereof are enumerated as described in
4233 // 13.3.1.4, and the best one is chosen through overload resolution
4234 // (13.3).
4235 else
4236 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4237 return;
4238 }
4239
4240 if (NumArgs > 1) {
4241 SetFailed(FK_TooManyInitsForScalar);
4242 return;
4243 }
4244 assert(NumArgs == 1 && "Zero-argument case handled above");
4245
4246 // - Otherwise, if the source type is a (possibly cv-qualified) class
4247 // type, conversion functions are considered.
4248 if (!SourceType.isNull() && SourceType->isRecordType()) {
4249 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4250 MaybeProduceObjCObject(S, *this, Entity);
4251 return;
4252 }
4253
4254 // - Otherwise, the initial value of the object being initialized is the
4255 // (possibly converted) value of the initializer expression. Standard
4256 // conversions (Clause 4) will be used, if necessary, to convert the
4257 // initializer expression to the cv-unqualified version of the
4258 // destination type; no user-defined conversions are considered.
4259
4260 ImplicitConversionSequence ICS
4261 = S.TryImplicitConversion(Initializer, Entity.getType(),
4262 /*SuppressUserConversions*/true,
4263 /*AllowExplicitConversions*/ false,
4264 /*InOverloadResolution*/ false,
4265 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4266 allowObjCWritebackConversion);
4267
4268 if (ICS.isStandard() &&
4269 ICS.Standard.Second == ICK_Writeback_Conversion) {
4270 // Objective-C ARC writeback conversion.
4271
4272 // We should copy unless we're passing to an argument explicitly
4273 // marked 'out'.
4274 bool ShouldCopy = true;
4275 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4276 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4277
4278 // If there was an lvalue adjustment, add it as a separate conversion.
4279 if (ICS.Standard.First == ICK_Array_To_Pointer ||
4280 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4281 ImplicitConversionSequence LvalueICS;
4282 LvalueICS.setStandard();
4283 LvalueICS.Standard.setAsIdentityConversion();
4284 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4285 LvalueICS.Standard.First = ICS.Standard.First;
4286 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4287 }
4288
4289 AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4290 } else if (ICS.isBad()) {
4291 DeclAccessPair dap;
4292 if (Initializer->getType() == Context.OverloadTy &&
4293 !S.ResolveAddressOfOverloadedFunction(Initializer
4294 , DestType, false, dap))
4295 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4296 else
4297 SetFailed(InitializationSequence::FK_ConversionFailed);
4298 } else {
4299 AddConversionSequenceStep(ICS, Entity.getType());
4300
4301 MaybeProduceObjCObject(S, *this, Entity);
4302 }
4303 }
4304
~InitializationSequence()4305 InitializationSequence::~InitializationSequence() {
4306 for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4307 StepEnd = Steps.end();
4308 Step != StepEnd; ++Step)
4309 Step->Destroy();
4310 }
4311
4312 //===----------------------------------------------------------------------===//
4313 // Perform initialization
4314 //===----------------------------------------------------------------------===//
4315 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity)4316 getAssignmentAction(const InitializedEntity &Entity) {
4317 switch(Entity.getKind()) {
4318 case InitializedEntity::EK_Variable:
4319 case InitializedEntity::EK_New:
4320 case InitializedEntity::EK_Exception:
4321 case InitializedEntity::EK_Base:
4322 case InitializedEntity::EK_Delegating:
4323 return Sema::AA_Initializing;
4324
4325 case InitializedEntity::EK_Parameter:
4326 if (Entity.getDecl() &&
4327 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4328 return Sema::AA_Sending;
4329
4330 return Sema::AA_Passing;
4331
4332 case InitializedEntity::EK_Result:
4333 return Sema::AA_Returning;
4334
4335 case InitializedEntity::EK_Temporary:
4336 // FIXME: Can we tell apart casting vs. converting?
4337 return Sema::AA_Casting;
4338
4339 case InitializedEntity::EK_Member:
4340 case InitializedEntity::EK_ArrayElement:
4341 case InitializedEntity::EK_VectorElement:
4342 case InitializedEntity::EK_ComplexElement:
4343 case InitializedEntity::EK_BlockElement:
4344 case InitializedEntity::EK_LambdaCapture:
4345 return Sema::AA_Initializing;
4346 }
4347
4348 llvm_unreachable("Invalid EntityKind!");
4349 }
4350
4351 /// \brief Whether we should bind a created object as a temporary when
4352 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)4353 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4354 switch (Entity.getKind()) {
4355 case InitializedEntity::EK_ArrayElement:
4356 case InitializedEntity::EK_Member:
4357 case InitializedEntity::EK_Result:
4358 case InitializedEntity::EK_New:
4359 case InitializedEntity::EK_Variable:
4360 case InitializedEntity::EK_Base:
4361 case InitializedEntity::EK_Delegating:
4362 case InitializedEntity::EK_VectorElement:
4363 case InitializedEntity::EK_ComplexElement:
4364 case InitializedEntity::EK_Exception:
4365 case InitializedEntity::EK_BlockElement:
4366 case InitializedEntity::EK_LambdaCapture:
4367 return false;
4368
4369 case InitializedEntity::EK_Parameter:
4370 case InitializedEntity::EK_Temporary:
4371 return true;
4372 }
4373
4374 llvm_unreachable("missed an InitializedEntity kind?");
4375 }
4376
4377 /// \brief Whether the given entity, when initialized with an object
4378 /// created for that initialization, requires destruction.
shouldDestroyTemporary(const InitializedEntity & Entity)4379 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4380 switch (Entity.getKind()) {
4381 case InitializedEntity::EK_Result:
4382 case InitializedEntity::EK_New:
4383 case InitializedEntity::EK_Base:
4384 case InitializedEntity::EK_Delegating:
4385 case InitializedEntity::EK_VectorElement:
4386 case InitializedEntity::EK_ComplexElement:
4387 case InitializedEntity::EK_BlockElement:
4388 case InitializedEntity::EK_LambdaCapture:
4389 return false;
4390
4391 case InitializedEntity::EK_Member:
4392 case InitializedEntity::EK_Variable:
4393 case InitializedEntity::EK_Parameter:
4394 case InitializedEntity::EK_Temporary:
4395 case InitializedEntity::EK_ArrayElement:
4396 case InitializedEntity::EK_Exception:
4397 return true;
4398 }
4399
4400 llvm_unreachable("missed an InitializedEntity kind?");
4401 }
4402
4403 /// \brief Look for copy and move constructors and constructor templates, for
4404 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
LookupCopyAndMoveConstructors(Sema & S,OverloadCandidateSet & CandidateSet,CXXRecordDecl * Class,Expr * CurInitExpr)4405 static void LookupCopyAndMoveConstructors(Sema &S,
4406 OverloadCandidateSet &CandidateSet,
4407 CXXRecordDecl *Class,
4408 Expr *CurInitExpr) {
4409 DeclContext::lookup_result R = S.LookupConstructors(Class);
4410 // The container holding the constructors can under certain conditions
4411 // be changed while iterating (e.g. because of deserialization).
4412 // To be safe we copy the lookup results to a new container.
4413 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4414 for (SmallVector<NamedDecl*, 16>::iterator
4415 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4416 NamedDecl *D = *CI;
4417 CXXConstructorDecl *Constructor = 0;
4418
4419 if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4420 // Handle copy/moveconstructors, only.
4421 if (!Constructor || Constructor->isInvalidDecl() ||
4422 !Constructor->isCopyOrMoveConstructor() ||
4423 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4424 continue;
4425
4426 DeclAccessPair FoundDecl
4427 = DeclAccessPair::make(Constructor, Constructor->getAccess());
4428 S.AddOverloadCandidate(Constructor, FoundDecl,
4429 CurInitExpr, CandidateSet);
4430 continue;
4431 }
4432
4433 // Handle constructor templates.
4434 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4435 if (ConstructorTmpl->isInvalidDecl())
4436 continue;
4437
4438 Constructor = cast<CXXConstructorDecl>(
4439 ConstructorTmpl->getTemplatedDecl());
4440 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4441 continue;
4442
4443 // FIXME: Do we need to limit this to copy-constructor-like
4444 // candidates?
4445 DeclAccessPair FoundDecl
4446 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4447 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4448 CurInitExpr, CandidateSet, true);
4449 }
4450 }
4451
4452 /// \brief Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)4453 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4454 Expr *Initializer) {
4455 switch (Entity.getKind()) {
4456 case InitializedEntity::EK_Result:
4457 return Entity.getReturnLoc();
4458
4459 case InitializedEntity::EK_Exception:
4460 return Entity.getThrowLoc();
4461
4462 case InitializedEntity::EK_Variable:
4463 return Entity.getDecl()->getLocation();
4464
4465 case InitializedEntity::EK_LambdaCapture:
4466 return Entity.getCaptureLoc();
4467
4468 case InitializedEntity::EK_ArrayElement:
4469 case InitializedEntity::EK_Member:
4470 case InitializedEntity::EK_Parameter:
4471 case InitializedEntity::EK_Temporary:
4472 case InitializedEntity::EK_New:
4473 case InitializedEntity::EK_Base:
4474 case InitializedEntity::EK_Delegating:
4475 case InitializedEntity::EK_VectorElement:
4476 case InitializedEntity::EK_ComplexElement:
4477 case InitializedEntity::EK_BlockElement:
4478 return Initializer->getLocStart();
4479 }
4480 llvm_unreachable("missed an InitializedEntity kind?");
4481 }
4482
4483 /// \brief Make a (potentially elidable) temporary copy of the object
4484 /// provided by the given initializer by calling the appropriate copy
4485 /// constructor.
