• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                           ASTContext &Context) {
37   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38     return 0;
39 
40   // See if this is a string literal or @encode.
41   Init = Init->IgnoreParens();
42 
43   // Handle @encode, which is a narrow string.
44   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45     return Init;
46 
47   // Otherwise we can only handle string literals.
48   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49   if (SL == 0) return 0;
50 
51   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52 
53   switch (SL->getKind()) {
54   case StringLiteral::Ascii:
55   case StringLiteral::UTF8:
56     // char array can be initialized with a narrow string.
57     // Only allow char x[] = "foo";  not char x[] = L"foo";
58     return ElemTy->isCharType() ? Init : 0;
59   case StringLiteral::UTF16:
60     return ElemTy->isChar16Type() ? Init : 0;
61   case StringLiteral::UTF32:
62     return ElemTy->isChar32Type() ? Init : 0;
63   case StringLiteral::Wide:
64     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65     // correction from DR343): "An array with element type compatible with a
66     // qualified or unqualified version of wchar_t may be initialized by a wide
67     // string literal, optionally enclosed in braces."
68     if (Context.typesAreCompatible(Context.getWCharType(),
69                                    ElemTy.getUnqualifiedType()))
70       return Init;
71 
72     return 0;
73   }
74 
75   llvm_unreachable("missed a StringLiteral kind?");
76 }
77 
IsStringInit(Expr * init,QualType declType,ASTContext & Context)78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79   const ArrayType *arrayType = Context.getAsArrayType(declType);
80   if (!arrayType) return 0;
81 
82   return IsStringInit(init, arrayType, Context);
83 }
84 
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)85 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86                             Sema &S) {
87   // Get the length of the string as parsed.
88   uint64_t StrLength =
89     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90 
91 
92   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93     // C99 6.7.8p14. We have an array of character type with unknown size
94     // being initialized to a string literal.
95     llvm::APInt ConstVal(32, StrLength);
96     // Return a new array type (C99 6.7.8p22).
97     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
98                                            ConstVal,
99                                            ArrayType::Normal, 0);
100     return;
101   }
102 
103   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
104 
105   // We have an array of character type with known size.  However,
106   // the size may be smaller or larger than the string we are initializing.
107   // FIXME: Avoid truncation for 64-bit length strings.
108   if (S.getLangOpts().CPlusPlus) {
109     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
110       // For Pascal strings it's OK to strip off the terminating null character,
111       // so the example below is valid:
112       //
113       // unsigned char a[2] = "\pa";
114       if (SL->isPascal())
115         StrLength--;
116     }
117 
118     // [dcl.init.string]p2
119     if (StrLength > CAT->getSize().getZExtValue())
120       S.Diag(Str->getLocStart(),
121              diag::err_initializer_string_for_char_array_too_long)
122         << Str->getSourceRange();
123   } else {
124     // C99 6.7.8p14.
125     if (StrLength-1 > CAT->getSize().getZExtValue())
126       S.Diag(Str->getLocStart(),
127              diag::warn_initializer_string_for_char_array_too_long)
128         << Str->getSourceRange();
129   }
130 
131   // Set the type to the actual size that we are initializing.  If we have
132   // something like:
133   //   char x[1] = "foo";
134   // then this will set the string literal's type to char[1].
135   Str->setType(DeclT);
136 }
137 
138 //===----------------------------------------------------------------------===//
139 // Semantic checking for initializer lists.
140 //===----------------------------------------------------------------------===//
141 
142 /// @brief Semantic checking for initializer lists.
143 ///
144 /// The InitListChecker class contains a set of routines that each
145 /// handle the initialization of a certain kind of entity, e.g.,
146 /// arrays, vectors, struct/union types, scalars, etc. The
147 /// InitListChecker itself performs a recursive walk of the subobject
148 /// structure of the type to be initialized, while stepping through
149 /// the initializer list one element at a time. The IList and Index
150 /// parameters to each of the Check* routines contain the active
151 /// (syntactic) initializer list and the index into that initializer
152 /// list that represents the current initializer. Each routine is
153 /// responsible for moving that Index forward as it consumes elements.
154 ///
155 /// Each Check* routine also has a StructuredList/StructuredIndex
156 /// arguments, which contains the current "structured" (semantic)
157 /// initializer list and the index into that initializer list where we
158 /// are copying initializers as we map them over to the semantic
159 /// list. Once we have completed our recursive walk of the subobject
160 /// structure, we will have constructed a full semantic initializer
161 /// list.
162 ///
163 /// C99 designators cause changes in the initializer list traversal,
164 /// because they make the initialization "jump" into a specific
165 /// subobject and then continue the initialization from that
166 /// point. CheckDesignatedInitializer() recursively steps into the
167 /// designated subobject and manages backing out the recursion to
168 /// initialize the subobjects after the one designated.
169 namespace {
170 class InitListChecker {
171   Sema &SemaRef;
172   bool hadError;
173   bool VerifyOnly; // no diagnostics, no structure building
174   bool AllowBraceElision;
175   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
176   InitListExpr *FullyStructuredList;
177 
178   void CheckImplicitInitList(const InitializedEntity &Entity,
179                              InitListExpr *ParentIList, QualType T,
180                              unsigned &Index, InitListExpr *StructuredList,
181                              unsigned &StructuredIndex);
182   void CheckExplicitInitList(const InitializedEntity &Entity,
183                              InitListExpr *IList, QualType &T,
184                              unsigned &Index, InitListExpr *StructuredList,
185                              unsigned &StructuredIndex,
186                              bool TopLevelObject = false);
187   void CheckListElementTypes(const InitializedEntity &Entity,
188                              InitListExpr *IList, QualType &DeclType,
189                              bool SubobjectIsDesignatorContext,
190                              unsigned &Index,
191                              InitListExpr *StructuredList,
192                              unsigned &StructuredIndex,
193                              bool TopLevelObject = false);
194   void CheckSubElementType(const InitializedEntity &Entity,
195                            InitListExpr *IList, QualType ElemType,
196                            unsigned &Index,
197                            InitListExpr *StructuredList,
198                            unsigned &StructuredIndex);
199   void CheckComplexType(const InitializedEntity &Entity,
200                         InitListExpr *IList, QualType DeclType,
201                         unsigned &Index,
202                         InitListExpr *StructuredList,
203                         unsigned &StructuredIndex);
204   void CheckScalarType(const InitializedEntity &Entity,
205                        InitListExpr *IList, QualType DeclType,
206                        unsigned &Index,
207                        InitListExpr *StructuredList,
208                        unsigned &StructuredIndex);
209   void CheckReferenceType(const InitializedEntity &Entity,
210                           InitListExpr *IList, QualType DeclType,
211                           unsigned &Index,
212                           InitListExpr *StructuredList,
213                           unsigned &StructuredIndex);
214   void CheckVectorType(const InitializedEntity &Entity,
215                        InitListExpr *IList, QualType DeclType, unsigned &Index,
216                        InitListExpr *StructuredList,
217                        unsigned &StructuredIndex);
218   void CheckStructUnionTypes(const InitializedEntity &Entity,
219                              InitListExpr *IList, QualType DeclType,
220                              RecordDecl::field_iterator Field,
221                              bool SubobjectIsDesignatorContext, unsigned &Index,
222                              InitListExpr *StructuredList,
223                              unsigned &StructuredIndex,
224                              bool TopLevelObject = false);
225   void CheckArrayType(const InitializedEntity &Entity,
226                       InitListExpr *IList, QualType &DeclType,
227                       llvm::APSInt elementIndex,
228                       bool SubobjectIsDesignatorContext, unsigned &Index,
229                       InitListExpr *StructuredList,
230                       unsigned &StructuredIndex);
231   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
232                                   InitListExpr *IList, DesignatedInitExpr *DIE,
233                                   unsigned DesigIdx,
234                                   QualType &CurrentObjectType,
235                                   RecordDecl::field_iterator *NextField,
236                                   llvm::APSInt *NextElementIndex,
237                                   unsigned &Index,
238                                   InitListExpr *StructuredList,
239                                   unsigned &StructuredIndex,
240                                   bool FinishSubobjectInit,
241                                   bool TopLevelObject);
242   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
243                                            QualType CurrentObjectType,
244                                            InitListExpr *StructuredList,
245                                            unsigned StructuredIndex,
246                                            SourceRange InitRange);
247   void UpdateStructuredListElement(InitListExpr *StructuredList,
248                                    unsigned &StructuredIndex,
249                                    Expr *expr);
250   int numArrayElements(QualType DeclType);
251   int numStructUnionElements(QualType DeclType);
252 
253   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
254                                const InitializedEntity &ParentEntity,
255                                InitListExpr *ILE, bool &RequiresSecondPass);
256   void FillInValueInitializations(const InitializedEntity &Entity,
257                                   InitListExpr *ILE, bool &RequiresSecondPass);
258   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
259                               Expr *InitExpr, FieldDecl *Field,
260                               bool TopLevelObject);
261   void CheckValueInitializable(const InitializedEntity &Entity);
262 
263 public:
264   InitListChecker(Sema &S, const InitializedEntity &Entity,
265                   InitListExpr *IL, QualType &T, bool VerifyOnly,
266                   bool AllowBraceElision);
HadError()267   bool HadError() { return hadError; }
268 
269   // @brief Retrieves the fully-structured initializer list used for
270   // semantic analysis and code generation.
getFullyStructuredList() const271   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
272 };
273 } // end anonymous namespace
274 
CheckValueInitializable(const InitializedEntity & Entity)275 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
276   assert(VerifyOnly &&
277          "CheckValueInitializable is only inteded for verification mode.");
278 
279   SourceLocation Loc;
280   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
281                                                             true);
282   InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
283   if (InitSeq.Failed())
284     hadError = true;
285 }
286 
FillInValueInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass)287 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
288                                         const InitializedEntity &ParentEntity,
289                                               InitListExpr *ILE,
290                                               bool &RequiresSecondPass) {
291   SourceLocation Loc = ILE->getLocStart();
292   unsigned NumInits = ILE->getNumInits();
293   InitializedEntity MemberEntity
294     = InitializedEntity::InitializeMember(Field, &ParentEntity);
295   if (Init >= NumInits || !ILE->getInit(Init)) {
296     // FIXME: We probably don't need to handle references
297     // specially here, since value-initialization of references is
298     // handled in InitializationSequence.
299     if (Field->getType()->isReferenceType()) {
300       // C++ [dcl.init.aggr]p9:
301       //   If an incomplete or empty initializer-list leaves a
302       //   member of reference type uninitialized, the program is
303       //   ill-formed.
304       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
305         << Field->getType()
306         << ILE->getSyntacticForm()->getSourceRange();
307       SemaRef.Diag(Field->getLocation(),
308                    diag::note_uninit_reference_member);
309       hadError = true;
310       return;
311     }
312 
313     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
314                                                               true);
315     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
316     if (!InitSeq) {
317       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
318       hadError = true;
319       return;
320     }
321 
322     ExprResult MemberInit
323       = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
324     if (MemberInit.isInvalid()) {
325       hadError = true;
326       return;
327     }
328 
329     if (hadError) {
330       // Do nothing
331     } else if (Init < NumInits) {
332       ILE->setInit(Init, MemberInit.takeAs<Expr>());
333     } else if (InitSeq.isConstructorInitialization()) {
334       // Value-initialization requires a constructor call, so
335       // extend the initializer list to include the constructor
336       // call and make a note that we'll need to take another pass
337       // through the initializer list.
338       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
339       RequiresSecondPass = true;
340     }
341   } else if (InitListExpr *InnerILE
342                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
343     FillInValueInitializations(MemberEntity, InnerILE,
344                                RequiresSecondPass);
345 }
346 
347 /// Recursively replaces NULL values within the given initializer list
348 /// with expressions that perform value-initialization of the
349 /// appropriate type.
350 void
FillInValueInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass)351 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
352                                             InitListExpr *ILE,
353                                             bool &RequiresSecondPass) {
354   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
355          "Should not have void type");
356   SourceLocation Loc = ILE->getLocStart();
357   if (ILE->getSyntacticForm())
358     Loc = ILE->getSyntacticForm()->getLocStart();
359 
360   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
361     if (RType->getDecl()->isUnion() &&
362         ILE->getInitializedFieldInUnion())
363       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
364                               Entity, ILE, RequiresSecondPass);
365     else {
366       unsigned Init = 0;
367       for (RecordDecl::field_iterator
368              Field = RType->getDecl()->field_begin(),
369              FieldEnd = RType->getDecl()->field_end();
370            Field != FieldEnd; ++Field) {
371         if (Field->isUnnamedBitfield())
372           continue;
373 
374         if (hadError)
375           return;
376 
377         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
378         if (hadError)
379           return;
380 
381         ++Init;
382 
383         // Only look at the first initialization of a union.
384         if (RType->getDecl()->isUnion())
385           break;
386       }
387     }
388 
389     return;
390   }
391 
392   QualType ElementType;
393 
394   InitializedEntity ElementEntity = Entity;
395   unsigned NumInits = ILE->getNumInits();
396   unsigned NumElements = NumInits;
397   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
398     ElementType = AType->getElementType();
399     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
400       NumElements = CAType->getSize().getZExtValue();
401     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
402                                                          0, Entity);
403   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
404     ElementType = VType->getElementType();
405     NumElements = VType->getNumElements();
406     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
407                                                          0, Entity);
408   } else
409     ElementType = ILE->getType();
410 
411 
412   for (unsigned Init = 0; Init != NumElements; ++Init) {
413     if (hadError)
414       return;
415 
416     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
417         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
418       ElementEntity.setElementIndex(Init);
419 
420     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
421     if (!InitExpr && !ILE->hasArrayFiller()) {
422       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
423                                                                 true);
424       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
425       if (!InitSeq) {
426         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
427         hadError = true;
428         return;
429       }
430 
431       ExprResult ElementInit
432         = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
433       if (ElementInit.isInvalid()) {
434         hadError = true;
435         return;
436       }
437 
438       if (hadError) {
439         // Do nothing
440       } else if (Init < NumInits) {
441         // For arrays, just set the expression used for value-initialization
442         // of the "holes" in the array.
443         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
444           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
445         else
446           ILE->setInit(Init, ElementInit.takeAs<Expr>());
447       } else {
448         // For arrays, just set the expression used for value-initialization
449         // of the rest of elements and exit.
450         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
451           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
452           return;
453         }
454 
455         if (InitSeq.isConstructorInitialization()) {
456           // Value-initialization requires a constructor call, so
457           // extend the initializer list to include the constructor
458           // call and make a note that we'll need to take another pass
459           // through the initializer list.
460           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
461           RequiresSecondPass = true;
462         }
463       }
464     } else if (InitListExpr *InnerILE
465                  = dyn_cast_or_null<InitListExpr>(InitExpr))
466       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
467   }
468 }
469 
470 
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly,bool AllowBraceElision)471 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
472                                  InitListExpr *IL, QualType &T,
473                                  bool VerifyOnly, bool AllowBraceElision)
474   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
475   hadError = false;
476 
477   unsigned newIndex = 0;
478   unsigned newStructuredIndex = 0;
479   FullyStructuredList
480     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
481   CheckExplicitInitList(Entity, IL, T, newIndex,
482                         FullyStructuredList, newStructuredIndex,
483                         /*TopLevelObject=*/true);
484 
485   if (!hadError && !VerifyOnly) {
486     bool RequiresSecondPass = false;
487     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
488     if (RequiresSecondPass && !hadError)
489       FillInValueInitializations(Entity, FullyStructuredList,
490                                  RequiresSecondPass);
491   }
492 }
493 
numArrayElements(QualType DeclType)494 int InitListChecker::numArrayElements(QualType DeclType) {
495   // FIXME: use a proper constant
496   int maxElements = 0x7FFFFFFF;
497   if (const ConstantArrayType *CAT =
498         SemaRef.Context.getAsConstantArrayType(DeclType)) {
499     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
500   }
501   return maxElements;
502 }
503 
numStructUnionElements(QualType DeclType)504 int InitListChecker::numStructUnionElements(QualType DeclType) {
505   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
506   int InitializableMembers = 0;
507   for (RecordDecl::field_iterator
508          Field = structDecl->field_begin(),
509          FieldEnd = structDecl->field_end();
510        Field != FieldEnd; ++Field) {
511     if (!Field->isUnnamedBitfield())
512       ++InitializableMembers;
513   }
514   if (structDecl->isUnion())
515     return std::min(InitializableMembers, 1);
516   return InitializableMembers - structDecl->hasFlexibleArrayMember();
517 }
518 
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)519 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
520                                             InitListExpr *ParentIList,
521                                             QualType T, unsigned &Index,
522                                             InitListExpr *StructuredList,
523                                             unsigned &StructuredIndex) {
524   int maxElements = 0;
525 
526   if (T->isArrayType())
527     maxElements = numArrayElements(T);
528   else if (T->isRecordType())
529     maxElements = numStructUnionElements(T);
530   else if (T->isVectorType())
531     maxElements = T->getAs<VectorType>()->getNumElements();
532   else
533     llvm_unreachable("CheckImplicitInitList(): Illegal type");
534 
535   if (maxElements == 0) {
536     if (!VerifyOnly)
537       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
538                    diag::err_implicit_empty_initializer);
539     ++Index;
540     hadError = true;
541     return;
542   }
543 
544   // Build a structured initializer list corresponding to this subobject.
545   InitListExpr *StructuredSubobjectInitList
546     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
547                                  StructuredIndex,
548           SourceRange(ParentIList->getInit(Index)->getLocStart(),
549                       ParentIList->getSourceRange().getEnd()));
550   unsigned StructuredSubobjectInitIndex = 0;
551 
552   // Check the element types and build the structural subobject.
553   unsigned StartIndex = Index;
554   CheckListElementTypes(Entity, ParentIList, T,
555                         /*SubobjectIsDesignatorContext=*/false, Index,
556                         StructuredSubobjectInitList,
557                         StructuredSubobjectInitIndex);
558 
559   if (VerifyOnly) {
560     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
561       hadError = true;
562   } else {
563     StructuredSubobjectInitList->setType(T);
564 
565     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
566     // Update the structured sub-object initializer so that it's ending
567     // range corresponds with the end of the last initializer it used.
568     if (EndIndex < ParentIList->getNumInits()) {
569       SourceLocation EndLoc
570         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
571       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
572     }
573 
574     // Complain about missing braces.
575     if (T->isArrayType() || T->isRecordType()) {
576       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
577                     AllowBraceElision ? diag::warn_missing_braces :
578                                         diag::err_missing_braces)
579         << StructuredSubobjectInitList->getSourceRange()
580         << FixItHint::CreateInsertion(
581               StructuredSubobjectInitList->getLocStart(), "{")
582         << FixItHint::CreateInsertion(
583               SemaRef.PP.getLocForEndOfToken(
584                                       StructuredSubobjectInitList->getLocEnd()),
585               "}");
586       if (!AllowBraceElision)
587         hadError = true;
588     }
589   }
590 }
591 
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)592 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
593                                             InitListExpr *IList, QualType &T,
594                                             unsigned &Index,
595                                             InitListExpr *StructuredList,
596                                             unsigned &StructuredIndex,
597                                             bool TopLevelObject) {
598   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
599   if (!VerifyOnly) {
600     SyntacticToSemantic[IList] = StructuredList;
601     StructuredList->setSyntacticForm(IList);
602   }
603   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
604                         Index, StructuredList, StructuredIndex, TopLevelObject);
605   if (!VerifyOnly) {
606     QualType ExprTy = T;
607     if (!ExprTy->isArrayType())
608       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
609     IList->setType(ExprTy);
610     StructuredList->setType(ExprTy);
611   }
612   if (hadError)
613     return;
614 
615   if (Index < IList->getNumInits()) {
616     // We have leftover initializers
617     if (VerifyOnly) {
618       if (SemaRef.getLangOpts().CPlusPlus ||
619           (SemaRef.getLangOpts().OpenCL &&
620            IList->getType()->isVectorType())) {
621         hadError = true;
622       }
623       return;
624     }
625 
626     if (StructuredIndex == 1 &&
627         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
628       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
629       if (SemaRef.getLangOpts().CPlusPlus) {
630         DK = diag::err_excess_initializers_in_char_array_initializer;
631         hadError = true;
632       }
633       // Special-case
634       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
635         << IList->getInit(Index)->getSourceRange();
636     } else if (!T->isIncompleteType()) {
637       // Don't complain for incomplete types, since we'll get an error
638       // elsewhere
639       QualType CurrentObjectType = StructuredList->getType();
640       int initKind =
641         CurrentObjectType->isArrayType()? 0 :
642         CurrentObjectType->isVectorType()? 1 :
643         CurrentObjectType->isScalarType()? 2 :
644         CurrentObjectType->isUnionType()? 3 :
645         4;
646 
647       unsigned DK = diag::warn_excess_initializers;
648       if (SemaRef.getLangOpts().CPlusPlus) {
649         DK = diag::err_excess_initializers;
650         hadError = true;
651       }
652       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
653         DK = diag::err_excess_initializers;
654         hadError = true;
655       }
656 
657       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
658         << initKind << IList->getInit(Index)->getSourceRange();
659     }
660   }
661 
662   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
663       !TopLevelObject)
664     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
665       << IList->getSourceRange()
666       << FixItHint::CreateRemoval(IList->getLocStart())
667       << FixItHint::CreateRemoval(IList->getLocEnd());
668 }
669 
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)670 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
671                                             InitListExpr *IList,
672                                             QualType &DeclType,
673                                             bool SubobjectIsDesignatorContext,
674                                             unsigned &Index,
675                                             InitListExpr *StructuredList,
676                                             unsigned &StructuredIndex,
677                                             bool TopLevelObject) {
678   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
679     // Explicitly braced initializer for complex type can be real+imaginary
680     // parts.
681     CheckComplexType(Entity, IList, DeclType, Index,
682                      StructuredList, StructuredIndex);
683   } else if (DeclType->isScalarType()) {
684     CheckScalarType(Entity, IList, DeclType, Index,
685                     StructuredList, StructuredIndex);
686   } else if (DeclType->isVectorType()) {
687     CheckVectorType(Entity, IList, DeclType, Index,
688                     StructuredList, StructuredIndex);
689   } else if (DeclType->isRecordType()) {
690     assert(DeclType->isAggregateType() &&
691            "non-aggregate records should be handed in CheckSubElementType");
692     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
693     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
694                           SubobjectIsDesignatorContext, Index,
695                           StructuredList, StructuredIndex,
696                           TopLevelObject);
697   } else if (DeclType->isArrayType()) {
698     llvm::APSInt Zero(
699                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
700                     false);
701     CheckArrayType(Entity, IList, DeclType, Zero,
702                    SubobjectIsDesignatorContext, Index,
703                    StructuredList, StructuredIndex);
704   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
705     // This type is invalid, issue a diagnostic.
706     ++Index;
707     if (!VerifyOnly)
708       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
709         << DeclType;
710     hadError = true;
711   } else if (DeclType->isReferenceType()) {
712     CheckReferenceType(Entity, IList, DeclType, Index,
713                        StructuredList, StructuredIndex);
714   } else if (DeclType->isObjCObjectType()) {
715     if (!VerifyOnly)
716       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
717         << DeclType;
718     hadError = true;
719   } else {
720     if (!VerifyOnly)
721       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
722         << DeclType;
723     hadError = true;
724   }
725 }
726 
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)727 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
728                                           InitListExpr *IList,
729                                           QualType ElemType,
730                                           unsigned &Index,
731                                           InitListExpr *StructuredList,
732                                           unsigned &StructuredIndex) {
733   Expr *expr = IList->getInit(Index);
734   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
735     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
736       unsigned newIndex = 0;
737       unsigned newStructuredIndex = 0;
738       InitListExpr *newStructuredList
739         = getStructuredSubobjectInit(IList, Index, ElemType,
740                                      StructuredList, StructuredIndex,
741                                      SubInitList->getSourceRange());
742       CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
743                             newStructuredList, newStructuredIndex);
744       ++StructuredIndex;
745       ++Index;
746       return;
747     }
748     assert(SemaRef.getLangOpts().CPlusPlus &&
749            "non-aggregate records are only possible in C++");
750     // C++ initialization is handled later.
751   }
752 
753   if (ElemType->isScalarType()) {
754     return CheckScalarType(Entity, IList, ElemType, Index,
755                            StructuredList, StructuredIndex);
756   } else if (ElemType->isReferenceType()) {
757     return CheckReferenceType(Entity, IList, ElemType, Index,
758                               StructuredList, StructuredIndex);
759   }
760 
761   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
762     // arrayType can be incomplete if we're initializing a flexible
763     // array member.  There's nothing we can do with the completed
764     // type here, though.
765 
766     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
767       if (!VerifyOnly) {
768         CheckStringInit(Str, ElemType, arrayType, SemaRef);
769         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
770       }
771       ++Index;
772       return;
773     }
774 
775     // Fall through for subaggregate initialization.
776 
777   } else if (SemaRef.getLangOpts().CPlusPlus) {
778     // C++ [dcl.init.aggr]p12:
779     //   All implicit type conversions (clause 4) are considered when
780     //   initializing the aggregate member with an initializer from
781     //   an initializer-list. If the initializer can initialize a
782     //   member, the member is initialized. [...]
783 
784     // FIXME: Better EqualLoc?
785     InitializationKind Kind =
786       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
787     InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
788 
789     if (Seq) {
790       if (!VerifyOnly) {
791         ExprResult Result =
792           Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
793         if (Result.isInvalid())
794           hadError = true;
795 
796         UpdateStructuredListElement(StructuredList, StructuredIndex,
797                                     Result.takeAs<Expr>());
798       }
799       ++Index;
800       return;
801     }
802 
803     // Fall through for subaggregate initialization
804   } else {
805     // C99 6.7.8p13:
806     //
807     //   The initializer for a structure or union object that has
808     //   automatic storage duration shall be either an initializer
809     //   list as described below, or a single expression that has
810     //   compatible structure or union type. In the latter case, the
811     //   initial value of the object, including unnamed members, is
812     //   that of the expression.
813     ExprResult ExprRes = SemaRef.Owned(expr);
814     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
815         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
816                                                  !VerifyOnly)
817           == Sema::Compatible) {
818       if (ExprRes.isInvalid())
819         hadError = true;
820       else {
821         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
822 	      if (ExprRes.isInvalid())
823 	        hadError = true;
824       }
825       UpdateStructuredListElement(StructuredList, StructuredIndex,
826                                   ExprRes.takeAs<Expr>());
827       ++Index;
828       return;
829     }
830     ExprRes.release();
831     // Fall through for subaggregate initialization
832   }
833 
834   // C++ [dcl.init.aggr]p12:
835   //
836   //   [...] Otherwise, if the member is itself a non-empty
837   //   subaggregate, brace elision is assumed and the initializer is
838   //   considered for the initialization of the first member of
839   //   the subaggregate.
