1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements extra semantic analysis beyond what is enforced
11 // by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Analysis/Analyses/FormatString.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/ADT/BitVector.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallString.h"
38 #include "llvm/Support/ConvertUTF.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <limits>
41 using namespace clang;
42 using namespace sema;
43
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const44 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45 unsigned ByteNo) const {
46 return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47 PP.getLangOpts(), PP.getTargetInfo());
48 }
49
50 /// Checks that a call expression's argument count is the desired number.
51 /// This is useful when doing custom type-checking. Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)52 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53 unsigned argCount = call->getNumArgs();
54 if (argCount == desiredArgCount) return false;
55
56 if (argCount < desiredArgCount)
57 return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58 << 0 /*function call*/ << desiredArgCount << argCount
59 << call->getSourceRange();
60
61 // Highlight all the excess arguments.
62 SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63 call->getArg(argCount - 1)->getLocEnd());
64
65 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66 << 0 /*function call*/ << desiredArgCount << argCount
67 << call->getArg(1)->getSourceRange();
68 }
69
70 /// Check that the first argument to __builtin_annotation is an integer
71 /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)72 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73 if (checkArgCount(S, TheCall, 2))
74 return true;
75
76 // First argument should be an integer.
77 Expr *ValArg = TheCall->getArg(0);
78 QualType Ty = ValArg->getType();
79 if (!Ty->isIntegerType()) {
80 S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81 << ValArg->getSourceRange();
82 return true;
83 }
84
85 // Second argument should be a constant string.
86 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88 if (!Literal || !Literal->isAscii()) {
89 S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90 << StrArg->getSourceRange();
91 return true;
92 }
93
94 TheCall->setType(Ty);
95 return false;
96 }
97
98 ExprResult
CheckBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)99 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
100 ExprResult TheCallResult(Owned(TheCall));
101
102 // Find out if any arguments are required to be integer constant expressions.
103 unsigned ICEArguments = 0;
104 ASTContext::GetBuiltinTypeError Error;
105 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
106 if (Error != ASTContext::GE_None)
107 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
108
109 // If any arguments are required to be ICE's, check and diagnose.
110 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
111 // Skip arguments not required to be ICE's.
112 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
113
114 llvm::APSInt Result;
115 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
116 return true;
117 ICEArguments &= ~(1 << ArgNo);
118 }
119
120 switch (BuiltinID) {
121 case Builtin::BI__builtin___CFStringMakeConstantString:
122 assert(TheCall->getNumArgs() == 1 &&
123 "Wrong # arguments to builtin CFStringMakeConstantString");
124 if (CheckObjCString(TheCall->getArg(0)))
125 return ExprError();
126 break;
127 case Builtin::BI__builtin_stdarg_start:
128 case Builtin::BI__builtin_va_start:
129 if (SemaBuiltinVAStart(TheCall))
130 return ExprError();
131 break;
132 case Builtin::BI__builtin_isgreater:
133 case Builtin::BI__builtin_isgreaterequal:
134 case Builtin::BI__builtin_isless:
135 case Builtin::BI__builtin_islessequal:
136 case Builtin::BI__builtin_islessgreater:
137 case Builtin::BI__builtin_isunordered:
138 if (SemaBuiltinUnorderedCompare(TheCall))
139 return ExprError();
140 break;
141 case Builtin::BI__builtin_fpclassify:
142 if (SemaBuiltinFPClassification(TheCall, 6))
143 return ExprError();
144 break;
145 case Builtin::BI__builtin_isfinite:
146 case Builtin::BI__builtin_isinf:
147 case Builtin::BI__builtin_isinf_sign:
148 case Builtin::BI__builtin_isnan:
149 case Builtin::BI__builtin_isnormal:
150 if (SemaBuiltinFPClassification(TheCall, 1))
151 return ExprError();
152 break;
153 case Builtin::BI__builtin_shufflevector:
154 return SemaBuiltinShuffleVector(TheCall);
155 // TheCall will be freed by the smart pointer here, but that's fine, since
156 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
157 case Builtin::BI__builtin_prefetch:
158 if (SemaBuiltinPrefetch(TheCall))
159 return ExprError();
160 break;
161 case Builtin::BI__builtin_object_size:
162 if (SemaBuiltinObjectSize(TheCall))
163 return ExprError();
164 break;
165 case Builtin::BI__builtin_longjmp:
166 if (SemaBuiltinLongjmp(TheCall))
167 return ExprError();
168 break;
169
170 case Builtin::BI__builtin_classify_type:
171 if (checkArgCount(*this, TheCall, 1)) return true;
172 TheCall->setType(Context.IntTy);
173 break;
174 case Builtin::BI__builtin_constant_p:
175 if (checkArgCount(*this, TheCall, 1)) return true;
176 TheCall->setType(Context.IntTy);
177 break;
178 case Builtin::BI__sync_fetch_and_add:
179 case Builtin::BI__sync_fetch_and_add_1:
180 case Builtin::BI__sync_fetch_and_add_2:
181 case Builtin::BI__sync_fetch_and_add_4:
182 case Builtin::BI__sync_fetch_and_add_8:
183 case Builtin::BI__sync_fetch_and_add_16:
184 case Builtin::BI__sync_fetch_and_sub:
185 case Builtin::BI__sync_fetch_and_sub_1:
186 case Builtin::BI__sync_fetch_and_sub_2:
187 case Builtin::BI__sync_fetch_and_sub_4:
188 case Builtin::BI__sync_fetch_and_sub_8:
189 case Builtin::BI__sync_fetch_and_sub_16:
190 case Builtin::BI__sync_fetch_and_or:
191 case Builtin::BI__sync_fetch_and_or_1:
192 case Builtin::BI__sync_fetch_and_or_2:
193 case Builtin::BI__sync_fetch_and_or_4:
194 case Builtin::BI__sync_fetch_and_or_8:
195 case Builtin::BI__sync_fetch_and_or_16:
196 case Builtin::BI__sync_fetch_and_and:
197 case Builtin::BI__sync_fetch_and_and_1:
198 case Builtin::BI__sync_fetch_and_and_2:
199 case Builtin::BI__sync_fetch_and_and_4:
200 case Builtin::BI__sync_fetch_and_and_8:
201 case Builtin::BI__sync_fetch_and_and_16:
202 case Builtin::BI__sync_fetch_and_xor:
203 case Builtin::BI__sync_fetch_and_xor_1:
204 case Builtin::BI__sync_fetch_and_xor_2:
205 case Builtin::BI__sync_fetch_and_xor_4:
206 case Builtin::BI__sync_fetch_and_xor_8:
207 case Builtin::BI__sync_fetch_and_xor_16:
208 case Builtin::BI__sync_add_and_fetch:
209 case Builtin::BI__sync_add_and_fetch_1:
210 case Builtin::BI__sync_add_and_fetch_2:
211 case Builtin::BI__sync_add_and_fetch_4:
212 case Builtin::BI__sync_add_and_fetch_8:
213 case Builtin::BI__sync_add_and_fetch_16:
214 case Builtin::BI__sync_sub_and_fetch:
215 case Builtin::BI__sync_sub_and_fetch_1:
216 case Builtin::BI__sync_sub_and_fetch_2:
217 case Builtin::BI__sync_sub_and_fetch_4:
218 case Builtin::BI__sync_sub_and_fetch_8:
219 case Builtin::BI__sync_sub_and_fetch_16:
220 case Builtin::BI__sync_and_and_fetch:
221 case Builtin::BI__sync_and_and_fetch_1:
222 case Builtin::BI__sync_and_and_fetch_2:
223 case Builtin::BI__sync_and_and_fetch_4:
224 case Builtin::BI__sync_and_and_fetch_8:
225 case Builtin::BI__sync_and_and_fetch_16:
226 case Builtin::BI__sync_or_and_fetch:
227 case Builtin::BI__sync_or_and_fetch_1:
228 case Builtin::BI__sync_or_and_fetch_2:
229 case Builtin::BI__sync_or_and_fetch_4:
230 case Builtin::BI__sync_or_and_fetch_8:
231 case Builtin::BI__sync_or_and_fetch_16:
232 case Builtin::BI__sync_xor_and_fetch:
233 case Builtin::BI__sync_xor_and_fetch_1:
234 case Builtin::BI__sync_xor_and_fetch_2:
235 case Builtin::BI__sync_xor_and_fetch_4:
236 case Builtin::BI__sync_xor_and_fetch_8:
237 case Builtin::BI__sync_xor_and_fetch_16:
238 case Builtin::BI__sync_val_compare_and_swap:
239 case Builtin::BI__sync_val_compare_and_swap_1:
240 case Builtin::BI__sync_val_compare_and_swap_2:
241 case Builtin::BI__sync_val_compare_and_swap_4:
242 case Builtin::BI__sync_val_compare_and_swap_8:
243 case Builtin::BI__sync_val_compare_and_swap_16:
244 case Builtin::BI__sync_bool_compare_and_swap:
245 case Builtin::BI__sync_bool_compare_and_swap_1:
246 case Builtin::BI__sync_bool_compare_and_swap_2:
247 case Builtin::BI__sync_bool_compare_and_swap_4:
248 case Builtin::BI__sync_bool_compare_and_swap_8:
249 case Builtin::BI__sync_bool_compare_and_swap_16:
250 case Builtin::BI__sync_lock_test_and_set:
251 case Builtin::BI__sync_lock_test_and_set_1:
252 case Builtin::BI__sync_lock_test_and_set_2:
253 case Builtin::BI__sync_lock_test_and_set_4:
254 case Builtin::BI__sync_lock_test_and_set_8:
255 case Builtin::BI__sync_lock_test_and_set_16:
256 case Builtin::BI__sync_lock_release:
257 case Builtin::BI__sync_lock_release_1:
258 case Builtin::BI__sync_lock_release_2:
259 case Builtin::BI__sync_lock_release_4:
260 case Builtin::BI__sync_lock_release_8:
261 case Builtin::BI__sync_lock_release_16:
262 case Builtin::BI__sync_swap:
263 case Builtin::BI__sync_swap_1:
264 case Builtin::BI__sync_swap_2:
265 case Builtin::BI__sync_swap_4:
266 case Builtin::BI__sync_swap_8:
267 case Builtin::BI__sync_swap_16:
268 return SemaBuiltinAtomicOverloaded(TheCallResult);
269 #define BUILTIN(ID, TYPE, ATTRS)
270 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
271 case Builtin::BI##ID: \
272 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
273 #include "clang/Basic/Builtins.def"
274 case Builtin::BI__builtin_annotation:
275 if (SemaBuiltinAnnotation(*this, TheCall))
276 return ExprError();
277 break;
278 }
279
280 // Since the target specific builtins for each arch overlap, only check those
281 // of the arch we are compiling for.