4486 ///
4487 /// \param S The Sema object used for type-checking.
4488 ///
4489 /// \param T The type of the temporary object, which must either be
4490 /// the type of the initializer expression or a superclass thereof.
4491 ///
4492 /// \param Entity The entity being initialized.
4493 ///
4494 /// \param CurInit The initializer expression.
4495 ///
4496 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4497 /// is permitted in C++03 (but not C++0x) when binding a reference to
4498 /// an rvalue.
4499 ///
4500 /// \returns An expression that copies the initializer expression into
4501 /// a temporary object, or an error expression if a copy could not be
4502 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)4503 static ExprResult CopyObject(Sema &S,
4504 QualType T,
4505 const InitializedEntity &Entity,
4506 ExprResult CurInit,
4507 bool IsExtraneousCopy) {
4508 // Determine which class type we're copying to.
4509 Expr *CurInitExpr = (Expr *)CurInit.get();
4510 CXXRecordDecl *Class = 0;
4511 if (const RecordType *Record = T->getAs<RecordType>())
4512 Class = cast<CXXRecordDecl>(Record->getDecl());
4513 if (!Class)
4514 return CurInit;
4515
4516 // C++0x [class.copy]p32:
4517 // When certain criteria are met, an implementation is allowed to
4518 // omit the copy/move construction of a class object, even if the
4519 // copy/move constructor and/or destructor for the object have
4520 // side effects. [...]
4521 // - when a temporary class object that has not been bound to a
4522 // reference (12.2) would be copied/moved to a class object
4523 // with the same cv-unqualified type, the copy/move operation
4524 // can be omitted by constructing the temporary object
4525 // directly into the target of the omitted copy/move
4526 //
4527 // Note that the other three bullets are handled elsewhere. Copy
4528 // elision for return statements and throw expressions are handled as part
4529 // of constructor initialization, while copy elision for exception handlers
4530 // is handled by the run-time.
4531 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4532 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4533
4534 // Make sure that the type we are copying is complete.
4535 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4536 return CurInit;
4537
4538 // Perform overload resolution using the class's copy/move constructors.
4539 // Only consider constructors and constructor templates. Per
4540 // C++0x [dcl.init]p16, second bullet to class types, this initialization
4541 // is direct-initialization.
4542 OverloadCandidateSet CandidateSet(Loc);
4543 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4544
4545 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4546
4547 OverloadCandidateSet::iterator Best;
4548 switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4549 case OR_Success:
4550 break;
4551
4552 case OR_No_Viable_Function:
4553 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4554 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4555 : diag::err_temp_copy_no_viable)
4556 << (int)Entity.getKind() << CurInitExpr->getType()
4557 << CurInitExpr->getSourceRange();
4558 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4559 if (!IsExtraneousCopy || S.isSFINAEContext())
4560 return ExprError();
4561 return CurInit;
4562
4563 case OR_Ambiguous:
4564 S.Diag(Loc, diag::err_temp_copy_ambiguous)
4565 << (int)Entity.getKind() << CurInitExpr->getType()
4566 << CurInitExpr->getSourceRange();
4567 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4568 return ExprError();
4569
4570 case OR_Deleted:
4571 S.Diag(Loc, diag::err_temp_copy_deleted)
4572 << (int)Entity.getKind() << CurInitExpr->getType()
4573 << CurInitExpr->getSourceRange();
4574 S.NoteDeletedFunction(Best->Function);
4575 return ExprError();
4576 }
4577
4578 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4579 SmallVector<Expr*, 8> ConstructorArgs;
4580 CurInit.release(); // Ownership transferred into MultiExprArg, below.
4581
4582 S.CheckConstructorAccess(Loc, Constructor, Entity,
4583 Best->FoundDecl.getAccess(), IsExtraneousCopy);
4584
4585 if (IsExtraneousCopy) {
4586 // If this is a totally extraneous copy for C++03 reference
4587 // binding purposes, just return the original initialization
4588 // expression. We don't generate an (elided) copy operation here
4589 // because doing so would require us to pass down a flag to avoid
4590 // infinite recursion, where each step adds another extraneous,
4591 // elidable copy.
4592
4593 // Instantiate the default arguments of any extra parameters in
4594 // the selected copy constructor, as if we were going to create a
4595 // proper call to the copy constructor.
4596 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4597 ParmVarDecl *Parm = Constructor->getParamDecl(I);
4598 if (S.RequireCompleteType(Loc, Parm->getType(),
4599 diag::err_call_incomplete_argument))
4600 break;
4601
4602 // Build the default argument expression; we don't actually care
4603 // if this succeeds or not, because this routine will complain
4604 // if there was a problem.
4605 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4606 }
4607
4608 return S.Owned(CurInitExpr);
4609 }
4610
4611 // Determine the arguments required to actually perform the
4612 // constructor call (we might have derived-to-base conversions, or
4613 // the copy constructor may have default arguments).
4614 if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4615 Loc, ConstructorArgs))
4616 return ExprError();
4617
4618 // Actually perform the constructor call.
4619 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4620 ConstructorArgs,
4621 HadMultipleCandidates,
4622 /*ListInit*/ false,
4623 /*ZeroInit*/ false,
4624 CXXConstructExpr::CK_Complete,
4625 SourceRange());
4626
4627 // If we're supposed to bind temporaries, do so.
4628 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4629 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4630 return CurInit;
4631 }
4632
4633 /// \brief Check whether elidable copy construction for binding a reference to
4634 /// a temporary would have succeeded if we were building in C++98 mode, for
4635 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)4636 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4637 const InitializedEntity &Entity,
4638 Expr *CurInitExpr) {
4639 assert(S.getLangOpts().CPlusPlus11);
4640
4641 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4642 if (!Record)
4643 return;
4644
4645 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4646 if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4647 == DiagnosticsEngine::Ignored)
4648 return;
4649
4650 // Find constructors which would have been considered.
4651 OverloadCandidateSet CandidateSet(Loc);
4652 LookupCopyAndMoveConstructors(
4653 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4654
4655 // Perform overload resolution.
4656 OverloadCandidateSet::iterator Best;
4657 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4658
4659 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4660 << OR << (int)Entity.getKind() << CurInitExpr->getType()
4661 << CurInitExpr->getSourceRange();
4662
4663 switch (OR) {
4664 case OR_Success:
4665 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4666 Entity, Best->FoundDecl.getAccess(), Diag);
4667 // FIXME: Check default arguments as far as that's possible.
4668 break;
4669
4670 case OR_No_Viable_Function:
4671 S.Diag(Loc, Diag);
4672 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4673 break;
4674
4675 case OR_Ambiguous:
4676 S.Diag(Loc, Diag);
4677 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4678 break;
4679
4680 case OR_Deleted:
4681 S.Diag(Loc, Diag);
4682 S.NoteDeletedFunction(Best->Function);
4683 break;
4684 }
4685 }
4686
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)4687 void InitializationSequence::PrintInitLocationNote(Sema &S,
4688 const InitializedEntity &Entity) {
4689 if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4690 if (Entity.getDecl()->getLocation().isInvalid())
4691 return;
4692
4693 if (Entity.getDecl()->getDeclName())
4694 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4695 << Entity.getDecl()->getDeclName();
4696 else
4697 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4698 }
4699 }
4700
isReferenceBinding(const InitializationSequence::Step & s)4701 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4702 return s.Kind == InitializationSequence::SK_BindReference ||
4703 s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4704 }
4705
4706 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization)4707 PerformConstructorInitialization(Sema &S,
4708 const InitializedEntity &Entity,
4709 const InitializationKind &Kind,
4710 MultiExprArg Args,
4711 const InitializationSequence::Step& Step,
4712 bool &ConstructorInitRequiresZeroInit,
4713 bool IsListInitialization) {
4714 unsigned NumArgs = Args.size();
4715 CXXConstructorDecl *Constructor
4716 = cast<CXXConstructorDecl>(Step.Function.Function);
4717 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4718
4719 // Build a call to the selected constructor.
4720 SmallVector<Expr*, 8> ConstructorArgs;
4721 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4722 ? Kind.getEqualLoc()
4723 : Kind.getLocation();
4724
4725 if (Kind.getKind() == InitializationKind::IK_Default) {
4726 // Force even a trivial, implicit default constructor to be
4727 // semantically checked. We do this explicitly because we don't build
4728 // the definition for completely trivial constructors.
4729 assert(Constructor->getParent() && "No parent class for constructor.");
4730 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4731 Constructor->isTrivial() && !Constructor->isUsed(false))
4732 S.DefineImplicitDefaultConstructor(Loc, Constructor);
4733 }
4734
4735 ExprResult CurInit = S.Owned((Expr *)0);
4736
4737 // C++ [over.match.copy]p1:
4738 // - When initializing a temporary to be bound to the first parameter
4739 // of a constructor that takes a reference to possibly cv-qualified
4740 // T as its first argument, called with a single argument in the
4741 // context of direct-initialization, explicit conversion functions
4742 // are also considered.