840   if (!SemaRef.getLangOpts().OpenCL &&
841       (ElemType->isAggregateType() || ElemType->isVectorType())) {
842     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
843                           StructuredIndex);
844     ++StructuredIndex;
845   } else {
846     if (!VerifyOnly) {
847       // We cannot initialize this element, so let
848       // PerformCopyInitialization produce the appropriate diagnostic.
849       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
850                                         SemaRef.Owned(expr),
851                                         /*TopLevelOfInitList=*/true);
852     }
853     hadError = true;
854     ++Index;
855     ++StructuredIndex;
856   }
857 }
858 
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)859 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
860                                        InitListExpr *IList, QualType DeclType,
861                                        unsigned &Index,
862                                        InitListExpr *StructuredList,
863                                        unsigned &StructuredIndex) {
864   assert(Index == 0 && "Index in explicit init list must be zero");
865 
866   // As an extension, clang supports complex initializers, which initialize
867   // a complex number component-wise.  When an explicit initializer list for
868   // a complex number contains two two initializers, this extension kicks in:
869   // it exepcts the initializer list to contain two elements convertible to
870   // the element type of the complex type. The first element initializes
871   // the real part, and the second element intitializes the imaginary part.
872 
873   if (IList->getNumInits() != 2)
874     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
875                            StructuredIndex);
876 
877   // This is an extension in C.  (The builtin _Complex type does not exist
878   // in the C++ standard.)
879   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
880     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
881       << IList->getSourceRange();
882 
883   // Initialize the complex number.
884   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
885   InitializedEntity ElementEntity =
886     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
887 
888   for (unsigned i = 0; i < 2; ++i) {
889     ElementEntity.setElementIndex(Index);
890     CheckSubElementType(ElementEntity, IList, elementType, Index,
891                         StructuredList, StructuredIndex);
892   }
893 }
894 
895 
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)896 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
897                                       InitListExpr *IList, QualType DeclType,
898                                       unsigned &Index,
899                                       InitListExpr *StructuredList,
900                                       unsigned &StructuredIndex) {
901   if (Index >= IList->getNumInits()) {
902     if (!VerifyOnly)
903       SemaRef.Diag(IList->getLocStart(),
904                    SemaRef.getLangOpts().CPlusPlus11 ?
905                      diag::warn_cxx98_compat_empty_scalar_initializer :
906                      diag::err_empty_scalar_initializer)
907         << IList->getSourceRange();
908     hadError = !SemaRef.getLangOpts().CPlusPlus11;
909     ++Index;
910     ++StructuredIndex;
911     return;
912   }
913 
914   Expr *expr = IList->getInit(Index);
915   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
916     if (!VerifyOnly)
917       SemaRef.Diag(SubIList->getLocStart(),
918                    diag::warn_many_braces_around_scalar_init)
919         << SubIList->getSourceRange();
920 
921     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
922                     StructuredIndex);
923     return;
924   } else if (isa<DesignatedInitExpr>(expr)) {
925     if (!VerifyOnly)
926       SemaRef.Diag(expr->getLocStart(),
927                    diag::err_designator_for_scalar_init)
928         << DeclType << expr->getSourceRange();
929     hadError = true;
930     ++Index;
931     ++StructuredIndex;
932     return;
933   }
934 
935   if (VerifyOnly) {
936     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
937       hadError = true;
938     ++Index;
939     return;
940   }
941 
942   ExprResult Result =
943     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
944                                       SemaRef.Owned(expr),
945                                       /*TopLevelOfInitList=*/true);
946 
947   Expr *ResultExpr = 0;
948 
949   if (Result.isInvalid())
950     hadError = true; // types weren't compatible.
951   else {
952     ResultExpr = Result.takeAs<Expr>();
953 
954     if (ResultExpr != expr) {
955       // The type was promoted, update initializer list.
956       IList->setInit(Index, ResultExpr);
957     }
958   }
959   if (hadError)
960     ++StructuredIndex;
961   else
962     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
963   ++Index;
964 }
965 
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)966 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
967                                          InitListExpr *IList, QualType DeclType,
968                                          unsigned &Index,
969                                          InitListExpr *StructuredList,
970                                          unsigned &StructuredIndex) {
971   if (Index >= IList->getNumInits()) {
972     // FIXME: It would be wonderful if we could point at the actual member. In
973     // general, it would be useful to pass location information down the stack,
974     // so that we know the location (or decl) of the "current object" being
975     // initialized.
976     if (!VerifyOnly)
977       SemaRef.Diag(IList->getLocStart(),
978                     diag::err_init_reference_member_uninitialized)
979         << DeclType
980         << IList->getSourceRange();
981     hadError = true;
982     ++Index;
983     ++StructuredIndex;
984     return;
985   }
986 
987   Expr *expr = IList->getInit(Index);
988   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
989     if (!VerifyOnly)
990       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
991         << DeclType << IList->getSourceRange();
992     hadError = true;
993     ++Index;
994     ++StructuredIndex;
995     return;
996   }
997 
998   if (VerifyOnly) {
999     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1000       hadError = true;
1001     ++Index;
1002     return;
1003   }
1004 
1005   ExprResult Result =
1006     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1007                                       SemaRef.Owned(expr),
1008                                       /*TopLevelOfInitList=*/true);
1009 
1010   if (Result.isInvalid())
1011     hadError = true;
1012 
1013   expr = Result.takeAs<Expr>();
1014   IList->setInit(Index, expr);
1015 
1016   if (hadError)
1017     ++StructuredIndex;
1018   else
1019     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1020   ++Index;
1021 }
1022 
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1023 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1024                                       InitListExpr *IList, QualType DeclType,
1025                                       unsigned &Index,
1026                                       InitListExpr *StructuredList,
1027                                       unsigned &StructuredIndex) {
1028   const VectorType *VT = DeclType->getAs<VectorType>();
1029   unsigned maxElements = VT->getNumElements();
1030   unsigned numEltsInit = 0;
1031   QualType elementType = VT->getElementType();
1032 
1033   if (Index >= IList->getNumInits()) {
1034     // Make sure the element type can be value-initialized.
1035     if (VerifyOnly)
1036       CheckValueInitializable(
1037           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1038     return;
1039   }
1040 
1041   if (!SemaRef.getLangOpts().OpenCL) {
1042     // If the initializing element is a vector, try to copy-initialize
1043     // instead of breaking it apart (which is doomed to failure anyway).
1044     Expr *Init = IList->getInit(Index);
1045     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1046       if (VerifyOnly) {
1047         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1048           hadError = true;
1049         ++Index;
1050         return;
1051       }
1052 
1053       ExprResult Result =
1054         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1055                                           SemaRef.Owned(Init),
1056                                           /*TopLevelOfInitList=*/true);
1057 
1058       Expr *ResultExpr = 0;
1059       if (Result.isInvalid())
1060         hadError = true; // types weren't compatible.
1061       else {
1062         ResultExpr = Result.takeAs<Expr>();
1063 
1064         if (ResultExpr != Init) {
1065           // The type was promoted, update initializer list.
1066           IList->setInit(Index, ResultExpr);
1067         }
1068       }
1069       if (hadError)
1070         ++StructuredIndex;
1071       else
1072         UpdateStructuredListElement(StructuredList, StructuredIndex,
1073                                     ResultExpr);
1074       ++Index;
1075       return;
1076     }
1077 
1078     InitializedEntity ElementEntity =
1079       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1080 
1081     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1082       // Don't attempt to go past the end of the init list
1083       if (Index >= IList->getNumInits()) {
1084         if (VerifyOnly)
1085           CheckValueInitializable(ElementEntity);
1086         break;
1087       }
1088 
1089       ElementEntity.setElementIndex(Index);
1090       CheckSubElementType(ElementEntity, IList, elementType, Index,
1091                           StructuredList, StructuredIndex);
1092     }
1093     return;
1094   }
1095 
1096   InitializedEntity ElementEntity =
1097     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1098 
1099   // OpenCL initializers allows vectors to be constructed from vectors.
1100   for (unsigned i = 0; i < maxElements; ++i) {
1101     // Don't attempt to go past the end of the init list
1102     if (Index >= IList->getNumInits())
1103       break;
1104 
1105     ElementEntity.setElementIndex(Index);
1106 
1107     QualType IType = IList->getInit(Index)->getType();
1108     if (!IType->isVectorType()) {
1109       CheckSubElementType(ElementEntity, IList, elementType, Index,
1110                           StructuredList, StructuredIndex);
1111       ++numEltsInit;
1112     } else {
1113       QualType VecType;
1114       const VectorType *IVT = IType->getAs<VectorType>();
1115       unsigned numIElts = IVT->getNumElements();
1116 
1117       if (IType->isExtVectorType())
1118         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1119       else
1120         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1121                                                 IVT->getVectorKind());
1122       CheckSubElementType(ElementEntity, IList, VecType, Index,
1123                           StructuredList, StructuredIndex);
1124       numEltsInit += numIElts;
1125     }
1126   }
1127 
1128   // OpenCL requires all elements to be initialized.
1129   if (numEltsInit != maxElements) {
1130     if (!VerifyOnly)
1131       SemaRef.Diag(IList->getLocStart(),
1132                    diag::err_vector_incorrect_num_initializers)
1133         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1134     hadError = true;
1135   }
1136 }
1137 
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1138 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1139                                      InitListExpr *IList, QualType &DeclType,
1140                                      llvm::APSInt elementIndex,
1141                                      bool SubobjectIsDesignatorContext,
1142                                      unsigned &Index,
1143                                      InitListExpr *StructuredList,
1144                                      unsigned &StructuredIndex) {
1145   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1146 
1147   // Check for the special-case of initializing an array with a string.
1148   if (Index < IList->getNumInits()) {
1149     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1150                                  SemaRef.Context)) {
1151       // We place the string literal directly into the resulting
1152       // initializer list. This is the only place where the structure
1153       // of the structured initializer list doesn't match exactly,
1154       // because doing so would involve allocating one character
1155       // constant for each string.
1156       if (!VerifyOnly) {
1157         CheckStringInit(Str, DeclType, arrayType, SemaRef);
1158         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1159         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1160       }
1161       ++Index;
1162       return;
1163     }
1164   }
1165   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1166     // Check for VLAs; in standard C it would be possible to check this
1167     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1168     // them in all sorts of strange places).
1169     if (!VerifyOnly)
1170       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1171                     diag::err_variable_object_no_init)
1172         << VAT->getSizeExpr()->getSourceRange();
1173     hadError = true;
1174     ++Index;
1175     ++StructuredIndex;
1176     return;
1177   }
1178 
1179   // We might know the maximum number of elements in advance.
1180   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1181                            elementIndex.isUnsigned());
1182   bool maxElementsKnown = false;
1183   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1184     maxElements = CAT->getSize();
1185     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1186     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1187     maxElementsKnown = true;
1188   }
1189 
1190   QualType elementType = arrayType->getElementType();
1191   while (Index < IList->getNumInits()) {
1192     Expr *Init = IList->getInit(Index);
1193     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1194       // If we're not the subobject that matches up with the '{' for
1195       // the designator, we shouldn't be handling the
1196       // designator. Return immediately.
1197       if (!SubobjectIsDesignatorContext)
1198         return;
1199 
1200       // Handle this designated initializer. elementIndex will be
1201       // updated to be the next array element we'll initialize.
1202       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1203                                      DeclType, 0, &elementIndex, Index,
1204                                      StructuredList, StructuredIndex, true,
1205                                      false)) {
1206         hadError = true;
1207         continue;
1208       }
1209 
1210       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1211         maxElements = maxElements.extend(elementIndex.getBitWidth());
1212       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1213         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1214       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1215 
1216       // If the array is of incomplete type, keep track of the number of
1217       // elements in the initializer.
1218       if (!maxElementsKnown && elementIndex > maxElements)
1219         maxElements = elementIndex;
1220 
1221       continue;
1222     }
1223 
1224     // If we know the maximum number of elements, and we've already
1225     // hit it, stop consuming elements in the initializer list.
1226     if (maxElementsKnown && elementIndex == maxElements)
1227       break;
1228 
1229     InitializedEntity ElementEntity =
1230       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1231                                            Entity);
1232     // Check this element.
1233     CheckSubElementType(ElementEntity, IList, elementType, Index,
1234                         StructuredList, StructuredIndex);
1235     ++elementIndex;
1236 
1237     // If the array is of incomplete type, keep track of the number of
1238     // elements in the initializer.
1239     if (!maxElementsKnown && elementIndex > maxElements)
1240       maxElements = elementIndex;
1241   }
1242   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1243     // If this is an incomplete array type, the actual type needs to
1244     // be calculated here.
1245     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1246     if (maxElements == Zero) {
1247       // Sizing an array implicitly to zero is not allowed by ISO C,
1248       // but is supported by GNU.
1249       SemaRef.Diag(IList->getLocStart(),
1250                     diag::ext_typecheck_zero_array_size);
1251     }
1252 
1253     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1254                                                      ArrayType::Normal, 0);
1255   }
1256   if (!hadError && VerifyOnly) {
1257     // Check if there are any members of the array that get value-initialized.
1258     // If so, check if doing that is possible.
1259     // FIXME: This needs to detect holes left by designated initializers too.
1260     if (maxElementsKnown && elementIndex < maxElements)
1261       CheckValueInitializable(InitializedEntity::InitializeElement(
1262                                                   SemaRef.Context, 0, Entity));
1263   }
1264 }
1265 
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1266 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1267                                              Expr *InitExpr,
1268                                              FieldDecl *Field,
1269                                              bool TopLevelObject) {
1270   // Handle GNU flexible array initializers.
1271   unsigned FlexArrayDiag;
1272   if (isa<InitListExpr>(InitExpr) &&
1273       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1274     // Empty flexible array init always allowed as an extension
1275     FlexArrayDiag = diag::ext_flexible_array_init;
1276   } else if (SemaRef.getLangOpts().CPlusPlus) {
1277     // Disallow flexible array init in C++; it is not required for gcc
1278     // compatibility, and it needs work to IRGen correctly in general.
1279     FlexArrayDiag = diag::err_flexible_array_init;
1280   } else if (!TopLevelObject) {
1281     // Disallow flexible array init on non-top-level object
1282     FlexArrayDiag = diag::err_flexible_array_init;
1283   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1284     // Disallow flexible array init on anything which is not a variable.
1285     FlexArrayDiag = diag::err_flexible_array_init;
1286   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1287     // Disallow flexible array init on local variables.
1288     FlexArrayDiag = diag::err_flexible_array_init;
1289   } else {
1290     // Allow other cases.
1291     FlexArrayDiag = diag::ext_flexible_array_init;
1292   }
1293 
1294   if (!VerifyOnly) {
1295     SemaRef.Diag(InitExpr->getLocStart(),
1296                  FlexArrayDiag)
1297       << InitExpr->getLocStart();
1298     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1299       << Field;
1300   }
1301 
1302   return FlexArrayDiag != diag::ext_flexible_array_init;
1303 }
1304 
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1305 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1306                                             InitListExpr *IList,
1307                                             QualType DeclType,
1308                                             RecordDecl::field_iterator Field,
1309                                             bool SubobjectIsDesignatorContext,
1310                                             unsigned &Index,
1311                                             InitListExpr *StructuredList,
1312                                             unsigned &StructuredIndex,
1313                                             bool TopLevelObject) {
1314   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1315 
1316   // If the record is invalid, some of it's members are invalid. To avoid
1317   // confusion, we forgo checking the intializer for the entire record.
1318   if (structDecl->isInvalidDecl()) {
1319     // Assume it was supposed to consume a single initializer.
1320     ++Index;
1321     hadError = true;
1322     return;
1323   }
1324 
1325   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1326     // Value-initialize the first named member of the union.
1327     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1328     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1329          Field != FieldEnd; ++Field) {
1330       if (Field->getDeclName()) {
1331         if (VerifyOnly)
1332           CheckValueInitializable(
1333               InitializedEntity::InitializeMember(*Field, &Entity));
1334         else
1335           StructuredList->setInitializedFieldInUnion(*Field);
1336         break;
1337       }
1338     }
1339     return;
1340   }
1341 
1342   // If structDecl is a forward declaration, this loop won't do
1343   // anything except look at designated initializers; That's okay,
1344   // because an error should get printed out elsewhere. It might be
1345   // worthwhile to skip over the rest of the initializer, though.
1346   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1347   RecordDecl::field_iterator FieldEnd = RD->field_end();
1348   bool InitializedSomething = false;
1349   bool CheckForMissingFields = true;
1350   while (Index < IList->getNumInits()) {
1351     Expr *Init = IList->getInit(Index);
1352 
1353     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1354       // If we're not the subobject that matches up with the '{' for
1355       // the designator, we shouldn't be handling the
1356       // designator. Return immediately.
1357       if (!SubobjectIsDesignatorContext)
1358         return;
1359 
1360       // Handle this designated initializer. Field will be updated to
1361       // the next field that we'll be initializing.
1362       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1363                                      DeclType, &Field, 0, Index,
1364                                      StructuredList, StructuredIndex,
1365                                      true, TopLevelObject))
1366         hadError = true;
1367 
1368       InitializedSomething = true;
1369 
1370       // Disable check for missing fields when designators are used.
1371       // This matches gcc behaviour.
1372       CheckForMissingFields = false;
1373       continue;
1374     }
1375 
1376     if (Field == FieldEnd) {
1377       // We've run out of fields. We're done.
1378       break;
1379     }
1380 
1381     // We've already initialized a member of a union. We're done.
1382     if (InitializedSomething && DeclType->isUnionType())
1383       break;
1384 
1385     // If we've hit the flexible array member at the end, we're done.
1386     if (Field->getType()->isIncompleteArrayType())
1387       break;
1388 
1389     if (Field->isUnnamedBitfield()) {
1390       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1391       ++Field;
1392       continue;
1393     }
1394 
1395     // Make sure we can use this declaration.
1396     bool InvalidUse;
1397     if (VerifyOnly)
1398       InvalidUse = !SemaRef.CanUseDecl(*Field);
1399     else
1400       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1401                                           IList->getInit(Index)->getLocStart());
1402     if (InvalidUse) {
1403       ++Index;
1404       ++Field;
1405       hadError = true;
1406       continue;
1407     }
1408 
1409     InitializedEntity MemberEntity =
1410       InitializedEntity::InitializeMember(*Field, &Entity);
1411     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1412                         StructuredList, StructuredIndex);
1413     InitializedSomething = true;
1414 
1415     if (DeclType->isUnionType() && !VerifyOnly) {
1416       // Initialize the first field within the union.
1417       StructuredList->setInitializedFieldInUnion(*Field);
1418     }
1419 
1420     ++Field;
1421   }
1422 
1423   // Emit warnings for missing struct field initializers.
1424   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1425       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1426       !DeclType->isUnionType()) {
1427     // It is possible we have one or more unnamed bitfields remaining.
1428     // Find first (if any) named field and emit warning.
1429     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1430          it != end; ++it) {
1431       if (!it->isUnnamedBitfield()) {
1432         SemaRef.Diag(IList->getSourceRange().getEnd(),
1433                      diag::warn_missing_field_initializers) << it->getName();
1434         break;
1435       }
1436     }
1437   }
1438 
1439   // Check that any remaining fields can be value-initialized.
1440   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1441       !Field->getType()->isIncompleteArrayType()) {
1442     // FIXME: Should check for holes left by designated initializers too.
1443     for (; Field != FieldEnd && !hadError; ++Field) {
1444       if (!Field->isUnnamedBitfield())
1445         CheckValueInitializable(
1446             InitializedEntity::InitializeMember(*Field, &Entity));
1447     }
1448   }
1449 
1450   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1451       Index >= IList->getNumInits())
1452     return;
1453 
1454   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1455                              TopLevelObject)) {
1456     hadError = true;
1457     ++Index;
1458     return;
1459   }
1460 
1461   InitializedEntity MemberEntity =
1462     InitializedEntity::InitializeMember(*Field, &Entity);
1463 
1464   if (isa<InitListExpr>(IList->getInit(Index)))
1465     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1466                         StructuredList, StructuredIndex);
1467   else
1468     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1469                           StructuredList, StructuredIndex);
1470 }
1471 
1472 /// \brief Expand a field designator that refers to a member of an
1473 /// anonymous struct or union into a series of field designators that
1474 /// refers to the field within the appropriate subobject.
1475 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)1476 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1477                                            DesignatedInitExpr *DIE,
1478                                            unsigned DesigIdx,
1479                                            IndirectFieldDecl *IndirectField) {
1480   typedef DesignatedInitExpr::Designator Designator;
1481 
1482   // Build the replacement designators.
1483   SmallVector<Designator, 4> Replacements;
1484   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1485        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1486     if (PI + 1 == PE)
1487       Replacements.push_back(Designator((IdentifierInfo *)0,
1488                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1489                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1490     else
1491       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1492                                         SourceLocation()));
1493     assert(isa<FieldDecl>(*PI));
1494     Replacements.back().setField(cast<FieldDecl>(*PI));
1495   }
1496 
1497   // Expand the current designator into the set of replacement
1498   // designators, so we have a full subobject path down to where the
1499   // member of the anonymous struct/union is actually stored.
1500   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1501                         &Replacements[0] + Replacements.size());
1502 }
1503 
1504 /// \brief Given an implicit anonymous field, search the IndirectField that
1505 ///  corresponds to FieldName.
FindIndirectFieldDesignator(FieldDecl * AnonField,IdentifierInfo * FieldName)1506 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1507                                                  IdentifierInfo *FieldName) {
1508   if (!FieldName)
1509     return 0;
1510 
1511   assert(AnonField->isAnonymousStructOrUnion());
1512   Decl *NextDecl = AnonField->getNextDeclInContext();
1513   while (IndirectFieldDecl *IF =
1514           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1515     if (FieldName == IF->getAnonField()->getIdentifier())
1516       return IF;
1517     NextDecl = NextDecl->getNextDeclInContext();
1518   }
1519   return 0;
1520 }
1521 
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)1522 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1523                                                    DesignatedInitExpr *DIE) {
1524   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1525   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1526   for (unsigned I = 0; I < NumIndexExprs; ++I)
1527     IndexExprs[I] = DIE->getSubExpr(I + 1);
1528   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1529                                     DIE->size(), IndexExprs,
1530                                     DIE->getEqualOrColonLoc(),
1531                                     DIE->usesGNUSyntax(), DIE->getInit());
1532 }
1533 
1534 namespace {
1535 
1536 // Callback to only accept typo corrections that are for field members of
1537 // the given struct or union.
1538 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1539  public:
FieldInitializerValidatorCCC(RecordDecl * RD)1540   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1541       : Record(RD) {}
1542 
ValidateCandidate(const TypoCorrection & candidate)1543   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1544     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1545     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1546   }
1547 
1548  private:
1549   RecordDecl *Record;
1550 };
1551 
1552 }
1553 
1554 /// @brief Check the well-formedness of a C99 designated initializer.
1555 ///
1556 /// Determines whether the designated initializer @p DIE, which
1557 /// resides at the given @p Index within the initializer list @p
1558 /// IList, is well-formed for a current object of type @p DeclType
1559 /// (C99 6.7.8). The actual subobject that this designator refers to
1560 /// within the current subobject is returned in either
1561 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1562 ///
1563 /// @param IList  The initializer list in which this designated
1564 /// initializer occurs.
1565 ///
1566 /// @param DIE The designated initializer expression.
1567 ///
1568 /// @param DesigIdx  The index of the current designator.
1569 ///
1570 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1571 /// into which the designation in @p DIE should refer.
1572 ///
1573 /// @param NextField  If non-NULL and the first designator in @p DIE is
1574 /// a field, this will be set to the field declaration corresponding
1575 /// to the field named by the designator.
1576 ///
1577 /// @param NextElementIndex  If non-NULL and the first designator in @p
1578 /// DIE is an array designator or GNU array-range designator, this
1579 /// will be set to the last index initialized by this designator.
1580 ///
1581 /// @param Index  Index into @p IList where the designated initializer
1582 /// @p DIE occurs.
1583 ///
1584 /// @param StructuredList  The initializer list expression that
1585 /// describes all of the subobject initializers in the order they'll
1586 /// actually be initialized.
1587 ///
1588 /// @returns true if there was an error, false otherwise.
1589 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)1590 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1591                                             InitListExpr *IList,
1592                                             DesignatedInitExpr *DIE,
1593                                             unsigned DesigIdx,
1594                                             QualType &CurrentObjectType,
1595                                           RecordDecl::field_iterator *NextField,
1596                                             llvm::APSInt *NextElementIndex,
1597                                             unsigned &Index,
1598                                             InitListExpr *StructuredList,
1599                                             unsigned &StructuredIndex,
1600                                             bool FinishSubobjectInit,
1601                                             bool TopLevelObject) {
1602   if (DesigIdx == DIE->size()) {
1603     // Check the actual initialization for the designated object type.
1604     bool prevHadError = hadError;
1605 
1606     // Temporarily remove the designator expression from the
1607     // initializer list that the child calls see, so that we don't try
1608     // to re-process the designator.
1609     unsigned OldIndex = Index;
1610     IList->setInit(OldIndex, DIE->getInit());
1611 
1612     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1613                         StructuredList, StructuredIndex);
1614 
1615     // Restore the designated initializer expression in the syntactic
1616     // form of the initializer list.
1617     if (IList->getInit(OldIndex) != DIE->getInit())
1618       DIE->setInit(IList->getInit(OldIndex));
1619     IList->setInit(OldIndex, DIE);
1620 
1621     return hadError && !prevHadError;
1622   }
1623 
1624   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1625   bool IsFirstDesignator = (DesigIdx == 0);
1626   if (!VerifyOnly) {
1627     assert((IsFirstDesignator || StructuredList) &&
1628            "Need a non-designated initializer list to start from");
1629 
1630     // Determine the structural initializer list that corresponds to the
1631     // current subobject.
1632     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1633       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1634                                    StructuredList, StructuredIndex,
1635                                    SourceRange(D->getLocStart(),
1636                                                DIE->getLocEnd()));
1637     assert(StructuredList && "Expected a structured initializer list");
1638   }
1639 
1640   if (D->isFieldDesignator()) {
1641     // C99 6.7.8p7:
1642     //
1643     //   If a designator has the form
1644     //
1645     //      . identifier
1646     //
1647     //   then the current object (defined below) shall have
1648     //   structure or union type and the identifier shall be the
1649     //   name of a member of that type.
1650     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1651     if (!RT) {
1652       SourceLocation Loc = D->getDotLoc();
1653       if (Loc.isInvalid())
1654         Loc = D->getFieldLoc();
1655       if (!VerifyOnly)
1656         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1657           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1658       ++Index;
1659       return true;
1660     }
1661 
1662     // Note: we perform a linear search of the fields here, despite
1663     // the fact that we have a faster lookup method, because we always
1664     // need to compute the field's index.