282 if (BuiltinID >= Builtin::FirstTSBuiltin) {
283 switch (Context.getTargetInfo().getTriple().getArch()) {
284 case llvm::Triple::arm:
285 case llvm::Triple::thumb:
286 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
287 return ExprError();
288 break;
289 case llvm::Triple::mips:
290 case llvm::Triple::mipsel:
291 case llvm::Triple::mips64:
292 case llvm::Triple::mips64el:
293 if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
294 return ExprError();
295 break;
296 default:
297 break;
298 }
299 }
300
301 return TheCallResult;
302 }
303
304 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false)305 static unsigned RFT(unsigned t, bool shift = false) {
306 NeonTypeFlags Type(t);
307 int IsQuad = Type.isQuad();
308 switch (Type.getEltType()) {
309 case NeonTypeFlags::Int8:
310 case NeonTypeFlags::Poly8:
311 return shift ? 7 : (8 << IsQuad) - 1;
312 case NeonTypeFlags::Int16:
313 case NeonTypeFlags::Poly16:
314 return shift ? 15 : (4 << IsQuad) - 1;
315 case NeonTypeFlags::Int32:
316 return shift ? 31 : (2 << IsQuad) - 1;
317 case NeonTypeFlags::Int64:
318 return shift ? 63 : (1 << IsQuad) - 1;
319 case NeonTypeFlags::Float16:
320 assert(!shift && "cannot shift float types!");
321 return (4 << IsQuad) - 1;
322 case NeonTypeFlags::Float32:
323 assert(!shift && "cannot shift float types!");
324 return (2 << IsQuad) - 1;
325 }
326 llvm_unreachable("Invalid NeonTypeFlag!");
327 }
328
329 /// getNeonEltType - Return the QualType corresponding to the elements of
330 /// the vector type specified by the NeonTypeFlags. This is used to check
331 /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context)332 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
333 switch (Flags.getEltType()) {
334 case NeonTypeFlags::Int8:
335 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
336 case NeonTypeFlags::Int16:
337 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
338 case NeonTypeFlags::Int32:
339 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
340 case NeonTypeFlags::Int64:
341 return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
342 case NeonTypeFlags::Poly8:
343 return Context.SignedCharTy;
344 case NeonTypeFlags::Poly16:
345 return Context.ShortTy;
346 case NeonTypeFlags::Float16:
347 return Context.UnsignedShortTy;
348 case NeonTypeFlags::Float32:
349 return Context.FloatTy;
350 }
351 llvm_unreachable("Invalid NeonTypeFlag!");
352 }
353
CheckARMBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)354 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
355 llvm::APSInt Result;
356
357 uint64_t mask = 0;
358 unsigned TV = 0;
359 int PtrArgNum = -1;
360 bool HasConstPtr = false;
361 switch (BuiltinID) {
362 #define GET_NEON_OVERLOAD_CHECK
363 #include "clang/Basic/arm_neon.inc"
364 #undef GET_NEON_OVERLOAD_CHECK
365 }
366
367 // For NEON intrinsics which are overloaded on vector element type, validate
368 // the immediate which specifies which variant to emit.
369 unsigned ImmArg = TheCall->getNumArgs()-1;
370 if (mask) {
371 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
372 return true;
373
374 TV = Result.getLimitedValue(64);
375 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
376 return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
377 << TheCall->getArg(ImmArg)->getSourceRange();
378 }
379
380 if (PtrArgNum >= 0) {
381 // Check that pointer arguments have the specified type.
382 Expr *Arg = TheCall->getArg(PtrArgNum);
383 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
384 Arg = ICE->getSubExpr();
385 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
386 QualType RHSTy = RHS.get()->getType();
387 QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
388 if (HasConstPtr)
389 EltTy = EltTy.withConst();
390 QualType LHSTy = Context.getPointerType(EltTy);
391 AssignConvertType ConvTy;
392 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
393 if (RHS.isInvalid())
394 return true;
395 if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
396 RHS.get(), AA_Assigning))
397 return true;
398 }
399
400 // For NEON intrinsics which take an immediate value as part of the
401 // instruction, range check them here.
402 unsigned i = 0, l = 0, u = 0;
403 switch (BuiltinID) {
404 default: return false;
405 case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
406 case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
407 case ARM::BI__builtin_arm_vcvtr_f:
408 case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
409 #define GET_NEON_IMMEDIATE_CHECK
410 #include "clang/Basic/arm_neon.inc"
411 #undef GET_NEON_IMMEDIATE_CHECK
412 };
413
414 // We can't check the value of a dependent argument.
415 if (TheCall->getArg(i)->isTypeDependent() ||
416 TheCall->getArg(i)->isValueDependent())
417 return false;
418
419 // Check that the immediate argument is actually a constant.
420 if (SemaBuiltinConstantArg(TheCall, i, Result))
421 return true;
422
423 // Range check against the upper/lower values for this isntruction.
424 unsigned Val = Result.getZExtValue();
425 if (Val < l || Val > (u + l))
426 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
427 << l << u+l << TheCall->getArg(i)->getSourceRange();
428
429 // FIXME: VFP Intrinsics should error if VFP not present.
430 return false;
431 }
432
CheckMipsBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)433 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
434 unsigned i = 0, l = 0, u = 0;
435 switch (BuiltinID) {
436 default: return false;
437 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
438 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
439 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
440 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
441 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
442 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
443 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
444 };
445
446 // We can't check the value of a dependent argument.
447 if (TheCall->getArg(i)->isTypeDependent() ||
448 TheCall->getArg(i)->isValueDependent())
449 return false;
450
451 // Check that the immediate argument is actually a constant.
452 llvm::APSInt Result;
453 if (SemaBuiltinConstantArg(TheCall, i, Result))
454 return true;
455
456 // Range check against the upper/lower values for this instruction.
457 unsigned Val = Result.getZExtValue();
458 if (Val < l || Val > u)
459 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
460 << l << u << TheCall->getArg(i)->getSourceRange();
461
462 return false;
463 }
464
465 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
466 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
467 /// Returns true when the format fits the function and the FormatStringInfo has
468 /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,FormatStringInfo * FSI)469 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
470 FormatStringInfo *FSI) {
471 FSI->HasVAListArg = Format->getFirstArg() == 0;
472 FSI->FormatIdx = Format->getFormatIdx() - 1;
473 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
474
475 // The way the format attribute works in GCC, the implicit this argument
476 // of member functions is counted. However, it doesn't appear in our own
477 // lists, so decrement format_idx in that case.
478 if (IsCXXMember) {
479 if(FSI->FormatIdx == 0)
480 return false;
481 --FSI->FormatIdx;
482 if (FSI->FirstDataArg != 0)
483 --FSI->FirstDataArg;
484 }
485 return true;
486 }
487
488 /// Handles the checks for format strings, non-POD arguments to vararg
489 /// functions, and NULL arguments passed to non-NULL parameters.
checkCall(NamedDecl * FDecl,ArrayRef<const Expr * > Args,unsigned NumProtoArgs,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)490 void Sema::checkCall(NamedDecl *FDecl,
491 ArrayRef<const Expr *> Args,
492 unsigned NumProtoArgs,
493 bool IsMemberFunction,
494 SourceLocation Loc,
495 SourceRange Range,
496 VariadicCallType CallType) {
497 if (CurContext->isDependentContext())
498 return;
499
500 // Printf and scanf checking.
501 bool HandledFormatString = false;
502 for (specific_attr_iterator<FormatAttr>
503 I = FDecl->specific_attr_begin<FormatAttr>(),
504 E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
505 if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range))
506 HandledFormatString = true;
507
508 // Refuse POD arguments that weren't caught by the format string
509 // checks above.
510 if (!HandledFormatString && CallType != VariadicDoesNotApply)
511 for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
512 // Args[ArgIdx] can be null in malformed code.
513 if (const Expr *Arg = Args[ArgIdx])
514 variadicArgumentPODCheck(Arg, CallType);
515 }
516
517 for (specific_attr_iterator<NonNullAttr>
518 I = FDecl->specific_attr_begin<NonNullAttr>(),
519 E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
520 CheckNonNullArguments(*I, Args.data(), Loc);
521
522 // Type safety checking.
523 for (specific_attr_iterator<ArgumentWithTypeTagAttr>
524 i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
525 e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
526 CheckArgumentWithTypeTag(*i, Args.data());
527 }
528 }
529
530 /// CheckConstructorCall - Check a constructor call for correctness and safety
531 /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)532 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
533 ArrayRef<const Expr *> Args,
534 const FunctionProtoType *Proto,
535 SourceLocation Loc) {
536 VariadicCallType CallType =
537 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
538 checkCall(FDecl, Args, Proto->getNumArgs(),
539 /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
540 }
541
542 /// CheckFunctionCall - Check a direct function call for various correctness
543 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)544 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
545 const FunctionProtoType *Proto) {
546 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
547 isa<CXXMethodDecl>(FDecl);
548 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
549 IsMemberOperatorCall;
550 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
551 TheCall->getCallee());
552 unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
553 Expr** Args = TheCall->getArgs();
554 unsigned NumArgs = TheCall->getNumArgs();
555 if (IsMemberOperatorCall) {
556 // If this is a call to a member operator, hide the first argument
557 // from checkCall.
558 // FIXME: Our choice of AST representation here is less than ideal.
559 ++Args;
560 --NumArgs;
561 }
562 checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
563 NumProtoArgs,
564 IsMemberFunction, TheCall->getRParenLoc(),
565 TheCall->getCallee()->getSourceRange(), CallType);
566
567 IdentifierInfo *FnInfo = FDecl->getIdentifier();
568 // None of the checks below are needed for functions that don't have
569 // simple names (e.g., C++ conversion functions).
570 if (!FnInfo)
571 return false;
572
573 unsigned CMId = FDecl->getMemoryFunctionKind();
574 if (CMId == 0)
575 return false;
576
577 // Handle memory setting and copying functions.
578 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
579 CheckStrlcpycatArguments(TheCall, FnInfo);
580 else if (CMId == Builtin::BIstrncat)
581 CheckStrncatArguments(TheCall, FnInfo);
582 else
583 CheckMemaccessArguments(TheCall, CMId, FnInfo);
584
585 return false;
586 }
587
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,Expr ** Args,unsigned NumArgs)588 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
589 Expr **Args, unsigned NumArgs) {
590 VariadicCallType CallType =
591 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
592
593 checkCall(Method, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
594 Method->param_size(),
595 /*IsMemberFunction=*/false,
596 lbrac, Method->getSourceRange(), CallType);
597
598 return false;
599 }
600
CheckBlockCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)601 bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
602 const FunctionProtoType *Proto) {
603 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
604 if (!V)
605 return false;
606
607 QualType Ty = V->getType();
608 if (!Ty->isBlockPointerType())
609 return false;
610
611 VariadicCallType CallType =
612 Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
613 unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
614
615 checkCall(NDecl,
616 llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
617 TheCall->getNumArgs()),
618 NumProtoArgs, /*IsMemberFunction=*/false,
619 TheCall->getRParenLoc(),
620 TheCall->getCallee()->getSourceRange(), CallType);
621
622 return false;
623 }
624
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)625 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
626 AtomicExpr::AtomicOp Op) {
627 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
628 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
629
630 // All these operations take one of the following forms:
631 enum {
632 // C __c11_atomic_init(A *, C)
633 Init,
634 // C __c11_atomic_load(A *, int)
635 Load,
636 // void __atomic_load(A *, CP, int)
637 Copy,
638 // C __c11_atomic_add(A *, M, int)
639 Arithmetic,
640 // C __atomic_exchange_n(A *, CP, int)
641 Xchg,
642 // void __atomic_exchange(A *, C *, CP, int)
643 GNUXchg,
644 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
645 C11CmpXchg,
646 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
647 GNUCmpXchg
648 } Form = Init;
649 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
650 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
651 // where:
652 // C is an appropriate type,
653 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
654 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
655 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
656 // the int parameters are for orderings.