4743 bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4744 Args.size() == 1 &&
4745 Constructor->isCopyOrMoveConstructor();
4746
4747 // Determine the arguments required to actually perform the constructor
4748 // call.
4749 if (S.CompleteConstructorCall(Constructor, Args,
4750 Loc, ConstructorArgs,
4751 AllowExplicitConv,
4752 IsListInitialization))
4753 return ExprError();
4754
4755
4756 if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4757 (Kind.getKind() == InitializationKind::IK_DirectList ||
4758 (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4759 (Kind.getKind() == InitializationKind::IK_Direct ||
4760 Kind.getKind() == InitializationKind::IK_Value)))) {
4761 // An explicitly-constructed temporary, e.g., X(1, 2).
4762 S.MarkFunctionReferenced(Loc, Constructor);
4763 S.DiagnoseUseOfDecl(Constructor, Loc);
4764
4765 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4766 if (!TSInfo)
4767 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4768 SourceRange ParenRange;
4769 if (Kind.getKind() != InitializationKind::IK_DirectList)
4770 ParenRange = Kind.getParenRange();
4771
4772 CurInit = S.Owned(
4773 new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
4774 TSInfo, ConstructorArgs,
4775 ParenRange, IsListInitialization,
4776 HadMultipleCandidates,
4777 ConstructorInitRequiresZeroInit));
4778 } else {
4779 CXXConstructExpr::ConstructionKind ConstructKind =
4780 CXXConstructExpr::CK_Complete;
4781
4782 if (Entity.getKind() == InitializedEntity::EK_Base) {
4783 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4784 CXXConstructExpr::CK_VirtualBase :
4785 CXXConstructExpr::CK_NonVirtualBase;
4786 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4787 ConstructKind = CXXConstructExpr::CK_Delegating;
4788 }
4789
4790 // Only get the parenthesis range if it is a direct construction.
4791 SourceRange parenRange =
4792 Kind.getKind() == InitializationKind::IK_Direct ?
4793 Kind.getParenRange() : SourceRange();
4794
4795 // If the entity allows NRVO, mark the construction as elidable
4796 // unconditionally.
4797 if (Entity.allowsNRVO())
4798 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4799 Constructor, /*Elidable=*/true,
4800 ConstructorArgs,
4801 HadMultipleCandidates,
4802 IsListInitialization,
4803 ConstructorInitRequiresZeroInit,
4804 ConstructKind,
4805 parenRange);
4806 else
4807 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4808 Constructor,
4809 ConstructorArgs,
4810 HadMultipleCandidates,
4811 IsListInitialization,
4812 ConstructorInitRequiresZeroInit,
4813 ConstructKind,
4814 parenRange);
4815 }
4816 if (CurInit.isInvalid())
4817 return ExprError();
4818
4819 // Only check access if all of that succeeded.
4820 S.CheckConstructorAccess(Loc, Constructor, Entity,
4821 Step.Function.FoundDecl.getAccess());
4822 S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4823
4824 if (shouldBindAsTemporary(Entity))
4825 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4826
4827 return CurInit;
4828 }
4829
4830 /// Determine whether the specified InitializedEntity definitely has a lifetime
4831 /// longer than the current full-expression. Conservatively returns false if
4832 /// it's unclear.
4833 static bool
InitializedEntityOutlivesFullExpression(const InitializedEntity & Entity)4834 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4835 const InitializedEntity *Top = &Entity;
4836 while (Top->getParent())
4837 Top = Top->getParent();
4838
4839 switch (Top->getKind()) {
4840 case InitializedEntity::EK_Variable:
4841 case InitializedEntity::EK_Result:
4842 case InitializedEntity::EK_Exception:
4843 case InitializedEntity::EK_Member:
4844 case InitializedEntity::EK_New:
4845 case InitializedEntity::EK_Base:
4846 case InitializedEntity::EK_Delegating:
4847 return true;
4848
4849 case InitializedEntity::EK_ArrayElement:
4850 case InitializedEntity::EK_VectorElement:
4851 case InitializedEntity::EK_BlockElement:
4852 case InitializedEntity::EK_ComplexElement:
4853 // Could not determine what the full initialization is. Assume it might not
4854 // outlive the full-expression.
4855 return false;
4856
4857 case InitializedEntity::EK_Parameter:
4858 case InitializedEntity::EK_Temporary:
4859 case InitializedEntity::EK_LambdaCapture:
4860 // The entity being initialized might not outlive the full-expression.
4861 return false;
4862 }
4863
4864 llvm_unreachable("unknown entity kind");
4865 }
4866
4867 ExprResult
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)4868 InitializationSequence::Perform(Sema &S,
4869 const InitializedEntity &Entity,
4870 const InitializationKind &Kind,
4871 MultiExprArg Args,
4872 QualType *ResultType) {
4873 if (Failed()) {
4874 unsigned NumArgs = Args.size();
4875 Diagnose(S, Entity, Kind, Args.data(), NumArgs);
4876 return ExprError();
4877 }
4878
4879 if (getKind() == DependentSequence) {
4880 // If the declaration is a non-dependent, incomplete array type
4881 // that has an initializer, then its type will be completed once
4882 // the initializer is instantiated.
4883 if (ResultType && !Entity.getType()->isDependentType() &&
4884 Args.size() == 1) {
4885 QualType DeclType = Entity.getType();
4886 if (const IncompleteArrayType *ArrayT
4887 = S.Context.getAsIncompleteArrayType(DeclType)) {
4888 // FIXME: We don't currently have the ability to accurately
4889 // compute the length of an initializer list without
4890 // performing full type-checking of the initializer list
4891 // (since we have to determine where braces are implicitly
4892 // introduced and such). So, we fall back to making the array
4893 // type a dependently-sized array type with no specified
4894 // bound.
4895 if (isa<InitListExpr>((Expr *)Args[0])) {
4896 SourceRange Brackets;
4897
4898 // Scavange the location of the brackets from the entity, if we can.
4899 if (DeclaratorDecl *DD = Entity.getDecl()) {
4900 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4901 TypeLoc TL = TInfo->getTypeLoc();
4902 if (IncompleteArrayTypeLoc ArrayLoc =
4903 TL.getAs<IncompleteArrayTypeLoc>())
4904 Brackets = ArrayLoc.getBracketsRange();
4905 }
4906 }
4907
4908 *ResultType
4909 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4910 /*NumElts=*/0,
4911 ArrayT->getSizeModifier(),
4912 ArrayT->getIndexTypeCVRQualifiers(),
4913 Brackets);
4914 }
4915
4916 }
4917 }
4918 if (Kind.getKind() == InitializationKind::IK_Direct &&
4919 !Kind.isExplicitCast()) {
4920 // Rebuild the ParenListExpr.
4921 SourceRange ParenRange = Kind.getParenRange();
4922 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4923 Args);
4924 }
4925 assert(Kind.getKind() == InitializationKind::IK_Copy ||
4926 Kind.isExplicitCast() ||
4927 Kind.getKind() == InitializationKind::IK_DirectList);
4928 return ExprResult(Args[0]);
4929 }
4930
4931 // No steps means no initialization.
4932 if (Steps.empty())
4933 return S.Owned((Expr *)0);
4934
4935 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
4936 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4937 Entity.getKind() != InitializedEntity::EK_Parameter) {
4938 // Produce a C++98 compatibility warning if we are initializing a reference
4939 // from an initializer list. For parameters, we produce a better warning
4940 // elsewhere.
4941 Expr *Init = Args[0];
4942 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
4943 << Init->getSourceRange();
4944 }
4945
4946 // Diagnose cases where we initialize a pointer to an array temporary, and the
4947 // pointer obviously outlives the temporary.
4948 if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
4949 Entity.getType()->isPointerType() &&
4950 InitializedEntityOutlivesFullExpression(Entity)) {
4951 Expr *Init = Args[0];
4952 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
4953 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
4954 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
4955 << Init->getSourceRange();
4956 }
4957
4958 QualType DestType = Entity.getType().getNonReferenceType();
4959 // FIXME: Ugly hack around the fact that Entity.getType() is not
4960 // the same as Entity.getDecl()->getType() in cases involving type merging,
4961 // and we want latter when it makes sense.
4962 if (ResultType)
4963 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4964 Entity.getType();
4965
4966 ExprResult CurInit = S.Owned((Expr *)0);
4967
4968 // For initialization steps that start with a single initializer,
4969 // grab the only argument out the Args and place it into the "current"
4970 // initializer.
4971 switch (Steps.front().Kind) {
4972 case SK_ResolveAddressOfOverloadedFunction:
4973 case SK_CastDerivedToBaseRValue:
4974 case SK_CastDerivedToBaseXValue:
4975 case SK_CastDerivedToBaseLValue:
4976 case SK_BindReference:
4977 case SK_BindReferenceToTemporary:
4978 case SK_ExtraneousCopyToTemporary:
4979 case SK_UserConversion:
4980 case SK_QualificationConversionLValue:
4981 case SK_QualificationConversionXValue:
4982 case SK_QualificationConversionRValue:
4983 case SK_ConversionSequence:
4984 case SK_ListInitialization:
4985 case SK_UnwrapInitList:
4986 case SK_RewrapInitList:
4987 case SK_CAssignment:
4988 case SK_StringInit:
4989 case SK_ObjCObjectConversion:
4990 case SK_ArrayInit:
4991 case SK_ParenthesizedArrayInit:
4992 case SK_PassByIndirectCopyRestore:
4993 case SK_PassByIndirectRestore:
4994 case SK_ProduceObjCObject:
4995 case SK_StdInitializerList:
4996 case SK_OCLSamplerInit:
4997 case SK_OCLZeroEvent: {
4998 assert(Args.size() == 1);
4999 CurInit = Args[0];
5000 if (!CurInit.get()) return ExprError();
5001 break;
5002 }
5003
5004 case SK_ConstructorInitialization:
5005 case SK_ListConstructorCall:
5006 case SK_ZeroInitialization:
5007 break;
5008 }
5009
5010 // Walk through the computed steps for the initialization sequence,
5011 // performing the specified conversions along the way.