1665     FieldDecl *KnownField = D->getField();
1666     IdentifierInfo *FieldName = D->getFieldName();
1667     unsigned FieldIndex = 0;
1668     RecordDecl::field_iterator
1669       Field = RT->getDecl()->field_begin(),
1670       FieldEnd = RT->getDecl()->field_end();
1671     for (; Field != FieldEnd; ++Field) {
1672       if (Field->isUnnamedBitfield())
1673         continue;
1674 
1675       // If we find a field representing an anonymous field, look in the
1676       // IndirectFieldDecl that follow for the designated initializer.
1677       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1678         if (IndirectFieldDecl *IF =
1679             FindIndirectFieldDesignator(*Field, FieldName)) {
1680           // In verify mode, don't modify the original.
1681           if (VerifyOnly)
1682             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1683           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1684           D = DIE->getDesignator(DesigIdx);
1685           break;
1686         }
1687       }
1688       if (KnownField && KnownField == *Field)
1689         break;
1690       if (FieldName && FieldName == Field->getIdentifier())
1691         break;
1692 
1693       ++FieldIndex;
1694     }
1695 
1696     if (Field == FieldEnd) {
1697       if (VerifyOnly) {
1698         ++Index;
1699         return true; // No typo correction when just trying this out.
1700       }
1701 
1702       // There was no normal field in the struct with the designated
1703       // name. Perform another lookup for this name, which may find
1704       // something that we can't designate (e.g., a member function),
1705       // may find nothing, or may find a member of an anonymous
1706       // struct/union.
1707       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1708       FieldDecl *ReplacementField = 0;
1709       if (Lookup.empty()) {
1710         // Name lookup didn't find anything. Determine whether this
1711         // was a typo for another field name.
1712         FieldInitializerValidatorCCC Validator(RT->getDecl());
1713         TypoCorrection Corrected = SemaRef.CorrectTypo(
1714             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1715             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1716             RT->getDecl());
1717         if (Corrected) {
1718           std::string CorrectedStr(
1719               Corrected.getAsString(SemaRef.getLangOpts()));
1720           std::string CorrectedQuotedStr(
1721               Corrected.getQuoted(SemaRef.getLangOpts()));
1722           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1723           SemaRef.Diag(D->getFieldLoc(),
1724                        diag::err_field_designator_unknown_suggest)
1725             << FieldName << CurrentObjectType << CorrectedQuotedStr
1726             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1727           SemaRef.Diag(ReplacementField->getLocation(),
1728                        diag::note_previous_decl) << CorrectedQuotedStr;
1729           hadError = true;
1730         } else {
1731           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1732             << FieldName << CurrentObjectType;
1733           ++Index;
1734           return true;
1735         }
1736       }
1737 
1738       if (!ReplacementField) {
1739         // Name lookup found something, but it wasn't a field.
1740         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1741           << FieldName;
1742         SemaRef.Diag(Lookup.front()->getLocation(),
1743                       diag::note_field_designator_found);
1744         ++Index;
1745         return true;
1746       }
1747 
1748       if (!KnownField) {
1749         // The replacement field comes from typo correction; find it
1750         // in the list of fields.
1751         FieldIndex = 0;
1752         Field = RT->getDecl()->field_begin();
1753         for (; Field != FieldEnd; ++Field) {
1754           if (Field->isUnnamedBitfield())
1755             continue;
1756 
1757           if (ReplacementField == *Field ||
1758               Field->getIdentifier() == ReplacementField->getIdentifier())
1759             break;
1760 
1761           ++FieldIndex;
1762         }
1763       }
1764     }
1765 
1766     // All of the fields of a union are located at the same place in
1767     // the initializer list.
1768     if (RT->getDecl()->isUnion()) {
1769       FieldIndex = 0;
1770       if (!VerifyOnly)
1771         StructuredList->setInitializedFieldInUnion(*Field);
1772     }
1773 
1774     // Make sure we can use this declaration.
1775     bool InvalidUse;
1776     if (VerifyOnly)
1777       InvalidUse = !SemaRef.CanUseDecl(*Field);
1778     else
1779       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1780     if (InvalidUse) {
1781       ++Index;
1782       return true;
1783     }
1784 
1785     if (!VerifyOnly) {
1786       // Update the designator with the field declaration.
1787       D->setField(*Field);
1788 
1789       // Make sure that our non-designated initializer list has space
1790       // for a subobject corresponding to this field.
1791       if (FieldIndex >= StructuredList->getNumInits())
1792         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1793     }
1794 
1795     // This designator names a flexible array member.
1796     if (Field->getType()->isIncompleteArrayType()) {
1797       bool Invalid = false;
1798       if ((DesigIdx + 1) != DIE->size()) {
1799         // We can't designate an object within the flexible array
1800         // member (because GCC doesn't allow it).
1801         if (!VerifyOnly) {
1802           DesignatedInitExpr::Designator *NextD
1803             = DIE->getDesignator(DesigIdx + 1);
1804           SemaRef.Diag(NextD->getLocStart(),
1805                         diag::err_designator_into_flexible_array_member)
1806             << SourceRange(NextD->getLocStart(),
1807                            DIE->getLocEnd());
1808           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1809             << *Field;
1810         }
1811         Invalid = true;
1812       }
1813 
1814       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1815           !isa<StringLiteral>(DIE->getInit())) {
1816         // The initializer is not an initializer list.
1817         if (!VerifyOnly) {
1818           SemaRef.Diag(DIE->getInit()->getLocStart(),
1819                         diag::err_flexible_array_init_needs_braces)
1820             << DIE->getInit()->getSourceRange();
1821           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1822             << *Field;
1823         }
1824         Invalid = true;
1825       }
1826 
1827       // Check GNU flexible array initializer.
1828       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1829                                              TopLevelObject))
1830         Invalid = true;
1831 
1832       if (Invalid) {
1833         ++Index;
1834         return true;
1835       }
1836 
1837       // Initialize the array.
1838       bool prevHadError = hadError;
1839       unsigned newStructuredIndex = FieldIndex;
1840       unsigned OldIndex = Index;
1841       IList->setInit(Index, DIE->getInit());
1842 
1843       InitializedEntity MemberEntity =
1844         InitializedEntity::InitializeMember(*Field, &Entity);
1845       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1846                           StructuredList, newStructuredIndex);
1847 
1848       IList->setInit(OldIndex, DIE);
1849       if (hadError && !prevHadError) {
1850         ++Field;
1851         ++FieldIndex;
1852         if (NextField)
1853           *NextField = Field;
1854         StructuredIndex = FieldIndex;
1855         return true;
1856       }
1857     } else {
1858       // Recurse to check later designated subobjects.
1859       QualType FieldType = Field->getType();
1860       unsigned newStructuredIndex = FieldIndex;
1861 
1862       InitializedEntity MemberEntity =
1863         InitializedEntity::InitializeMember(*Field, &Entity);
1864       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1865                                      FieldType, 0, 0, Index,
1866                                      StructuredList, newStructuredIndex,
1867                                      true, false))
1868         return true;
1869     }
1870 
1871     // Find the position of the next field to be initialized in this
1872     // subobject.
1873     ++Field;
1874     ++FieldIndex;
1875 
1876     // If this the first designator, our caller will continue checking
1877     // the rest of this struct/class/union subobject.
1878     if (IsFirstDesignator) {
1879       if (NextField)
1880         *NextField = Field;
1881       StructuredIndex = FieldIndex;
1882       return false;
1883     }
1884 
1885     if (!FinishSubobjectInit)
1886       return false;
1887 
1888     // We've already initialized something in the union; we're done.
1889     if (RT->getDecl()->isUnion())
1890       return hadError;
1891 
1892     // Check the remaining fields within this class/struct/union subobject.
1893     bool prevHadError = hadError;
1894 
1895     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1896                           StructuredList, FieldIndex);
1897     return hadError && !prevHadError;
1898   }
1899 
1900   // C99 6.7.8p6:
1901   //
1902   //   If a designator has the form
1903   //
1904   //      [ constant-expression ]
1905   //
1906   //   then the current object (defined below) shall have array
1907   //   type and the expression shall be an integer constant
1908   //   expression. If the array is of unknown size, any
1909   //   nonnegative value is valid.
1910   //
1911   // Additionally, cope with the GNU extension that permits
1912   // designators of the form
1913   //
1914   //      [ constant-expression ... constant-expression ]
1915   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1916   if (!AT) {
1917     if (!VerifyOnly)
1918       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1919         << CurrentObjectType;
1920     ++Index;
1921     return true;
1922   }
1923 
1924   Expr *IndexExpr = 0;
1925   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1926   if (D->isArrayDesignator()) {
1927     IndexExpr = DIE->getArrayIndex(*D);
1928     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1929     DesignatedEndIndex = DesignatedStartIndex;
1930   } else {
1931     assert(D->isArrayRangeDesignator() && "Need array-range designator");
1932 
1933     DesignatedStartIndex =
1934       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1935     DesignatedEndIndex =
1936       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1937     IndexExpr = DIE->getArrayRangeEnd(*D);
1938 
1939     // Codegen can't handle evaluating array range designators that have side
1940     // effects, because we replicate the AST value for each initialized element.
1941     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1942     // elements with something that has a side effect, so codegen can emit an
1943     // "error unsupported" error instead of miscompiling the app.
1944     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1945         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1946       FullyStructuredList->sawArrayRangeDesignator();
1947   }
1948 
1949   if (isa<ConstantArrayType>(AT)) {
1950     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1951     DesignatedStartIndex
1952       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1953     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1954     DesignatedEndIndex
1955       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1956     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1957     if (DesignatedEndIndex >= MaxElements) {
1958       if (!VerifyOnly)
1959         SemaRef.Diag(IndexExpr->getLocStart(),
1960                       diag::err_array_designator_too_large)
1961           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1962           << IndexExpr->getSourceRange();
1963       ++Index;
1964       return true;
1965     }
1966   } else {
1967     // Make sure the bit-widths and signedness match.
1968     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1969       DesignatedEndIndex
1970         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1971     else if (DesignatedStartIndex.getBitWidth() <
1972              DesignatedEndIndex.getBitWidth())
1973       DesignatedStartIndex
1974         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1975     DesignatedStartIndex.setIsUnsigned(true);
1976     DesignatedEndIndex.setIsUnsigned(true);
1977   }
1978 
1979   // Make sure that our non-designated initializer list has space
1980   // for a subobject corresponding to this array element.
1981   if (!VerifyOnly &&
1982       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1983     StructuredList->resizeInits(SemaRef.Context,
1984                                 DesignatedEndIndex.getZExtValue() + 1);
1985 
1986   // Repeatedly perform subobject initializations in the range
1987   // [DesignatedStartIndex, DesignatedEndIndex].
1988 
1989   // Move to the next designator
1990   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1991   unsigned OldIndex = Index;
1992 
1993   InitializedEntity ElementEntity =
1994     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1995 
1996   while (DesignatedStartIndex <= DesignatedEndIndex) {
1997     // Recurse to check later designated subobjects.
1998     QualType ElementType = AT->getElementType();
1999     Index = OldIndex;
2000 
2001     ElementEntity.setElementIndex(ElementIndex);
2002     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2003                                    ElementType, 0, 0, Index,
2004                                    StructuredList, ElementIndex,
2005                                    (DesignatedStartIndex == DesignatedEndIndex),
2006                                    false))
2007       return true;
2008 
2009     // Move to the next index in the array that we'll be initializing.
2010     ++DesignatedStartIndex;
2011     ElementIndex = DesignatedStartIndex.getZExtValue();
2012   }
2013 
2014   // If this the first designator, our caller will continue checking
2015   // the rest of this array subobject.
2016   if (IsFirstDesignator) {
2017     if (NextElementIndex)
2018       *NextElementIndex = DesignatedStartIndex;
2019     StructuredIndex = ElementIndex;
2020     return false;
2021   }
2022 
2023   if (!FinishSubobjectInit)
2024     return false;
2025 
2026   // Check the remaining elements within this array subobject.
2027   bool prevHadError = hadError;
2028   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2029                  /*SubobjectIsDesignatorContext=*/false, Index,
2030                  StructuredList, ElementIndex);
2031   return hadError && !prevHadError;
2032 }
2033 
2034 // Get the structured initializer list for a subobject of type
2035 // @p CurrentObjectType.
2036 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange)2037 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2038                                             QualType CurrentObjectType,
2039                                             InitListExpr *StructuredList,
2040                                             unsigned StructuredIndex,
2041                                             SourceRange InitRange) {
2042   if (VerifyOnly)
2043     return 0; // No structured list in verification-only mode.
2044   Expr *ExistingInit = 0;
2045   if (!StructuredList)
2046     ExistingInit = SyntacticToSemantic.lookup(IList);
2047   else if (StructuredIndex < StructuredList->getNumInits())
2048     ExistingInit = StructuredList->getInit(StructuredIndex);
2049 
2050   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2051     return Result;
2052 
2053   if (ExistingInit) {
2054     // We are creating an initializer list that initializes the
2055     // subobjects of the current object, but there was already an
2056     // initialization that completely initialized the current
2057     // subobject, e.g., by a compound literal:
2058     //
2059     // struct X { int a, b; };
2060     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2061     //
2062     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2063     // designated initializer re-initializes the whole
2064     // subobject [0], overwriting previous initializers.
2065     SemaRef.Diag(InitRange.getBegin(),
2066                  diag::warn_subobject_initializer_overrides)
2067       << InitRange;
2068     SemaRef.Diag(ExistingInit->getLocStart(),
2069                   diag::note_previous_initializer)
2070       << /*FIXME:has side effects=*/0
2071       << ExistingInit->getSourceRange();
2072   }
2073 
2074   InitListExpr *Result
2075     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2076                                          InitRange.getBegin(), MultiExprArg(),
2077                                          InitRange.getEnd());
2078 
2079   QualType ResultType = CurrentObjectType;
2080   if (!ResultType->isArrayType())
2081     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2082   Result->setType(ResultType);
2083 
2084   // Pre-allocate storage for the structured initializer list.
2085   unsigned NumElements = 0;
2086   unsigned NumInits = 0;
2087   bool GotNumInits = false;
2088   if (!StructuredList) {
2089     NumInits = IList->getNumInits();
2090     GotNumInits = true;
2091   } else if (Index < IList->getNumInits()) {
2092     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2093       NumInits = SubList->getNumInits();
2094       GotNumInits = true;
2095     }
2096   }
2097 
2098   if (const ArrayType *AType
2099       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2100     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2101       NumElements = CAType->getSize().getZExtValue();
2102       // Simple heuristic so that we don't allocate a very large
2103       // initializer with many empty entries at the end.
2104       if (GotNumInits && NumElements > NumInits)
2105         NumElements = 0;
2106     }
2107   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2108     NumElements = VType->getNumElements();
2109   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2110     RecordDecl *RDecl = RType->getDecl();
2111     if (RDecl->isUnion())
2112       NumElements = 1;
2113     else
2114       NumElements = std::distance(RDecl->field_begin(),
2115                                   RDecl->field_end());
2116   }
2117 
2118   Result->reserveInits(SemaRef.Context, NumElements);
2119 
2120   // Link this new initializer list into the structured initializer
2121   // lists.
2122   if (StructuredList)
2123     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2124   else {
2125     Result->setSyntacticForm(IList);
2126     SyntacticToSemantic[IList] = Result;
2127   }
2128 
2129   return Result;
2130 }
2131 
2132 /// Update the initializer at index @p StructuredIndex within the
2133 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)2134 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2135                                                   unsigned &StructuredIndex,
2136                                                   Expr *expr) {
2137   // No structured initializer list to update
2138   if (!StructuredList)
2139     return;
2140 
2141   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2142                                                   StructuredIndex, expr)) {
2143     // This initializer overwrites a previous initializer. Warn.
2144     SemaRef.Diag(expr->getLocStart(),
2145                   diag::warn_initializer_overrides)
2146       << expr->getSourceRange();
2147     SemaRef.Diag(PrevInit->getLocStart(),
2148                   diag::note_previous_initializer)
2149       << /*FIXME:has side effects=*/0
2150       << PrevInit->getSourceRange();
2151   }
2152 
2153   ++StructuredIndex;
2154 }
2155 
2156 /// Check that the given Index expression is a valid array designator
2157 /// value. This is essentially just a wrapper around
2158 /// VerifyIntegerConstantExpression that also checks for negative values
2159 /// and produces a reasonable diagnostic if there is a
2160 /// failure. Returns the index expression, possibly with an implicit cast
2161 /// added, on success.  If everything went okay, Value will receive the
2162 /// value of the constant expression.
2163 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)2164 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2165   SourceLocation Loc = Index->getLocStart();
2166 
2167   // Make sure this is an integer constant expression.
2168   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2169   if (Result.isInvalid())
2170     return Result;
2171 
2172   if (Value.isSigned() && Value.isNegative())
2173     return S.Diag(Loc, diag::err_array_designator_negative)
2174       << Value.toString(10) << Index->getSourceRange();
2175 
2176   Value.setIsUnsigned(true);
2177   return Result;
2178 }
2179 
ActOnDesignatedInitializer(Designation & Desig,SourceLocation Loc,bool GNUSyntax,ExprResult Init)2180 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2181                                             SourceLocation Loc,
2182                                             bool GNUSyntax,
2183                                             ExprResult Init) {
2184   typedef DesignatedInitExpr::Designator ASTDesignator;
2185 
2186   bool Invalid = false;
2187   SmallVector<ASTDesignator, 32> Designators;
2188   SmallVector<Expr *, 32> InitExpressions;
2189 
2190   // Build designators and check array designator expressions.
2191   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2192     const Designator &D = Desig.getDesignator(Idx);
2193     switch (D.getKind()) {
2194     case Designator::FieldDesignator:
2195       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2196                                           D.getFieldLoc()));
2197       break;
2198 
2199     case Designator::ArrayDesignator: {
2200       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2201       llvm::APSInt IndexValue;
2202       if (!Index->isTypeDependent() && !Index->isValueDependent())
2203         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2204       if (!Index)
2205         Invalid = true;
2206       else {
2207         Designators.push_back(ASTDesignator(InitExpressions.size(),
2208                                             D.getLBracketLoc(),
2209                                             D.getRBracketLoc()));
2210         InitExpressions.push_back(Index);
2211       }
2212       break;
2213     }
2214 
2215     case Designator::ArrayRangeDesignator: {
2216       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2217       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2218       llvm::APSInt StartValue;
2219       llvm::APSInt EndValue;
2220       bool StartDependent = StartIndex->isTypeDependent() ||
2221                             StartIndex->isValueDependent();
2222       bool EndDependent = EndIndex->isTypeDependent() ||
2223                           EndIndex->isValueDependent();
2224       if (!StartDependent)
2225         StartIndex =
2226             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2227       if (!EndDependent)
2228         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2229 
2230       if (!StartIndex || !EndIndex)
2231         Invalid = true;
2232       else {
2233         // Make sure we're comparing values with the same bit width.
2234         if (StartDependent || EndDependent) {
2235           // Nothing to compute.
2236         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2237           EndValue = EndValue.extend(StartValue.getBitWidth());
2238         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2239           StartValue = StartValue.extend(EndValue.getBitWidth());
2240 
2241         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2242           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2243             << StartValue.toString(10) << EndValue.toString(10)
2244             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2245           Invalid = true;
2246         } else {
2247           Designators.push_back(ASTDesignator(InitExpressions.size(),
2248                                               D.getLBracketLoc(),
2249                                               D.getEllipsisLoc(),
2250                                               D.getRBracketLoc()));
2251           InitExpressions.push_back(StartIndex);
2252           InitExpressions.push_back(EndIndex);
2253         }
2254       }
2255       break;
2256     }
2257     }
2258   }
2259 
2260   if (Invalid || Init.isInvalid())
2261     return ExprError();
2262 
2263   // Clear out the expressions within the designation.