657
658 assert(AtomicExpr::AO__c11_atomic_init == 0 &&
659 AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
660 && "need to update code for modified C11 atomics");
661 bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
662 Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
663 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
664 Op == AtomicExpr::AO__atomic_store_n ||
665 Op == AtomicExpr::AO__atomic_exchange_n ||
666 Op == AtomicExpr::AO__atomic_compare_exchange_n;
667 bool IsAddSub = false;
668
669 switch (Op) {
670 case AtomicExpr::AO__c11_atomic_init:
671 Form = Init;
672 break;
673
674 case AtomicExpr::AO__c11_atomic_load:
675 case AtomicExpr::AO__atomic_load_n:
676 Form = Load;
677 break;
678
679 case AtomicExpr::AO__c11_atomic_store:
680 case AtomicExpr::AO__atomic_load:
681 case AtomicExpr::AO__atomic_store:
682 case AtomicExpr::AO__atomic_store_n:
683 Form = Copy;
684 break;
685
686 case AtomicExpr::AO__c11_atomic_fetch_add:
687 case AtomicExpr::AO__c11_atomic_fetch_sub:
688 case AtomicExpr::AO__atomic_fetch_add:
689 case AtomicExpr::AO__atomic_fetch_sub:
690 case AtomicExpr::AO__atomic_add_fetch:
691 case AtomicExpr::AO__atomic_sub_fetch:
692 IsAddSub = true;
693 // Fall through.
694 case AtomicExpr::AO__c11_atomic_fetch_and:
695 case AtomicExpr::AO__c11_atomic_fetch_or:
696 case AtomicExpr::AO__c11_atomic_fetch_xor:
697 case AtomicExpr::AO__atomic_fetch_and:
698 case AtomicExpr::AO__atomic_fetch_or:
699 case AtomicExpr::AO__atomic_fetch_xor:
700 case AtomicExpr::AO__atomic_fetch_nand:
701 case AtomicExpr::AO__atomic_and_fetch:
702 case AtomicExpr::AO__atomic_or_fetch:
703 case AtomicExpr::AO__atomic_xor_fetch:
704 case AtomicExpr::AO__atomic_nand_fetch:
705 Form = Arithmetic;
706 break;
707
708 case AtomicExpr::AO__c11_atomic_exchange:
709 case AtomicExpr::AO__atomic_exchange_n:
710 Form = Xchg;
711 break;
712
713 case AtomicExpr::AO__atomic_exchange:
714 Form = GNUXchg;
715 break;
716
717 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
718 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
719 Form = C11CmpXchg;
720 break;
721
722 case AtomicExpr::AO__atomic_compare_exchange:
723 case AtomicExpr::AO__atomic_compare_exchange_n:
724 Form = GNUCmpXchg;
725 break;
726 }
727
728 // Check we have the right number of arguments.
729 if (TheCall->getNumArgs() < NumArgs[Form]) {
730 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
731 << 0 << NumArgs[Form] << TheCall->getNumArgs()
732 << TheCall->getCallee()->getSourceRange();
733 return ExprError();
734 } else if (TheCall->getNumArgs() > NumArgs[Form]) {
735 Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
736 diag::err_typecheck_call_too_many_args)
737 << 0 << NumArgs[Form] << TheCall->getNumArgs()
738 << TheCall->getCallee()->getSourceRange();
739 return ExprError();
740 }
741
742 // Inspect the first argument of the atomic operation.
743 Expr *Ptr = TheCall->getArg(0);
744 Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
745 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
746 if (!pointerType) {
747 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
748 << Ptr->getType() << Ptr->getSourceRange();
749 return ExprError();
750 }
751
752 // For a __c11 builtin, this should be a pointer to an _Atomic type.
753 QualType AtomTy = pointerType->getPointeeType(); // 'A'
754 QualType ValType = AtomTy; // 'C'
755 if (IsC11) {
756 if (!AtomTy->isAtomicType()) {
757 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
758 << Ptr->getType() << Ptr->getSourceRange();
759 return ExprError();
760 }
761 if (AtomTy.isConstQualified()) {
762 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
763 << Ptr->getType() << Ptr->getSourceRange();
764 return ExprError();
765 }
766 ValType = AtomTy->getAs<AtomicType>()->getValueType();
767 }
768
769 // For an arithmetic operation, the implied arithmetic must be well-formed.
770 if (Form == Arithmetic) {
771 // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
772 if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
773 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
774 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
775 return ExprError();
776 }
777 if (!IsAddSub && !ValType->isIntegerType()) {
778 Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
779 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
780 return ExprError();
781 }
782 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
783 // For __atomic_*_n operations, the value type must be a scalar integral or
784 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
785 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
786 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
787 return ExprError();
788 }
789
790 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
791 // For GNU atomics, require a trivially-copyable type. This is not part of
792 // the GNU atomics specification, but we enforce it for sanity.
793 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
794 << Ptr->getType() << Ptr->getSourceRange();
795 return ExprError();
796 }
797
798 // FIXME: For any builtin other than a load, the ValType must not be
799 // const-qualified.
800
801 switch (ValType.getObjCLifetime()) {
802 case Qualifiers::OCL_None:
803 case Qualifiers::OCL_ExplicitNone:
804 // okay
805 break;
806
807 case Qualifiers::OCL_Weak:
808 case Qualifiers::OCL_Strong:
809 case Qualifiers::OCL_Autoreleasing:
810 // FIXME: Can this happen? By this point, ValType should be known
811 // to be trivially copyable.
812 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
813 << ValType << Ptr->getSourceRange();
814 return ExprError();
815 }
816
817 QualType ResultType = ValType;
818 if (Form == Copy || Form == GNUXchg || Form == Init)
819 ResultType = Context.VoidTy;
820 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
821 ResultType = Context.BoolTy;
822
823 // The type of a parameter passed 'by value'. In the GNU atomics, such
824 // arguments are actually passed as pointers.
825 QualType ByValType = ValType; // 'CP'
826 if (!IsC11 && !IsN)
827 ByValType = Ptr->getType();
828
829 // The first argument --- the pointer --- has a fixed type; we
830 // deduce the types of the rest of the arguments accordingly. Walk
831 // the remaining arguments, converting them to the deduced value type.
832 for (unsigned i = 1; i != NumArgs[Form]; ++i) {
833 QualType Ty;
834 if (i < NumVals[Form] + 1) {
835 switch (i) {
836 case 1:
837 // The second argument is the non-atomic operand. For arithmetic, this
838 // is always passed by value, and for a compare_exchange it is always
839 // passed by address. For the rest, GNU uses by-address and C11 uses
840 // by-value.
841 assert(Form != Load);
842 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
843 Ty = ValType;
844 else if (Form == Copy || Form == Xchg)
845 Ty = ByValType;
846 else if (Form == Arithmetic)
847 Ty = Context.getPointerDiffType();
848 else
849 Ty = Context.getPointerType(ValType.getUnqualifiedType());
850 break;
851 case 2:
852 // The third argument to compare_exchange / GNU exchange is a
853 // (pointer to a) desired value.
854 Ty = ByValType;
855 break;
856 case 3:
857 // The fourth argument to GNU compare_exchange is a 'weak' flag.
858 Ty = Context.BoolTy;
859 break;
860 }
861 } else {
862 // The order(s) are always converted to int.
863 Ty = Context.IntTy;
864 }
865
866 InitializedEntity Entity =
867 InitializedEntity::InitializeParameter(Context, Ty, false);
868 ExprResult Arg = TheCall->getArg(i);
869 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
870 if (Arg.isInvalid())
871 return true;
872 TheCall->setArg(i, Arg.get());
873 }
874
875 // Permute the arguments into a 'consistent' order.
876 SmallVector<Expr*, 5> SubExprs;
877 SubExprs.push_back(Ptr);
878 switch (Form) {
879 case Init:
880 // Note, AtomicExpr::getVal1() has a special case for this atomic.
881 SubExprs.push_back(TheCall->getArg(1)); // Val1
882 break;
883 case Load:
884 SubExprs.push_back(TheCall->getArg(1)); // Order
885 break;
886 case Copy:
887 case Arithmetic:
888 case Xchg:
889 SubExprs.push_back(TheCall->getArg(2)); // Order
890 SubExprs.push_back(TheCall->getArg(1)); // Val1
891 break;
892 case GNUXchg:
893 // Note, AtomicExpr::getVal2() has a special case for this atomic.
894 SubExprs.push_back(TheCall->getArg(3)); // Order
895 SubExprs.push_back(TheCall->getArg(1)); // Val1
896 SubExprs.push_back(TheCall->getArg(2)); // Val2
897 break;
898 case C11CmpXchg:
899 SubExprs.push_back(TheCall->getArg(3)); // Order
900 SubExprs.push_back(TheCall->getArg(1)); // Val1
901 SubExprs.push_back(TheCall->getArg(4)); // OrderFail
902 SubExprs.push_back(TheCall->getArg(2)); // Val2
903 break;
904 case GNUCmpXchg:
905 SubExprs.push_back(TheCall->getArg(4)); // Order
906 SubExprs.push_back(TheCall->getArg(1)); // Val1
907 SubExprs.push_back(TheCall->getArg(5)); // OrderFail
908 SubExprs.push_back(TheCall->getArg(2)); // Val2
909 SubExprs.push_back(TheCall->getArg(3)); // Weak
910 break;
911 }
912
913 return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
914 SubExprs, ResultType, Op,
915 TheCall->getRParenLoc()));
916 }
917
918
919 /// checkBuiltinArgument - Given a call to a builtin function, perform
920 /// normal type-checking on the given argument, updating the call in
921 /// place. This is useful when a builtin function requires custom
922 /// type-checking for some of its arguments but not necessarily all of
923 /// them.
924 ///
925 /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)926 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
927 FunctionDecl *Fn = E->getDirectCallee();
928 assert(Fn && "builtin call without direct callee!");
929
930 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
931 InitializedEntity Entity =
932 InitializedEntity::InitializeParameter(S.Context, Param);
933
934 ExprResult Arg = E->getArg(0);
935 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
936 if (Arg.isInvalid())
937 return true;
938
939 E->setArg(ArgIndex, Arg.take());
940 return false;
941 }
942
943 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
944 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
945 /// type of its first argument. The main ActOnCallExpr routines have already
946 /// promoted the types of arguments because all of these calls are prototyped as
947 /// void(...).
948 ///
949 /// This function goes through and does final semantic checking for these
950 /// builtins,
951 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)952 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
953 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
954 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
955 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
956
957 // Ensure that we have at least one argument to do type inference from.