5012 bool ConstructorInitRequiresZeroInit = false;
5013 for (step_iterator Step = step_begin(), StepEnd = step_end();
5014 Step != StepEnd; ++Step) {
5015 if (CurInit.isInvalid())
5016 return ExprError();
5017
5018 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5019
5020 switch (Step->Kind) {
5021 case SK_ResolveAddressOfOverloadedFunction:
5022 // Overload resolution determined which function invoke; update the
5023 // initializer to reflect that choice.
5024 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5025 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
5026 CurInit = S.FixOverloadedFunctionReference(CurInit,
5027 Step->Function.FoundDecl,
5028 Step->Function.Function);
5029 break;
5030
5031 case SK_CastDerivedToBaseRValue:
5032 case SK_CastDerivedToBaseXValue:
5033 case SK_CastDerivedToBaseLValue: {
5034 // We have a derived-to-base cast that produces either an rvalue or an
5035 // lvalue. Perform that cast.
5036
5037 CXXCastPath BasePath;
5038
5039 // Casts to inaccessible base classes are allowed with C-style casts.
5040 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5041 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5042 CurInit.get()->getLocStart(),
5043 CurInit.get()->getSourceRange(),
5044 &BasePath, IgnoreBaseAccess))
5045 return ExprError();
5046
5047 if (S.BasePathInvolvesVirtualBase(BasePath)) {
5048 QualType T = SourceType;
5049 if (const PointerType *Pointer = T->getAs<PointerType>())
5050 T = Pointer->getPointeeType();
5051 if (const RecordType *RecordTy = T->getAs<RecordType>())
5052 S.MarkVTableUsed(CurInit.get()->getLocStart(),
5053 cast<CXXRecordDecl>(RecordTy->getDecl()));
5054 }
5055
5056 ExprValueKind VK =
5057 Step->Kind == SK_CastDerivedToBaseLValue ?
5058 VK_LValue :
5059 (Step->Kind == SK_CastDerivedToBaseXValue ?
5060 VK_XValue :
5061 VK_RValue);
5062 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5063 Step->Type,
5064 CK_DerivedToBase,
5065 CurInit.get(),
5066 &BasePath, VK));
5067 break;
5068 }
5069
5070 case SK_BindReference:
5071 if (FieldDecl *BitField = CurInit.get()->getBitField()) {
5072 // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
5073 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5074 << Entity.getType().isVolatileQualified()
5075 << BitField->getDeclName()
5076 << CurInit.get()->getSourceRange();
5077 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5078 return ExprError();
5079 }
5080
5081 if (CurInit.get()->refersToVectorElement()) {
5082 // References cannot bind to vector elements.
5083 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5084 << Entity.getType().isVolatileQualified()
5085 << CurInit.get()->getSourceRange();
5086 PrintInitLocationNote(S, Entity);
5087 return ExprError();
5088 }
5089
5090 // Reference binding does not have any corresponding ASTs.
5091
5092 // Check exception specifications
5093 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5094 return ExprError();
5095
5096 break;
5097
5098 case SK_BindReferenceToTemporary:
5099 // Check exception specifications
5100 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5101 return ExprError();
5102
5103 // Materialize the temporary into memory.
5104 CurInit = new (S.Context) MaterializeTemporaryExpr(
5105 Entity.getType().getNonReferenceType(),
5106 CurInit.get(),
5107 Entity.getType()->isLValueReferenceType());
5108
5109 // If we're binding to an Objective-C object that has lifetime, we
5110 // need cleanups.
5111 if (S.getLangOpts().ObjCAutoRefCount &&
5112 CurInit.get()->getType()->isObjCLifetimeType())
5113 S.ExprNeedsCleanups = true;
5114
5115 break;
5116
5117 case SK_ExtraneousCopyToTemporary:
5118 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5119 /*IsExtraneousCopy=*/true);
5120 break;
5121
5122 case SK_UserConversion: {
5123 // We have a user-defined conversion that invokes either a constructor
5124 // or a conversion function.
5125 CastKind CastKind;
5126 bool IsCopy = false;
5127 FunctionDecl *Fn = Step->Function.Function;
5128 DeclAccessPair FoundFn = Step->Function.FoundDecl;
5129 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5130 bool CreatedObject = false;
5131 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5132 // Build a call to the selected constructor.
5133 SmallVector<Expr*, 8> ConstructorArgs;
5134 SourceLocation Loc = CurInit.get()->getLocStart();
5135 CurInit.release(); // Ownership transferred into MultiExprArg, below.
5136
5137 // Determine the arguments required to actually perform the constructor
5138 // call.
5139 Expr *Arg = CurInit.get();
5140 if (S.CompleteConstructorCall(Constructor,
5141 MultiExprArg(&Arg, 1),
5142 Loc, ConstructorArgs))
5143 return ExprError();
5144
5145 // Build an expression that constructs a temporary.
5146 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5147 ConstructorArgs,
5148 HadMultipleCandidates,
5149 /*ListInit*/ false,
5150 /*ZeroInit*/ false,
5151 CXXConstructExpr::CK_Complete,
5152 SourceRange());
5153 if (CurInit.isInvalid())
5154 return ExprError();
5155
5156 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5157 FoundFn.getAccess());
5158 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5159
5160 CastKind = CK_ConstructorConversion;
5161 QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5162 if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5163 S.IsDerivedFrom(SourceType, Class))
5164 IsCopy = true;
5165
5166 CreatedObject = true;
5167 } else {
5168 // Build a call to the conversion function.
5169 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5170 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5171 FoundFn);
5172 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5173
5174 // FIXME: Should we move this initialization into a separate
5175 // derived-to-base conversion? I believe the answer is "no", because
5176 // we don't want to turn off access control here for c-style casts.
5177 ExprResult CurInitExprRes =
5178 S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5179 FoundFn, Conversion);
5180 if(CurInitExprRes.isInvalid())
5181 return ExprError();
5182 CurInit = CurInitExprRes;
5183
5184 // Build the actual call to the conversion function.
5185 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5186 HadMultipleCandidates);
5187 if (CurInit.isInvalid() || !CurInit.get())
5188 return ExprError();
5189
5190 CastKind = CK_UserDefinedConversion;
5191
5192 CreatedObject = Conversion->getResultType()->isRecordType();
5193 }
5194
5195 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5196 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5197
5198 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5199 QualType T = CurInit.get()->getType();
5200 if (const RecordType *Record = T->getAs<RecordType>()) {
5201 CXXDestructorDecl *Destructor
5202 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5203 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5204 S.PDiag(diag::err_access_dtor_temp) << T);
5205 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5206 S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5207 }
5208 }
5209
5210 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5211 CurInit.get()->getType(),
5212 CastKind, CurInit.get(), 0,
5213 CurInit.get()->getValueKind()));
5214 if (MaybeBindToTemp)
5215 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5216 if (RequiresCopy)
5217 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5218 CurInit, /*IsExtraneousCopy=*/false);
5219 break;
5220 }
5221
5222 case SK_QualificationConversionLValue:
5223 case SK_QualificationConversionXValue:
5224 case SK_QualificationConversionRValue: {
5225 // Perform a qualification conversion; these can never go wrong.
5226 ExprValueKind VK =
5227 Step->Kind == SK_QualificationConversionLValue ?
5228 VK_LValue :
5229 (Step->Kind == SK_QualificationConversionXValue ?
5230 VK_XValue :
5231 VK_RValue);
5232 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5233 break;
5234 }
5235
5236 case SK_ConversionSequence: {
5237 Sema::CheckedConversionKind CCK
5238 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5239 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5240 : Kind.isExplicitCast()? Sema::CCK_OtherCast
5241 : Sema::CCK_ImplicitConversion;
5242 ExprResult CurInitExprRes =
5243 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5244 getAssignmentAction(Entity), CCK);
5245 if (CurInitExprRes.isInvalid())
5246 return ExprError();
5247 CurInit = CurInitExprRes;
5248 break;
5249 }
5250
5251 case SK_ListInitialization: {
5252 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5253 // Hack: We must pass *ResultType if available in order to set the type
5254 // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5255 // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5256 // temporary, not a reference, so we should pass Ty.
5257 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5258 // Since this step is never used for a reference directly, we explicitly
5259 // unwrap references here and rewrap them afterwards.
5260 // We also need to create a InitializeTemporary entity for this.