2264   Desig.ClearExprs(*this);
2265 
2266   DesignatedInitExpr *DIE
2267     = DesignatedInitExpr::Create(Context,
2268                                  Designators.data(), Designators.size(),
2269                                  InitExpressions, Loc, GNUSyntax,
2270                                  Init.takeAs<Expr>());
2271 
2272   if (!getLangOpts().C99)
2273     Diag(DIE->getLocStart(), diag::ext_designated_init)
2274       << DIE->getSourceRange();
2275 
2276   return Owned(DIE);
2277 }
2278 
2279 //===----------------------------------------------------------------------===//
2280 // Initialization entity
2281 //===----------------------------------------------------------------------===//
2282 
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)2283 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2284                                      const InitializedEntity &Parent)
2285   : Parent(&Parent), Index(Index)
2286 {
2287   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2288     Kind = EK_ArrayElement;
2289     Type = AT->getElementType();
2290   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2291     Kind = EK_VectorElement;
2292     Type = VT->getElementType();
2293   } else {
2294     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2295     assert(CT && "Unexpected type");
2296     Kind = EK_ComplexElement;
2297     Type = CT->getElementType();
2298   }
2299 }
2300 
InitializeBase(ASTContext & Context,CXXBaseSpecifier * Base,bool IsInheritedVirtualBase)2301 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2302                                                     CXXBaseSpecifier *Base,
2303                                                     bool IsInheritedVirtualBase)
2304 {
2305   InitializedEntity Result;
2306   Result.Kind = EK_Base;
2307   Result.Base = reinterpret_cast<uintptr_t>(Base);
2308   if (IsInheritedVirtualBase)
2309     Result.Base |= 0x01;
2310 
2311   Result.Type = Base->getType();
2312   return Result;
2313 }
2314 
getName() const2315 DeclarationName InitializedEntity::getName() const {
2316   switch (getKind()) {
2317   case EK_Parameter: {
2318     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2319     return (D ? D->getDeclName() : DeclarationName());
2320   }
2321 
2322   case EK_Variable:
2323   case EK_Member:
2324     return VariableOrMember->getDeclName();
2325 
2326   case EK_LambdaCapture:
2327     return Capture.Var->getDeclName();
2328 
2329   case EK_Result:
2330   case EK_Exception:
2331   case EK_New:
2332   case EK_Temporary:
2333   case EK_Base:
2334   case EK_Delegating:
2335   case EK_ArrayElement:
2336   case EK_VectorElement:
2337   case EK_ComplexElement:
2338   case EK_BlockElement:
2339     return DeclarationName();
2340   }
2341 
2342   llvm_unreachable("Invalid EntityKind!");
2343 }
2344 
getDecl() const2345 DeclaratorDecl *InitializedEntity::getDecl() const {
2346   switch (getKind()) {
2347   case EK_Variable:
2348   case EK_Member:
2349     return VariableOrMember;
2350 
2351   case EK_Parameter:
2352     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2353 
2354   case EK_Result:
2355   case EK_Exception:
2356   case EK_New:
2357   case EK_Temporary:
2358   case EK_Base:
2359   case EK_Delegating:
2360   case EK_ArrayElement:
2361   case EK_VectorElement:
2362   case EK_ComplexElement:
2363   case EK_BlockElement:
2364   case EK_LambdaCapture:
2365     return 0;
2366   }
2367 
2368   llvm_unreachable("Invalid EntityKind!");
2369 }
2370 
allowsNRVO() const2371 bool InitializedEntity::allowsNRVO() const {
2372   switch (getKind()) {
2373   case EK_Result:
2374   case EK_Exception:
2375     return LocAndNRVO.NRVO;
2376 
2377   case EK_Variable:
2378   case EK_Parameter:
2379   case EK_Member:
2380   case EK_New:
2381   case EK_Temporary:
2382   case EK_Base:
2383   case EK_Delegating:
2384   case EK_ArrayElement:
2385   case EK_VectorElement:
2386   case EK_ComplexElement:
2387   case EK_BlockElement:
2388   case EK_LambdaCapture:
2389     break;
2390   }
2391 
2392   return false;
2393 }
2394 
2395 //===----------------------------------------------------------------------===//
2396 // Initialization sequence
2397 //===----------------------------------------------------------------------===//
2398 
Destroy()2399 void InitializationSequence::Step::Destroy() {
2400   switch (Kind) {
2401   case SK_ResolveAddressOfOverloadedFunction:
2402   case SK_CastDerivedToBaseRValue:
2403   case SK_CastDerivedToBaseXValue:
2404   case SK_CastDerivedToBaseLValue:
2405   case SK_BindReference:
2406   case SK_BindReferenceToTemporary:
2407   case SK_ExtraneousCopyToTemporary:
2408   case SK_UserConversion:
2409   case SK_QualificationConversionRValue:
2410   case SK_QualificationConversionXValue:
2411   case SK_QualificationConversionLValue:
2412   case SK_ListInitialization:
2413   case SK_ListConstructorCall:
2414   case SK_UnwrapInitList:
2415   case SK_RewrapInitList:
2416   case SK_ConstructorInitialization:
2417   case SK_ZeroInitialization:
2418   case SK_CAssignment:
2419   case SK_StringInit:
2420   case SK_ObjCObjectConversion:
2421   case SK_ArrayInit:
2422   case SK_ParenthesizedArrayInit:
2423   case SK_PassByIndirectCopyRestore:
2424   case SK_PassByIndirectRestore:
2425   case SK_ProduceObjCObject:
2426   case SK_StdInitializerList:
2427   case SK_OCLSamplerInit:
2428   case SK_OCLZeroEvent:
2429     break;
2430 
2431   case SK_ConversionSequence:
2432     delete ICS;
2433   }
2434 }
2435 
isDirectReferenceBinding() const2436 bool InitializationSequence::isDirectReferenceBinding() const {
2437   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2438 }
2439 
isAmbiguous() const2440 bool InitializationSequence::isAmbiguous() const {
2441   if (!Failed())
2442     return false;
2443 
2444   switch (getFailureKind()) {
2445   case FK_TooManyInitsForReference:
2446   case FK_ArrayNeedsInitList:
2447   case FK_ArrayNeedsInitListOrStringLiteral:
2448   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2449   case FK_NonConstLValueReferenceBindingToTemporary:
2450   case FK_NonConstLValueReferenceBindingToUnrelated:
2451   case FK_RValueReferenceBindingToLValue:
2452   case FK_ReferenceInitDropsQualifiers:
2453   case FK_ReferenceInitFailed:
2454   case FK_ConversionFailed:
2455   case FK_ConversionFromPropertyFailed:
2456   case FK_TooManyInitsForScalar:
2457   case FK_ReferenceBindingToInitList:
2458   case FK_InitListBadDestinationType:
2459   case FK_DefaultInitOfConst:
2460   case FK_Incomplete:
2461   case FK_ArrayTypeMismatch:
2462   case FK_NonConstantArrayInit:
2463   case FK_ListInitializationFailed:
2464   case FK_VariableLengthArrayHasInitializer:
2465   case FK_PlaceholderType:
2466   case FK_InitListElementCopyFailure:
2467   case FK_ExplicitConstructor:
2468     return false;
2469 
2470   case FK_ReferenceInitOverloadFailed:
2471   case FK_UserConversionOverloadFailed:
2472   case FK_ConstructorOverloadFailed:
2473   case FK_ListConstructorOverloadFailed:
2474     return FailedOverloadResult == OR_Ambiguous;
2475   }
2476 
2477   llvm_unreachable("Invalid EntityKind!");
2478 }
2479 
isConstructorInitialization() const2480 bool InitializationSequence::isConstructorInitialization() const {
2481   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2482 }
2483 
2484 void
2485 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)2486 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2487                                    DeclAccessPair Found,
2488                                    bool HadMultipleCandidates) {
2489   Step S;
2490   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2491   S.Type = Function->getType();
2492   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2493   S.Function.Function = Function;
2494   S.Function.FoundDecl = Found;
2495   Steps.push_back(S);
2496 }
2497 
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)2498 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2499                                                       ExprValueKind VK) {
2500   Step S;
2501   switch (VK) {
2502   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2503   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2504   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2505   }
2506   S.Type = BaseType;
2507   Steps.push_back(S);
2508 }
2509 
AddReferenceBindingStep(QualType T,bool BindingTemporary)2510 void InitializationSequence::AddReferenceBindingStep(QualType T,
2511                                                      bool BindingTemporary) {
2512   Step S;
2513   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2514   S.Type = T;
2515   Steps.push_back(S);
2516 }
2517 
AddExtraneousCopyToTemporary(QualType T)2518 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2519   Step S;
2520   S.Kind = SK_ExtraneousCopyToTemporary;
2521   S.Type = T;
2522   Steps.push_back(S);
2523 }
2524 
2525 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)2526 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2527                                               DeclAccessPair FoundDecl,
2528                                               QualType T,
2529                                               bool HadMultipleCandidates) {
2530   Step S;
2531   S.Kind = SK_UserConversion;
2532   S.Type = T;
2533   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2534   S.Function.Function = Function;
2535   S.Function.FoundDecl = FoundDecl;
2536   Steps.push_back(S);
2537 }
2538 
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)2539 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2540                                                             ExprValueKind VK) {
2541   Step S;
2542   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2543   switch (VK) {
2544   case VK_RValue:
2545     S.Kind = SK_QualificationConversionRValue;
2546     break;
2547   case VK_XValue:
2548     S.Kind = SK_QualificationConversionXValue;
2549     break;
2550   case VK_LValue:
2551     S.Kind = SK_QualificationConversionLValue;
2552     break;
2553   }
2554   S.Type = Ty;
2555   Steps.push_back(S);
2556 }
2557 
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T)2558 void InitializationSequence::AddConversionSequenceStep(
2559                                        const ImplicitConversionSequence &ICS,
2560                                                        QualType T) {
2561   Step S;
2562   S.Kind = SK_ConversionSequence;
2563   S.Type = T;
2564   S.ICS = new ImplicitConversionSequence(ICS);
2565   Steps.push_back(S);
2566 }
2567 
AddListInitializationStep(QualType T)2568 void InitializationSequence::AddListInitializationStep(QualType T) {
2569   Step S;
2570   S.Kind = SK_ListInitialization;
2571   S.Type = T;
2572   Steps.push_back(S);
2573 }
2574 
2575 void
2576 InitializationSequence
AddConstructorInitializationStep(CXXConstructorDecl * Constructor,AccessSpecifier Access,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)2577 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2578                                    AccessSpecifier Access,
2579                                    QualType T,
2580                                    bool HadMultipleCandidates,
2581                                    bool FromInitList, bool AsInitList) {
2582   Step S;
2583   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2584                                        : SK_ConstructorInitialization;
2585   S.Type = T;
2586   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2587   S.Function.Function = Constructor;
2588   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2589   Steps.push_back(S);
2590 }
2591 
AddZeroInitializationStep(QualType T)2592 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2593   Step S;
2594   S.Kind = SK_ZeroInitialization;
2595   S.Type = T;
2596   Steps.push_back(S);
2597 }
2598 
AddCAssignmentStep(QualType T)2599 void InitializationSequence::AddCAssignmentStep(QualType T) {
2600   Step S;
2601   S.Kind = SK_CAssignment;
2602   S.Type = T;
2603   Steps.push_back(S);
2604 }
2605 
AddStringInitStep(QualType T)2606 void InitializationSequence::AddStringInitStep(QualType T) {
2607   Step S;
2608   S.Kind = SK_StringInit;
2609   S.Type = T;
2610   Steps.push_back(S);
2611 }
2612 
AddObjCObjectConversionStep(QualType T)2613 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2614   Step S;
2615   S.Kind = SK_ObjCObjectConversion;
2616   S.Type = T;
2617   Steps.push_back(S);
2618 }
2619 
AddArrayInitStep(QualType T)2620 void InitializationSequence::AddArrayInitStep(QualType T) {
2621   Step S;
2622   S.Kind = SK_ArrayInit;
2623   S.Type = T;
2624   Steps.push_back(S);
2625 }
2626 
AddParenthesizedArrayInitStep(QualType T)2627 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2628   Step S;
2629   S.Kind = SK_ParenthesizedArrayInit;
2630   S.Type = T;
2631   Steps.push_back(S);
2632 }
2633 
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)2634 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2635                                                               bool shouldCopy) {
2636   Step s;
2637   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2638                        : SK_PassByIndirectRestore);
2639   s.Type = type;
2640   Steps.push_back(s);
2641 }
2642 
AddProduceObjCObjectStep(QualType T)2643 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2644   Step S;
2645   S.Kind = SK_ProduceObjCObject;
2646   S.Type = T;
2647   Steps.push_back(S);
2648 }
2649 
AddStdInitializerListConstructionStep(QualType T)2650 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2651   Step S;
2652   S.Kind = SK_StdInitializerList;
2653   S.Type = T;
2654   Steps.push_back(S);
2655 }
2656 
AddOCLSamplerInitStep(QualType T)2657 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2658   Step S;
2659   S.Kind = SK_OCLSamplerInit;
2660   S.Type = T;
2661   Steps.push_back(S);
2662 }
2663 
AddOCLZeroEventStep(QualType T)2664 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2665   Step S;
2666   S.Kind = SK_OCLZeroEvent;
2667   S.Type = T;
2668   Steps.push_back(S);
2669 }
2670 
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)2671 void InitializationSequence::RewrapReferenceInitList(QualType T,
2672                                                      InitListExpr *Syntactic) {
2673   assert(Syntactic->getNumInits() == 1 &&
2674          "Can only rewrap trivial init lists.");
2675   Step S;
2676   S.Kind = SK_UnwrapInitList;
2677   S.Type = Syntactic->getInit(0)->getType();
2678   Steps.insert(Steps.begin(), S);
2679 
2680   S.Kind = SK_RewrapInitList;
2681   S.Type = T;
2682   S.WrappingSyntacticList = Syntactic;
2683   Steps.push_back(S);
2684 }
2685 
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)2686 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2687                                                 OverloadingResult Result) {
2688   setSequenceKind(FailedSequence);
2689   this->Failure = Failure;
2690   this->FailedOverloadResult = Result;
2691 }
2692 
2693 //===----------------------------------------------------------------------===//
2694 // Attempt initialization
2695 //===----------------------------------------------------------------------===//
2696 
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)2697 static void MaybeProduceObjCObject(Sema &S,
2698                                    InitializationSequence &Sequence,
2699                                    const InitializedEntity &Entity) {
2700   if (!S.getLangOpts().ObjCAutoRefCount) return;
2701 
2702   /// When initializing a parameter, produce the value if it's marked
2703   /// __attribute__((ns_consumed)).
2704   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2705     if (!Entity.isParameterConsumed())
2706       return;
2707 
2708     assert(Entity.getType()->isObjCRetainableType() &&
2709            "consuming an object of unretainable type?");
2710     Sequence.AddProduceObjCObjectStep(Entity.getType());
2711 
2712   /// When initializing a return value, if the return type is a
2713   /// retainable type, then returns need to immediately retain the
2714   /// object.  If an autorelease is required, it will be done at the
2715   /// last instant.
2716   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2717     if (!Entity.getType()->isObjCRetainableType())
2718       return;
2719 
2720     Sequence.AddProduceObjCObjectStep(Entity.getType());
2721   }
2722 }
2723 
2724 /// \brief When initializing from init list via constructor, handle
2725 /// initialization of an object of type std::initializer_list<T>.
2726 ///
2727 /// \return true if we have handled initialization of an object of type
2728 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence)2729 static bool TryInitializerListConstruction(Sema &S,
2730                                            InitListExpr *List,
2731                                            QualType DestType,
2732                                            InitializationSequence &Sequence) {
2733   QualType E;
2734   if (!S.isStdInitializerList(DestType, &E))
2735     return false;
2736 
2737   // Check that each individual element can be copy-constructed. But since we
2738   // have no place to store further information, we'll recalculate everything
2739   // later.
2740   InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2741       S.Context.getConstantArrayType(E,
2742           llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2743                       List->getNumInits()),
2744           ArrayType::Normal, 0));
2745   InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2746       0, HiddenArray);
2747   for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2748     Element.setElementIndex(i);
2749     if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2750       Sequence.SetFailed(
2751           InitializationSequence::FK_InitListElementCopyFailure);
2752       return true;
2753     }
2754   }
2755   Sequence.AddStdInitializerListConstructionStep(DestType);
2756   return true;
2757 }
2758 
2759 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,ArrayRef<NamedDecl * > Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool InitListSyntax)2760 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2761                            Expr **Args, unsigned NumArgs,
2762                            OverloadCandidateSet &CandidateSet,
2763                            ArrayRef<NamedDecl *> Ctors,
2764                            OverloadCandidateSet::iterator &Best,
2765                            bool CopyInitializing, bool AllowExplicit,
2766                            bool OnlyListConstructors, bool InitListSyntax) {
2767   CandidateSet.clear();
2768 
2769   for (ArrayRef<NamedDecl *>::iterator
2770          Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2771     NamedDecl *D = *Con;
2772     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2773     bool SuppressUserConversions = false;
2774 
2775     // Find the constructor (which may be a template).
2776     CXXConstructorDecl *Constructor = 0;
2777     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2778     if (ConstructorTmpl)
2779       Constructor = cast<CXXConstructorDecl>(
2780                                            ConstructorTmpl->getTemplatedDecl());
2781     else {
2782       Constructor = cast<CXXConstructorDecl>(D);
2783 
2784       // If we're performing copy initialization using a copy constructor, we
2785       // suppress user-defined conversions on the arguments. We do the same for
2786       // move constructors.
2787       if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2788           Constructor->isCopyOrMoveConstructor())
2789         SuppressUserConversions = true;
2790     }
2791 
2792     if (!Constructor->isInvalidDecl() &&
2793         (AllowExplicit || !Constructor->isExplicit()) &&
2794         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2795       if (ConstructorTmpl)
2796         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2797                                        /*ExplicitArgs*/ 0,
2798                                        llvm::makeArrayRef(Args, NumArgs),
2799                                        CandidateSet, SuppressUserConversions);
2800       else {
2801         // C++ [over.match.copy]p1:
2802         //   - When initializing a temporary to be bound to the first parameter
2803         //     of a constructor that takes a reference to possibly cv-qualified
2804         //     T as its first argument, called with a single argument in the
2805         //     context of direct-initialization, explicit conversion functions
2806         //     are also considered.
2807         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
2808                                  NumArgs == 1 &&
2809                                  Constructor->isCopyOrMoveConstructor();
2810         S.AddOverloadCandidate(Constructor, FoundDecl,
2811                                llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2812                                SuppressUserConversions,
2813                                /*PartialOverloading=*/false,
2814                                /*AllowExplicit=*/AllowExplicitConv);
2815       }
2816     }
2817   }
2818 
2819   // Perform overload resolution and return the result.
2820   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2821 }
2822 
2823 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2824 /// enumerates the constructors of the initialized entity and performs overload
2825 /// resolution to select the best.
2826 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2827 /// class type.
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs,QualType DestType,InitializationSequence & Sequence,bool InitListSyntax=false)2828 static void TryConstructorInitialization(Sema &S,
2829                                          const InitializedEntity &Entity,
2830                                          const InitializationKind &Kind,
2831                                          Expr **Args, unsigned NumArgs,
2832                                          QualType DestType,
2833                                          InitializationSequence &Sequence,
2834                                          bool InitListSyntax = false) {
2835   assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2836          "InitListSyntax must come with a single initializer list argument.");
2837 
2838   // The type we're constructing needs to be complete.
2839   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2840     Sequence.setIncompleteTypeFailure(DestType);
2841     return;
2842   }
2843 
2844   const RecordType *DestRecordType = DestType->getAs<RecordType>();
2845   assert(DestRecordType && "Constructor initialization requires record type");
2846   CXXRecordDecl *DestRecordDecl
2847     = cast<CXXRecordDecl>(DestRecordType->getDecl());
2848 
2849   // Build the candidate set directly in the initialization sequence
2850   // structure, so that it will persist if we fail.
2851   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2852 
2853   // Determine whether we are allowed to call explicit constructors or
2854   // explicit conversion operators.
2855   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2856   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2857 
2858   //   - Otherwise, if T is a class type, constructors are considered. The
2859   //     applicable constructors are enumerated, and the best one is chosen
2860   //     through overload resolution.
2861   DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
2862   // The container holding the constructors can under certain conditions
2863   // be changed while iterating (e.g. because of deserialization).
2864   // To be safe we copy the lookup results to a new container.
2865   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
2866 
2867   OverloadingResult Result = OR_No_Viable_Function;
2868   OverloadCandidateSet::iterator Best;
2869   bool AsInitializerList = false;
2870 
2871   // C++11 [over.match.list]p1:
2872   //   When objects of non-aggregate type T are list-initialized, overload
2873   //   resolution selects the constructor in two phases:
2874   //   - Initially, the candidate functions are the initializer-list
2875   //     constructors of the class T and the argument list consists of the
2876   //     initializer list as a single argument.
2877   if (InitListSyntax) {
2878     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2879     AsInitializerList = true;
2880 
2881     // If the initializer list has no elements and T has a default constructor,
2882     // the first phase is omitted.
2883     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
2884       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2885                                           CandidateSet, Ctors, Best,
2886                                           CopyInitialization, AllowExplicit,
2887                                           /*OnlyListConstructor=*/true,
2888                                           InitListSyntax);
2889 
2890     // Time to unwrap the init list.
2891     Args = ILE->getInits();
2892     NumArgs = ILE->getNumInits();
2893   }
2894 
2895   // C++11 [over.match.list]p1:
2896   //   - If no viable initializer-list constructor is found, overload resolution
2897   //     is performed again, where the candidate functions are all the
2898   //     constructors of the class T and the argument list consists of the
2899   //     elements of the initializer list.
2900   if (Result == OR_No_Viable_Function) {
2901     AsInitializerList = false;
2902     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2903                                         CandidateSet, Ctors, Best,
2904                                         CopyInitialization, AllowExplicit,
2905                                         /*OnlyListConstructors=*/false,
2906                                         InitListSyntax);
2907   }
2908   if (Result) {
2909     Sequence.SetOverloadFailure(InitListSyntax ?
2910                       InitializationSequence::FK_ListConstructorOverloadFailed :
2911                       InitializationSequence::FK_ConstructorOverloadFailed,
2912                                 Result);
2913     return;
2914   }
2915 
2916   // C++11 [dcl.init]p6:
2917   //   If a program calls for the default initialization of an object
2918   //   of a const-qualified type T, T shall be a class type with a
2919   //   user-provided default constructor.
2920   if (Kind.getKind() == InitializationKind::IK_Default &&
2921       Entity.getType().isConstQualified() &&
2922       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
2923     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2924     return;
2925   }
2926 
2927   // C++11 [over.match.list]p1:
2928   //   In copy-list-initialization, if an explicit constructor is chosen, the
2929   //   initializer is ill-formed.
2930   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2931   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2932     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2933     return;
2934   }
2935 
2936   // Add the constructor initialization step. Any cv-qualification conversion is
2937   // subsumed by the initialization.
2938   bool HadMultipleCandidates = (CandidateSet.size() > 1);
2939   Sequence.AddConstructorInitializationStep(CtorDecl,
2940                                             Best->FoundDecl.getAccess(),
2941                                             DestType, HadMultipleCandidates,
2942                                             InitListSyntax, AsInitializerList);
2943 }
2944 
2945 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)2946 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2947                                              Expr *Initializer,
2948                                              QualType &SourceType,
2949                                              QualType &UnqualifiedSourceType,
2950                                              QualType UnqualifiedTargetType,
2951                                              InitializationSequence &Sequence) {
2952   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2953         S.Context.OverloadTy) {
2954     DeclAccessPair Found;
2955     bool HadMultipleCandidates = false;
2956     if (FunctionDecl *Fn
2957         = S.ResolveAddressOfOverloadedFunction(Initializer,
2958                                                UnqualifiedTargetType,
2959                                                false, Found,
2960                                                &HadMultipleCandidates)) {
2961       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
2962                                                 HadMultipleCandidates);
2963       SourceType = Fn->getType();
2964       UnqualifiedSourceType = SourceType.getUnqualifiedType();
2965     } else if (!UnqualifiedTargetType->isRecordType()) {
2966       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2967       return true;
2968     }
2969   }
2970   return false;
2971 }
2972 
2973 static void TryReferenceInitializationCore(Sema &S,
2974                                            const InitializedEntity &Entity,
2975                                            const InitializationKind &Kind,
2976                                            Expr *Initializer,
2977                                            QualType cv1T1, QualType T1,
2978                                            Qualifiers T1Quals,
2979                                            QualType cv2T2, QualType T2,
2980                                            Qualifiers T2Quals,
2981                                            InitializationSequence &Sequence);
2982 
2983 static void TryValueInitialization(Sema &S,
2984                                    const InitializedEntity &Entity,
2985                                    const InitializationKind &Kind,
2986                                    InitializationSequence &Sequence,
2987                                    InitListExpr *InitList = 0);
2988 
2989 static void TryListInitialization(Sema &S,
2990                                   const InitializedEntity &Entity,
2991                                   const InitializationKind &Kind,
2992                                   InitListExpr *InitList,
2993                                   InitializationSequence &Sequence);
2994 
2995 /// \brief Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)2996 static void TryReferenceListInitialization(Sema &S,
2997                                            const InitializedEntity &Entity,
2998                                            const InitializationKind &Kind,
2999                                            InitListExpr *InitList,
3000                                            InitializationSequence &Sequence)
3001 {
3002   // First, catch C++03 where this isn't possible.
3003   if (!S.getLangOpts().CPlusPlus11) {
3004     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3005     return;
3006   }
3007 
3008   QualType DestType = Entity.getType();
3009   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3010   Qualifiers T1Quals;
3011   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3012 
3013   // Reference initialization via an initializer list works thus:
3014   // If the initializer list consists of a single element that is
3015   // reference-related to the referenced type, bind directly to that element
3016   // (possibly creating temporaries).
3017   // Otherwise, initialize a temporary with the initializer list and
3018   // bind to that.
3019   if (InitList->getNumInits() == 1) {
3020     Expr *Initializer = InitList->getInit(0);
3021     QualType cv2T2 = Initializer->getType();
3022     Qualifiers T2Quals;
3023     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3024 
3025     // If this fails, creating a temporary wouldn't work either.
3026     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3027                                                      T1, Sequence))
3028       return;
3029 
3030     SourceLocation DeclLoc = Initializer->getLocStart();
3031     bool dummy1, dummy2, dummy3;
3032     Sema::ReferenceCompareResult RefRelationship
3033       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3034                                        dummy2, dummy3);
3035     if (RefRelationship >= Sema::Ref_Related) {
3036       // Try to bind the reference here.
3037       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3038                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3039       if (Sequence)
3040         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3041       return;
3042     }
3043 
3044     // Update the initializer if we've resolved an overloaded function.
3045     if (Sequence.step_begin() != Sequence.step_end())
3046       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3047   }
3048 
3049   // Not reference-related. Create a temporary and bind to that.
3050   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3051 
3052   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3053   if (Sequence) {
3054     if (DestType->isRValueReferenceType() ||
3055         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3056       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3057     else
3058       Sequence.SetFailed(
3059           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3060   }
3061 }
3062 
3063 /// \brief Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3064 static void TryListInitialization(Sema &S,
3065                                   const InitializedEntity &Entity,
3066                                   const InitializationKind &Kind,
3067                                   InitListExpr *InitList,
3068                                   InitializationSequence &Sequence) {
3069   QualType DestType = Entity.getType();
3070 
3071   // C++ doesn't allow scalar initialization with more than one argument.
3072   // But C99 complex numbers are scalars and it makes sense there.
3073   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3074       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3075     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3076     return;
3077   }
3078   if (DestType->isReferenceType()) {
3079     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3080     return;
3081   }
3082   if (DestType->isRecordType()) {
3083     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3084       Sequence.setIncompleteTypeFailure(DestType);
3085       return;
3086     }
3087 
3088     // C++11 [dcl.init.list]p3:
3089     //   - If T is an aggregate, aggregate initialization is performed.
3090     if (!DestType->isAggregateType()) {
3091       if (S.getLangOpts().CPlusPlus11) {
3092         //   - Otherwise, if the initializer list has no elements and T is a
3093         //     class type with a default constructor, the object is
3094         //     value-initialized.
3095         if (InitList->getNumInits() == 0) {
3096           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3097           if (RD->hasDefaultConstructor()) {
3098             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3099             return;
3100           }
3101         }
3102 
3103         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3104         //     an initializer_list object constructed [...]
3105         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3106           return;
3107 
3108         //   - Otherwise, if T is a class type, constructors are considered.
3109         Expr *Arg = InitList;
3110         TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType,
3111                                      Sequence, /*InitListSyntax*/true);
3112       } else
3113         Sequence.SetFailed(
3114             InitializationSequence::FK_InitListBadDestinationType);
3115       return;
3116     }
3117   }
3118 
3119   InitListChecker CheckInitList(S, Entity, InitList,
3120           DestType, /*VerifyOnly=*/true,
3121           Kind.getKind() != InitializationKind::IK_DirectList ||
3122             !S.getLangOpts().CPlusPlus11);
3123   if (CheckInitList.HadError()) {
3124     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3125     return;
3126   }
3127 
3128   // Add the list initialization step with the built init list.
3129   Sequence.AddListInitializationStep(DestType);
3130 }
3131 
3132 /// \brief Try a reference initialization that involves calling a conversion
3133 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,InitializationSequence & Sequence)3134 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3135                                              const InitializedEntity &Entity,
3136                                              const InitializationKind &Kind,
3137                                              Expr *Initializer,
3138                                              bool AllowRValues,
3139                                              InitializationSequence &Sequence) {
3140   QualType DestType = Entity.getType();
3141   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3142   QualType T1 = cv1T1.getUnqualifiedType();
3143   QualType cv2T2 = Initializer->getType();
3144   QualType T2 = cv2T2.getUnqualifiedType();
3145 
3146   bool DerivedToBase;
3147   bool ObjCConversion;
3148   bool ObjCLifetimeConversion;
3149   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3150                                          T1, T2, DerivedToBase,
3151                                          ObjCConversion,
3152                                          ObjCLifetimeConversion) &&
3153          "Must have incompatible references when binding via conversion");
3154   (void)DerivedToBase;
3155   (void)ObjCConversion;
3156   (void)ObjCLifetimeConversion;
3157 
3158   // Build the candidate set directly in the initialization sequence
3159   // structure, so that it will persist if we fail.
3160   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3161   CandidateSet.clear();
3162 
3163   // Determine whether we are allowed to call explicit constructors or
3164   // explicit conversion operators.
3165   bool AllowExplicit = Kind.AllowExplicit();
3166   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3167 
3168   const RecordType *T1RecordType = 0;
3169   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3170       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3171     // The type we're converting to is a class type. Enumerate its constructors
3172     // to see if there is a suitable conversion.
3173     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3174 
3175     DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3176     // The container holding the constructors can under certain conditions
3177     // be changed while iterating (e.g. because of deserialization).
3178     // To be safe we copy the lookup results to a new container.
3179     SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3180     for (SmallVector<NamedDecl*, 16>::iterator
3181            CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3182       NamedDecl *D = *CI;
3183       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3184 
3185       // Find the constructor (which may be a template).
3186       CXXConstructorDecl *Constructor = 0;
3187       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3188       if (ConstructorTmpl)
3189         Constructor = cast<CXXConstructorDecl>(
3190                                          ConstructorTmpl->getTemplatedDecl());
3191       else
3192         Constructor = cast<CXXConstructorDecl>(D);
3193 
3194       if (!Constructor->isInvalidDecl() &&
3195           Constructor->isConvertingConstructor(AllowExplicit)) {
3196         if (ConstructorTmpl)
3197           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3198                                          /*ExplicitArgs*/ 0,
3199                                          Initializer, CandidateSet,
3200                                          /*SuppressUserConversions=*/true);
3201         else
3202           S.AddOverloadCandidate(Constructor, FoundDecl,
3203                                  Initializer, CandidateSet,
3204                                  /*SuppressUserConversions=*/true);
3205       }
3206     }
3207   }
3208   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3209     return OR_No_Viable_Function;
3210 
3211   const RecordType *T2RecordType = 0;
3212   if ((T2RecordType = T2->getAs<RecordType>()) &&
3213       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3214     // The type we're converting from is a class type, enumerate its conversion
3215     // functions.
3216     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3217 
3218     std::pair<CXXRecordDecl::conversion_iterator,
3219               CXXRecordDecl::conversion_iterator>
3220       Conversions = T2RecordDecl->getVisibleConversionFunctions();
3221     for (CXXRecordDecl::conversion_iterator
3222            I = Conversions.first, E = Conversions.second; I != E; ++I) {
3223       NamedDecl *D = *I;
3224       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3225       if (isa<UsingShadowDecl>(D))
3226         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3227 
3228       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3229       CXXConversionDecl *Conv;
3230       if (ConvTemplate)
3231         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3232       else
3233         Conv = cast<CXXConversionDecl>(D);
3234 
3235       // If the conversion function doesn't return a reference type,
3236       // it can't be considered for this conversion unless we're allowed to
3237       // consider rvalues.
3238       // FIXME: Do we need to make sure that we only consider conversion
3239       // candidates with reference-compatible results? That might be needed to
3240       // break recursion.