958 if (TheCall->getNumArgs() < 1) {
959 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
960 << 0 << 1 << TheCall->getNumArgs()
961 << TheCall->getCallee()->getSourceRange();
962 return ExprError();
963 }
964
965 // Inspect the first argument of the atomic builtin. This should always be
966 // a pointer type, whose element is an integral scalar or pointer type.
967 // Because it is a pointer type, we don't have to worry about any implicit
968 // casts here.
969 // FIXME: We don't allow floating point scalars as input.
970 Expr *FirstArg = TheCall->getArg(0);
971 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
972 if (FirstArgResult.isInvalid())
973 return ExprError();
974 FirstArg = FirstArgResult.take();
975 TheCall->setArg(0, FirstArg);
976
977 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
978 if (!pointerType) {
979 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
980 << FirstArg->getType() << FirstArg->getSourceRange();
981 return ExprError();
982 }
983
984 QualType ValType = pointerType->getPointeeType();
985 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
986 !ValType->isBlockPointerType()) {
987 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
988 << FirstArg->getType() << FirstArg->getSourceRange();
989 return ExprError();
990 }
991
992 switch (ValType.getObjCLifetime()) {
993 case Qualifiers::OCL_None:
994 case Qualifiers::OCL_ExplicitNone:
995 // okay
996 break;
997
998 case Qualifiers::OCL_Weak:
999 case Qualifiers::OCL_Strong:
1000 case Qualifiers::OCL_Autoreleasing:
1001 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1002 << ValType << FirstArg->getSourceRange();
1003 return ExprError();
1004 }
1005
1006 // Strip any qualifiers off ValType.
1007 ValType = ValType.getUnqualifiedType();
1008
1009 // The majority of builtins return a value, but a few have special return
1010 // types, so allow them to override appropriately below.
1011 QualType ResultType = ValType;
1012
1013 // We need to figure out which concrete builtin this maps onto. For example,
1014 // __sync_fetch_and_add with a 2 byte object turns into
1015 // __sync_fetch_and_add_2.
1016 #define BUILTIN_ROW(x) \
1017 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1018 Builtin::BI##x##_8, Builtin::BI##x##_16 }
1019
1020 static const unsigned BuiltinIndices[][5] = {
1021 BUILTIN_ROW(__sync_fetch_and_add),
1022 BUILTIN_ROW(__sync_fetch_and_sub),
1023 BUILTIN_ROW(__sync_fetch_and_or),
1024 BUILTIN_ROW(__sync_fetch_and_and),
1025 BUILTIN_ROW(__sync_fetch_and_xor),
1026
1027 BUILTIN_ROW(__sync_add_and_fetch),
1028 BUILTIN_ROW(__sync_sub_and_fetch),
1029 BUILTIN_ROW(__sync_and_and_fetch),
1030 BUILTIN_ROW(__sync_or_and_fetch),
1031 BUILTIN_ROW(__sync_xor_and_fetch),
1032
1033 BUILTIN_ROW(__sync_val_compare_and_swap),
1034 BUILTIN_ROW(__sync_bool_compare_and_swap),
1035 BUILTIN_ROW(__sync_lock_test_and_set),
1036 BUILTIN_ROW(__sync_lock_release),
1037 BUILTIN_ROW(__sync_swap)
1038 };
1039 #undef BUILTIN_ROW
1040
1041 // Determine the index of the size.
1042 unsigned SizeIndex;
1043 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1044 case 1: SizeIndex = 0; break;
1045 case 2: SizeIndex = 1; break;
1046 case 4: SizeIndex = 2; break;
1047 case 8: SizeIndex = 3; break;
1048 case 16: SizeIndex = 4; break;
1049 default:
1050 Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1051 << FirstArg->getType() << FirstArg->getSourceRange();
1052 return ExprError();
1053 }
1054
1055 // Each of these builtins has one pointer argument, followed by some number of
1056 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1057 // that we ignore. Find out which row of BuiltinIndices to read from as well
1058 // as the number of fixed args.
1059 unsigned BuiltinID = FDecl->getBuiltinID();
1060 unsigned BuiltinIndex, NumFixed = 1;
1061 switch (BuiltinID) {
1062 default: llvm_unreachable("Unknown overloaded atomic builtin!");
1063 case Builtin::BI__sync_fetch_and_add:
1064 case Builtin::BI__sync_fetch_and_add_1:
1065 case Builtin::BI__sync_fetch_and_add_2:
1066 case Builtin::BI__sync_fetch_and_add_4:
1067 case Builtin::BI__sync_fetch_and_add_8:
1068 case Builtin::BI__sync_fetch_and_add_16:
1069 BuiltinIndex = 0;
1070 break;
1071
1072 case Builtin::BI__sync_fetch_and_sub:
1073 case Builtin::BI__sync_fetch_and_sub_1:
1074 case Builtin::BI__sync_fetch_and_sub_2:
1075 case Builtin::BI__sync_fetch_and_sub_4:
1076 case Builtin::BI__sync_fetch_and_sub_8:
1077 case Builtin::BI__sync_fetch_and_sub_16:
1078 BuiltinIndex = 1;
1079 break;
1080
1081 case Builtin::BI__sync_fetch_and_or:
1082 case Builtin::BI__sync_fetch_and_or_1:
1083 case Builtin::BI__sync_fetch_and_or_2:
1084 case Builtin::BI__sync_fetch_and_or_4:
1085 case Builtin::BI__sync_fetch_and_or_8:
1086 case Builtin::BI__sync_fetch_and_or_16:
1087 BuiltinIndex = 2;
1088 break;
1089
1090 case Builtin::BI__sync_fetch_and_and:
1091 case Builtin::BI__sync_fetch_and_and_1:
1092 case Builtin::BI__sync_fetch_and_and_2:
1093 case Builtin::BI__sync_fetch_and_and_4:
1094 case Builtin::BI__sync_fetch_and_and_8:
1095 case Builtin::BI__sync_fetch_and_and_16:
1096 BuiltinIndex = 3;
1097 break;
1098
1099 case Builtin::BI__sync_fetch_and_xor:
1100 case Builtin::BI__sync_fetch_and_xor_1:
1101 case Builtin::BI__sync_fetch_and_xor_2:
1102 case Builtin::BI__sync_fetch_and_xor_4:
1103 case Builtin::BI__sync_fetch_and_xor_8:
1104 case Builtin::BI__sync_fetch_and_xor_16:
1105 BuiltinIndex = 4;
1106 break;
1107
1108 case Builtin::BI__sync_add_and_fetch:
1109 case Builtin::BI__sync_add_and_fetch_1:
1110 case Builtin::BI__sync_add_and_fetch_2:
1111 case Builtin::BI__sync_add_and_fetch_4:
1112 case Builtin::BI__sync_add_and_fetch_8:
1113 case Builtin::BI__sync_add_and_fetch_16:
1114 BuiltinIndex = 5;
1115 break;
1116
1117 case Builtin::BI__sync_sub_and_fetch:
1118 case Builtin::BI__sync_sub_and_fetch_1:
1119 case Builtin::BI__sync_sub_and_fetch_2:
1120 case Builtin::BI__sync_sub_and_fetch_4:
1121 case Builtin::BI__sync_sub_and_fetch_8:
1122 case Builtin::BI__sync_sub_and_fetch_16:
1123 BuiltinIndex = 6;
1124 break;
1125
1126 case Builtin::BI__sync_and_and_fetch:
1127 case Builtin::BI__sync_and_and_fetch_1:
1128 case Builtin::BI__sync_and_and_fetch_2:
1129 case Builtin::BI__sync_and_and_fetch_4:
1130 case Builtin::BI__sync_and_and_fetch_8:
1131 case Builtin::BI__sync_and_and_fetch_16:
1132 BuiltinIndex = 7;
1133 break;
1134
1135 case Builtin::BI__sync_or_and_fetch:
1136 case Builtin::BI__sync_or_and_fetch_1:
1137 case Builtin::BI__sync_or_and_fetch_2:
1138 case Builtin::BI__sync_or_and_fetch_4:
1139 case Builtin::BI__sync_or_and_fetch_8:
1140 case Builtin::BI__sync_or_and_fetch_16:
1141 BuiltinIndex = 8;
1142 break;
1143
1144 case Builtin::BI__sync_xor_and_fetch:
1145 case Builtin::BI__sync_xor_and_fetch_1:
1146 case Builtin::BI__sync_xor_and_fetch_2:
1147 case Builtin::BI__sync_xor_and_fetch_4:
1148 case Builtin::BI__sync_xor_and_fetch_8:
1149 case Builtin::BI__sync_xor_and_fetch_16:
1150 BuiltinIndex = 9;
1151 break;
1152
1153 case Builtin::BI__sync_val_compare_and_swap:
1154 case Builtin::BI__sync_val_compare_and_swap_1:
1155 case Builtin::BI__sync_val_compare_and_swap_2:
1156 case Builtin::BI__sync_val_compare_and_swap_4:
1157 case Builtin::BI__sync_val_compare_and_swap_8:
1158 case Builtin::BI__sync_val_compare_and_swap_16:
1159 BuiltinIndex = 10;
1160 NumFixed = 2;
1161 break;
1162
1163 case Builtin::BI__sync_bool_compare_and_swap:
1164 case Builtin::BI__sync_bool_compare_and_swap_1:
1165 case Builtin::BI__sync_bool_compare_and_swap_2:
1166 case Builtin::BI__sync_bool_compare_and_swap_4:
1167 case Builtin::BI__sync_bool_compare_and_swap_8:
1168 case Builtin::BI__sync_bool_compare_and_swap_16:
1169 BuiltinIndex = 11;
1170 NumFixed = 2;
1171 ResultType = Context.BoolTy;
1172 break;
1173
1174 case Builtin::BI__sync_lock_test_and_set:
1175 case Builtin::BI__sync_lock_test_and_set_1:
1176 case Builtin::BI__sync_lock_test_and_set_2:
1177 case Builtin::BI__sync_lock_test_and_set_4:
1178 case Builtin::BI__sync_lock_test_and_set_8:
1179 case Builtin::BI__sync_lock_test_and_set_16:
1180 BuiltinIndex = 12;
1181 break;
1182
1183 case Builtin::BI__sync_lock_release:
1184 case Builtin::BI__sync_lock_release_1:
1185 case Builtin::BI__sync_lock_release_2:
1186 case Builtin::BI__sync_lock_release_4:
1187 case Builtin::BI__sync_lock_release_8:
1188 case Builtin::BI__sync_lock_release_16:
1189 BuiltinIndex = 13;
1190 NumFixed = 0;
1191 ResultType = Context.VoidTy;
1192 break;
1193
1194 case Builtin::BI__sync_swap:
1195 case Builtin::BI__sync_swap_1:
1196 case Builtin::BI__sync_swap_2:
1197 case Builtin::BI__sync_swap_4:
1198 case Builtin::BI__sync_swap_8:
1199 case Builtin::BI__sync_swap_16:
1200 BuiltinIndex = 14;
1201 break;
1202 }
1203
1204 // Now that we know how many fixed arguments we expect, first check that we
1205 // have at least that many.