5261 QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5262 bool IsTemporary = Entity.getType()->isReferenceType();
5263 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5264 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5265 InitListChecker PerformInitList(S, InitEntity,
5266 InitList, Ty, /*VerifyOnly=*/false,
5267 Kind.getKind() != InitializationKind::IK_DirectList ||
5268 !S.getLangOpts().CPlusPlus11);
5269 if (PerformInitList.HadError())
5270 return ExprError();
5271
5272 if (ResultType) {
5273 if ((*ResultType)->isRValueReferenceType())
5274 Ty = S.Context.getRValueReferenceType(Ty);
5275 else if ((*ResultType)->isLValueReferenceType())
5276 Ty = S.Context.getLValueReferenceType(Ty,
5277 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5278 *ResultType = Ty;
5279 }
5280
5281 InitListExpr *StructuredInitList =
5282 PerformInitList.getFullyStructuredList();
5283 CurInit.release();
5284 CurInit = shouldBindAsTemporary(InitEntity)
5285 ? S.MaybeBindToTemporary(StructuredInitList)
5286 : S.Owned(StructuredInitList);
5287 break;
5288 }
5289
5290 case SK_ListConstructorCall: {
5291 // When an initializer list is passed for a parameter of type "reference
5292 // to object", we don't get an EK_Temporary entity, but instead an
5293 // EK_Parameter entity with reference type.
5294 // FIXME: This is a hack. What we really should do is create a user
5295 // conversion step for this case, but this makes it considerably more
5296 // complicated. For now, this will do.
5297 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5298 Entity.getType().getNonReferenceType());
5299 bool UseTemporary = Entity.getType()->isReferenceType();
5300 assert(Args.size() == 1 && "expected a single argument for list init");
5301 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5302 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5303 << InitList->getSourceRange();
5304 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5305 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5306 Entity,
5307 Kind, Arg, *Step,
5308 ConstructorInitRequiresZeroInit,
5309 /*IsListInitialization*/ true);
5310 break;
5311 }
5312
5313 case SK_UnwrapInitList:
5314 CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5315 break;
5316
5317 case SK_RewrapInitList: {
5318 Expr *E = CurInit.take();
5319 InitListExpr *Syntactic = Step->WrappingSyntacticList;
5320 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5321 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5322 ILE->setSyntacticForm(Syntactic);
5323 ILE->setType(E->getType());
5324 ILE->setValueKind(E->getValueKind());
5325 CurInit = S.Owned(ILE);
5326 break;
5327 }
5328
5329 case SK_ConstructorInitialization: {
5330 // When an initializer list is passed for a parameter of type "reference
5331 // to object", we don't get an EK_Temporary entity, but instead an
5332 // EK_Parameter entity with reference type.
5333 // FIXME: This is a hack. What we really should do is create a user
5334 // conversion step for this case, but this makes it considerably more
5335 // complicated. For now, this will do.
5336 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5337 Entity.getType().getNonReferenceType());
5338 bool UseTemporary = Entity.getType()->isReferenceType();
5339 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5340 : Entity,
5341 Kind, Args, *Step,
5342 ConstructorInitRequiresZeroInit,
5343 /*IsListInitialization*/ false);
5344 break;
5345 }
5346
5347 case SK_ZeroInitialization: {
5348 step_iterator NextStep = Step;
5349 ++NextStep;
5350 if (NextStep != StepEnd &&
5351 (NextStep->Kind == SK_ConstructorInitialization ||
5352 NextStep->Kind == SK_ListConstructorCall)) {
5353 // The need for zero-initialization is recorded directly into
5354 // the call to the object's constructor within the next step.
5355 ConstructorInitRequiresZeroInit = true;
5356 } else if (Kind.getKind() == InitializationKind::IK_Value &&
5357 S.getLangOpts().CPlusPlus &&
5358 !Kind.isImplicitValueInit()) {
5359 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5360 if (!TSInfo)
5361 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5362 Kind.getRange().getBegin());
5363
5364 CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5365 TSInfo->getType().getNonLValueExprType(S.Context),
5366 TSInfo,
5367 Kind.getRange().getEnd()));
5368 } else {
5369 CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5370 }
5371 break;
5372 }
5373
5374 case SK_CAssignment: {
5375 QualType SourceType = CurInit.get()->getType();
5376 ExprResult Result = CurInit;
5377 Sema::AssignConvertType ConvTy =
5378 S.CheckSingleAssignmentConstraints(Step->Type, Result);
5379 if (Result.isInvalid())
5380 return ExprError();
5381 CurInit = Result;
5382
5383 // If this is a call, allow conversion to a transparent union.
5384 ExprResult CurInitExprRes = CurInit;
5385 if (ConvTy != Sema::Compatible &&
5386 Entity.getKind() == InitializedEntity::EK_Parameter &&
5387 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5388 == Sema::Compatible)
5389 ConvTy = Sema::Compatible;
5390 if (CurInitExprRes.isInvalid())
5391 return ExprError();
5392 CurInit = CurInitExprRes;
5393
5394 bool Complained;
5395 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5396 Step->Type, SourceType,
5397 CurInit.get(),
5398 getAssignmentAction(Entity),
5399 &Complained)) {
5400 PrintInitLocationNote(S, Entity);
5401 return ExprError();
5402 } else if (Complained)
5403 PrintInitLocationNote(S, Entity);
5404 break;
5405 }
5406
5407 case SK_StringInit: {
5408 QualType Ty = Step->Type;
5409 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5410 S.Context.getAsArrayType(Ty), S);
5411 break;
5412 }
5413
5414 case SK_ObjCObjectConversion:
5415 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5416 CK_ObjCObjectLValueCast,
5417 CurInit.get()->getValueKind());
5418 break;
5419
5420 case SK_ArrayInit:
5421 // Okay: we checked everything before creating this step. Note that
5422 // this is a GNU extension.
5423 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5424 << Step->Type << CurInit.get()->getType()
5425 << CurInit.get()->getSourceRange();
5426
5427 // If the destination type is an incomplete array type, update the
5428 // type accordingly.
5429 if (ResultType) {
5430 if (const IncompleteArrayType *IncompleteDest
5431 = S.Context.getAsIncompleteArrayType(Step->Type)) {
5432 if (const ConstantArrayType *ConstantSource
5433 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5434 *ResultType = S.Context.getConstantArrayType(
5435 IncompleteDest->getElementType(),
5436 ConstantSource->getSize(),
5437 ArrayType::Normal, 0);
5438 }
5439 }
5440 }
5441 break;
5442
5443 case SK_ParenthesizedArrayInit:
5444 // Okay: we checked everything before creating this step. Note that
5445 // this is a GNU extension.
5446 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5447 << CurInit.get()->getSourceRange();
5448 break;
5449
5450 case SK_PassByIndirectCopyRestore:
5451 case SK_PassByIndirectRestore:
5452 checkIndirectCopyRestoreSource(S, CurInit.get());
5453 CurInit = S.Owned(new (S.Context)
5454 ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5455 Step->Kind == SK_PassByIndirectCopyRestore));
5456 break;
5457
5458 case SK_ProduceObjCObject:
5459 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5460 CK_ARCProduceObject,
5461 CurInit.take(), 0, VK_RValue));
5462 break;
5463
5464 case SK_StdInitializerList: {
5465 QualType Dest = Step->Type;
5466 QualType E;
5467 bool Success = S.isStdInitializerList(Dest, &E);
5468 (void)Success;
5469 assert(Success && "Destination type changed?");
5470
5471 // If the element type has a destructor, check it.
5472 if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5473 if (!RD->hasIrrelevantDestructor()) {
5474 if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5475 S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5476 S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5477 S.PDiag(diag::err_access_dtor_temp) << E);
5478 S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5479 }
5480 }
5481 }
5482
5483 InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5484 S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5485 << ILE->getSourceRange();
5486 unsigned NumInits = ILE->getNumInits();
5487 SmallVector<Expr*, 16> Converted(NumInits);
5488 InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5489 S.Context.getConstantArrayType(E,
5490 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5491 NumInits),
5492 ArrayType::Normal, 0));
5493 InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5494 0, HiddenArray);
5495 for (unsigned i = 0; i < NumInits; ++i) {
5496 Element.setElementIndex(i);
5497 ExprResult Init = S.Owned(ILE->getInit(i));
5498 ExprResult Res = S.PerformCopyInitialization(
5499 Element, Init.get()->getExprLoc(), Init,
5500 /*TopLevelOfInitList=*/ true);
5501 assert(!Res.isInvalid() && "Result changed since try phase.");
5502 Converted[i] = Res.take();
5503 }
5504 InitListExpr *Semantic = new (S.Context)
5505 InitListExpr(S.Context, ILE->getLBraceLoc(),
5506 Converted, ILE->getRBraceLoc());
5507 Semantic->setSyntacticForm(ILE);
5508 Semantic->setType(Dest);
5509 Semantic->setInitializesStdInitializerList();
5510 CurInit = S.Owned(Semantic);
5511 break;
5512 }
5513 case SK_OCLSamplerInit: {
5514 assert(Step->Type->isSamplerT() &&
5515 "Sampler initialization on non sampler type.");
5516
5517 QualType SourceType = CurInit.get()->getType();
5518 InitializedEntity::EntityKind EntityKind = Entity.getKind();
5519
5520 if (EntityKind == InitializedEntity::EK_Parameter) {
5521 if (!SourceType->isSamplerT())
5522 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
5523 << SourceType;
5524 } else if (EntityKind != InitializedEntity::EK_Variable) {
5525 llvm_unreachable("Invalid EntityKind!");
5526 }
5527
5528 break;
5529 }
5530 case SK_OCLZeroEvent: {
5531 assert(Step->Type->isEventT() &&
5532 "Event initialization on non event type.");
5533
5534 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5535 CK_ZeroToOCLEvent,
5536 CurInit.get()->getValueKind());
5537 break;
5538 }
5539 }
5540 }
5541
5542 // Diagnose non-fatal problems with the completed initialization.