3241       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3242           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3243         if (ConvTemplate)
3244           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3245                                            ActingDC, Initializer,
3246                                            DestType, CandidateSet);
3247         else
3248           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3249                                    Initializer, DestType, CandidateSet);
3250       }
3251     }
3252   }
3253   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3254     return OR_No_Viable_Function;
3255 
3256   SourceLocation DeclLoc = Initializer->getLocStart();
3257 
3258   // Perform overload resolution. If it fails, return the failed result.
3259   OverloadCandidateSet::iterator Best;
3260   if (OverloadingResult Result
3261         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3262     return Result;
3263 
3264   FunctionDecl *Function = Best->Function;
3265   // This is the overload that will be used for this initialization step if we
3266   // use this initialization. Mark it as referenced.
3267   Function->setReferenced();
3268 
3269   // Compute the returned type of the conversion.
3270   if (isa<CXXConversionDecl>(Function))
3271     T2 = Function->getResultType();
3272   else
3273     T2 = cv1T1;
3274 
3275   // Add the user-defined conversion step.
3276   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3277   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3278                                  T2.getNonLValueExprType(S.Context),
3279                                  HadMultipleCandidates);
3280 
3281   // Determine whether we need to perform derived-to-base or
3282   // cv-qualification adjustments.
3283   ExprValueKind VK = VK_RValue;
3284   if (T2->isLValueReferenceType())
3285     VK = VK_LValue;
3286   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3287     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3288 
3289   bool NewDerivedToBase = false;
3290   bool NewObjCConversion = false;
3291   bool NewObjCLifetimeConversion = false;
3292   Sema::ReferenceCompareResult NewRefRelationship
3293     = S.CompareReferenceRelationship(DeclLoc, T1,
3294                                      T2.getNonLValueExprType(S.Context),
3295                                      NewDerivedToBase, NewObjCConversion,
3296                                      NewObjCLifetimeConversion);
3297   if (NewRefRelationship == Sema::Ref_Incompatible) {
3298     // If the type we've converted to is not reference-related to the
3299     // type we're looking for, then there is another conversion step
3300     // we need to perform to produce a temporary of the right type
3301     // that we'll be binding to.
3302     ImplicitConversionSequence ICS;
3303     ICS.setStandard();
3304     ICS.Standard = Best->FinalConversion;
3305     T2 = ICS.Standard.getToType(2);
3306     Sequence.AddConversionSequenceStep(ICS, T2);
3307   } else if (NewDerivedToBase)
3308     Sequence.AddDerivedToBaseCastStep(
3309                                 S.Context.getQualifiedType(T1,
3310                                   T2.getNonReferenceType().getQualifiers()),
3311                                       VK);
3312   else if (NewObjCConversion)
3313     Sequence.AddObjCObjectConversionStep(
3314                                 S.Context.getQualifiedType(T1,
3315                                   T2.getNonReferenceType().getQualifiers()));
3316 
3317   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3318     Sequence.AddQualificationConversionStep(cv1T1, VK);
3319 
3320   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3321   return OR_Success;
3322 }
3323 
3324 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3325                                            const InitializedEntity &Entity,
3326                                            Expr *CurInitExpr);
3327 
3328 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3329 static void TryReferenceInitialization(Sema &S,
3330                                        const InitializedEntity &Entity,
3331                                        const InitializationKind &Kind,
3332                                        Expr *Initializer,
3333                                        InitializationSequence &Sequence) {
3334   QualType DestType = Entity.getType();
3335   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3336   Qualifiers T1Quals;
3337   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3338   QualType cv2T2 = Initializer->getType();
3339   Qualifiers T2Quals;
3340   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3341 
3342   // If the initializer is the address of an overloaded function, try
3343   // to resolve the overloaded function. If all goes well, T2 is the
3344   // type of the resulting function.
3345   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3346                                                    T1, Sequence))
3347     return;
3348 
3349   // Delegate everything else to a subfunction.
3350   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3351                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3352 }
3353 
3354 /// \brief Reference initialization without resolving overloaded functions.
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)3355 static void TryReferenceInitializationCore(Sema &S,
3356                                            const InitializedEntity &Entity,
3357                                            const InitializationKind &Kind,
3358                                            Expr *Initializer,
3359                                            QualType cv1T1, QualType T1,
3360                                            Qualifiers T1Quals,
3361                                            QualType cv2T2, QualType T2,
3362                                            Qualifiers T2Quals,
3363                                            InitializationSequence &Sequence) {
3364   QualType DestType = Entity.getType();
3365   SourceLocation DeclLoc = Initializer->getLocStart();
3366   // Compute some basic properties of the types and the initializer.
3367   bool isLValueRef = DestType->isLValueReferenceType();
3368   bool isRValueRef = !isLValueRef;
3369   bool DerivedToBase = false;
3370   bool ObjCConversion = false;
3371   bool ObjCLifetimeConversion = false;
3372   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3373   Sema::ReferenceCompareResult RefRelationship
3374     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3375                                      ObjCConversion, ObjCLifetimeConversion);
3376 
3377   // C++0x [dcl.init.ref]p5:
3378   //   A reference to type "cv1 T1" is initialized by an expression of type
3379   //   "cv2 T2" as follows:
3380   //
3381   //     - If the reference is an lvalue reference and the initializer
3382   //       expression
3383   // Note the analogous bullet points for rvlaue refs to functions. Because
3384   // there are no function rvalues in C++, rvalue refs to functions are treated
3385   // like lvalue refs.
3386   OverloadingResult ConvOvlResult = OR_Success;
3387   bool T1Function = T1->isFunctionType();
3388   if (isLValueRef || T1Function) {
3389     if (InitCategory.isLValue() &&
3390         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3391          (Kind.isCStyleOrFunctionalCast() &&
3392           RefRelationship == Sema::Ref_Related))) {
3393       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3394       //     reference-compatible with "cv2 T2," or
3395       //
3396       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3397       // bit-field when we're determining whether the reference initialization
3398       // can occur. However, we do pay attention to whether it is a bit-field
3399       // to decide whether we're actually binding to a temporary created from
3400       // the bit-field.
3401       if (DerivedToBase)
3402         Sequence.AddDerivedToBaseCastStep(
3403                          S.Context.getQualifiedType(T1, T2Quals),
3404                          VK_LValue);
3405       else if (ObjCConversion)
3406         Sequence.AddObjCObjectConversionStep(
3407                                      S.Context.getQualifiedType(T1, T2Quals));
3408 
3409       if (T1Quals != T2Quals)
3410         Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3411       bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3412         (Initializer->getBitField() || Initializer->refersToVectorElement());
3413       Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3414       return;
3415     }
3416 
3417     //     - has a class type (i.e., T2 is a class type), where T1 is not
3418     //       reference-related to T2, and can be implicitly converted to an
3419     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3420     //       with "cv3 T3" (this conversion is selected by enumerating the
3421     //       applicable conversion functions (13.3.1.6) and choosing the best
3422     //       one through overload resolution (13.3)),
3423     // If we have an rvalue ref to function type here, the rhs must be
3424     // an rvalue.
3425     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3426         (isLValueRef || InitCategory.isRValue())) {
3427       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3428                                                        Initializer,
3429                                                    /*AllowRValues=*/isRValueRef,
3430                                                        Sequence);
3431       if (ConvOvlResult == OR_Success)
3432         return;
3433       if (ConvOvlResult != OR_No_Viable_Function) {
3434         Sequence.SetOverloadFailure(
3435                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3436                                     ConvOvlResult);
3437       }
3438     }
3439   }
3440 
3441   //     - Otherwise, the reference shall be an lvalue reference to a
3442   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3443   //       shall be an rvalue reference.
3444   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3445     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3446       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3447     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3448       Sequence.SetOverloadFailure(
3449                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3450                                   ConvOvlResult);
3451     else
3452       Sequence.SetFailed(InitCategory.isLValue()
3453         ? (RefRelationship == Sema::Ref_Related
3454              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3455              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3456         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3457 
3458     return;
3459   }
3460 
3461   //    - If the initializer expression
3462   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3463   //        "cv1 T1" is reference-compatible with "cv2 T2"
3464   // Note: functions are handled below.
3465   if (!T1Function &&
3466       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3467        (Kind.isCStyleOrFunctionalCast() &&
3468         RefRelationship == Sema::Ref_Related)) &&
3469       (InitCategory.isXValue() ||
3470        (InitCategory.isPRValue() && T2->isRecordType()) ||
3471        (InitCategory.isPRValue() && T2->isArrayType()))) {
3472     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3473     if (InitCategory.isPRValue() && T2->isRecordType()) {
3474       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3475       // compiler the freedom to perform a copy here or bind to the
3476       // object, while C++0x requires that we bind directly to the
3477       // object. Hence, we always bind to the object without making an
3478       // extra copy. However, in C++03 requires that we check for the
3479       // presence of a suitable copy constructor:
3480       //
3481       //   The constructor that would be used to make the copy shall
3482       //   be callable whether or not the copy is actually done.
3483       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3484         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3485       else if (S.getLangOpts().CPlusPlus11)
3486         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3487     }
3488 
3489     if (DerivedToBase)
3490       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3491                                         ValueKind);
3492     else if (ObjCConversion)
3493       Sequence.AddObjCObjectConversionStep(
3494                                        S.Context.getQualifiedType(T1, T2Quals));
3495 
3496     if (T1Quals != T2Quals)
3497       Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3498     Sequence.AddReferenceBindingStep(cv1T1,
3499                                  /*bindingTemporary=*/InitCategory.isPRValue());
3500     return;
3501   }
3502 
3503   //       - has a class type (i.e., T2 is a class type), where T1 is not
3504   //         reference-related to T2, and can be implicitly converted to an
3505   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3506   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3507   if (T2->isRecordType()) {
3508     if (RefRelationship == Sema::Ref_Incompatible) {
3509       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3510                                                        Kind, Initializer,
3511                                                        /*AllowRValues=*/true,
3512                                                        Sequence);
3513       if (ConvOvlResult)
3514         Sequence.SetOverloadFailure(
3515                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3516                                     ConvOvlResult);
3517 
3518       return;
3519     }
3520 
3521     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3522     return;
3523   }
3524 
3525   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3526   //        from the initializer expression using the rules for a non-reference
3527   //        copy initialization (8.5). The reference is then bound to the
3528   //        temporary. [...]
3529 
3530   // Determine whether we are allowed to call explicit constructors or
3531   // explicit conversion operators.
3532   bool AllowExplicit = Kind.AllowExplicit();
3533 
3534   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3535 
3536   ImplicitConversionSequence ICS
3537     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3538                               /*SuppressUserConversions*/ false,
3539                               AllowExplicit,
3540                               /*FIXME:InOverloadResolution=*/false,
3541                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3542                               /*AllowObjCWritebackConversion=*/false);
3543 
3544   if (ICS.isBad()) {
3545     // FIXME: Use the conversion function set stored in ICS to turn
3546     // this into an overloading ambiguity diagnostic. However, we need
3547     // to keep that set as an OverloadCandidateSet rather than as some
3548     // other kind of set.
3549     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3550       Sequence.SetOverloadFailure(
3551                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3552                                   ConvOvlResult);
3553     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3554       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3555     else
3556       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3557     return;
3558   } else {
3559     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3560   }
3561 
3562   //        [...] If T1 is reference-related to T2, cv1 must be the
3563   //        same cv-qualification as, or greater cv-qualification
3564   //        than, cv2; otherwise, the program is ill-formed.
3565   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3566   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3567   if (RefRelationship == Sema::Ref_Related &&
3568       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3569     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3570     return;
3571   }
3572 
3573   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3574   //   reference, the initializer expression shall not be an lvalue.
3575   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3576       InitCategory.isLValue()) {
3577     Sequence.SetFailed(
3578                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3579     return;
3580   }
3581 
3582   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3583   return;
3584 }
3585 
3586 /// \brief Attempt character array initialization from a string literal
3587 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3588 static void TryStringLiteralInitialization(Sema &S,
3589                                            const InitializedEntity &Entity,
3590                                            const InitializationKind &Kind,
3591                                            Expr *Initializer,
3592                                        InitializationSequence &Sequence) {
3593   Sequence.AddStringInitStep(Entity.getType());
3594 }
3595 
3596 /// \brief Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)3597 static void TryValueInitialization(Sema &S,
3598                                    const InitializedEntity &Entity,
3599                                    const InitializationKind &Kind,
3600                                    InitializationSequence &Sequence,
3601                                    InitListExpr *InitList) {
3602   assert((!InitList || InitList->getNumInits() == 0) &&
3603          "Shouldn't use value-init for non-empty init lists");
3604 
3605   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3606   //
3607   //   To value-initialize an object of type T means:
3608   QualType T = Entity.getType();
3609 
3610   //     -- if T is an array type, then each element is value-initialized;
3611   T = S.Context.getBaseElementType(T);
3612 
3613   if (const RecordType *RT = T->getAs<RecordType>()) {
3614     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3615       bool NeedZeroInitialization = true;
3616       if (!S.getLangOpts().CPlusPlus11) {
3617         // C++98:
3618         // -- if T is a class type (clause 9) with a user-declared constructor
3619         //    (12.1), then the default constructor for T is called (and the
3620         //    initialization is ill-formed if T has no accessible default
3621         //    constructor);
3622         if (ClassDecl->hasUserDeclaredConstructor())
3623           NeedZeroInitialization = false;
3624       } else {
3625         // C++11:
3626         // -- if T is a class type (clause 9) with either no default constructor
3627         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3628         //    or deleted, then the object is default-initialized;
3629         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3630         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3631           NeedZeroInitialization = false;
3632       }
3633 
3634       // -- if T is a (possibly cv-qualified) non-union class type without a
3635       //    user-provided or deleted default constructor, then the object is
3636       //    zero-initialized and, if T has a non-trivial default constructor,
3637       //    default-initialized;
3638       // The 'non-union' here was removed by DR1502. The 'non-trivial default
3639       // constructor' part was removed by DR1507.
3640       if (NeedZeroInitialization)
3641         Sequence.AddZeroInitializationStep(Entity.getType());
3642 
3643       // C++03:
3644       // -- if T is a non-union class type without a user-declared constructor,
3645       //    then every non-static data member and base class component of T is
3646       //    value-initialized;
3647       // [...] A program that calls for [...] value-initialization of an
3648       // entity of reference type is ill-formed.
3649       //
3650       // C++11 doesn't need this handling, because value-initialization does not
3651       // occur recursively there, and the implicit default constructor is
3652       // defined as deleted in the problematic cases.
3653       if (!S.getLangOpts().CPlusPlus11 &&
3654           ClassDecl->hasUninitializedReferenceMember()) {
3655         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3656         return;
3657       }
3658 
3659       // If this is list-value-initialization, pass the empty init list on when
3660       // building the constructor call. This affects the semantics of a few
3661       // things (such as whether an explicit default constructor can be called).
3662       Expr *InitListAsExpr = InitList;
3663       Expr **Args = InitList ? &InitListAsExpr : 0;
3664       unsigned NumArgs = InitList ? 1 : 0;
3665       bool InitListSyntax = InitList;
3666 
3667       return TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, T,
3668                                           Sequence, InitListSyntax);
3669     }
3670   }
3671 
3672   Sequence.AddZeroInitializationStep(Entity.getType());
3673 }
3674 
3675 /// \brief Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)3676 static void TryDefaultInitialization(Sema &S,
3677                                      const InitializedEntity &Entity,
3678                                      const InitializationKind &Kind,
3679                                      InitializationSequence &Sequence) {
3680   assert(Kind.getKind() == InitializationKind::IK_Default);
3681 
3682   // C++ [dcl.init]p6:
3683   //   To default-initialize an object of type T means:
3684   //     - if T is an array type, each element is default-initialized;
3685   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3686 
3687   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3688   //       constructor for T is called (and the initialization is ill-formed if
3689   //       T has no accessible default constructor);
3690   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3691     TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3692     return;
3693   }
3694 
3695   //     - otherwise, no initialization is performed.
3696 
3697   //   If a program calls for the default initialization of an object of
3698   //   a const-qualified type T, T shall be a class type with a user-provided
3699   //   default constructor.
3700   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3701     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3702     return;
3703   }
3704 
3705   // If the destination type has a lifetime property, zero-initialize it.
3706   if (DestType.getQualifiers().hasObjCLifetime()) {
3707     Sequence.AddZeroInitializationStep(Entity.getType());
3708     return;
3709   }
3710 }
3711 
3712 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3713 /// which enumerates all conversion functions and performs overload resolution
3714 /// to select the best.
TryUserDefinedConversion(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3715 static void TryUserDefinedConversion(Sema &S,
3716                                      const InitializedEntity &Entity,
3717                                      const InitializationKind &Kind,
3718                                      Expr *Initializer,
3719                                      InitializationSequence &Sequence) {
3720   QualType DestType = Entity.getType();
3721   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3722   QualType SourceType = Initializer->getType();
3723   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3724          "Must have a class type to perform a user-defined conversion");
3725 
3726   // Build the candidate set directly in the initialization sequence
3727   // structure, so that it will persist if we fail.
3728   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3729   CandidateSet.clear();
3730 
3731   // Determine whether we are allowed to call explicit constructors or
3732   // explicit conversion operators.
3733   bool AllowExplicit = Kind.AllowExplicit();
3734 
3735   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3736     // The type we're converting to is a class type. Enumerate its constructors
3737     // to see if there is a suitable conversion.
3738     CXXRecordDecl *DestRecordDecl
3739       = cast<CXXRecordDecl>(DestRecordType->getDecl());
3740 
3741     // Try to complete the type we're converting to.
3742     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3743       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3744       // The container holding the constructors can under certain conditions
3745       // be changed while iterating. To be safe we copy the lookup results
3746       // to a new container.
3747       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
3748       for (SmallVector<NamedDecl*, 8>::iterator
3749              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
3750            Con != ConEnd; ++Con) {
3751         NamedDecl *D = *Con;
3752         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3753 
3754         // Find the constructor (which may be a template).
3755         CXXConstructorDecl *Constructor = 0;
3756         FunctionTemplateDecl *ConstructorTmpl
3757           = dyn_cast<FunctionTemplateDecl>(D);
3758         if (ConstructorTmpl)
3759           Constructor = cast<CXXConstructorDecl>(
3760                                            ConstructorTmpl->getTemplatedDecl());
3761         else
3762           Constructor = cast<CXXConstructorDecl>(D);
3763 
3764         if (!Constructor->isInvalidDecl() &&
3765             Constructor->isConvertingConstructor(AllowExplicit)) {
3766           if (ConstructorTmpl)
3767             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3768                                            /*ExplicitArgs*/ 0,
3769                                            Initializer, CandidateSet,
3770                                            /*SuppressUserConversions=*/true);
3771           else
3772             S.AddOverloadCandidate(Constructor, FoundDecl,
3773                                    Initializer, CandidateSet,
3774                                    /*SuppressUserConversions=*/true);
3775         }
3776       }
3777     }
3778   }
3779 
3780   SourceLocation DeclLoc = Initializer->getLocStart();
3781 
3782   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3783     // The type we're converting from is a class type, enumerate its conversion
3784     // functions.
3785 
3786     // We can only enumerate the conversion functions for a complete type; if
3787     // the type isn't complete, simply skip this step.
3788     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3789       CXXRecordDecl *SourceRecordDecl
3790         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3791 
3792       std::pair<CXXRecordDecl::conversion_iterator,
3793                 CXXRecordDecl::conversion_iterator>
3794         Conversions = SourceRecordDecl->getVisibleConversionFunctions();
3795       for (CXXRecordDecl::conversion_iterator
3796              I = Conversions.first, E = Conversions.second; I != E; ++I) {
3797         NamedDecl *D = *I;
3798         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3799         if (isa<UsingShadowDecl>(D))
3800           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3801 
3802         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3803         CXXConversionDecl *Conv;
3804         if (ConvTemplate)
3805           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3806         else
3807           Conv = cast<CXXConversionDecl>(D);
3808 
3809         if (AllowExplicit || !Conv->isExplicit()) {
3810           if (ConvTemplate)
3811             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3812                                              ActingDC, Initializer, DestType,
3813                                              CandidateSet);
3814           else
3815             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3816                                      Initializer, DestType, CandidateSet);
3817         }
3818       }
3819     }
3820   }
3821 
3822   // Perform overload resolution. If it fails, return the failed result.
3823   OverloadCandidateSet::iterator Best;
3824   if (OverloadingResult Result
3825         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3826     Sequence.SetOverloadFailure(
3827                         InitializationSequence::FK_UserConversionOverloadFailed,
3828                                 Result);
3829     return;
3830   }
3831 
3832   FunctionDecl *Function = Best->Function;
3833   Function->setReferenced();
3834   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3835 
3836   if (isa<CXXConstructorDecl>(Function)) {
3837     // Add the user-defined conversion step. Any cv-qualification conversion is
3838     // subsumed by the initialization. Per DR5, the created temporary is of the
3839     // cv-unqualified type of the destination.
3840     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3841                                    DestType.getUnqualifiedType(),
3842                                    HadMultipleCandidates);
3843     return;
3844   }
3845 
3846   // Add the user-defined conversion step that calls the conversion function.
3847   QualType ConvType = Function->getCallResultType();
3848   if (ConvType->getAs<RecordType>()) {
3849     // If we're converting to a class type, there may be an copy of
3850     // the resulting temporary object (possible to create an object of
3851     // a base class type). That copy is not a separate conversion, so
3852     // we just make a note of the actual destination type (possibly a
3853     // base class of the type returned by the conversion function) and
3854     // let the user-defined conversion step handle the conversion.
3855     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3856                                    HadMultipleCandidates);
3857     return;
3858   }
3859 
3860   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3861                                  HadMultipleCandidates);
3862 
3863   // If the conversion following the call to the conversion function
3864   // is interesting, add it as a separate step.
3865   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3866       Best->FinalConversion.Third) {
3867     ImplicitConversionSequence ICS;
3868     ICS.setStandard();
3869     ICS.Standard = Best->FinalConversion;
3870     Sequence.AddConversionSequenceStep(ICS, DestType);
3871   }
3872 }
3873 
3874 /// The non-zero enum values here are indexes into diagnostic alternatives.
3875 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3876 
3877 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)3878 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3879                                          bool isAddressOf, bool &isWeakAccess) {
3880   // Skip parens.
3881   e = e->IgnoreParens();
3882 
3883   // Skip address-of nodes.
3884   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3885     if (op->getOpcode() == UO_AddrOf)
3886       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
3887                                 isWeakAccess);
3888 
3889   // Skip certain casts.
3890   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3891     switch (ce->getCastKind()) {
3892     case CK_Dependent:
3893     case CK_BitCast:
3894     case CK_LValueBitCast:
3895     case CK_NoOp:
3896       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
3897 
3898     case CK_ArrayToPointerDecay:
3899       return IIK_nonscalar;
3900 
3901     case CK_NullToPointer:
3902       return IIK_okay;
3903 
3904     default:
3905       break;
3906     }
3907 
3908   // If we have a declaration reference, it had better be a local variable.
3909   } else if (isa<DeclRefExpr>(e)) {
3910     // set isWeakAccess to true, to mean that there will be an implicit
3911     // load which requires a cleanup.
3912     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
3913       isWeakAccess = true;
3914 
3915     if (!isAddressOf) return IIK_nonlocal;
3916 
3917     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3918     if (!var) return IIK_nonlocal;
3919 
3920     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3921 
3922   // If we have a conditional operator, check both sides.
3923   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3924     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
3925                                                 isWeakAccess))
3926       return iik;
3927 
3928     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
3929 
3930   // These are never scalar.
3931   } else if (isa<ArraySubscriptExpr>(e)) {
3932     return IIK_nonscalar;
3933 
3934   // Otherwise, it needs to be a null pointer constant.
3935   } else {
3936     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3937             ? IIK_okay : IIK_nonlocal);
3938   }
3939 
3940   return IIK_nonlocal;
3941 }
3942 
3943 /// Check whether the given expression is a valid operand for an
3944 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)3945 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3946   assert(src->isRValue());
3947   bool isWeakAccess = false;
3948   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
3949   // If isWeakAccess to true, there will be an implicit
3950   // load which requires a cleanup.
3951   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
3952     S.ExprNeedsCleanups = true;
3953 
3954   if (iik == IIK_okay) return;
3955 
3956   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3957     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3958     << src->getSourceRange();
3959 }
3960 
3961 /// \brief Determine whether we have compatible array types for the
3962 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)3963 static bool hasCompatibleArrayTypes(ASTContext &Context,
3964                                     const ArrayType *Dest,
3965                                     const ArrayType *Source) {
3966   // If the source and destination array types are equivalent, we're
3967   // done.
3968   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3969     return true;
3970 
3971   // Make sure that the element types are the same.
3972   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3973     return false;
3974 
3975   // The only mismatch we allow is when the destination is an
3976   // incomplete array type and the source is a constant array type.
3977   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3978 }
3979 
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)3980 static bool tryObjCWritebackConversion(Sema &S,
3981                                        InitializationSequence &Sequence,
3982                                        const InitializedEntity &Entity,
3983                                        Expr *Initializer) {
3984   bool ArrayDecay = false;
3985   QualType ArgType = Initializer->getType();
3986   QualType ArgPointee;
3987   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3988     ArrayDecay = true;
3989     ArgPointee = ArgArrayType->getElementType();
3990     ArgType = S.Context.getPointerType(ArgPointee);
3991   }
3992 
3993   // Handle write-back conversion.
3994   QualType ConvertedArgType;
3995   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3996                                    ConvertedArgType))
3997     return false;
3998 
3999   // We should copy unless we're passing to an argument explicitly
4000   // marked 'out'.
4001   bool ShouldCopy = true;
4002   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4003     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4004 
4005   // Do we need an lvalue conversion?
4006   if (ArrayDecay || Initializer->isGLValue()) {
4007     ImplicitConversionSequence ICS;
4008     ICS.setStandard();
4009     ICS.Standard.setAsIdentityConversion();
4010 
4011     QualType ResultType;
4012     if (ArrayDecay) {
4013       ICS.Standard.First = ICK_Array_To_Pointer;
4014       ResultType = S.Context.getPointerType(ArgPointee);
4015     } else {
4016       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4017       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4018     }
4019 
4020     Sequence.AddConversionSequenceStep(ICS, ResultType);
4021   }
4022 
4023   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4024   return true;
4025 }
4026 
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4027 static bool TryOCLSamplerInitialization(Sema &S,
4028                                         InitializationSequence &Sequence,
4029                                         QualType DestType,
4030                                         Expr *Initializer) {
4031   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4032     !Initializer->isIntegerConstantExpr(S.getASTContext()))
4033     return false;
4034 
4035   Sequence.AddOCLSamplerInitStep(DestType);
4036   return true;
4037 }
4038 
4039 //
4040 // OpenCL 1.2 spec, s6.12.10
4041 //
4042 // The event argument can also be used to associate the
4043 // async_work_group_copy with a previous async copy allowing
4044 // an event to be shared by multiple async copies; otherwise
4045 // event should be zero.