1206 if (TheCall->getNumArgs() < 1+NumFixed) {
1207 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1208 << 0 << 1+NumFixed << TheCall->getNumArgs()
1209 << TheCall->getCallee()->getSourceRange();
1210 return ExprError();
1211 }
1212
1213 // Get the decl for the concrete builtin from this, we can tell what the
1214 // concrete integer type we should convert to is.
1215 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1216 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1217 FunctionDecl *NewBuiltinDecl;
1218 if (NewBuiltinID == BuiltinID)
1219 NewBuiltinDecl = FDecl;
1220 else {
1221 // Perform builtin lookup to avoid redeclaring it.
1222 DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1223 LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1224 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1225 assert(Res.getFoundDecl());
1226 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1227 if (NewBuiltinDecl == 0)
1228 return ExprError();
1229 }
1230
1231 // The first argument --- the pointer --- has a fixed type; we
1232 // deduce the types of the rest of the arguments accordingly. Walk
1233 // the remaining arguments, converting them to the deduced value type.
1234 for (unsigned i = 0; i != NumFixed; ++i) {
1235 ExprResult Arg = TheCall->getArg(i+1);
1236
1237 // GCC does an implicit conversion to the pointer or integer ValType. This
1238 // can fail in some cases (1i -> int**), check for this error case now.
1239 // Initialize the argument.
1240 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1241 ValType, /*consume*/ false);
1242 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1243 if (Arg.isInvalid())
1244 return ExprError();
1245
1246 // Okay, we have something that *can* be converted to the right type. Check
1247 // to see if there is a potentially weird extension going on here. This can
1248 // happen when you do an atomic operation on something like an char* and
1249 // pass in 42. The 42 gets converted to char. This is even more strange
1250 // for things like 45.123 -> char, etc.
1251 // FIXME: Do this check.
1252 TheCall->setArg(i+1, Arg.take());
1253 }
1254
1255 ASTContext& Context = this->getASTContext();
1256
1257 // Create a new DeclRefExpr to refer to the new decl.
1258 DeclRefExpr* NewDRE = DeclRefExpr::Create(
1259 Context,
1260 DRE->getQualifierLoc(),
1261 SourceLocation(),
1262 NewBuiltinDecl,
1263 /*enclosing*/ false,
1264 DRE->getLocation(),
1265 Context.BuiltinFnTy,
1266 DRE->getValueKind());
1267
1268 // Set the callee in the CallExpr.
1269 // FIXME: This loses syntactic information.
1270 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1271 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1272 CK_BuiltinFnToFnPtr);
1273 TheCall->setCallee(PromotedCall.take());
1274
1275 // Change the result type of the call to match the original value type. This
1276 // is arbitrary, but the codegen for these builtins ins design to handle it
1277 // gracefully.
1278 TheCall->setType(ResultType);
1279
1280 return TheCallResult;
1281 }
1282
1283 /// CheckObjCString - Checks that the argument to the builtin
1284 /// CFString constructor is correct
1285 /// Note: It might also make sense to do the UTF-16 conversion here (would
1286 /// simplify the backend).
CheckObjCString(Expr * Arg)1287 bool Sema::CheckObjCString(Expr *Arg) {
1288 Arg = Arg->IgnoreParenCasts();
1289 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1290
1291 if (!Literal || !Literal->isAscii()) {
1292 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1293 << Arg->getSourceRange();
1294 return true;
1295 }
1296
1297 if (Literal->containsNonAsciiOrNull()) {
1298 StringRef String = Literal->getString();
1299 unsigned NumBytes = String.size();
1300 SmallVector<UTF16, 128> ToBuf(NumBytes);
1301 const UTF8 *FromPtr = (const UTF8 *)String.data();
1302 UTF16 *ToPtr = &ToBuf[0];
1303
1304 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1305 &ToPtr, ToPtr + NumBytes,
1306 strictConversion);
1307 // Check for conversion failure.
1308 if (Result != conversionOK)
1309 Diag(Arg->getLocStart(),
1310 diag::warn_cfstring_truncated) << Arg->getSourceRange();
1311 }
1312 return false;
1313 }
1314
1315 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1316 /// Emit an error and return true on failure, return false on success.
SemaBuiltinVAStart(CallExpr * TheCall)1317 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1318 Expr *Fn = TheCall->getCallee();
1319 if (TheCall->getNumArgs() > 2) {
1320 Diag(TheCall->getArg(2)->getLocStart(),
1321 diag::err_typecheck_call_too_many_args)
1322 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1323 << Fn->getSourceRange()
1324 << SourceRange(TheCall->getArg(2)->getLocStart(),
1325 (*(TheCall->arg_end()-1))->getLocEnd());
1326 return true;
1327 }
1328
1329 if (TheCall->getNumArgs() < 2) {
1330 return Diag(TheCall->getLocEnd(),
1331 diag::err_typecheck_call_too_few_args_at_least)
1332 << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1333 }
1334
1335 // Type-check the first argument normally.
1336 if (checkBuiltinArgument(*this, TheCall, 0))
1337 return true;
1338
1339 // Determine whether the current function is variadic or not.
1340 BlockScopeInfo *CurBlock = getCurBlock();
1341 bool isVariadic;
1342 if (CurBlock)
1343 isVariadic = CurBlock->TheDecl->isVariadic();
1344 else if (FunctionDecl *FD = getCurFunctionDecl())
1345 isVariadic = FD->isVariadic();
1346 else
1347 isVariadic = getCurMethodDecl()->isVariadic();
1348
1349 if (!isVariadic) {
1350 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1351 return true;
1352 }
1353
1354 // Verify that the second argument to the builtin is the last argument of the
1355 // current function or method.
1356 bool SecondArgIsLastNamedArgument = false;
1357 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1358
1359 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1360 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1361 // FIXME: This isn't correct for methods (results in bogus warning).
1362 // Get the last formal in the current function.
1363 const ParmVarDecl *LastArg;
1364 if (CurBlock)
1365 LastArg = *(CurBlock->TheDecl->param_end()-1);
1366 else if (FunctionDecl *FD = getCurFunctionDecl())
1367 LastArg = *(FD->param_end()-1);
1368 else
1369 LastArg = *(getCurMethodDecl()->param_end()-1);
1370 SecondArgIsLastNamedArgument = PV == LastArg;
1371 }
1372 }
1373
1374 if (!SecondArgIsLastNamedArgument)
1375 Diag(TheCall->getArg(1)->getLocStart(),
1376 diag::warn_second_parameter_of_va_start_not_last_named_argument);
1377 return false;
1378 }
1379
1380 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1381 /// friends. This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)1382 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1383 if (TheCall->getNumArgs() < 2)
1384 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1385 << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1386 if (TheCall->getNumArgs() > 2)
1387 return Diag(TheCall->getArg(2)->getLocStart(),
1388 diag::err_typecheck_call_too_many_args)
1389 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1390 << SourceRange(TheCall->getArg(2)->getLocStart(),
1391 (*(TheCall->arg_end()-1))->getLocEnd());
1392
1393 ExprResult OrigArg0 = TheCall->getArg(0);
1394 ExprResult OrigArg1 = TheCall->getArg(1);
1395
1396 // Do standard promotions between the two arguments, returning their common
1397 // type.
1398 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1399 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1400 return true;
1401
1402 // Make sure any conversions are pushed back into the call; this is
1403 // type safe since unordered compare builtins are declared as "_Bool
1404 // foo(...)".
1405 TheCall->setArg(0, OrigArg0.get());
1406 TheCall->setArg(1, OrigArg1.get());
1407
1408 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1409 return false;
1410
1411 // If the common type isn't a real floating type, then the arguments were
1412 // invalid for this operation.
1413 if (Res.isNull() || !Res->isRealFloatingType())
1414 return Diag(OrigArg0.get()->getLocStart(),
1415 diag::err_typecheck_call_invalid_ordered_compare)
1416 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1417 << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1418
1419 return false;
1420 }
1421
1422 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1423 /// __builtin_isnan and friends. This is declared to take (...), so we have
1424 /// to check everything. We expect the last argument to be a floating point
1425 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)1426 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1427 if (TheCall->getNumArgs() < NumArgs)
1428 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1429 << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1430 if (TheCall->getNumArgs() > NumArgs)
1431 return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1432 diag::err_typecheck_call_too_many_args)
1433 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1434 << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1435 (*(TheCall->arg_end()-1))->getLocEnd());
1436
1437 Expr *OrigArg = TheCall->getArg(NumArgs-1);
1438
1439 if (OrigArg->isTypeDependent())
1440 return false;
1441
1442 // This operation requires a non-_Complex floating-point number.
1443 if (!OrigArg->getType()->isRealFloatingType())
1444 return Diag(OrigArg->getLocStart(),
1445 diag::err_typecheck_call_invalid_unary_fp)
1446 << OrigArg->getType() << OrigArg->getSourceRange();
1447
1448 // If this is an implicit conversion from float -> double, remove it.
1449 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1450 Expr *CastArg = Cast->getSubExpr();
1451 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1452 assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1453 "promotion from float to double is the only expected cast here");
1454 Cast->setSubExpr(0);
1455 TheCall->setArg(NumArgs-1, CastArg);
1456 }
1457 }
1458
1459 return false;
1460 }
1461
1462 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1463 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)1464 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1465 if (TheCall->getNumArgs() < 2)
1466 return ExprError(Diag(TheCall->getLocEnd(),
1467 diag::err_typecheck_call_too_few_args_at_least)
1468 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1469 << TheCall->getSourceRange());
1470
1471 // Determine which of the following types of shufflevector we're checking:
1472 // 1) unary, vector mask: (lhs, mask)
1473 // 2) binary, vector mask: (lhs, rhs, mask)
1474 // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1475 QualType resType = TheCall->getArg(0)->getType();
1476 unsigned numElements = 0;
1477
1478 if (!TheCall->getArg(0)->isTypeDependent() &&
1479 !TheCall->getArg(1)->isTypeDependent()) {
1480 QualType LHSType = TheCall->getArg(0)->getType();
1481 QualType RHSType = TheCall->getArg(1)->getType();
1482
1483 if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1484 Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1485 << SourceRange(TheCall->getArg(0)->getLocStart(),
1486 TheCall->getArg(1)->getLocEnd());
1487 return ExprError();
1488 }
1489
1490 numElements = LHSType->getAs<VectorType>()->getNumElements();
1491 unsigned numResElements = TheCall->getNumArgs() - 2;
1492
1493 // Check to see if we have a call with 2 vector arguments, the unary shuffle
1494 // with mask. If so, verify that RHS is an integer vector type with the
1495 // same number of elts as lhs.