5543 if (Entity.getKind() == InitializedEntity::EK_Member &&
5544 cast<FieldDecl>(Entity.getDecl())->isBitField())
5545 S.CheckBitFieldInitialization(Kind.getLocation(),
5546 cast<FieldDecl>(Entity.getDecl()),
5547 CurInit.get());
5548
5549 return CurInit;
5550 }
5551
5552 /// Somewhere within T there is an uninitialized reference subobject.
5553 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)5554 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
5555 QualType T) {
5556 if (T->isReferenceType()) {
5557 S.Diag(Loc, diag::err_reference_without_init)
5558 << T.getNonReferenceType();
5559 return true;
5560 }
5561
5562 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5563 if (!RD || !RD->hasUninitializedReferenceMember())
5564 return false;
5565
5566 for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5567 FE = RD->field_end(); FI != FE; ++FI) {
5568 if (FI->isUnnamedBitfield())
5569 continue;
5570
5571 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
5572 S.Diag(Loc, diag::note_value_initialization_here) << RD;
5573 return true;
5574 }
5575 }
5576
5577 for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5578 BE = RD->bases_end();
5579 BI != BE; ++BI) {
5580 if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
5581 S.Diag(Loc, diag::note_value_initialization_here) << RD;
5582 return true;
5583 }
5584 }
5585
5586 return false;
5587 }
5588
5589
5590 //===----------------------------------------------------------------------===//
5591 // Diagnose initialization failures
5592 //===----------------------------------------------------------------------===//
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs)5593 bool InitializationSequence::Diagnose(Sema &S,
5594 const InitializedEntity &Entity,
5595 const InitializationKind &Kind,
5596 Expr **Args, unsigned NumArgs) {
5597 if (!Failed())
5598 return false;
5599
5600 QualType DestType = Entity.getType();
5601 switch (Failure) {
5602 case FK_TooManyInitsForReference:
5603 // FIXME: Customize for the initialized entity?
5604 if (NumArgs == 0) {
5605 // Dig out the reference subobject which is uninitialized and diagnose it.
5606 // If this is value-initialization, this could be nested some way within
5607 // the target type.
5608 assert(Kind.getKind() == InitializationKind::IK_Value ||
5609 DestType->isReferenceType());
5610 bool Diagnosed =
5611 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
5612 assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
5613 (void)Diagnosed;
5614 } else // FIXME: diagnostic below could be better!
5615 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5616 << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5617 break;
5618
5619 case FK_ArrayNeedsInitList:
5620 case FK_ArrayNeedsInitListOrStringLiteral:
5621 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5622 << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5623 break;
5624
5625 case FK_ArrayTypeMismatch:
5626 case FK_NonConstantArrayInit:
5627 S.Diag(Kind.getLocation(),
5628 (Failure == FK_ArrayTypeMismatch
5629 ? diag::err_array_init_different_type
5630 : diag::err_array_init_non_constant_array))
5631 << DestType.getNonReferenceType()
5632 << Args[0]->getType()
5633 << Args[0]->getSourceRange();
5634 break;
5635
5636 case FK_VariableLengthArrayHasInitializer:
5637 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5638 << Args[0]->getSourceRange();
5639 break;
5640
5641 case FK_AddressOfOverloadFailed: {
5642 DeclAccessPair Found;
5643 S.ResolveAddressOfOverloadedFunction(Args[0],
5644 DestType.getNonReferenceType(),
5645 true,
5646 Found);
5647 break;
5648 }
5649
5650 case FK_ReferenceInitOverloadFailed:
5651 case FK_UserConversionOverloadFailed:
5652 switch (FailedOverloadResult) {
5653 case OR_Ambiguous:
5654 if (Failure == FK_UserConversionOverloadFailed)
5655 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5656 << Args[0]->getType() << DestType
5657 << Args[0]->getSourceRange();
5658 else
5659 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5660 << DestType << Args[0]->getType()
5661 << Args[0]->getSourceRange();
5662
5663 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5664 llvm::makeArrayRef(Args, NumArgs));
5665 break;
5666
5667 case OR_No_Viable_Function:
5668 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5669 << Args[0]->getType() << DestType.getNonReferenceType()
5670 << Args[0]->getSourceRange();
5671 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5672 llvm::makeArrayRef(Args, NumArgs));
5673 break;
5674
5675 case OR_Deleted: {
5676 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5677 << Args[0]->getType() << DestType.getNonReferenceType()
5678 << Args[0]->getSourceRange();
5679 OverloadCandidateSet::iterator Best;
5680 OverloadingResult Ovl
5681 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5682 true);
5683 if (Ovl == OR_Deleted) {
5684 S.NoteDeletedFunction(Best->Function);
5685 } else {
5686 llvm_unreachable("Inconsistent overload resolution?");
5687 }
5688 break;
5689 }
5690
5691 case OR_Success:
5692 llvm_unreachable("Conversion did not fail!");
5693 }
5694 break;
5695
5696 case FK_NonConstLValueReferenceBindingToTemporary:
5697 if (isa<InitListExpr>(Args[0])) {
5698 S.Diag(Kind.getLocation(),
5699 diag::err_lvalue_reference_bind_to_initlist)
5700 << DestType.getNonReferenceType().isVolatileQualified()
5701 << DestType.getNonReferenceType()
5702 << Args[0]->getSourceRange();
5703 break;
5704 }
5705 // Intentional fallthrough
5706
5707 case FK_NonConstLValueReferenceBindingToUnrelated:
5708 S.Diag(Kind.getLocation(),
5709 Failure == FK_NonConstLValueReferenceBindingToTemporary
5710 ? diag::err_lvalue_reference_bind_to_temporary
5711 : diag::err_lvalue_reference_bind_to_unrelated)
5712 << DestType.getNonReferenceType().isVolatileQualified()
5713 << DestType.getNonReferenceType()
5714 << Args[0]->getType()
5715 << Args[0]->getSourceRange();
5716 break;
5717
5718 case FK_RValueReferenceBindingToLValue:
5719 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5720 << DestType.getNonReferenceType() << Args[0]->getType()
5721 << Args[0]->getSourceRange();
5722 break;
5723
5724 case FK_ReferenceInitDropsQualifiers:
5725 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5726 << DestType.getNonReferenceType()
5727 << Args[0]->getType()
5728 << Args[0]->getSourceRange();
5729 break;
5730
5731 case FK_ReferenceInitFailed:
5732 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5733 << DestType.getNonReferenceType()
5734 << Args[0]->isLValue()
5735 << Args[0]->getType()
5736 << Args[0]->getSourceRange();
5737 if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5738 Args[0]->getType()->isObjCObjectPointerType())
5739 S.EmitRelatedResultTypeNote(Args[0]);
5740 break;
5741
5742 case FK_ConversionFailed: {
5743 QualType FromType = Args[0]->getType();
5744 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5745 << (int)Entity.getKind()
5746 << DestType
5747 << Args[0]->isLValue()
5748 << FromType
5749 << Args[0]->getSourceRange();
5750 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5751 S.Diag(Kind.getLocation(), PDiag);
5752 if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5753 Args[0]->getType()->isObjCObjectPointerType())
5754 S.EmitRelatedResultTypeNote(Args[0]);
5755 break;
5756 }
5757
5758 case FK_ConversionFromPropertyFailed:
5759 // No-op. This error has already been reported.
5760 break;
5761
5762 case FK_TooManyInitsForScalar: {
5763 SourceRange R;
5764
5765 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5766 R = SourceRange(InitList->getInit(0)->getLocEnd(),
5767 InitList->getLocEnd());
5768 else
5769 R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5770
5771 R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5772 if (Kind.isCStyleOrFunctionalCast())
5773 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5774 << R;
5775 else
5776 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5777 << /*scalar=*/2 << R;
5778 break;
5779 }
5780
5781 case FK_ReferenceBindingToInitList:
5782 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5783 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5784 break;
5785
5786 case FK_InitListBadDestinationType:
5787 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5788 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5789 break;
5790
5791 case FK_ListConstructorOverloadFailed:
5792 case FK_ConstructorOverloadFailed: {
5793 SourceRange ArgsRange;
5794 if (NumArgs)
5795 ArgsRange = SourceRange(Args[0]->getLocStart(),
5796 Args[NumArgs - 1]->getLocEnd());
5797
5798 if (Failure == FK_ListConstructorOverloadFailed) {
5799 assert(NumArgs == 1 && "List construction from other than 1 argument.");
5800 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5801 Args = InitList->getInits();
5802 NumArgs = InitList->getNumInits();
5803 }
5804
5805 // FIXME: Using "DestType" for the entity we're printing is probably
5806 // bad.