4046 //
TryOCLZeroEventInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4047 static bool TryOCLZeroEventInitialization(Sema &S,
4048                                           InitializationSequence &Sequence,
4049                                           QualType DestType,
4050                                           Expr *Initializer) {
4051   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4052       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4053       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4054     return false;
4055 
4056   Sequence.AddOCLZeroEventStep(DestType);
4057   return true;
4058 }
4059 
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs)4060 InitializationSequence::InitializationSequence(Sema &S,
4061                                                const InitializedEntity &Entity,
4062                                                const InitializationKind &Kind,
4063                                                Expr **Args,
4064                                                unsigned NumArgs)
4065     : FailedCandidateSet(Kind.getLocation()) {
4066   ASTContext &Context = S.Context;
4067 
4068   // C++0x [dcl.init]p16:
4069   //   The semantics of initializers are as follows. The destination type is
4070   //   the type of the object or reference being initialized and the source
4071   //   type is the type of the initializer expression. The source type is not
4072   //   defined when the initializer is a braced-init-list or when it is a
4073   //   parenthesized list of expressions.
4074   QualType DestType = Entity.getType();
4075 
4076   if (DestType->isDependentType() ||
4077       Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
4078     SequenceKind = DependentSequence;
4079     return;
4080   }
4081 
4082   // Almost everything is a normal sequence.
4083   setSequenceKind(NormalSequence);
4084 
4085   for (unsigned I = 0; I != NumArgs; ++I)
4086     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4087       // FIXME: should we be doing this here?
4088       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4089       if (result.isInvalid()) {
4090         SetFailed(FK_PlaceholderType);
4091         return;
4092       }
4093       Args[I] = result.take();
4094     }
4095 
4096 
4097   QualType SourceType;
4098   Expr *Initializer = 0;
4099   if (NumArgs == 1) {
4100     Initializer = Args[0];
4101     if (!isa<InitListExpr>(Initializer))
4102       SourceType = Initializer->getType();
4103   }
4104 
4105   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4106   //       object is list-initialized (8.5.4).
4107   if (Kind.getKind() != InitializationKind::IK_Direct) {
4108     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4109       TryListInitialization(S, Entity, Kind, InitList, *this);
4110       return;
4111     }
4112   }
4113 
4114   //     - If the destination type is a reference type, see 8.5.3.
4115   if (DestType->isReferenceType()) {
4116     // C++0x [dcl.init.ref]p1:
4117     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4118     //   (8.3.2), shall be initialized by an object, or function, of type T or
4119     //   by an object that can be converted into a T.
4120     // (Therefore, multiple arguments are not permitted.)
4121     if (NumArgs != 1)
4122       SetFailed(FK_TooManyInitsForReference);
4123     else
4124       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4125     return;
4126   }
4127 
4128   //     - If the initializer is (), the object is value-initialized.
4129   if (Kind.getKind() == InitializationKind::IK_Value ||
4130       (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4131     TryValueInitialization(S, Entity, Kind, *this);
4132     return;
4133   }
4134 
4135   // Handle default initialization.
4136   if (Kind.getKind() == InitializationKind::IK_Default) {
4137     TryDefaultInitialization(S, Entity, Kind, *this);
4138     return;
4139   }
4140 
4141   //     - If the destination type is an array of characters, an array of
4142   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4143   //       initializer is a string literal, see 8.5.2.
4144   //     - Otherwise, if the destination type is an array, the program is
4145   //       ill-formed.
4146   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4147     if (Initializer && isa<VariableArrayType>(DestAT)) {
4148       SetFailed(FK_VariableLengthArrayHasInitializer);
4149       return;
4150     }
4151 
4152     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4153       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4154       return;
4155     }
4156 
4157     // Note: as an GNU C extension, we allow initialization of an
4158     // array from a compound literal that creates an array of the same
4159     // type, so long as the initializer has no side effects.
4160     if (!S.getLangOpts().CPlusPlus && Initializer &&
4161         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4162         Initializer->getType()->isArrayType()) {
4163       const ArrayType *SourceAT
4164         = Context.getAsArrayType(Initializer->getType());
4165       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4166         SetFailed(FK_ArrayTypeMismatch);
4167       else if (Initializer->HasSideEffects(S.Context))
4168         SetFailed(FK_NonConstantArrayInit);
4169       else {
4170         AddArrayInitStep(DestType);
4171       }
4172     }
4173     // Note: as a GNU C++ extension, we allow list-initialization of a
4174     // class member of array type from a parenthesized initializer list.
4175     else if (S.getLangOpts().CPlusPlus &&
4176              Entity.getKind() == InitializedEntity::EK_Member &&
4177              Initializer && isa<InitListExpr>(Initializer)) {
4178       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4179                             *this);
4180       AddParenthesizedArrayInitStep(DestType);
4181     } else if (DestAT->getElementType()->isAnyCharacterType())
4182       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4183     else
4184       SetFailed(FK_ArrayNeedsInitList);
4185 
4186     return;
4187   }
4188 
4189   // Determine whether we should consider writeback conversions for
4190   // Objective-C ARC.
4191   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4192     Entity.getKind() == InitializedEntity::EK_Parameter;
4193 
4194   // We're at the end of the line for C: it's either a write-back conversion
4195   // or it's a C assignment. There's no need to check anything else.
4196   if (!S.getLangOpts().CPlusPlus) {
4197     // If allowed, check whether this is an Objective-C writeback conversion.
4198     if (allowObjCWritebackConversion &&
4199         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4200       return;
4201     }
4202 
4203     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4204       return;
4205 
4206     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4207       return;
4208 
4209     // Handle initialization in C
4210     AddCAssignmentStep(DestType);
4211     MaybeProduceObjCObject(S, *this, Entity);
4212     return;
4213   }
4214 
4215   assert(S.getLangOpts().CPlusPlus);
4216 
4217   //     - If the destination type is a (possibly cv-qualified) class type:
4218   if (DestType->isRecordType()) {
4219     //     - If the initialization is direct-initialization, or if it is
4220     //       copy-initialization where the cv-unqualified version of the
4221     //       source type is the same class as, or a derived class of, the
4222     //       class of the destination, constructors are considered. [...]
4223     if (Kind.getKind() == InitializationKind::IK_Direct ||
4224         (Kind.getKind() == InitializationKind::IK_Copy &&
4225          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4226           S.IsDerivedFrom(SourceType, DestType))))
4227       TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4228                                    Entity.getType(), *this);
4229     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4230     //       user-defined conversion sequences that can convert from the source
4231     //       type to the destination type or (when a conversion function is
4232     //       used) to a derived class thereof are enumerated as described in
4233     //       13.3.1.4, and the best one is chosen through overload resolution
4234     //       (13.3).
4235     else
4236       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4237     return;
4238   }
4239 
4240   if (NumArgs > 1) {
4241     SetFailed(FK_TooManyInitsForScalar);
4242     return;
4243   }
4244   assert(NumArgs == 1 && "Zero-argument case handled above");
4245 
4246   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4247   //      type, conversion functions are considered.
4248   if (!SourceType.isNull() && SourceType->isRecordType()) {
4249     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4250     MaybeProduceObjCObject(S, *this, Entity);
4251     return;
4252   }
4253 
4254   //    - Otherwise, the initial value of the object being initialized is the
4255   //      (possibly converted) value of the initializer expression. Standard
4256   //      conversions (Clause 4) will be used, if necessary, to convert the
4257   //      initializer expression to the cv-unqualified version of the
4258   //      destination type; no user-defined conversions are considered.
4259 
4260   ImplicitConversionSequence ICS
4261     = S.TryImplicitConversion(Initializer, Entity.getType(),
4262                               /*SuppressUserConversions*/true,
4263                               /*AllowExplicitConversions*/ false,
4264                               /*InOverloadResolution*/ false,
4265                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4266                               allowObjCWritebackConversion);
4267 
4268   if (ICS.isStandard() &&
4269       ICS.Standard.Second == ICK_Writeback_Conversion) {
4270     // Objective-C ARC writeback conversion.
4271 
4272     // We should copy unless we're passing to an argument explicitly
4273     // marked 'out'.
4274     bool ShouldCopy = true;
4275     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4276       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4277 
4278     // If there was an lvalue adjustment, add it as a separate conversion.
4279     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4280         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4281       ImplicitConversionSequence LvalueICS;
4282       LvalueICS.setStandard();
4283       LvalueICS.Standard.setAsIdentityConversion();
4284       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4285       LvalueICS.Standard.First = ICS.Standard.First;
4286       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4287     }
4288 
4289     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4290   } else if (ICS.isBad()) {
4291     DeclAccessPair dap;
4292     if (Initializer->getType() == Context.OverloadTy &&
4293           !S.ResolveAddressOfOverloadedFunction(Initializer
4294                       , DestType, false, dap))
4295       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4296     else
4297       SetFailed(InitializationSequence::FK_ConversionFailed);
4298   } else {
4299     AddConversionSequenceStep(ICS, Entity.getType());
4300 
4301     MaybeProduceObjCObject(S, *this, Entity);
4302   }
4303 }
4304 
~InitializationSequence()4305 InitializationSequence::~InitializationSequence() {
4306   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4307                                           StepEnd = Steps.end();
4308        Step != StepEnd; ++Step)
4309     Step->Destroy();
4310 }
4311 
4312 //===----------------------------------------------------------------------===//
4313 // Perform initialization
4314 //===----------------------------------------------------------------------===//
4315 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity)4316 getAssignmentAction(const InitializedEntity &Entity) {
4317   switch(Entity.getKind()) {
4318   case InitializedEntity::EK_Variable:
4319   case InitializedEntity::EK_New:
4320   case InitializedEntity::EK_Exception:
4321   case InitializedEntity::EK_Base:
4322   case InitializedEntity::EK_Delegating:
4323     return Sema::AA_Initializing;
4324 
4325   case InitializedEntity::EK_Parameter:
4326     if (Entity.getDecl() &&
4327         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4328       return Sema::AA_Sending;
4329 
4330     return Sema::AA_Passing;
4331 
4332   case InitializedEntity::EK_Result:
4333     return Sema::AA_Returning;
4334 
4335   case InitializedEntity::EK_Temporary:
4336     // FIXME: Can we tell apart casting vs. converting?
4337     return Sema::AA_Casting;
4338 
4339   case InitializedEntity::EK_Member:
4340   case InitializedEntity::EK_ArrayElement:
4341   case InitializedEntity::EK_VectorElement:
4342   case InitializedEntity::EK_ComplexElement:
4343   case InitializedEntity::EK_BlockElement:
4344   case InitializedEntity::EK_LambdaCapture:
4345     return Sema::AA_Initializing;
4346   }
4347 
4348   llvm_unreachable("Invalid EntityKind!");
4349 }
4350 
4351 /// \brief Whether we should bind a created object as a temporary when
4352 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)4353 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4354   switch (Entity.getKind()) {
4355   case InitializedEntity::EK_ArrayElement:
4356   case InitializedEntity::EK_Member:
4357   case InitializedEntity::EK_Result:
4358   case InitializedEntity::EK_New:
4359   case InitializedEntity::EK_Variable:
4360   case InitializedEntity::EK_Base:
4361   case InitializedEntity::EK_Delegating:
4362   case InitializedEntity::EK_VectorElement:
4363   case InitializedEntity::EK_ComplexElement:
4364   case InitializedEntity::EK_Exception:
4365   case InitializedEntity::EK_BlockElement:
4366   case InitializedEntity::EK_LambdaCapture:
4367     return false;
4368 
4369   case InitializedEntity::EK_Parameter:
4370   case InitializedEntity::EK_Temporary:
4371     return true;
4372   }
4373 
4374   llvm_unreachable("missed an InitializedEntity kind?");
4375 }
4376 
4377 /// \brief Whether the given entity, when initialized with an object
4378 /// created for that initialization, requires destruction.
shouldDestroyTemporary(const InitializedEntity & Entity)4379 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4380   switch (Entity.getKind()) {
4381     case InitializedEntity::EK_Result:
4382     case InitializedEntity::EK_New:
4383     case InitializedEntity::EK_Base:
4384     case InitializedEntity::EK_Delegating:
4385     case InitializedEntity::EK_VectorElement:
4386     case InitializedEntity::EK_ComplexElement:
4387     case InitializedEntity::EK_BlockElement:
4388     case InitializedEntity::EK_LambdaCapture:
4389       return false;
4390 
4391     case InitializedEntity::EK_Member:
4392     case InitializedEntity::EK_Variable:
4393     case InitializedEntity::EK_Parameter:
4394     case InitializedEntity::EK_Temporary:
4395     case InitializedEntity::EK_ArrayElement:
4396     case InitializedEntity::EK_Exception:
4397       return true;
4398   }
4399 
4400   llvm_unreachable("missed an InitializedEntity kind?");
4401 }
4402 
4403 /// \brief Look for copy and move constructors and constructor templates, for
4404 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
LookupCopyAndMoveConstructors(Sema & S,OverloadCandidateSet & CandidateSet,CXXRecordDecl * Class,Expr * CurInitExpr)4405 static void LookupCopyAndMoveConstructors(Sema &S,
4406                                           OverloadCandidateSet &CandidateSet,
4407                                           CXXRecordDecl *Class,
4408                                           Expr *CurInitExpr) {
4409   DeclContext::lookup_result R = S.LookupConstructors(Class);
4410   // The container holding the constructors can under certain conditions
4411   // be changed while iterating (e.g. because of deserialization).
4412   // To be safe we copy the lookup results to a new container.
4413   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4414   for (SmallVector<NamedDecl*, 16>::iterator
4415          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4416     NamedDecl *D = *CI;
4417     CXXConstructorDecl *Constructor = 0;
4418 
4419     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4420       // Handle copy/moveconstructors, only.
4421       if (!Constructor || Constructor->isInvalidDecl() ||
4422           !Constructor->isCopyOrMoveConstructor() ||
4423           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4424         continue;
4425 
4426       DeclAccessPair FoundDecl
4427         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4428       S.AddOverloadCandidate(Constructor, FoundDecl,
4429                              CurInitExpr, CandidateSet);
4430       continue;
4431     }
4432 
4433     // Handle constructor templates.
4434     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4435     if (ConstructorTmpl->isInvalidDecl())
4436       continue;
4437 
4438     Constructor = cast<CXXConstructorDecl>(
4439                                          ConstructorTmpl->getTemplatedDecl());
4440     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4441       continue;
4442 
4443     // FIXME: Do we need to limit this to copy-constructor-like
4444     // candidates?
4445     DeclAccessPair FoundDecl
4446       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4447     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4448                                    CurInitExpr, CandidateSet, true);
4449   }
4450 }
4451 
4452 /// \brief Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)4453 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4454                                            Expr *Initializer) {
4455   switch (Entity.getKind()) {
4456   case InitializedEntity::EK_Result:
4457     return Entity.getReturnLoc();
4458 
4459   case InitializedEntity::EK_Exception:
4460     return Entity.getThrowLoc();
4461 
4462   case InitializedEntity::EK_Variable:
4463     return Entity.getDecl()->getLocation();
4464 
4465   case InitializedEntity::EK_LambdaCapture:
4466     return Entity.getCaptureLoc();
4467 
4468   case InitializedEntity::EK_ArrayElement:
4469   case InitializedEntity::EK_Member:
4470   case InitializedEntity::EK_Parameter:
4471   case InitializedEntity::EK_Temporary:
4472   case InitializedEntity::EK_New:
4473   case InitializedEntity::EK_Base:
4474   case InitializedEntity::EK_Delegating:
4475   case InitializedEntity::EK_VectorElement:
4476   case InitializedEntity::EK_ComplexElement:
4477   case InitializedEntity::EK_BlockElement:
4478     return Initializer->getLocStart();
4479   }
4480   llvm_unreachable("missed an InitializedEntity kind?");
4481 }
4482 
4483 /// \brief Make a (potentially elidable) temporary copy of the object
4484 /// provided by the given initializer by calling the appropriate copy
4485 /// constructor.
4486 ///
4487 /// \param S The Sema object used for type-checking.
4488 ///
4489 /// \param T The type of the temporary object, which must either be
4490 /// the type of the initializer expression or a superclass thereof.
4491 ///
4492 /// \param Entity The entity being initialized.
4493 ///
4494 /// \param CurInit The initializer expression.
4495 ///
4496 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4497 /// is permitted in C++03 (but not C++0x) when binding a reference to
4498 /// an rvalue.
4499 ///
4500 /// \returns An expression that copies the initializer expression into
4501 /// a temporary object, or an error expression if a copy could not be
4502 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)4503 static ExprResult CopyObject(Sema &S,
4504                              QualType T,
4505                              const InitializedEntity &Entity,
4506                              ExprResult CurInit,
4507                              bool IsExtraneousCopy) {
4508   // Determine which class type we're copying to.
4509   Expr *CurInitExpr = (Expr *)CurInit.get();
4510   CXXRecordDecl *Class = 0;
4511   if (const RecordType *Record = T->getAs<RecordType>())
4512     Class = cast<CXXRecordDecl>(Record->getDecl());
4513   if (!Class)
4514     return CurInit;
4515 
4516   // C++0x [class.copy]p32:
4517   //   When certain criteria are met, an implementation is allowed to
4518   //   omit the copy/move construction of a class object, even if the
4519   //   copy/move constructor and/or destructor for the object have
4520   //   side effects. [...]
4521   //     - when a temporary class object that has not been bound to a
4522   //       reference (12.2) would be copied/moved to a class object
4523   //       with the same cv-unqualified type, the copy/move operation
4524   //       can be omitted by constructing the temporary object
4525   //       directly into the target of the omitted copy/move
4526   //
4527   // Note that the other three bullets are handled elsewhere. Copy
4528   // elision for return statements and throw expressions are handled as part
4529   // of constructor initialization, while copy elision for exception handlers
4530   // is handled by the run-time.
4531   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4532   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4533 
4534   // Make sure that the type we are copying is complete.
4535   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4536     return CurInit;
4537 
4538   // Perform overload resolution using the class's copy/move constructors.
4539   // Only consider constructors and constructor templates. Per
4540   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4541   // is direct-initialization.
4542   OverloadCandidateSet CandidateSet(Loc);
4543   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4544 
4545   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4546 
4547   OverloadCandidateSet::iterator Best;
4548   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4549   case OR_Success:
4550     break;
4551 
4552   case OR_No_Viable_Function:
4553     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4554            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4555            : diag::err_temp_copy_no_viable)
4556       << (int)Entity.getKind() << CurInitExpr->getType()
4557       << CurInitExpr->getSourceRange();
4558     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4559     if (!IsExtraneousCopy || S.isSFINAEContext())
4560       return ExprError();
4561     return CurInit;
4562 
4563   case OR_Ambiguous:
4564     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4565       << (int)Entity.getKind() << CurInitExpr->getType()
4566       << CurInitExpr->getSourceRange();
4567     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4568     return ExprError();
4569 
4570   case OR_Deleted:
4571     S.Diag(Loc, diag::err_temp_copy_deleted)
4572       << (int)Entity.getKind() << CurInitExpr->getType()
4573       << CurInitExpr->getSourceRange();
4574     S.NoteDeletedFunction(Best->Function);
4575     return ExprError();
4576   }
4577 
4578   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4579   SmallVector<Expr*, 8> ConstructorArgs;
4580   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4581 
4582   S.CheckConstructorAccess(Loc, Constructor, Entity,
4583                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4584 
4585   if (IsExtraneousCopy) {
4586     // If this is a totally extraneous copy for C++03 reference
4587     // binding purposes, just return the original initialization
4588     // expression. We don't generate an (elided) copy operation here
4589     // because doing so would require us to pass down a flag to avoid
4590     // infinite recursion, where each step adds another extraneous,
4591     // elidable copy.
4592 
4593     // Instantiate the default arguments of any extra parameters in
4594     // the selected copy constructor, as if we were going to create a
4595     // proper call to the copy constructor.
4596     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4597       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4598       if (S.RequireCompleteType(Loc, Parm->getType(),
4599                                 diag::err_call_incomplete_argument))
4600         break;
4601 
4602       // Build the default argument expression; we don't actually care
4603       // if this succeeds or not, because this routine will complain
4604       // if there was a problem.
4605       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4606     }
4607 
4608     return S.Owned(CurInitExpr);
4609   }
4610 
4611   // Determine the arguments required to actually perform the
4612   // constructor call (we might have derived-to-base conversions, or
4613   // the copy constructor may have default arguments).
4614   if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4615                                 Loc, ConstructorArgs))
4616     return ExprError();
4617 
4618   // Actually perform the constructor call.
4619   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4620                                     ConstructorArgs,
4621                                     HadMultipleCandidates,
4622                                     /*ListInit*/ false,
4623                                     /*ZeroInit*/ false,
4624                                     CXXConstructExpr::CK_Complete,
4625                                     SourceRange());
4626 
4627   // If we're supposed to bind temporaries, do so.
4628   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4629     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4630   return CurInit;
4631 }
4632 
4633 /// \brief Check whether elidable copy construction for binding a reference to
4634 /// a temporary would have succeeded if we were building in C++98 mode, for
4635 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)4636 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4637                                            const InitializedEntity &Entity,
4638                                            Expr *CurInitExpr) {
4639   assert(S.getLangOpts().CPlusPlus11);
4640 
4641   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4642   if (!Record)
4643     return;
4644 
4645   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4646   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4647         == DiagnosticsEngine::Ignored)
4648     return;
4649 
4650   // Find constructors which would have been considered.
4651   OverloadCandidateSet CandidateSet(Loc);
4652   LookupCopyAndMoveConstructors(
4653       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4654 
4655   // Perform overload resolution.
4656   OverloadCandidateSet::iterator Best;
4657   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4658 
4659   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4660     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4661     << CurInitExpr->getSourceRange();
4662 
4663   switch (OR) {
4664   case OR_Success:
4665     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4666                              Entity, Best->FoundDecl.getAccess(), Diag);
4667     // FIXME: Check default arguments as far as that's possible.
4668     break;
4669 
4670   case OR_No_Viable_Function:
4671     S.Diag(Loc, Diag);
4672     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4673     break;
4674 
4675   case OR_Ambiguous:
4676     S.Diag(Loc, Diag);
4677     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4678     break;
4679 
4680   case OR_Deleted:
4681     S.Diag(Loc, Diag);
4682     S.NoteDeletedFunction(Best->Function);
4683     break;
4684   }
4685 }
4686 
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)4687 void InitializationSequence::PrintInitLocationNote(Sema &S,
4688                                               const InitializedEntity &Entity) {
4689   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4690     if (Entity.getDecl()->getLocation().isInvalid())
4691       return;
4692 
4693     if (Entity.getDecl()->getDeclName())
4694       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4695         << Entity.getDecl()->getDeclName();
4696     else
4697       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4698   }
4699 }
4700 
isReferenceBinding(const InitializationSequence::Step & s)4701 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4702   return s.Kind == InitializationSequence::SK_BindReference ||
4703          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4704 }
4705 
4706 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization)4707 PerformConstructorInitialization(Sema &S,
4708                                  const InitializedEntity &Entity,
4709                                  const InitializationKind &Kind,
4710                                  MultiExprArg Args,
4711                                  const InitializationSequence::Step& Step,
4712                                  bool &ConstructorInitRequiresZeroInit,
4713                                  bool IsListInitialization) {
4714   unsigned NumArgs = Args.size();
4715   CXXConstructorDecl *Constructor
4716     = cast<CXXConstructorDecl>(Step.Function.Function);
4717   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4718 
4719   // Build a call to the selected constructor.
4720   SmallVector<Expr*, 8> ConstructorArgs;
4721   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4722                          ? Kind.getEqualLoc()
4723                          : Kind.getLocation();
4724 
4725   if (Kind.getKind() == InitializationKind::IK_Default) {
4726     // Force even a trivial, implicit default constructor to be
4727     // semantically checked. We do this explicitly because we don't build
4728     // the definition for completely trivial constructors.
4729     assert(Constructor->getParent() && "No parent class for constructor.");
4730     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4731         Constructor->isTrivial() && !Constructor->isUsed(false))
4732       S.DefineImplicitDefaultConstructor(Loc, Constructor);
4733   }
4734 
4735   ExprResult CurInit = S.Owned((Expr *)0);
4736 
4737   // C++ [over.match.copy]p1:
4738   //   - When initializing a temporary to be bound to the first parameter
4739   //     of a constructor that takes a reference to possibly cv-qualified
4740   //     T as its first argument, called with a single argument in the
4741   //     context of direct-initialization, explicit conversion functions
4742   //     are also considered.
4743   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4744                            Args.size() == 1 &&
4745                            Constructor->isCopyOrMoveConstructor();
4746 
4747   // Determine the arguments required to actually perform the constructor
4748   // call.
4749   if (S.CompleteConstructorCall(Constructor, Args,
4750                                 Loc, ConstructorArgs,
4751                                 AllowExplicitConv,
4752                                 IsListInitialization))
4753     return ExprError();
4754 
4755 
4756   if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4757       (Kind.getKind() == InitializationKind::IK_DirectList ||
4758        (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4759         (Kind.getKind() == InitializationKind::IK_Direct ||
4760          Kind.getKind() == InitializationKind::IK_Value)))) {
4761     // An explicitly-constructed temporary, e.g., X(1, 2).
4762     S.MarkFunctionReferenced(Loc, Constructor);
4763     S.DiagnoseUseOfDecl(Constructor, Loc);
4764 
4765     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4766     if (!TSInfo)
4767       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4768     SourceRange ParenRange;
4769     if (Kind.getKind() != InitializationKind::IK_DirectList)
4770       ParenRange = Kind.getParenRange();
4771 
4772     CurInit = S.Owned(
4773       new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
4774                                              TSInfo, ConstructorArgs,
4775                                              ParenRange, IsListInitialization,
4776                                              HadMultipleCandidates,
4777                                              ConstructorInitRequiresZeroInit));
4778   } else {
4779     CXXConstructExpr::ConstructionKind ConstructKind =
4780       CXXConstructExpr::CK_Complete;
4781 
4782     if (Entity.getKind() == InitializedEntity::EK_Base) {
4783       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4784         CXXConstructExpr::CK_VirtualBase :
4785         CXXConstructExpr::CK_NonVirtualBase;
4786     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4787       ConstructKind = CXXConstructExpr::CK_Delegating;
4788     }
4789 
4790     // Only get the parenthesis range if it is a direct construction.
4791     SourceRange parenRange =
4792         Kind.getKind() == InitializationKind::IK_Direct ?
4793         Kind.getParenRange() : SourceRange();
4794 
4795     // If the entity allows NRVO, mark the construction as elidable
4796     // unconditionally.