1496 if (TheCall->getNumArgs() == 2) {
1497 if (!RHSType->hasIntegerRepresentation() ||
1498 RHSType->getAs<VectorType>()->getNumElements() != numElements)
1499 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1500 << SourceRange(TheCall->getArg(1)->getLocStart(),
1501 TheCall->getArg(1)->getLocEnd());
1502 numResElements = numElements;
1503 }
1504 else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1505 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1506 << SourceRange(TheCall->getArg(0)->getLocStart(),
1507 TheCall->getArg(1)->getLocEnd());
1508 return ExprError();
1509 } else if (numElements != numResElements) {
1510 QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1511 resType = Context.getVectorType(eltType, numResElements,
1512 VectorType::GenericVector);
1513 }
1514 }
1515
1516 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1517 if (TheCall->getArg(i)->isTypeDependent() ||
1518 TheCall->getArg(i)->isValueDependent())
1519 continue;
1520
1521 llvm::APSInt Result(32);
1522 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1523 return ExprError(Diag(TheCall->getLocStart(),
1524 diag::err_shufflevector_nonconstant_argument)
1525 << TheCall->getArg(i)->getSourceRange());
1526
1527 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1528 return ExprError(Diag(TheCall->getLocStart(),
1529 diag::err_shufflevector_argument_too_large)
1530 << TheCall->getArg(i)->getSourceRange());
1531 }
1532
1533 SmallVector<Expr*, 32> exprs;
1534
1535 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1536 exprs.push_back(TheCall->getArg(i));
1537 TheCall->setArg(i, 0);
1538 }
1539
1540 return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1541 TheCall->getCallee()->getLocStart(),
1542 TheCall->getRParenLoc()));
1543 }
1544
1545 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1546 // This is declared to take (const void*, ...) and can take two
1547 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)1548 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1549 unsigned NumArgs = TheCall->getNumArgs();
1550
1551 if (NumArgs > 3)
1552 return Diag(TheCall->getLocEnd(),
1553 diag::err_typecheck_call_too_many_args_at_most)
1554 << 0 /*function call*/ << 3 << NumArgs
1555 << TheCall->getSourceRange();
1556
1557 // Argument 0 is checked for us and the remaining arguments must be
1558 // constant integers.
1559 for (unsigned i = 1; i != NumArgs; ++i) {
1560 Expr *Arg = TheCall->getArg(i);
1561
1562 // We can't check the value of a dependent argument.
1563 if (Arg->isTypeDependent() || Arg->isValueDependent())
1564 continue;
1565
1566 llvm::APSInt Result;
1567 if (SemaBuiltinConstantArg(TheCall, i, Result))
1568 return true;
1569
1570 // FIXME: gcc issues a warning and rewrites these to 0. These
1571 // seems especially odd for the third argument since the default
1572 // is 3.
1573 if (i == 1) {
1574 if (Result.getLimitedValue() > 1)
1575 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1576 << "0" << "1" << Arg->getSourceRange();
1577 } else {
1578 if (Result.getLimitedValue() > 3)
1579 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1580 << "0" << "3" << Arg->getSourceRange();
1581 }
1582 }
1583
1584 return false;
1585 }
1586
1587 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1588 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)1589 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1590 llvm::APSInt &Result) {
1591 Expr *Arg = TheCall->getArg(ArgNum);
1592 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1593 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1594
1595 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1596
1597 if (!Arg->isIntegerConstantExpr(Result, Context))
1598 return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1599 << FDecl->getDeclName() << Arg->getSourceRange();
1600
1601 return false;
1602 }
1603
1604 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1605 /// int type). This simply type checks that type is one of the defined
1606 /// constants (0-3).
1607 // For compatibility check 0-3, llvm only handles 0 and 2.
SemaBuiltinObjectSize(CallExpr * TheCall)1608 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1609 llvm::APSInt Result;
1610
1611 // We can't check the value of a dependent argument.
1612 if (TheCall->getArg(1)->isTypeDependent() ||
1613 TheCall->getArg(1)->isValueDependent())
1614 return false;
1615
1616 // Check constant-ness first.
1617 if (SemaBuiltinConstantArg(TheCall, 1, Result))
1618 return true;
1619
1620 Expr *Arg = TheCall->getArg(1);
1621 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1622 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1623 << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1624 }
1625
1626 return false;
1627 }
1628
1629 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1630 /// This checks that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)1631 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1632 Expr *Arg = TheCall->getArg(1);
1633 llvm::APSInt Result;
1634
1635 // TODO: This is less than ideal. Overload this to take a value.
1636 if (SemaBuiltinConstantArg(TheCall, 1, Result))
1637 return true;
1638
1639 if (Result != 1)
1640 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1641 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1642
1643 return false;
1644 }
1645
1646 // Determine if an expression is a string literal or constant string.
1647 // If this function returns false on the arguments to a function expecting a
1648 // format string, we will usually need to emit a warning.
1649 // True string literals are then checked by CheckFormatString.
1650 Sema::StringLiteralCheckType
checkFormatStringExpr(const Expr * E,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,bool inFunctionCall)1651 Sema::checkFormatStringExpr(const Expr *E, ArrayRef<const Expr *> Args,
1652 bool HasVAListArg,
1653 unsigned format_idx, unsigned firstDataArg,
1654 FormatStringType Type, VariadicCallType CallType,
1655 bool inFunctionCall) {
1656 tryAgain:
1657 if (E->isTypeDependent() || E->isValueDependent())
1658 return SLCT_NotALiteral;
1659
1660 E = E->IgnoreParenCasts();
1661
1662 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1663 // Technically -Wformat-nonliteral does not warn about this case.
1664 // The behavior of printf and friends in this case is implementation
1665 // dependent. Ideally if the format string cannot be null then
1666 // it should have a 'nonnull' attribute in the function prototype.
1667 return SLCT_CheckedLiteral;
1668
1669 switch (E->getStmtClass()) {
1670 case Stmt::BinaryConditionalOperatorClass:
1671 case Stmt::ConditionalOperatorClass: {
1672 // The expression is a literal if both sub-expressions were, and it was
1673 // completely checked only if both sub-expressions were checked.
1674 const AbstractConditionalOperator *C =
1675 cast<AbstractConditionalOperator>(E);
1676 StringLiteralCheckType Left =
1677 checkFormatStringExpr(C->getTrueExpr(), Args,
1678 HasVAListArg, format_idx, firstDataArg,
1679 Type, CallType, inFunctionCall);
1680 if (Left == SLCT_NotALiteral)
1681 return SLCT_NotALiteral;
1682 StringLiteralCheckType Right =
1683 checkFormatStringExpr(C->getFalseExpr(), Args,
1684 HasVAListArg, format_idx, firstDataArg,
1685 Type, CallType, inFunctionCall);
1686 return Left < Right ? Left : Right;
1687 }
1688
1689 case Stmt::ImplicitCastExprClass: {
1690 E = cast<ImplicitCastExpr>(E)->getSubExpr();
1691 goto tryAgain;
1692 }
1693
1694 case Stmt::OpaqueValueExprClass:
1695 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1696 E = src;
1697 goto tryAgain;
1698 }
1699 return SLCT_NotALiteral;
1700
1701 case Stmt::PredefinedExprClass:
1702 // While __func__, etc., are technically not string literals, they
1703 // cannot contain format specifiers and thus are not a security
1704 // liability.
1705 return SLCT_UncheckedLiteral;
1706
1707 case Stmt::DeclRefExprClass: {
1708 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1709
1710 // As an exception, do not flag errors for variables binding to
1711 // const string literals.
1712 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1713 bool isConstant = false;
1714 QualType T = DR->getType();
1715
1716 if (const ArrayType *AT = Context.getAsArrayType(T)) {
1717 isConstant = AT->getElementType().isConstant(Context);
1718 } else if (const PointerType *PT = T->getAs<PointerType>()) {
1719 isConstant = T.isConstant(Context) &&
1720 PT->getPointeeType().isConstant(Context);
1721 } else if (T->isObjCObjectPointerType()) {
1722 // In ObjC, there is usually no "const ObjectPointer" type,
1723 // so don't check if the pointee type is constant.
1724 isConstant = T.isConstant(Context);
1725 }
1726
1727 if (isConstant) {
1728 if (const Expr *Init = VD->getAnyInitializer()) {
1729 // Look through initializers like const char c[] = { "foo" }
1730 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1731 if (InitList->isStringLiteralInit())
1732 Init = InitList->getInit(0)->IgnoreParenImpCasts();
1733 }
1734 return checkFormatStringExpr(Init, Args,
1735 HasVAListArg, format_idx,
1736 firstDataArg, Type, CallType,
1737 /*inFunctionCall*/false);
1738 }
1739 }
1740
1741 // For vprintf* functions (i.e., HasVAListArg==true), we add a
1742 // special check to see if the format string is a function parameter
1743 // of the function calling the printf function. If the function
1744 // has an attribute indicating it is a printf-like function, then we
1745 // should suppress warnings concerning non-literals being used in a call
1746 // to a vprintf function. For example:
1747 //
1748 // void
1749 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1750 // va_list ap;
1751 // va_start(ap, fmt);
1752 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
1753 // ...
1754 //
1755 if (HasVAListArg) {
1756 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1757 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1758 int PVIndex = PV->getFunctionScopeIndex() + 1;
1759 for (specific_attr_iterator<FormatAttr>
1760 i = ND->specific_attr_begin<FormatAttr>(),
1761 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1762 FormatAttr *PVFormat = *i;
1763 // adjust for implicit parameter
1764 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1765 if (MD->isInstance())
1766 ++PVIndex;
1767 // We also check if the formats are compatible.
1768 // We can't pass a 'scanf' string to a 'printf' function.
1769 if (PVIndex == PVFormat->getFormatIdx() &&
1770 Type == GetFormatStringType(PVFormat))
1771 return SLCT_UncheckedLiteral;
1772 }
1773 }
1774 }
1775 }
1776 }
1777
1778 return SLCT_NotALiteral;
1779 }
1780
1781 case Stmt::CallExprClass:
1782 case Stmt::CXXMemberCallExprClass: {
1783 const CallExpr *CE = cast<CallExpr>(E);
1784 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1785 if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1786 unsigned ArgIndex = FA->getFormatIdx();
1787 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1788 if (MD->isInstance())
1789 --ArgIndex;
1790 const Expr *Arg = CE->getArg(ArgIndex - 1);
1791
1792 return checkFormatStringExpr(Arg, Args,
1793 HasVAListArg, format_idx, firstDataArg,
1794 Type, CallType, inFunctionCall);
1795 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1796 unsigned BuiltinID = FD->getBuiltinID();
1797 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1798 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1799 const Expr *Arg = CE->getArg(0);
1800 return checkFormatStringExpr(Arg, Args,
1801 HasVAListArg, format_idx,
1802 firstDataArg, Type, CallType,
1803 inFunctionCall);
1804 }
1805 }
1806 }
1807
1808 return SLCT_NotALiteral;
1809 }
1810 case Stmt::ObjCStringLiteralClass:
1811 case Stmt::StringLiteralClass: {
1812 const StringLiteral *StrE = NULL;
1813
1814 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1815 StrE = ObjCFExpr->getString();
1816 else
1817 StrE = cast<StringLiteral>(E);
1818
1819 if (StrE) {
1820 CheckFormatString(StrE, E, Args, HasVAListArg, format_idx,
1821 firstDataArg, Type, inFunctionCall, CallType);
1822 return SLCT_CheckedLiteral;
1823 }
1824
1825 return SLCT_NotALiteral;
1826 }
1827
1828 default:
1829 return SLCT_NotALiteral;
1830 }
1831 }
1832
1833 void
CheckNonNullArguments(const NonNullAttr * NonNull,const Expr * const * ExprArgs,SourceLocation CallSiteLoc)1834 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1835 const Expr * const *ExprArgs,
1836 SourceLocation CallSiteLoc) {
1837 for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1838 e = NonNull->args_end();
1839 i != e; ++i) {
1840 const Expr *ArgExpr = ExprArgs[*i];
1841
1842 // As a special case, transparent unions initialized with zero are
1843 // considered null for the purposes of the nonnull attribute.