5807 switch (FailedOverloadResult) {
5808 case OR_Ambiguous:
5809 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5810 << DestType << ArgsRange;
5811 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5812 llvm::makeArrayRef(Args, NumArgs));
5813 break;
5814
5815 case OR_No_Viable_Function:
5816 if (Kind.getKind() == InitializationKind::IK_Default &&
5817 (Entity.getKind() == InitializedEntity::EK_Base ||
5818 Entity.getKind() == InitializedEntity::EK_Member) &&
5819 isa<CXXConstructorDecl>(S.CurContext)) {
5820 // This is implicit default initialization of a member or
5821 // base within a constructor. If no viable function was
5822 // found, notify the user that she needs to explicitly
5823 // initialize this base/member.
5824 CXXConstructorDecl *Constructor
5825 = cast<CXXConstructorDecl>(S.CurContext);
5826 if (Entity.getKind() == InitializedEntity::EK_Base) {
5827 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5828 << (Constructor->getInheritedConstructor() ? 2 :
5829 Constructor->isImplicit() ? 1 : 0)
5830 << S.Context.getTypeDeclType(Constructor->getParent())
5831 << /*base=*/0
5832 << Entity.getType();
5833
5834 RecordDecl *BaseDecl
5835 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5836 ->getDecl();
5837 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5838 << S.Context.getTagDeclType(BaseDecl);
5839 } else {
5840 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5841 << (Constructor->getInheritedConstructor() ? 2 :
5842 Constructor->isImplicit() ? 1 : 0)
5843 << S.Context.getTypeDeclType(Constructor->getParent())
5844 << /*member=*/1
5845 << Entity.getName();
5846 S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5847
5848 if (const RecordType *Record
5849 = Entity.getType()->getAs<RecordType>())
5850 S.Diag(Record->getDecl()->getLocation(),
5851 diag::note_previous_decl)
5852 << S.Context.getTagDeclType(Record->getDecl());
5853 }
5854 break;
5855 }
5856
5857 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5858 << DestType << ArgsRange;
5859 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5860 llvm::makeArrayRef(Args, NumArgs));
5861 break;
5862
5863 case OR_Deleted: {
5864 OverloadCandidateSet::iterator Best;
5865 OverloadingResult Ovl
5866 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5867 if (Ovl != OR_Deleted) {
5868 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5869 << true << DestType << ArgsRange;
5870 llvm_unreachable("Inconsistent overload resolution?");
5871 break;
5872 }
5873
5874 // If this is a defaulted or implicitly-declared function, then
5875 // it was implicitly deleted. Make it clear that the deletion was
5876 // implicit.
5877 if (S.isImplicitlyDeleted(Best->Function))
5878 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5879 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5880 << DestType << ArgsRange;
5881 else
5882 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5883 << true << DestType << ArgsRange;
5884
5885 S.NoteDeletedFunction(Best->Function);
5886 break;
5887 }
5888
5889 case OR_Success:
5890 llvm_unreachable("Conversion did not fail!");
5891 }
5892 }
5893 break;
5894
5895 case FK_DefaultInitOfConst:
5896 if (Entity.getKind() == InitializedEntity::EK_Member &&
5897 isa<CXXConstructorDecl>(S.CurContext)) {
5898 // This is implicit default-initialization of a const member in
5899 // a constructor. Complain that it needs to be explicitly
5900 // initialized.
5901 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5902 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5903 << (Constructor->getInheritedConstructor() ? 2 :
5904 Constructor->isImplicit() ? 1 : 0)
5905 << S.Context.getTypeDeclType(Constructor->getParent())
5906 << /*const=*/1
5907 << Entity.getName();
5908 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5909 << Entity.getName();
5910 } else {
5911 S.Diag(Kind.getLocation(), diag::err_default_init_const)
5912 << DestType << (bool)DestType->getAs<RecordType>();
5913 }
5914 break;
5915
5916 case FK_Incomplete:
5917 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
5918 diag::err_init_incomplete_type);
5919 break;
5920
5921 case FK_ListInitializationFailed: {
5922 // Run the init list checker again to emit diagnostics.
5923 InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5924 QualType DestType = Entity.getType();
5925 InitListChecker DiagnoseInitList(S, Entity, InitList,
5926 DestType, /*VerifyOnly=*/false,
5927 Kind.getKind() != InitializationKind::IK_DirectList ||
5928 !S.getLangOpts().CPlusPlus11);
5929 assert(DiagnoseInitList.HadError() &&
5930 "Inconsistent init list check result.");
5931 break;
5932 }
5933
5934 case FK_PlaceholderType: {
5935 // FIXME: Already diagnosed!
5936 break;
5937 }
5938
5939 case FK_InitListElementCopyFailure: {
5940 // Try to perform all copies again.
5941 InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5942 unsigned NumInits = InitList->getNumInits();
5943 QualType DestType = Entity.getType();
5944 QualType E;
5945 bool Success = S.isStdInitializerList(DestType, &E);
5946 (void)Success;
5947 assert(Success && "Where did the std::initializer_list go?");
5948 InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5949 S.Context.getConstantArrayType(E,
5950 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5951 NumInits),
5952 ArrayType::Normal, 0));
5953 InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5954 0, HiddenArray);
5955 // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5956 // where the init list type is wrong, e.g.
5957 // std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5958 // FIXME: Emit a note if we hit the limit?
5959 int ErrorCount = 0;
5960 for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5961 Element.setElementIndex(i);
5962 ExprResult Init = S.Owned(InitList->getInit(i));
5963 if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5964 .isInvalid())
5965 ++ErrorCount;
5966 }
5967 break;
5968 }
5969
5970 case FK_ExplicitConstructor: {
5971 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
5972 << Args[0]->getSourceRange();
5973 OverloadCandidateSet::iterator Best;
5974 OverloadingResult Ovl
5975 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5976 (void)Ovl;
5977 assert(Ovl == OR_Success && "Inconsistent overload resolution");
5978 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
5979 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
5980 break;
5981 }
5982 }
5983
5984 PrintInitLocationNote(S, Entity);
5985 return true;
5986 }
5987
dump(raw_ostream & OS) const5988 void InitializationSequence::dump(raw_ostream &OS) const {
5989 switch (SequenceKind) {
5990 case FailedSequence: {
5991 OS << "Failed sequence: ";
5992 switch (Failure) {
5993 case FK_TooManyInitsForReference:
5994 OS << "too many initializers for reference";
5995 break;
5996
5997 case FK_ArrayNeedsInitList:
5998 OS << "array requires initializer list";
5999 break;
6000
6001 case FK_ArrayNeedsInitListOrStringLiteral:
6002 OS << "array requires initializer list or string literal";
6003 break;
6004
6005 case FK_ArrayTypeMismatch:
6006 OS << "array type mismatch";
6007 break;
6008
6009 case FK_NonConstantArrayInit:
6010 OS << "non-constant array initializer";
6011 break;
6012
6013 case FK_AddressOfOverloadFailed:
6014 OS << "address of overloaded function failed";
6015 break;
6016
6017 case FK_ReferenceInitOverloadFailed:
6018 OS << "overload resolution for reference initialization failed";
6019 break;
6020
6021 case FK_NonConstLValueReferenceBindingToTemporary:
6022 OS << "non-const lvalue reference bound to temporary";
6023 break;
6024
6025 case FK_NonConstLValueReferenceBindingToUnrelated:
6026 OS << "non-const lvalue reference bound to unrelated type";
6027 break;
6028
6029 case FK_RValueReferenceBindingToLValue:
6030 OS << "rvalue reference bound to an lvalue";
6031 break;
6032
6033 case FK_ReferenceInitDropsQualifiers:
6034 OS << "reference initialization drops qualifiers";
6035 break;
6036
6037 case FK_ReferenceInitFailed:
6038 OS << "reference initialization failed";
6039 break;
6040
6041 case FK_ConversionFailed:
6042 OS << "conversion failed";
6043 break;
6044
6045 case FK_ConversionFromPropertyFailed:
6046 OS << "conversion from property failed";
6047 break;
6048
6049 case FK_TooManyInitsForScalar:
6050 OS << "too many initializers for scalar";
6051 break;
6052
6053 case FK_ReferenceBindingToInitList:
6054 OS << "referencing binding to initializer list";
6055 break;
6056
6057 case FK_InitListBadDestinationType:
6058 OS << "initializer list for non-aggregate, non-scalar type";
6059 break;
6060
6061 case FK_UserConversionOverloadFailed:
6062 OS << "overloading failed for user-defined conversion";
6063 break;
6064
6065 case FK_ConstructorOverloadFailed:
6066 OS << "constructor overloading failed";
6067 break;
6068
6069 case FK_DefaultInitOfConst:
6070 OS << "default initialization of a const variable";
6071 break;
6072
6073 case FK_Incomplete:
6074 OS << "initialization of incomplete type";
6075 break;
6076
6077 case FK_ListInitializationFailed:
6078 OS << "list initialization checker failure";
6079 break;
6080
6081 case FK_VariableLengthArrayHasInitializer:
6082 OS << "variable length array has an initializer";
6083 break;
6084
6085 case FK_PlaceholderType:
6086 OS << "initializer expression isn't contextually valid";
6087 break;
6088
6089 case FK_ListConstructorOverloadFailed:
6090 OS << "list constructor overloading failed";
6091 break;
6092
6093 case FK_InitListElementCopyFailure:
6094 OS << "copy construction of initializer list element failed";