4797     if (Entity.allowsNRVO())
4798       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4799                                         Constructor, /*Elidable=*/true,
4800                                         ConstructorArgs,
4801                                         HadMultipleCandidates,
4802                                         IsListInitialization,
4803                                         ConstructorInitRequiresZeroInit,
4804                                         ConstructKind,
4805                                         parenRange);
4806     else
4807       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4808                                         Constructor,
4809                                         ConstructorArgs,
4810                                         HadMultipleCandidates,
4811                                         IsListInitialization,
4812                                         ConstructorInitRequiresZeroInit,
4813                                         ConstructKind,
4814                                         parenRange);
4815   }
4816   if (CurInit.isInvalid())
4817     return ExprError();
4818 
4819   // Only check access if all of that succeeded.
4820   S.CheckConstructorAccess(Loc, Constructor, Entity,
4821                            Step.Function.FoundDecl.getAccess());
4822   S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4823 
4824   if (shouldBindAsTemporary(Entity))
4825     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4826 
4827   return CurInit;
4828 }
4829 
4830 /// Determine whether the specified InitializedEntity definitely has a lifetime
4831 /// longer than the current full-expression. Conservatively returns false if
4832 /// it's unclear.
4833 static bool
InitializedEntityOutlivesFullExpression(const InitializedEntity & Entity)4834 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4835   const InitializedEntity *Top = &Entity;
4836   while (Top->getParent())
4837     Top = Top->getParent();
4838 
4839   switch (Top->getKind()) {
4840   case InitializedEntity::EK_Variable:
4841   case InitializedEntity::EK_Result:
4842   case InitializedEntity::EK_Exception:
4843   case InitializedEntity::EK_Member:
4844   case InitializedEntity::EK_New:
4845   case InitializedEntity::EK_Base:
4846   case InitializedEntity::EK_Delegating:
4847     return true;
4848 
4849   case InitializedEntity::EK_ArrayElement:
4850   case InitializedEntity::EK_VectorElement:
4851   case InitializedEntity::EK_BlockElement:
4852   case InitializedEntity::EK_ComplexElement:
4853     // Could not determine what the full initialization is. Assume it might not
4854     // outlive the full-expression.
4855     return false;
4856 
4857   case InitializedEntity::EK_Parameter:
4858   case InitializedEntity::EK_Temporary:
4859   case InitializedEntity::EK_LambdaCapture:
4860     // The entity being initialized might not outlive the full-expression.
4861     return false;
4862   }
4863 
4864   llvm_unreachable("unknown entity kind");
4865 }
4866 
4867 ExprResult
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)4868 InitializationSequence::Perform(Sema &S,
4869                                 const InitializedEntity &Entity,
4870                                 const InitializationKind &Kind,
4871                                 MultiExprArg Args,
4872                                 QualType *ResultType) {
4873   if (Failed()) {
4874     unsigned NumArgs = Args.size();
4875     Diagnose(S, Entity, Kind, Args.data(), NumArgs);
4876     return ExprError();
4877   }
4878 
4879   if (getKind() == DependentSequence) {
4880     // If the declaration is a non-dependent, incomplete array type
4881     // that has an initializer, then its type will be completed once
4882     // the initializer is instantiated.
4883     if (ResultType && !Entity.getType()->isDependentType() &&
4884         Args.size() == 1) {
4885       QualType DeclType = Entity.getType();
4886       if (const IncompleteArrayType *ArrayT
4887                            = S.Context.getAsIncompleteArrayType(DeclType)) {
4888         // FIXME: We don't currently have the ability to accurately
4889         // compute the length of an initializer list without
4890         // performing full type-checking of the initializer list
4891         // (since we have to determine where braces are implicitly
4892         // introduced and such).  So, we fall back to making the array
4893         // type a dependently-sized array type with no specified
4894         // bound.
4895         if (isa<InitListExpr>((Expr *)Args[0])) {
4896           SourceRange Brackets;
4897 
4898           // Scavange the location of the brackets from the entity, if we can.
4899           if (DeclaratorDecl *DD = Entity.getDecl()) {
4900             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4901               TypeLoc TL = TInfo->getTypeLoc();
4902               if (IncompleteArrayTypeLoc ArrayLoc =
4903                       TL.getAs<IncompleteArrayTypeLoc>())
4904                 Brackets = ArrayLoc.getBracketsRange();
4905             }
4906           }
4907 
4908           *ResultType
4909             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4910                                                    /*NumElts=*/0,
4911                                                    ArrayT->getSizeModifier(),
4912                                        ArrayT->getIndexTypeCVRQualifiers(),
4913                                                    Brackets);
4914         }
4915 
4916       }
4917     }
4918     if (Kind.getKind() == InitializationKind::IK_Direct &&
4919         !Kind.isExplicitCast()) {
4920       // Rebuild the ParenListExpr.
4921       SourceRange ParenRange = Kind.getParenRange();
4922       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4923                                   Args);
4924     }
4925     assert(Kind.getKind() == InitializationKind::IK_Copy ||
4926            Kind.isExplicitCast() ||
4927            Kind.getKind() == InitializationKind::IK_DirectList);
4928     return ExprResult(Args[0]);
4929   }
4930 
4931   // No steps means no initialization.
4932   if (Steps.empty())
4933     return S.Owned((Expr *)0);
4934 
4935   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
4936       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4937       Entity.getKind() != InitializedEntity::EK_Parameter) {
4938     // Produce a C++98 compatibility warning if we are initializing a reference
4939     // from an initializer list. For parameters, we produce a better warning
4940     // elsewhere.
4941     Expr *Init = Args[0];
4942     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
4943       << Init->getSourceRange();
4944   }
4945 
4946   // Diagnose cases where we initialize a pointer to an array temporary, and the
4947   // pointer obviously outlives the temporary.
4948   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
4949       Entity.getType()->isPointerType() &&
4950       InitializedEntityOutlivesFullExpression(Entity)) {
4951     Expr *Init = Args[0];
4952     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
4953     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
4954       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
4955         << Init->getSourceRange();
4956   }
4957 
4958   QualType DestType = Entity.getType().getNonReferenceType();
4959   // FIXME: Ugly hack around the fact that Entity.getType() is not
4960   // the same as Entity.getDecl()->getType() in cases involving type merging,
4961   //  and we want latter when it makes sense.
4962   if (ResultType)
4963     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4964                                      Entity.getType();
4965 
4966   ExprResult CurInit = S.Owned((Expr *)0);
4967 
4968   // For initialization steps that start with a single initializer,
4969   // grab the only argument out the Args and place it into the "current"
4970   // initializer.
4971   switch (Steps.front().Kind) {
4972   case SK_ResolveAddressOfOverloadedFunction:
4973   case SK_CastDerivedToBaseRValue:
4974   case SK_CastDerivedToBaseXValue:
4975   case SK_CastDerivedToBaseLValue:
4976   case SK_BindReference:
4977   case SK_BindReferenceToTemporary:
4978   case SK_ExtraneousCopyToTemporary:
4979   case SK_UserConversion:
4980   case SK_QualificationConversionLValue:
4981   case SK_QualificationConversionXValue:
4982   case SK_QualificationConversionRValue:
4983   case SK_ConversionSequence:
4984   case SK_ListInitialization:
4985   case SK_UnwrapInitList:
4986   case SK_RewrapInitList:
4987   case SK_CAssignment:
4988   case SK_StringInit:
4989   case SK_ObjCObjectConversion:
4990   case SK_ArrayInit:
4991   case SK_ParenthesizedArrayInit:
4992   case SK_PassByIndirectCopyRestore:
4993   case SK_PassByIndirectRestore:
4994   case SK_ProduceObjCObject:
4995   case SK_StdInitializerList:
4996   case SK_OCLSamplerInit:
4997   case SK_OCLZeroEvent: {
4998     assert(Args.size() == 1);
4999     CurInit = Args[0];
5000     if (!CurInit.get()) return ExprError();
5001     break;
5002   }
5003 
5004   case SK_ConstructorInitialization:
5005   case SK_ListConstructorCall:
5006   case SK_ZeroInitialization:
5007     break;
5008   }
5009 
5010   // Walk through the computed steps for the initialization sequence,
5011   // performing the specified conversions along the way.
5012   bool ConstructorInitRequiresZeroInit = false;
5013   for (step_iterator Step = step_begin(), StepEnd = step_end();
5014        Step != StepEnd; ++Step) {
5015     if (CurInit.isInvalid())
5016       return ExprError();
5017 
5018     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5019 
5020     switch (Step->Kind) {
5021     case SK_ResolveAddressOfOverloadedFunction:
5022       // Overload resolution determined which function invoke; update the
5023       // initializer to reflect that choice.
5024       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5025       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
5026       CurInit = S.FixOverloadedFunctionReference(CurInit,
5027                                                  Step->Function.FoundDecl,
5028                                                  Step->Function.Function);
5029       break;
5030 
5031     case SK_CastDerivedToBaseRValue:
5032     case SK_CastDerivedToBaseXValue:
5033     case SK_CastDerivedToBaseLValue: {
5034       // We have a derived-to-base cast that produces either an rvalue or an
5035       // lvalue. Perform that cast.
5036 
5037       CXXCastPath BasePath;
5038 
5039       // Casts to inaccessible base classes are allowed with C-style casts.
5040       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5041       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5042                                          CurInit.get()->getLocStart(),
5043                                          CurInit.get()->getSourceRange(),
5044                                          &BasePath, IgnoreBaseAccess))
5045         return ExprError();
5046 
5047       if (S.BasePathInvolvesVirtualBase(BasePath)) {
5048         QualType T = SourceType;
5049         if (const PointerType *Pointer = T->getAs<PointerType>())
5050           T = Pointer->getPointeeType();
5051         if (const RecordType *RecordTy = T->getAs<RecordType>())
5052           S.MarkVTableUsed(CurInit.get()->getLocStart(),
5053                            cast<CXXRecordDecl>(RecordTy->getDecl()));
5054       }
5055 
5056       ExprValueKind VK =
5057           Step->Kind == SK_CastDerivedToBaseLValue ?
5058               VK_LValue :
5059               (Step->Kind == SK_CastDerivedToBaseXValue ?
5060                    VK_XValue :
5061                    VK_RValue);
5062       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5063                                                  Step->Type,
5064                                                  CK_DerivedToBase,
5065                                                  CurInit.get(),
5066                                                  &BasePath, VK));
5067       break;
5068     }
5069 
5070     case SK_BindReference:
5071       if (FieldDecl *BitField = CurInit.get()->getBitField()) {
5072         // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
5073         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5074           << Entity.getType().isVolatileQualified()
5075           << BitField->getDeclName()
5076           << CurInit.get()->getSourceRange();
5077         S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5078         return ExprError();
5079       }
5080 
5081       if (CurInit.get()->refersToVectorElement()) {
5082         // References cannot bind to vector elements.
5083         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5084           << Entity.getType().isVolatileQualified()
5085           << CurInit.get()->getSourceRange();
5086         PrintInitLocationNote(S, Entity);
5087         return ExprError();
5088       }
5089 
5090       // Reference binding does not have any corresponding ASTs.
5091 
5092       // Check exception specifications
5093       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5094         return ExprError();
5095 
5096       break;
5097 
5098     case SK_BindReferenceToTemporary:
5099       // Check exception specifications
5100       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5101         return ExprError();
5102 
5103       // Materialize the temporary into memory.
5104       CurInit = new (S.Context) MaterializeTemporaryExpr(
5105                                          Entity.getType().getNonReferenceType(),
5106                                                          CurInit.get(),
5107                                      Entity.getType()->isLValueReferenceType());
5108 
5109       // If we're binding to an Objective-C object that has lifetime, we
5110       // need cleanups.
5111       if (S.getLangOpts().ObjCAutoRefCount &&
5112           CurInit.get()->getType()->isObjCLifetimeType())
5113         S.ExprNeedsCleanups = true;
5114 
5115       break;
5116 
5117     case SK_ExtraneousCopyToTemporary:
5118       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5119                            /*IsExtraneousCopy=*/true);
5120       break;
5121 
5122     case SK_UserConversion: {
5123       // We have a user-defined conversion that invokes either a constructor
5124       // or a conversion function.
5125       CastKind CastKind;
5126       bool IsCopy = false;
5127       FunctionDecl *Fn = Step->Function.Function;
5128       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5129       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5130       bool CreatedObject = false;
5131       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5132         // Build a call to the selected constructor.
5133         SmallVector<Expr*, 8> ConstructorArgs;
5134         SourceLocation Loc = CurInit.get()->getLocStart();
5135         CurInit.release(); // Ownership transferred into MultiExprArg, below.
5136 
5137         // Determine the arguments required to actually perform the constructor
5138         // call.
5139         Expr *Arg = CurInit.get();
5140         if (S.CompleteConstructorCall(Constructor,
5141                                       MultiExprArg(&Arg, 1),
5142                                       Loc, ConstructorArgs))
5143           return ExprError();
5144 
5145         // Build an expression that constructs a temporary.
5146         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5147                                           ConstructorArgs,
5148                                           HadMultipleCandidates,
5149                                           /*ListInit*/ false,
5150                                           /*ZeroInit*/ false,
5151                                           CXXConstructExpr::CK_Complete,
5152                                           SourceRange());
5153         if (CurInit.isInvalid())
5154           return ExprError();
5155 
5156         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5157                                  FoundFn.getAccess());
5158         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5159 
5160         CastKind = CK_ConstructorConversion;
5161         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5162         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5163             S.IsDerivedFrom(SourceType, Class))
5164           IsCopy = true;
5165 
5166         CreatedObject = true;
5167       } else {
5168         // Build a call to the conversion function.
5169         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5170         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5171                                     FoundFn);
5172         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5173 
5174         // FIXME: Should we move this initialization into a separate
5175         // derived-to-base conversion? I believe the answer is "no", because
5176         // we don't want to turn off access control here for c-style casts.
5177         ExprResult CurInitExprRes =
5178           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5179                                                 FoundFn, Conversion);
5180         if(CurInitExprRes.isInvalid())
5181           return ExprError();
5182         CurInit = CurInitExprRes;
5183 
5184         // Build the actual call to the conversion function.
5185         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5186                                            HadMultipleCandidates);
5187         if (CurInit.isInvalid() || !CurInit.get())
5188           return ExprError();
5189 
5190         CastKind = CK_UserDefinedConversion;
5191 
5192         CreatedObject = Conversion->getResultType()->isRecordType();
5193       }
5194 
5195       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5196       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5197 
5198       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5199         QualType T = CurInit.get()->getType();
5200         if (const RecordType *Record = T->getAs<RecordType>()) {
5201           CXXDestructorDecl *Destructor
5202             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5203           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5204                                   S.PDiag(diag::err_access_dtor_temp) << T);
5205           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5206           S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5207         }
5208       }
5209 
5210       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5211                                                  CurInit.get()->getType(),
5212                                                  CastKind, CurInit.get(), 0,
5213                                                 CurInit.get()->getValueKind()));
5214       if (MaybeBindToTemp)
5215         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5216       if (RequiresCopy)
5217         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5218                              CurInit, /*IsExtraneousCopy=*/false);
5219       break;
5220     }
5221 
5222     case SK_QualificationConversionLValue:
5223     case SK_QualificationConversionXValue:
5224     case SK_QualificationConversionRValue: {
5225       // Perform a qualification conversion; these can never go wrong.
5226       ExprValueKind VK =
5227           Step->Kind == SK_QualificationConversionLValue ?
5228               VK_LValue :
5229               (Step->Kind == SK_QualificationConversionXValue ?
5230                    VK_XValue :
5231                    VK_RValue);
5232       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5233       break;
5234     }
5235 
5236     case SK_ConversionSequence: {
5237       Sema::CheckedConversionKind CCK
5238         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5239         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5240         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5241         : Sema::CCK_ImplicitConversion;
5242       ExprResult CurInitExprRes =
5243         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5244                                     getAssignmentAction(Entity), CCK);
5245       if (CurInitExprRes.isInvalid())
5246         return ExprError();
5247       CurInit = CurInitExprRes;
5248       break;
5249     }
5250 
5251     case SK_ListInitialization: {
5252       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5253       // Hack: We must pass *ResultType if available in order to set the type
5254       // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5255       // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5256       // temporary, not a reference, so we should pass Ty.
5257       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5258       // Since this step is never used for a reference directly, we explicitly
5259       // unwrap references here and rewrap them afterwards.
5260       // We also need to create a InitializeTemporary entity for this.
5261       QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5262       bool IsTemporary = Entity.getType()->isReferenceType();
5263       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5264       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5265       InitListChecker PerformInitList(S, InitEntity,
5266           InitList, Ty, /*VerifyOnly=*/false,
5267           Kind.getKind() != InitializationKind::IK_DirectList ||
5268             !S.getLangOpts().CPlusPlus11);
5269       if (PerformInitList.HadError())
5270         return ExprError();
5271 
5272       if (ResultType) {
5273         if ((*ResultType)->isRValueReferenceType())
5274           Ty = S.Context.getRValueReferenceType(Ty);
5275         else if ((*ResultType)->isLValueReferenceType())
5276           Ty = S.Context.getLValueReferenceType(Ty,
5277             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5278         *ResultType = Ty;
5279       }
5280 
5281       InitListExpr *StructuredInitList =
5282           PerformInitList.getFullyStructuredList();
5283       CurInit.release();
5284       CurInit = shouldBindAsTemporary(InitEntity)
5285           ? S.MaybeBindToTemporary(StructuredInitList)
5286           : S.Owned(StructuredInitList);
5287       break;
5288     }
5289 
5290     case SK_ListConstructorCall: {
5291       // When an initializer list is passed for a parameter of type "reference
5292       // to object", we don't get an EK_Temporary entity, but instead an
5293       // EK_Parameter entity with reference type.
5294       // FIXME: This is a hack. What we really should do is create a user
5295       // conversion step for this case, but this makes it considerably more
5296       // complicated. For now, this will do.
5297       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5298                                         Entity.getType().getNonReferenceType());
5299       bool UseTemporary = Entity.getType()->isReferenceType();
5300       assert(Args.size() == 1 && "expected a single argument for list init");
5301       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5302       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5303         << InitList->getSourceRange();
5304       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5305       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5306                                                                    Entity,
5307                                                  Kind, Arg, *Step,
5308                                                ConstructorInitRequiresZeroInit,
5309                                                /*IsListInitialization*/ true);
5310       break;
5311     }
5312 
5313     case SK_UnwrapInitList:
5314       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5315       break;
5316 
5317     case SK_RewrapInitList: {
5318       Expr *E = CurInit.take();
5319       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5320       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5321           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5322       ILE->setSyntacticForm(Syntactic);
5323       ILE->setType(E->getType());
5324       ILE->setValueKind(E->getValueKind());
5325       CurInit = S.Owned(ILE);
5326       break;
5327     }
5328 
5329     case SK_ConstructorInitialization: {
5330       // When an initializer list is passed for a parameter of type "reference
5331       // to object", we don't get an EK_Temporary entity, but instead an
5332       // EK_Parameter entity with reference type.
5333       // FIXME: This is a hack. What we really should do is create a user
5334       // conversion step for this case, but this makes it considerably more
5335       // complicated. For now, this will do.
5336       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5337                                         Entity.getType().getNonReferenceType());
5338       bool UseTemporary = Entity.getType()->isReferenceType();
5339       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5340                                                                  : Entity,
5341                                                  Kind, Args, *Step,
5342                                                ConstructorInitRequiresZeroInit,
5343                                                /*IsListInitialization*/ false);
5344       break;
5345     }
5346 
5347     case SK_ZeroInitialization: {
5348       step_iterator NextStep = Step;
5349       ++NextStep;
5350       if (NextStep != StepEnd &&
5351           (NextStep->Kind == SK_ConstructorInitialization ||
5352            NextStep->Kind == SK_ListConstructorCall)) {
5353         // The need for zero-initialization is recorded directly into
5354         // the call to the object's constructor within the next step.
5355         ConstructorInitRequiresZeroInit = true;
5356       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5357                  S.getLangOpts().CPlusPlus &&
5358                  !Kind.isImplicitValueInit()) {
5359         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5360         if (!TSInfo)
5361           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5362                                                     Kind.getRange().getBegin());
5363 
5364         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5365                               TSInfo->getType().getNonLValueExprType(S.Context),
5366                                                                  TSInfo,
5367                                                     Kind.getRange().getEnd()));
5368       } else {
5369         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5370       }
5371       break;
5372     }
5373 
5374     case SK_CAssignment: {
5375       QualType SourceType = CurInit.get()->getType();
5376       ExprResult Result = CurInit;
5377       Sema::AssignConvertType ConvTy =
5378         S.CheckSingleAssignmentConstraints(Step->Type, Result);
5379       if (Result.isInvalid())
5380         return ExprError();
5381       CurInit = Result;
5382 
5383       // If this is a call, allow conversion to a transparent union.
5384       ExprResult CurInitExprRes = CurInit;
5385       if (ConvTy != Sema::Compatible &&
5386           Entity.getKind() == InitializedEntity::EK_Parameter &&
5387           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5388             == Sema::Compatible)
5389         ConvTy = Sema::Compatible;
5390       if (CurInitExprRes.isInvalid())
5391         return ExprError();
5392       CurInit = CurInitExprRes;
5393 
5394       bool Complained;
5395       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5396                                      Step->Type, SourceType,
5397                                      CurInit.get(),
5398                                      getAssignmentAction(Entity),
5399                                      &Complained)) {
5400         PrintInitLocationNote(S, Entity);
5401         return ExprError();
5402       } else if (Complained)
5403         PrintInitLocationNote(S, Entity);
5404       break;
5405     }
5406 
5407     case SK_StringInit: {
5408       QualType Ty = Step->Type;
5409       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5410                       S.Context.getAsArrayType(Ty), S);
5411       break;
5412     }
5413 
5414     case SK_ObjCObjectConversion:
5415       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5416                           CK_ObjCObjectLValueCast,
5417                           CurInit.get()->getValueKind());
5418       break;
5419 
5420     case SK_ArrayInit:
5421       // Okay: we checked everything before creating this step. Note that
5422       // this is a GNU extension.
5423       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5424         << Step->Type << CurInit.get()->getType()
5425         << CurInit.get()->getSourceRange();
5426 
5427       // If the destination type is an incomplete array type, update the
5428       // type accordingly.
5429       if (ResultType) {
5430         if (const IncompleteArrayType *IncompleteDest
5431                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
5432           if (const ConstantArrayType *ConstantSource
5433                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5434             *ResultType = S.Context.getConstantArrayType(
5435                                              IncompleteDest->getElementType(),
5436                                              ConstantSource->getSize(),
5437                                              ArrayType::Normal, 0);
5438           }
5439         }
5440       }
5441       break;
5442 
5443     case SK_ParenthesizedArrayInit:
5444       // Okay: we checked everything before creating this step. Note that
5445       // this is a GNU extension.
5446       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5447         << CurInit.get()->getSourceRange();
5448       break;
5449 
5450     case SK_PassByIndirectCopyRestore:
5451     case SK_PassByIndirectRestore:
5452       checkIndirectCopyRestoreSource(S, CurInit.get());
5453       CurInit = S.Owned(new (S.Context)
5454                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5455                                 Step->Kind == SK_PassByIndirectCopyRestore));
5456       break;
5457 
5458     case SK_ProduceObjCObject:
5459       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5460                                                  CK_ARCProduceObject,
5461                                                  CurInit.take(), 0, VK_RValue));
5462       break;
5463 
5464     case SK_StdInitializerList: {
5465       QualType Dest = Step->Type;
5466       QualType E;
5467       bool Success = S.isStdInitializerList(Dest, &E);
5468       (void)Success;
5469       assert(Success && "Destination type changed?");
5470 
5471       // If the element type has a destructor, check it.
5472       if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5473         if (!RD->hasIrrelevantDestructor()) {
5474           if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5475             S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5476             S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5477                                     S.PDiag(diag::err_access_dtor_temp) << E);
5478             S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5479           }
5480         }
5481       }
5482 
5483       InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5484       S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5485         << ILE->getSourceRange();
5486       unsigned NumInits = ILE->getNumInits();
5487       SmallVector<Expr*, 16> Converted(NumInits);
5488       InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5489           S.Context.getConstantArrayType(E,
5490               llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5491                           NumInits),
5492               ArrayType::Normal, 0));
5493       InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5494           0, HiddenArray);
5495       for (unsigned i = 0; i < NumInits; ++i) {
5496         Element.setElementIndex(i);
5497         ExprResult Init = S.Owned(ILE->getInit(i));
5498         ExprResult Res = S.PerformCopyInitialization(
5499                              Element, Init.get()->getExprLoc(), Init,
5500                              /*TopLevelOfInitList=*/ true);
5501         assert(!Res.isInvalid() && "Result changed since try phase.");
5502         Converted[i] = Res.take();
5503       }
5504       InitListExpr *Semantic = new (S.Context)
5505           InitListExpr(S.Context, ILE->getLBraceLoc(),
5506                        Converted, ILE->getRBraceLoc());
5507       Semantic->setSyntacticForm(ILE);
5508       Semantic->setType(Dest);
5509       Semantic->setInitializesStdInitializerList();
5510       CurInit = S.Owned(Semantic);
5511       break;
5512     }
5513     case SK_OCLSamplerInit: {
5514       assert(Step->Type->isSamplerT() &&
5515              "Sampler initialization on non sampler type.");
5516 
5517       QualType SourceType = CurInit.get()->getType();
5518       InitializedEntity::EntityKind EntityKind = Entity.getKind();
5519 
5520       if (EntityKind == InitializedEntity::EK_Parameter) {
5521         if (!SourceType->isSamplerT())
5522           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
5523             << SourceType;
5524       } else if (EntityKind != InitializedEntity::EK_Variable) {
5525         llvm_unreachable("Invalid EntityKind!");
5526       }
5527 
5528       break;
5529     }
5530     case SK_OCLZeroEvent: {
5531       assert(Step->Type->isEventT() &&
5532              "Event initialization on non event type.");
5533 
5534       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5535                                     CK_ZeroToOCLEvent,
5536                                     CurInit.get()->getValueKind());
5537       break;
5538     }
5539     }
5540   }
5541 
5542   // Diagnose non-fatal problems with the completed initialization.
5543   if (Entity.getKind() == InitializedEntity::EK_Member &&
5544       cast<FieldDecl>(Entity.getDecl())->isBitField())
5545     S.CheckBitFieldInitialization(Kind.getLocation(),
5546                                   cast<FieldDecl>(Entity.getDecl()),
5547                                   CurInit.get());
5548 
5549   return CurInit;
5550 }
5551 
5552 /// Somewhere within T there is an uninitialized reference subobject.