1844 if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
1845 if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
1846 if (const CompoundLiteralExpr *CLE =
1847 dyn_cast<CompoundLiteralExpr>(ArgExpr))
1848 if (const InitListExpr *ILE =
1849 dyn_cast<InitListExpr>(CLE->getInitializer()))
1850 ArgExpr = ILE->getInit(0);
1851 }
1852
1853 bool Result;
1854 if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
1855 Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1856 }
1857 }
1858
GetFormatStringType(const FormatAttr * Format)1859 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1860 return llvm::StringSwitch<FormatStringType>(Format->getType())
1861 .Case("scanf", FST_Scanf)
1862 .Cases("printf", "printf0", FST_Printf)
1863 .Cases("NSString", "CFString", FST_NSString)
1864 .Case("strftime", FST_Strftime)
1865 .Case("strfmon", FST_Strfmon)
1866 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1867 .Default(FST_Unknown);
1868 }
1869
1870 /// CheckFormatArguments - Check calls to printf and scanf (and similar
1871 /// functions) for correct use of format strings.
1872 /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range)1873 bool Sema::CheckFormatArguments(const FormatAttr *Format,
1874 ArrayRef<const Expr *> Args,
1875 bool IsCXXMember,
1876 VariadicCallType CallType,
1877 SourceLocation Loc, SourceRange Range) {
1878 FormatStringInfo FSI;
1879 if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1880 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
1881 FSI.FirstDataArg, GetFormatStringType(Format),
1882 CallType, Loc, Range);
1883 return false;
1884 }
1885
CheckFormatArguments(ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range)1886 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
1887 bool HasVAListArg, unsigned format_idx,
1888 unsigned firstDataArg, FormatStringType Type,
1889 VariadicCallType CallType,
1890 SourceLocation Loc, SourceRange Range) {
1891 // CHECK: printf/scanf-like function is called with no format string.
1892 if (format_idx >= Args.size()) {
1893 Diag(Loc, diag::warn_missing_format_string) << Range;
1894 return false;
1895 }
1896
1897 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1898
1899 // CHECK: format string is not a string literal.
1900 //
1901 // Dynamically generated format strings are difficult to
1902 // automatically vet at compile time. Requiring that format strings
1903 // are string literals: (1) permits the checking of format strings by
1904 // the compiler and thereby (2) can practically remove the source of
1905 // many format string exploits.
1906
1907 // Format string can be either ObjC string (e.g. @"%d") or
1908 // C string (e.g. "%d")
1909 // ObjC string uses the same format specifiers as C string, so we can use
1910 // the same format string checking logic for both ObjC and C strings.
1911 StringLiteralCheckType CT =
1912 checkFormatStringExpr(OrigFormatExpr, Args, HasVAListArg,
1913 format_idx, firstDataArg, Type, CallType);
1914 if (CT != SLCT_NotALiteral)
1915 // Literal format string found, check done!
1916 return CT == SLCT_CheckedLiteral;
1917
1918 // Strftime is particular as it always uses a single 'time' argument,
1919 // so it is safe to pass a non-literal string.
1920 if (Type == FST_Strftime)
1921 return false;
1922
1923 // Do not emit diag when the string param is a macro expansion and the
1924 // format is either NSString or CFString. This is a hack to prevent
1925 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1926 // which are usually used in place of NS and CF string literals.
1927 if (Type == FST_NSString &&
1928 SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1929 return false;
1930
1931 // If there are no arguments specified, warn with -Wformat-security, otherwise
1932 // warn only with -Wformat-nonliteral.
1933 if (Args.size() == format_idx+1)
1934 Diag(Args[format_idx]->getLocStart(),
1935 diag::warn_format_nonliteral_noargs)
1936 << OrigFormatExpr->getSourceRange();
1937 else
1938 Diag(Args[format_idx]->getLocStart(),
1939 diag::warn_format_nonliteral)
1940 << OrigFormatExpr->getSourceRange();
1941 return false;
1942 }
1943
1944 namespace {
1945 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1946 protected:
1947 Sema &S;
1948 const StringLiteral *FExpr;
1949 const Expr *OrigFormatExpr;
1950 const unsigned FirstDataArg;
1951 const unsigned NumDataArgs;
1952 const char *Beg; // Start of format string.
1953 const bool HasVAListArg;
1954 ArrayRef<const Expr *> Args;
1955 unsigned FormatIdx;
1956 llvm::BitVector CoveredArgs;
1957 bool usesPositionalArgs;
1958 bool atFirstArg;
1959 bool inFunctionCall;
1960 Sema::VariadicCallType CallType;
1961 public:
CheckFormatHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType)1962 CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1963 const Expr *origFormatExpr, unsigned firstDataArg,
1964 unsigned numDataArgs, const char *beg, bool hasVAListArg,
1965 ArrayRef<const Expr *> Args,
1966 unsigned formatIdx, bool inFunctionCall,
1967 Sema::VariadicCallType callType)
1968 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1969 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1970 Beg(beg), HasVAListArg(hasVAListArg),
1971 Args(Args), FormatIdx(formatIdx),
1972 usesPositionalArgs(false), atFirstArg(true),
1973 inFunctionCall(inFunctionCall), CallType(callType) {
1974 CoveredArgs.resize(numDataArgs);
1975 CoveredArgs.reset();
1976 }
1977
1978 void DoneProcessing();
1979
1980 void HandleIncompleteSpecifier(const char *startSpecifier,
1981 unsigned specifierLen);
1982
1983 void HandleInvalidLengthModifier(
1984 const analyze_format_string::FormatSpecifier &FS,
1985 const analyze_format_string::ConversionSpecifier &CS,
1986 const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
1987
1988 void HandleNonStandardLengthModifier(
1989 const analyze_format_string::FormatSpecifier &FS,
1990 const char *startSpecifier, unsigned specifierLen);
1991
1992 void HandleNonStandardConversionSpecifier(
1993 const analyze_format_string::ConversionSpecifier &CS,
1994 const char *startSpecifier, unsigned specifierLen);
1995
1996 virtual void HandlePosition(const char *startPos, unsigned posLen);
1997
1998 virtual void HandleInvalidPosition(const char *startSpecifier,
1999 unsigned specifierLen,
2000 analyze_format_string::PositionContext p);
2001
2002 virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2003
2004 void HandleNullChar(const char *nullCharacter);
2005
2006 template <typename Range>
2007 static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2008 const Expr *ArgumentExpr,
2009 PartialDiagnostic PDiag,
2010 SourceLocation StringLoc,
2011 bool IsStringLocation, Range StringRange,
2012 ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2013
2014 protected:
2015 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2016 const char *startSpec,
2017 unsigned specifierLen,
2018 const char *csStart, unsigned csLen);
2019
2020 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2021 const char *startSpec,
2022 unsigned specifierLen);
2023
2024 SourceRange getFormatStringRange();
2025 CharSourceRange getSpecifierRange(const char *startSpecifier,
2026 unsigned specifierLen);
2027 SourceLocation getLocationOfByte(const char *x);
2028
2029 const Expr *getDataArg(unsigned i) const;
2030
2031 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2032 const analyze_format_string::ConversionSpecifier &CS,
2033 const char *startSpecifier, unsigned specifierLen,
2034 unsigned argIndex);
2035
2036 template <typename Range>
2037 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2038 bool IsStringLocation, Range StringRange,
2039 ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2040
2041 void CheckPositionalAndNonpositionalArgs(
2042 const analyze_format_string::FormatSpecifier *FS);
2043 };
2044 }
2045
getFormatStringRange()2046 SourceRange CheckFormatHandler::getFormatStringRange() {
2047 return OrigFormatExpr->getSourceRange();
2048 }
2049
2050 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)2051 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2052 SourceLocation Start = getLocationOfByte(startSpecifier);
2053 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
2054
2055 // Advance the end SourceLocation by one due to half-open ranges.
2056 End = End.getLocWithOffset(1);
2057
2058 return CharSourceRange::getCharRange(Start, End);
2059 }
2060
getLocationOfByte(const char * x)2061 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2062 return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2063 }
2064
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)2065 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2066 unsigned specifierLen){
2067 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2068 getLocationOfByte(startSpecifier),
2069 /*IsStringLocation*/true,
2070 getSpecifierRange(startSpecifier, specifierLen));
2071 }
2072
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)2073 void CheckFormatHandler::HandleInvalidLengthModifier(
2074 const analyze_format_string::FormatSpecifier &FS,
2075 const analyze_format_string::ConversionSpecifier &CS,
2076 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2077 using namespace analyze_format_string;
2078
2079 const LengthModifier &LM = FS.getLengthModifier();
2080 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2081
2082 // See if we know how to fix this length modifier.
2083 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2084 if (FixedLM) {
2085 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2086 getLocationOfByte(LM.getStart()),
2087 /*IsStringLocation*/true,
2088 getSpecifierRange(startSpecifier, specifierLen));
2089
2090 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2091 << FixedLM->toString()
2092 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2093
2094 } else {
2095 FixItHint Hint;
2096 if (DiagID == diag::warn_format_nonsensical_length)
2097 Hint = FixItHint::CreateRemoval(LMRange);
2098
2099 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2100 getLocationOfByte(LM.getStart()),
2101 /*IsStringLocation*/true,
2102 getSpecifierRange(startSpecifier, specifierLen),
2103 Hint);
2104 }
2105 }
2106
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2107 void CheckFormatHandler::HandleNonStandardLengthModifier(
2108 const analyze_format_string::FormatSpecifier &FS,
2109 const char *startSpecifier, unsigned specifierLen) {
2110 using namespace analyze_format_string;
2111
2112 const LengthModifier &LM = FS.getLengthModifier();
2113 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2114
2115 // See if we know how to fix this length modifier.
2116 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2117 if (FixedLM) {
2118 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2119 << LM.toString() << 0,
2120 getLocationOfByte(LM.getStart()),
2121 /*IsStringLocation*/true,
2122 getSpecifierRange(startSpecifier, specifierLen));
2123
2124 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2125 << FixedLM->toString()
2126 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2127
2128 } else {
2129 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2130 << LM.toString() << 0,
2131 getLocationOfByte(LM.getStart()),
2132 /*IsStringLocation*/true,
2133 getSpecifierRange(startSpecifier, specifierLen));
2134 }
2135 }
2136
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)2137 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2138 const analyze_format_string::ConversionSpecifier &CS,
2139 const char *startSpecifier, unsigned specifierLen) {
2140 using namespace analyze_format_string;
2141
2142 // See if we know how to fix this conversion specifier.