6095 break;
6096
6097 case FK_ExplicitConstructor:
6098 OS << "list copy initialization chose explicit constructor";
6099 break;
6100 }
6101 OS << '\n';
6102 return;
6103 }
6104
6105 case DependentSequence:
6106 OS << "Dependent sequence\n";
6107 return;
6108
6109 case NormalSequence:
6110 OS << "Normal sequence: ";
6111 break;
6112 }
6113
6114 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6115 if (S != step_begin()) {
6116 OS << " -> ";
6117 }
6118
6119 switch (S->Kind) {
6120 case SK_ResolveAddressOfOverloadedFunction:
6121 OS << "resolve address of overloaded function";
6122 break;
6123
6124 case SK_CastDerivedToBaseRValue:
6125 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6126 break;
6127
6128 case SK_CastDerivedToBaseXValue:
6129 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6130 break;
6131
6132 case SK_CastDerivedToBaseLValue:
6133 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6134 break;
6135
6136 case SK_BindReference:
6137 OS << "bind reference to lvalue";
6138 break;
6139
6140 case SK_BindReferenceToTemporary:
6141 OS << "bind reference to a temporary";
6142 break;
6143
6144 case SK_ExtraneousCopyToTemporary:
6145 OS << "extraneous C++03 copy to temporary";
6146 break;
6147
6148 case SK_UserConversion:
6149 OS << "user-defined conversion via " << *S->Function.Function;
6150 break;
6151
6152 case SK_QualificationConversionRValue:
6153 OS << "qualification conversion (rvalue)";
6154 break;
6155
6156 case SK_QualificationConversionXValue:
6157 OS << "qualification conversion (xvalue)";
6158 break;
6159
6160 case SK_QualificationConversionLValue:
6161 OS << "qualification conversion (lvalue)";
6162 break;
6163
6164 case SK_ConversionSequence:
6165 OS << "implicit conversion sequence (";
6166 S->ICS->DebugPrint(); // FIXME: use OS
6167 OS << ")";
6168 break;
6169
6170 case SK_ListInitialization:
6171 OS << "list aggregate initialization";
6172 break;
6173
6174 case SK_ListConstructorCall:
6175 OS << "list initialization via constructor";
6176 break;
6177
6178 case SK_UnwrapInitList:
6179 OS << "unwrap reference initializer list";
6180 break;
6181
6182 case SK_RewrapInitList:
6183 OS << "rewrap reference initializer list";
6184 break;
6185
6186 case SK_ConstructorInitialization:
6187 OS << "constructor initialization";
6188 break;
6189
6190 case SK_ZeroInitialization:
6191 OS << "zero initialization";
6192 break;
6193
6194 case SK_CAssignment:
6195 OS << "C assignment";
6196 break;
6197
6198 case SK_StringInit:
6199 OS << "string initialization";
6200 break;
6201
6202 case SK_ObjCObjectConversion:
6203 OS << "Objective-C object conversion";
6204 break;
6205
6206 case SK_ArrayInit:
6207 OS << "array initialization";
6208 break;
6209
6210 case SK_ParenthesizedArrayInit:
6211 OS << "parenthesized array initialization";
6212 break;
6213
6214 case SK_PassByIndirectCopyRestore:
6215 OS << "pass by indirect copy and restore";
6216 break;
6217
6218 case SK_PassByIndirectRestore:
6219 OS << "pass by indirect restore";
6220 break;
6221
6222 case SK_ProduceObjCObject:
6223 OS << "Objective-C object retension";
6224 break;
6225
6226 case SK_StdInitializerList:
6227 OS << "std::initializer_list from initializer list";
6228 break;
6229
6230 case SK_OCLSamplerInit:
6231 OS << "OpenCL sampler_t from integer constant";
6232 break;
6233
6234 case SK_OCLZeroEvent:
6235 OS << "OpenCL event_t from zero";
6236 break;
6237 }
6238
6239 OS << " [" << S->Type.getAsString() << ']';
6240 }
6241
6242 OS << '\n';
6243 }
6244
dump() const6245 void InitializationSequence::dump() const {
6246 dump(llvm::errs());
6247 }
6248
DiagnoseNarrowingInInitList(Sema & S,InitializationSequence & Seq,QualType EntityType,const Expr * PreInit,const Expr * PostInit)6249 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6250 QualType EntityType,
6251 const Expr *PreInit,
6252 const Expr *PostInit) {
6253 if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6254 return;
6255
6256 // A narrowing conversion can only appear as the final implicit conversion in
6257 // an initialization sequence.
6258 const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6259 if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6260 return;
6261
6262 const ImplicitConversionSequence &ICS = *LastStep.ICS;
6263 const StandardConversionSequence *SCS = 0;
6264 switch (ICS.getKind()) {
6265 case ImplicitConversionSequence::StandardConversion:
6266 SCS = &ICS.Standard;
6267 break;
6268 case ImplicitConversionSequence::UserDefinedConversion:
6269 SCS = &ICS.UserDefined.After;
6270 break;
6271 case ImplicitConversionSequence::AmbiguousConversion:
6272 case ImplicitConversionSequence::EllipsisConversion:
6273 case ImplicitConversionSequence::BadConversion:
6274 return;
6275 }
6276
6277 // Determine the type prior to the narrowing conversion. If a conversion
6278 // operator was used, this may be different from both the type of the entity
6279 // and of the pre-initialization expression.
6280 QualType PreNarrowingType = PreInit->getType();
6281 if (Seq.step_begin() + 1 != Seq.step_end())
6282 PreNarrowingType = Seq.step_end()[-2].Type;
6283
6284 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6285 APValue ConstantValue;
6286 QualType ConstantType;
6287 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6288 ConstantType)) {
6289 case NK_Not_Narrowing:
6290 // No narrowing occurred.
6291 return;
6292
6293 case NK_Type_Narrowing:
6294 // This was a floating-to-integer conversion, which is always considered a
6295 // narrowing conversion even if the value is a constant and can be
6296 // represented exactly as an integer.
6297 S.Diag(PostInit->getLocStart(),
6298 S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6299 diag::warn_init_list_type_narrowing
6300 : S.isSFINAEContext()?
6301 diag::err_init_list_type_narrowing_sfinae
6302 : diag::err_init_list_type_narrowing)
6303 << PostInit->getSourceRange()
6304 << PreNarrowingType.getLocalUnqualifiedType()
6305 << EntityType.getLocalUnqualifiedType();
6306 break;
6307
6308 case NK_Constant_Narrowing:
6309 // A constant value was narrowed.
6310 S.Diag(PostInit->getLocStart(),
6311 S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6312 diag::warn_init_list_constant_narrowing
6313 : S.isSFINAEContext()?
6314 diag::err_init_list_constant_narrowing_sfinae
6315 : diag::err_init_list_constant_narrowing)
6316 << PostInit->getSourceRange()
6317 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6318 << EntityType.getLocalUnqualifiedType();
6319 break;
6320
6321 case NK_Variable_Narrowing:
6322 // A variable's value may have been narrowed.
6323 S.Diag(PostInit->getLocStart(),
6324 S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6325 diag::warn_init_list_variable_narrowing
6326 : S.isSFINAEContext()?
6327 diag::err_init_list_variable_narrowing_sfinae
6328 : diag::err_init_list_variable_narrowing)
6329 << PostInit->getSourceRange()
6330 << PreNarrowingType.getLocalUnqualifiedType()
6331 << EntityType.getLocalUnqualifiedType();
6332 break;
6333 }
6334
6335 SmallString<128> StaticCast;
6336 llvm::raw_svector_ostream OS(StaticCast);
6337 OS << "static_cast<";
6338 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6339 // It's important to use the typedef's name if there is one so that the
6340 // fixit doesn't break code using types like int64_t.
6341 //
6342 // FIXME: This will break if the typedef requires qualification. But
6343 // getQualifiedNameAsString() includes non-machine-parsable components.
6344 OS << *TT->getDecl();
6345 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6346 OS << BT->getName(S.getLangOpts());
6347 else {
6348 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
6349 // with a broken cast.
6350 return;
6351 }
6352 OS << ">(";
6353 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6354 << PostInit->getSourceRange()
6355 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6356 << FixItHint::CreateInsertion(
6357 S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6358 }
6359
6360 //===----------------------------------------------------------------------===//
6361 // Initialization helper functions
6362 //===----------------------------------------------------------------------===//
6363 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)6364 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6365 ExprResult Init) {
6366 if (Init.isInvalid())
6367 return false;
6368
6369 Expr *InitE = Init.get();
6370 assert(InitE && "No initialization expression");
6371
6372 InitializationKind Kind
6373 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6374 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6375 return !Seq.Failed();
6376 }
6377
6378 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)6379 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6380 SourceLocation EqualLoc,
6381 ExprResult Init,
6382 bool TopLevelOfInitList,
6383 bool AllowExplicit) {
6384 if (Init.isInvalid())
6385 return ExprError();
6386
6387 Expr *InitE = Init.get();
6388 assert(InitE && "No initialization expression?");
6389
6390 if (EqualLoc.isInvalid())
6391 EqualLoc = InitE->getLocStart();
6392
6393 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6394 EqualLoc,
6395 AllowExplicit);
6396 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6397 Init.release();
6398
6399 ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6400
6401 if (!Result.isInvalid() && TopLevelOfInitList)
6402 DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6403 InitE, Result.get());
6404
6405 return Result;
6406 }
6407