5553 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)5554 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
5555                                            QualType T) {
5556   if (T->isReferenceType()) {
5557     S.Diag(Loc, diag::err_reference_without_init)
5558       << T.getNonReferenceType();
5559     return true;
5560   }
5561 
5562   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5563   if (!RD || !RD->hasUninitializedReferenceMember())
5564     return false;
5565 
5566   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5567                                      FE = RD->field_end(); FI != FE; ++FI) {
5568     if (FI->isUnnamedBitfield())
5569       continue;
5570 
5571     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
5572       S.Diag(Loc, diag::note_value_initialization_here) << RD;
5573       return true;
5574     }
5575   }
5576 
5577   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5578                                           BE = RD->bases_end();
5579        BI != BE; ++BI) {
5580     if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
5581       S.Diag(Loc, diag::note_value_initialization_here) << RD;
5582       return true;
5583     }
5584   }
5585 
5586   return false;
5587 }
5588 
5589 
5590 //===----------------------------------------------------------------------===//
5591 // Diagnose initialization failures
5592 //===----------------------------------------------------------------------===//
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs)5593 bool InitializationSequence::Diagnose(Sema &S,
5594                                       const InitializedEntity &Entity,
5595                                       const InitializationKind &Kind,
5596                                       Expr **Args, unsigned NumArgs) {
5597   if (!Failed())
5598     return false;
5599 
5600   QualType DestType = Entity.getType();
5601   switch (Failure) {
5602   case FK_TooManyInitsForReference:
5603     // FIXME: Customize for the initialized entity?
5604     if (NumArgs == 0) {
5605       // Dig out the reference subobject which is uninitialized and diagnose it.
5606       // If this is value-initialization, this could be nested some way within
5607       // the target type.
5608       assert(Kind.getKind() == InitializationKind::IK_Value ||
5609              DestType->isReferenceType());
5610       bool Diagnosed =
5611         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
5612       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
5613       (void)Diagnosed;
5614     } else  // FIXME: diagnostic below could be better!
5615       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5616         << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5617     break;
5618 
5619   case FK_ArrayNeedsInitList:
5620   case FK_ArrayNeedsInitListOrStringLiteral:
5621     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5622       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5623     break;
5624 
5625   case FK_ArrayTypeMismatch:
5626   case FK_NonConstantArrayInit:
5627     S.Diag(Kind.getLocation(),
5628            (Failure == FK_ArrayTypeMismatch
5629               ? diag::err_array_init_different_type
5630               : diag::err_array_init_non_constant_array))
5631       << DestType.getNonReferenceType()
5632       << Args[0]->getType()
5633       << Args[0]->getSourceRange();
5634     break;
5635 
5636   case FK_VariableLengthArrayHasInitializer:
5637     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5638       << Args[0]->getSourceRange();
5639     break;
5640 
5641   case FK_AddressOfOverloadFailed: {
5642     DeclAccessPair Found;
5643     S.ResolveAddressOfOverloadedFunction(Args[0],
5644                                          DestType.getNonReferenceType(),
5645                                          true,
5646                                          Found);
5647     break;
5648   }
5649 
5650   case FK_ReferenceInitOverloadFailed:
5651   case FK_UserConversionOverloadFailed:
5652     switch (FailedOverloadResult) {
5653     case OR_Ambiguous:
5654       if (Failure == FK_UserConversionOverloadFailed)
5655         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5656           << Args[0]->getType() << DestType
5657           << Args[0]->getSourceRange();
5658       else
5659         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5660           << DestType << Args[0]->getType()
5661           << Args[0]->getSourceRange();
5662 
5663       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5664                                         llvm::makeArrayRef(Args, NumArgs));
5665       break;
5666 
5667     case OR_No_Viable_Function:
5668       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5669         << Args[0]->getType() << DestType.getNonReferenceType()
5670         << Args[0]->getSourceRange();
5671       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5672                                         llvm::makeArrayRef(Args, NumArgs));
5673       break;
5674 
5675     case OR_Deleted: {
5676       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5677         << Args[0]->getType() << DestType.getNonReferenceType()
5678         << Args[0]->getSourceRange();
5679       OverloadCandidateSet::iterator Best;
5680       OverloadingResult Ovl
5681         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5682                                                 true);
5683       if (Ovl == OR_Deleted) {
5684         S.NoteDeletedFunction(Best->Function);
5685       } else {
5686         llvm_unreachable("Inconsistent overload resolution?");
5687       }
5688       break;
5689     }
5690 
5691     case OR_Success:
5692       llvm_unreachable("Conversion did not fail!");
5693     }
5694     break;
5695 
5696   case FK_NonConstLValueReferenceBindingToTemporary:
5697     if (isa<InitListExpr>(Args[0])) {
5698       S.Diag(Kind.getLocation(),
5699              diag::err_lvalue_reference_bind_to_initlist)
5700       << DestType.getNonReferenceType().isVolatileQualified()
5701       << DestType.getNonReferenceType()
5702       << Args[0]->getSourceRange();
5703       break;
5704     }
5705     // Intentional fallthrough
5706 
5707   case FK_NonConstLValueReferenceBindingToUnrelated:
5708     S.Diag(Kind.getLocation(),
5709            Failure == FK_NonConstLValueReferenceBindingToTemporary
5710              ? diag::err_lvalue_reference_bind_to_temporary
5711              : diag::err_lvalue_reference_bind_to_unrelated)
5712       << DestType.getNonReferenceType().isVolatileQualified()
5713       << DestType.getNonReferenceType()
5714       << Args[0]->getType()
5715       << Args[0]->getSourceRange();
5716     break;
5717 
5718   case FK_RValueReferenceBindingToLValue:
5719     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5720       << DestType.getNonReferenceType() << Args[0]->getType()
5721       << Args[0]->getSourceRange();
5722     break;
5723 
5724   case FK_ReferenceInitDropsQualifiers:
5725     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5726       << DestType.getNonReferenceType()
5727       << Args[0]->getType()
5728       << Args[0]->getSourceRange();
5729     break;
5730 
5731   case FK_ReferenceInitFailed:
5732     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5733       << DestType.getNonReferenceType()
5734       << Args[0]->isLValue()
5735       << Args[0]->getType()
5736       << Args[0]->getSourceRange();
5737     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5738         Args[0]->getType()->isObjCObjectPointerType())
5739       S.EmitRelatedResultTypeNote(Args[0]);
5740     break;
5741 
5742   case FK_ConversionFailed: {
5743     QualType FromType = Args[0]->getType();
5744     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5745       << (int)Entity.getKind()
5746       << DestType
5747       << Args[0]->isLValue()
5748       << FromType
5749       << Args[0]->getSourceRange();
5750     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5751     S.Diag(Kind.getLocation(), PDiag);
5752     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5753         Args[0]->getType()->isObjCObjectPointerType())
5754       S.EmitRelatedResultTypeNote(Args[0]);
5755     break;
5756   }
5757 
5758   case FK_ConversionFromPropertyFailed:
5759     // No-op. This error has already been reported.
5760     break;
5761 
5762   case FK_TooManyInitsForScalar: {
5763     SourceRange R;
5764 
5765     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5766       R = SourceRange(InitList->getInit(0)->getLocEnd(),
5767                       InitList->getLocEnd());
5768     else
5769       R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5770 
5771     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5772     if (Kind.isCStyleOrFunctionalCast())
5773       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5774         << R;
5775     else
5776       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5777         << /*scalar=*/2 << R;
5778     break;
5779   }
5780 
5781   case FK_ReferenceBindingToInitList:
5782     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5783       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5784     break;
5785 
5786   case FK_InitListBadDestinationType:
5787     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5788       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5789     break;
5790 
5791   case FK_ListConstructorOverloadFailed:
5792   case FK_ConstructorOverloadFailed: {
5793     SourceRange ArgsRange;
5794     if (NumArgs)
5795       ArgsRange = SourceRange(Args[0]->getLocStart(),
5796                               Args[NumArgs - 1]->getLocEnd());
5797 
5798     if (Failure == FK_ListConstructorOverloadFailed) {
5799       assert(NumArgs == 1 && "List construction from other than 1 argument.");
5800       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5801       Args = InitList->getInits();
5802       NumArgs = InitList->getNumInits();
5803     }
5804 
5805     // FIXME: Using "DestType" for the entity we're printing is probably
5806     // bad.
5807     switch (FailedOverloadResult) {
5808       case OR_Ambiguous:
5809         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5810           << DestType << ArgsRange;
5811         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5812                                           llvm::makeArrayRef(Args, NumArgs));
5813         break;
5814 
5815       case OR_No_Viable_Function:
5816         if (Kind.getKind() == InitializationKind::IK_Default &&
5817             (Entity.getKind() == InitializedEntity::EK_Base ||
5818              Entity.getKind() == InitializedEntity::EK_Member) &&
5819             isa<CXXConstructorDecl>(S.CurContext)) {
5820           // This is implicit default initialization of a member or
5821           // base within a constructor. If no viable function was
5822           // found, notify the user that she needs to explicitly
5823           // initialize this base/member.
5824           CXXConstructorDecl *Constructor
5825             = cast<CXXConstructorDecl>(S.CurContext);
5826           if (Entity.getKind() == InitializedEntity::EK_Base) {
5827             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5828               << (Constructor->getInheritedConstructor() ? 2 :
5829                   Constructor->isImplicit() ? 1 : 0)
5830               << S.Context.getTypeDeclType(Constructor->getParent())
5831               << /*base=*/0
5832               << Entity.getType();
5833 
5834             RecordDecl *BaseDecl
5835               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5836                                                                   ->getDecl();
5837             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5838               << S.Context.getTagDeclType(BaseDecl);
5839           } else {
5840             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5841               << (Constructor->getInheritedConstructor() ? 2 :
5842                   Constructor->isImplicit() ? 1 : 0)
5843               << S.Context.getTypeDeclType(Constructor->getParent())
5844               << /*member=*/1
5845               << Entity.getName();
5846             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5847 
5848             if (const RecordType *Record
5849                                  = Entity.getType()->getAs<RecordType>())
5850               S.Diag(Record->getDecl()->getLocation(),
5851                      diag::note_previous_decl)
5852                 << S.Context.getTagDeclType(Record->getDecl());
5853           }
5854           break;
5855         }
5856 
5857         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5858           << DestType << ArgsRange;
5859         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5860                                           llvm::makeArrayRef(Args, NumArgs));
5861         break;
5862 
5863       case OR_Deleted: {
5864         OverloadCandidateSet::iterator Best;
5865         OverloadingResult Ovl
5866           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5867         if (Ovl != OR_Deleted) {
5868           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5869             << true << DestType << ArgsRange;
5870           llvm_unreachable("Inconsistent overload resolution?");
5871           break;
5872         }
5873 
5874         // If this is a defaulted or implicitly-declared function, then
5875         // it was implicitly deleted. Make it clear that the deletion was
5876         // implicit.
5877         if (S.isImplicitlyDeleted(Best->Function))
5878           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5879             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5880             << DestType << ArgsRange;
5881         else
5882           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5883             << true << DestType << ArgsRange;
5884 
5885         S.NoteDeletedFunction(Best->Function);
5886         break;
5887       }
5888 
5889       case OR_Success:
5890         llvm_unreachable("Conversion did not fail!");
5891     }
5892   }
5893   break;
5894 
5895   case FK_DefaultInitOfConst:
5896     if (Entity.getKind() == InitializedEntity::EK_Member &&
5897         isa<CXXConstructorDecl>(S.CurContext)) {
5898       // This is implicit default-initialization of a const member in
5899       // a constructor. Complain that it needs to be explicitly
5900       // initialized.
5901       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5902       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5903         << (Constructor->getInheritedConstructor() ? 2 :
5904             Constructor->isImplicit() ? 1 : 0)
5905         << S.Context.getTypeDeclType(Constructor->getParent())
5906         << /*const=*/1
5907         << Entity.getName();
5908       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5909         << Entity.getName();
5910     } else {
5911       S.Diag(Kind.getLocation(), diag::err_default_init_const)
5912         << DestType << (bool)DestType->getAs<RecordType>();
5913     }
5914     break;
5915 
5916   case FK_Incomplete:
5917     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
5918                           diag::err_init_incomplete_type);
5919     break;
5920 
5921   case FK_ListInitializationFailed: {
5922     // Run the init list checker again to emit diagnostics.
5923     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5924     QualType DestType = Entity.getType();
5925     InitListChecker DiagnoseInitList(S, Entity, InitList,
5926             DestType, /*VerifyOnly=*/false,
5927             Kind.getKind() != InitializationKind::IK_DirectList ||
5928               !S.getLangOpts().CPlusPlus11);
5929     assert(DiagnoseInitList.HadError() &&
5930            "Inconsistent init list check result.");
5931     break;
5932   }
5933 
5934   case FK_PlaceholderType: {
5935     // FIXME: Already diagnosed!
5936     break;
5937   }
5938 
5939   case FK_InitListElementCopyFailure: {
5940     // Try to perform all copies again.
5941     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5942     unsigned NumInits = InitList->getNumInits();
5943     QualType DestType = Entity.getType();
5944     QualType E;
5945     bool Success = S.isStdInitializerList(DestType, &E);
5946     (void)Success;
5947     assert(Success && "Where did the std::initializer_list go?");
5948     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5949         S.Context.getConstantArrayType(E,
5950             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5951                         NumInits),
5952             ArrayType::Normal, 0));
5953     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5954         0, HiddenArray);
5955     // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5956     // where the init list type is wrong, e.g.
5957     //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5958     // FIXME: Emit a note if we hit the limit?
5959     int ErrorCount = 0;
5960     for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5961       Element.setElementIndex(i);
5962       ExprResult Init = S.Owned(InitList->getInit(i));
5963       if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5964            .isInvalid())
5965         ++ErrorCount;
5966     }
5967     break;
5968   }
5969 
5970   case FK_ExplicitConstructor: {
5971     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
5972       << Args[0]->getSourceRange();
5973     OverloadCandidateSet::iterator Best;
5974     OverloadingResult Ovl
5975       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5976     (void)Ovl;
5977     assert(Ovl == OR_Success && "Inconsistent overload resolution");
5978     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
5979     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
5980     break;
5981   }
5982   }
5983 
5984   PrintInitLocationNote(S, Entity);
5985   return true;
5986 }
5987 
dump(raw_ostream & OS) const5988 void InitializationSequence::dump(raw_ostream &OS) const {
5989   switch (SequenceKind) {
5990   case FailedSequence: {
5991     OS << "Failed sequence: ";
5992     switch (Failure) {
5993     case FK_TooManyInitsForReference:
5994       OS << "too many initializers for reference";
5995       break;
5996 
5997     case FK_ArrayNeedsInitList:
5998       OS << "array requires initializer list";
5999       break;
6000 
6001     case FK_ArrayNeedsInitListOrStringLiteral:
6002       OS << "array requires initializer list or string literal";
6003       break;
6004 
6005     case FK_ArrayTypeMismatch:
6006       OS << "array type mismatch";
6007       break;
6008 
6009     case FK_NonConstantArrayInit:
6010       OS << "non-constant array initializer";
6011       break;
6012 
6013     case FK_AddressOfOverloadFailed:
6014       OS << "address of overloaded function failed";
6015       break;
6016 
6017     case FK_ReferenceInitOverloadFailed:
6018       OS << "overload resolution for reference initialization failed";
6019       break;
6020 
6021     case FK_NonConstLValueReferenceBindingToTemporary:
6022       OS << "non-const lvalue reference bound to temporary";
6023       break;
6024 
6025     case FK_NonConstLValueReferenceBindingToUnrelated:
6026       OS << "non-const lvalue reference bound to unrelated type";
6027       break;
6028 
6029     case FK_RValueReferenceBindingToLValue:
6030       OS << "rvalue reference bound to an lvalue";
6031       break;
6032 
6033     case FK_ReferenceInitDropsQualifiers:
6034       OS << "reference initialization drops qualifiers";
6035       break;
6036 
6037     case FK_ReferenceInitFailed:
6038       OS << "reference initialization failed";
6039       break;
6040 
6041     case FK_ConversionFailed:
6042       OS << "conversion failed";
6043       break;
6044 
6045     case FK_ConversionFromPropertyFailed:
6046       OS << "conversion from property failed";
6047       break;
6048 
6049     case FK_TooManyInitsForScalar:
6050       OS << "too many initializers for scalar";
6051       break;
6052 
6053     case FK_ReferenceBindingToInitList:
6054       OS << "referencing binding to initializer list";
6055       break;
6056 
6057     case FK_InitListBadDestinationType:
6058       OS << "initializer list for non-aggregate, non-scalar type";
6059       break;
6060 
6061     case FK_UserConversionOverloadFailed:
6062       OS << "overloading failed for user-defined conversion";
6063       break;
6064 
6065     case FK_ConstructorOverloadFailed:
6066       OS << "constructor overloading failed";
6067       break;
6068 
6069     case FK_DefaultInitOfConst:
6070       OS << "default initialization of a const variable";
6071       break;
6072 
6073     case FK_Incomplete:
6074       OS << "initialization of incomplete type";
6075       break;
6076 
6077     case FK_ListInitializationFailed:
6078       OS << "list initialization checker failure";
6079       break;
6080 
6081     case FK_VariableLengthArrayHasInitializer:
6082       OS << "variable length array has an initializer";
6083       break;
6084 
6085     case FK_PlaceholderType:
6086       OS << "initializer expression isn't contextually valid";
6087       break;
6088 
6089     case FK_ListConstructorOverloadFailed:
6090       OS << "list constructor overloading failed";
6091       break;
6092 
6093     case FK_InitListElementCopyFailure:
6094       OS << "copy construction of initializer list element failed";
6095       break;
6096 
6097     case FK_ExplicitConstructor:
6098       OS << "list copy initialization chose explicit constructor";
6099       break;
6100     }
6101     OS << '\n';
6102     return;
6103   }
6104 
6105   case DependentSequence:
6106     OS << "Dependent sequence\n";
6107     return;
6108 
6109   case NormalSequence:
6110     OS << "Normal sequence: ";
6111     break;
6112   }
6113 
6114   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6115     if (S != step_begin()) {
6116       OS << " -> ";
6117     }
6118 
6119     switch (S->Kind) {
6120     case SK_ResolveAddressOfOverloadedFunction:
6121       OS << "resolve address of overloaded function";
6122       break;
6123 
6124     case SK_CastDerivedToBaseRValue:
6125       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6126       break;
6127 
6128     case SK_CastDerivedToBaseXValue:
6129       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6130       break;
6131 
6132     case SK_CastDerivedToBaseLValue:
6133       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6134       break;
6135 
6136     case SK_BindReference:
6137       OS << "bind reference to lvalue";
6138       break;
6139 
6140     case SK_BindReferenceToTemporary:
6141       OS << "bind reference to a temporary";
6142       break;
6143 
6144     case SK_ExtraneousCopyToTemporary:
6145       OS << "extraneous C++03 copy to temporary";
6146       break;
6147 
6148     case SK_UserConversion:
6149       OS << "user-defined conversion via " << *S->Function.Function;
6150       break;
6151 
6152     case SK_QualificationConversionRValue:
6153       OS << "qualification conversion (rvalue)";
6154       break;
6155 
6156     case SK_QualificationConversionXValue:
6157       OS << "qualification conversion (xvalue)";
6158       break;
6159 
6160     case SK_QualificationConversionLValue:
6161       OS << "qualification conversion (lvalue)";
6162       break;
6163 
6164     case SK_ConversionSequence:
6165       OS << "implicit conversion sequence (";
6166       S->ICS->DebugPrint(); // FIXME: use OS
6167       OS << ")";
6168       break;
6169 
6170     case SK_ListInitialization:
6171       OS << "list aggregate initialization";
6172       break;
6173 
6174     case SK_ListConstructorCall:
6175       OS << "list initialization via constructor";
6176       break;
6177 
6178     case SK_UnwrapInitList:
6179       OS << "unwrap reference initializer list";
6180       break;
6181 
6182     case SK_RewrapInitList:
6183       OS << "rewrap reference initializer list";
6184       break;
6185 
6186     case SK_ConstructorInitialization:
6187       OS << "constructor initialization";
6188       break;
6189 
6190     case SK_ZeroInitialization:
6191       OS << "zero initialization";
6192       break;
6193 
6194     case SK_CAssignment:
6195       OS << "C assignment";
6196       break;
6197 
6198     case SK_StringInit:
6199       OS << "string initialization";
6200       break;
6201 
6202     case SK_ObjCObjectConversion:
6203       OS << "Objective-C object conversion";
6204       break;
6205 
6206     case SK_ArrayInit:
6207       OS << "array initialization";
6208       break;
6209 
6210     case SK_ParenthesizedArrayInit:
6211       OS << "parenthesized array initialization";
6212       break;
6213 
6214     case SK_PassByIndirectCopyRestore:
6215       OS << "pass by indirect copy and restore";
6216       break;
6217 
6218     case SK_PassByIndirectRestore:
6219       OS << "pass by indirect restore";
6220       break;
6221 
6222     case SK_ProduceObjCObject:
6223       OS << "Objective-C object retension";
6224       break;
6225 
6226     case SK_StdInitializerList:
6227       OS << "std::initializer_list from initializer list";
6228       break;
6229 
6230     case SK_OCLSamplerInit:
6231       OS << "OpenCL sampler_t from integer constant";
6232       break;
6233 
6234     case SK_OCLZeroEvent:
6235       OS << "OpenCL event_t from zero";
6236       break;
6237     }
6238 
6239     OS << " [" << S->Type.getAsString() << ']';
6240   }
6241 
6242   OS << '\n';
6243 }
6244 
dump() const6245 void InitializationSequence::dump() const {
6246   dump(llvm::errs());
6247 }
6248 
DiagnoseNarrowingInInitList(Sema & S,InitializationSequence & Seq,QualType EntityType,const Expr * PreInit,const Expr * PostInit)6249 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6250                                         QualType EntityType,
6251                                         const Expr *PreInit,
6252                                         const Expr *PostInit) {
6253   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6254     return;
6255 
6256   // A narrowing conversion can only appear as the final implicit conversion in
6257   // an initialization sequence.
6258   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6259   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6260     return;
6261 
6262   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6263   const StandardConversionSequence *SCS = 0;
6264   switch (ICS.getKind()) {
6265   case ImplicitConversionSequence::StandardConversion:
6266     SCS = &ICS.Standard;
6267     break;
6268   case ImplicitConversionSequence::UserDefinedConversion:
6269     SCS = &ICS.UserDefined.After;
6270     break;
6271   case ImplicitConversionSequence::AmbiguousConversion:
6272   case ImplicitConversionSequence::EllipsisConversion:
6273   case ImplicitConversionSequence::BadConversion:
6274     return;
6275   }
6276 
6277   // Determine the type prior to the narrowing conversion. If a conversion
6278   // operator was used, this may be different from both the type of the entity
6279   // and of the pre-initialization expression.
6280   QualType PreNarrowingType = PreInit->getType();
6281   if (Seq.step_begin() + 1 != Seq.step_end())
6282     PreNarrowingType = Seq.step_end()[-2].Type;
6283 
6284   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6285   APValue ConstantValue;
6286   QualType ConstantType;
6287   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6288                                 ConstantType)) {
6289   case NK_Not_Narrowing:
6290     // No narrowing occurred.
6291     return;
6292 
6293   case NK_Type_Narrowing:
6294     // This was a floating-to-integer conversion, which is always considered a
6295     // narrowing conversion even if the value is a constant and can be
6296     // represented exactly as an integer.
6297     S.Diag(PostInit->getLocStart(),
6298            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6299              diag::warn_init_list_type_narrowing
6300            : S.isSFINAEContext()?
6301              diag::err_init_list_type_narrowing_sfinae
6302            : diag::err_init_list_type_narrowing)
6303       << PostInit->getSourceRange()
6304       << PreNarrowingType.getLocalUnqualifiedType()
6305       << EntityType.getLocalUnqualifiedType();
6306     break;
6307 
6308   case NK_Constant_Narrowing:
6309     // A constant value was narrowed.
6310     S.Diag(PostInit->getLocStart(),
6311            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6312              diag::warn_init_list_constant_narrowing
6313            : S.isSFINAEContext()?
6314              diag::err_init_list_constant_narrowing_sfinae
6315            : diag::err_init_list_constant_narrowing)
6316       << PostInit->getSourceRange()
6317       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6318       << EntityType.getLocalUnqualifiedType();
6319     break;
6320 
6321   case NK_Variable_Narrowing:
6322     // A variable's value may have been narrowed.
6323     S.Diag(PostInit->getLocStart(),
6324            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6325              diag::warn_init_list_variable_narrowing
6326            : S.isSFINAEContext()?
6327              diag::err_init_list_variable_narrowing_sfinae
6328            : diag::err_init_list_variable_narrowing)
6329       << PostInit->getSourceRange()
6330       << PreNarrowingType.getLocalUnqualifiedType()
6331       << EntityType.getLocalUnqualifiedType();
6332     break;
6333   }
6334 
6335   SmallString<128> StaticCast;
6336   llvm::raw_svector_ostream OS(StaticCast);
6337   OS << "static_cast<";
6338   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6339     // It's important to use the typedef's name if there is one so that the
6340     // fixit doesn't break code using types like int64_t.
6341     //
6342     // FIXME: This will break if the typedef requires qualification.  But
6343     // getQualifiedNameAsString() includes non-machine-parsable components.
6344     OS << *TT->getDecl();
6345   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6346     OS << BT->getName(S.getLangOpts());
6347   else {
6348     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6349     // with a broken cast.
6350     return;
6351   }
6352   OS << ">(";
6353   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6354     << PostInit->getSourceRange()
6355     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6356     << FixItHint::CreateInsertion(
6357       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6358 }
6359 
6360 //===----------------------------------------------------------------------===//
6361 // Initialization helper functions
6362 //===----------------------------------------------------------------------===//
6363 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)6364 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6365                                    ExprResult Init) {
6366   if (Init.isInvalid())
6367     return false;
6368 
6369   Expr *InitE = Init.get();
6370   assert(InitE && "No initialization expression");
6371 
6372   InitializationKind Kind
6373     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6374   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6375   return !Seq.Failed();
6376 }
6377 
6378 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)6379 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6380                                 SourceLocation EqualLoc,
6381                                 ExprResult Init,
6382                                 bool TopLevelOfInitList,
6383                                 bool AllowExplicit) {
6384   if (Init.isInvalid())
6385     return ExprError();
6386 
6387   Expr *InitE = Init.get();
6388   assert(InitE && "No initialization expression?");
6389 
6390   if (EqualLoc.isInvalid())
6391     EqualLoc = InitE->getLocStart();
6392 
6393   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6394                                                            EqualLoc,
6395                                                            AllowExplicit);
6396   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6397   Init.release();
6398 
6399   ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6400 
6401   if (!Result.isInvalid() && TopLevelOfInitList)
6402     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6403                                 InitE, Result.get());
6404 
6405   return Result;
6406 }
6407