2143 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2144 if (FixedCS) {
2145 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2146 << CS.toString() << /*conversion specifier*/1,
2147 getLocationOfByte(CS.getStart()),
2148 /*IsStringLocation*/true,
2149 getSpecifierRange(startSpecifier, specifierLen));
2150
2151 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2152 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2153 << FixedCS->toString()
2154 << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2155 } else {
2156 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2157 << CS.toString() << /*conversion specifier*/1,
2158 getLocationOfByte(CS.getStart()),
2159 /*IsStringLocation*/true,
2160 getSpecifierRange(startSpecifier, specifierLen));
2161 }
2162 }
2163
HandlePosition(const char * startPos,unsigned posLen)2164 void CheckFormatHandler::HandlePosition(const char *startPos,
2165 unsigned posLen) {
2166 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2167 getLocationOfByte(startPos),
2168 /*IsStringLocation*/true,
2169 getSpecifierRange(startPos, posLen));
2170 }
2171
2172 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)2173 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2174 analyze_format_string::PositionContext p) {
2175 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2176 << (unsigned) p,
2177 getLocationOfByte(startPos), /*IsStringLocation*/true,
2178 getSpecifierRange(startPos, posLen));
2179 }
2180
HandleZeroPosition(const char * startPos,unsigned posLen)2181 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2182 unsigned posLen) {
2183 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2184 getLocationOfByte(startPos),
2185 /*IsStringLocation*/true,
2186 getSpecifierRange(startPos, posLen));
2187 }
2188
HandleNullChar(const char * nullCharacter)2189 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2190 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2191 // The presence of a null character is likely an error.
2192 EmitFormatDiagnostic(
2193 S.PDiag(diag::warn_printf_format_string_contains_null_char),
2194 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2195 getFormatStringRange());
2196 }
2197 }
2198
2199 // Note that this may return NULL if there was an error parsing or building
2200 // one of the argument expressions.
getDataArg(unsigned i) const2201 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2202 return Args[FirstDataArg + i];
2203 }
2204
DoneProcessing()2205 void CheckFormatHandler::DoneProcessing() {
2206 // Does the number of data arguments exceed the number of
2207 // format conversions in the format string?
2208 if (!HasVAListArg) {
2209 // Find any arguments that weren't covered.
2210 CoveredArgs.flip();
2211 signed notCoveredArg = CoveredArgs.find_first();
2212 if (notCoveredArg >= 0) {
2213 assert((unsigned)notCoveredArg < NumDataArgs);
2214 if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2215 SourceLocation Loc = E->getLocStart();
2216 if (!S.getSourceManager().isInSystemMacro(Loc)) {
2217 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2218 Loc, /*IsStringLocation*/false,
2219 getFormatStringRange());
2220 }
2221 }
2222 }
2223 }
2224 }
2225
2226 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)2227 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2228 SourceLocation Loc,
2229 const char *startSpec,
2230 unsigned specifierLen,
2231 const char *csStart,
2232 unsigned csLen) {
2233
2234 bool keepGoing = true;
2235 if (argIndex < NumDataArgs) {
2236 // Consider the argument coverered, even though the specifier doesn't
2237 // make sense.
2238 CoveredArgs.set(argIndex);
2239 }
2240 else {
2241 // If argIndex exceeds the number of data arguments we
2242 // don't issue a warning because that is just a cascade of warnings (and
2243 // they may have intended '%%' anyway). We don't want to continue processing
2244 // the format string after this point, however, as we will like just get
2245 // gibberish when trying to match arguments.
2246 keepGoing = false;
2247 }
2248
2249 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2250 << StringRef(csStart, csLen),
2251 Loc, /*IsStringLocation*/true,
2252 getSpecifierRange(startSpec, specifierLen));
2253
2254 return keepGoing;
2255 }
2256
2257 void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)2258 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2259 const char *startSpec,
2260 unsigned specifierLen) {
2261 EmitFormatDiagnostic(
2262 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2263 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2264 }
2265
2266 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)2267 CheckFormatHandler::CheckNumArgs(
2268 const analyze_format_string::FormatSpecifier &FS,
2269 const analyze_format_string::ConversionSpecifier &CS,
2270 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2271
2272 if (argIndex >= NumDataArgs) {
2273 PartialDiagnostic PDiag = FS.usesPositionalArg()
2274 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2275 << (argIndex+1) << NumDataArgs)
2276 : S.PDiag(diag::warn_printf_insufficient_data_args);
2277 EmitFormatDiagnostic(
2278 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2279 getSpecifierRange(startSpecifier, specifierLen));
2280 return false;
2281 }
2282 return true;
2283 }
2284
2285 template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)2286 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2287 SourceLocation Loc,
2288 bool IsStringLocation,
2289 Range StringRange,
2290 ArrayRef<FixItHint> FixIt) {
2291 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2292 Loc, IsStringLocation, StringRange, FixIt);
2293 }
2294
2295 /// \brief If the format string is not within the funcion call, emit a note
2296 /// so that the function call and string are in diagnostic messages.
2297 ///
2298 /// \param InFunctionCall if true, the format string is within the function
2299 /// call and only one diagnostic message will be produced. Otherwise, an
2300 /// extra note will be emitted pointing to location of the format string.
2301 ///
2302 /// \param ArgumentExpr the expression that is passed as the format string
2303 /// argument in the function call. Used for getting locations when two
2304 /// diagnostics are emitted.
2305 ///
2306 /// \param PDiag the callee should already have provided any strings for the
2307 /// diagnostic message. This function only adds locations and fixits
2308 /// to diagnostics.
2309 ///
2310 /// \param Loc primary location for diagnostic. If two diagnostics are
2311 /// required, one will be at Loc and a new SourceLocation will be created for
2312 /// the other one.
2313 ///
2314 /// \param IsStringLocation if true, Loc points to the format string should be
2315 /// used for the note. Otherwise, Loc points to the argument list and will
2316 /// be used with PDiag.
2317 ///
2318 /// \param StringRange some or all of the string to highlight. This is
2319 /// templated so it can accept either a CharSourceRange or a SourceRange.
2320 ///
2321 /// \param FixIt optional fix it hint for the format string.
2322 template<typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)2323 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2324 const Expr *ArgumentExpr,
2325 PartialDiagnostic PDiag,
2326 SourceLocation Loc,
2327 bool IsStringLocation,
2328 Range StringRange,
2329 ArrayRef<FixItHint> FixIt) {
2330 if (InFunctionCall) {
2331 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2332 D << StringRange;
2333 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2334 I != E; ++I) {
2335 D << *I;
2336 }
2337 } else {
2338 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2339 << ArgumentExpr->getSourceRange();
2340
2341 const Sema::SemaDiagnosticBuilder &Note =
2342 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2343 diag::note_format_string_defined);
2344
2345 Note << StringRange;
2346 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2347 I != E; ++I) {
2348 Note << *I;
2349 }
2350 }
2351 }
2352
2353 //===--- CHECK: Printf format string checking ------------------------------===//
2354
2355 namespace {
2356 class CheckPrintfHandler : public CheckFormatHandler {
2357 bool ObjCContext;
2358 public:
CheckPrintfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType)2359 CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2360 const Expr *origFormatExpr, unsigned firstDataArg,
2361 unsigned numDataArgs, bool isObjC,
2362 const char *beg, bool hasVAListArg,
2363 ArrayRef<const Expr *> Args,
2364 unsigned formatIdx, bool inFunctionCall,
2365 Sema::VariadicCallType CallType)
2366 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2367 numDataArgs, beg, hasVAListArg, Args,
2368 formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2369 {}
2370
2371
2372 bool HandleInvalidPrintfConversionSpecifier(
2373 const analyze_printf::PrintfSpecifier &FS,
2374 const char *startSpecifier,
2375 unsigned specifierLen);
2376
2377 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2378 const char *startSpecifier,
2379 unsigned specifierLen);
2380 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2381 const char *StartSpecifier,
2382 unsigned SpecifierLen,
2383 const Expr *E);
2384
2385 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2386 const char *startSpecifier, unsigned specifierLen);
2387 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2388 const analyze_printf::OptionalAmount &Amt,
2389 unsigned type,
2390 const char *startSpecifier, unsigned specifierLen);
2391 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2392 const analyze_printf::OptionalFlag &flag,
2393 const char *startSpecifier, unsigned specifierLen);
2394 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2395 const analyze_printf::OptionalFlag &ignoredFlag,
2396 const analyze_printf::OptionalFlag &flag,
2397 const char *startSpecifier, unsigned specifierLen);
2398 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2399 const Expr *E, const CharSourceRange &CSR);
2400
2401 };
2402 }
2403
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2404 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2405 const analyze_printf::PrintfSpecifier &FS,
2406 const char *startSpecifier,
2407 unsigned specifierLen) {
2408 const analyze_printf::PrintfConversionSpecifier &CS =
2409 FS.getConversionSpecifier();
2410
2411 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2412 getLocationOfByte(CS.getStart()),
2413 startSpecifier, specifierLen,
2414 CS.getStart(), CS.getLength());
2415 }
2416
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)2417 bool CheckPrintfHandler::HandleAmount(
2418 const analyze_format_string::OptionalAmount &Amt,
2419 unsigned k, const char *startSpecifier,
2420 unsigned specifierLen) {
2421
2422 if (Amt.hasDataArgument()) {
2423 if (!HasVAListArg) {
2424 unsigned argIndex = Amt.getArgIndex();
2425 if (argIndex >= NumDataArgs) {
2426 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2427 << k,
2428 getLocationOfByte(Amt.getStart()),
2429 /*IsStringLocation*/true,
2430 getSpecifierRange(startSpecifier, specifierLen));
2431 // Don't do any more checking. We will just emit
2432 // spurious errors.
2433 return false;
2434 }
2435
2436 // Type check the data argument. It should be an 'int'.
2437 // Although not in conformance with C99, we also allow the argument to be
2438 // an 'unsigned int' as that is a reasonably safe case. GCC also
2439 // doesn't emit a warning for that case.
2440 CoveredArgs.set(argIndex);
2441 const Expr *Arg = getDataArg(argIndex);
2442 if (!Arg)
2443 return false;
2444
2445 QualType T = Arg->getType();
2446
2447 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2448 assert(AT.isValid());
2449
2450 if (!AT.matchesType(S.Context, T)) {
2451 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2452 << k << AT.getRepresentativeTypeName(S.Context)
2453 << T << Arg->getSourceRange(),
2454 getLocationOfByte(Amt.getStart()),
2455 /*IsStringLocation*/true,
2456 getSpecifierRange(startSpecifier, specifierLen));
2457 // Don't do any more checking. We will just emit
2458 // spurious errors.
2459 return false;
2460 }
2461 }
2462 }
2463 return true;
2464 }
2465
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)2466 void CheckPrintfHandler::HandleInvalidAmount(
2467 const analyze_printf::PrintfSpecifier &FS,
2468 const analyze_printf::OptionalAmount &Amt,
2469 unsigned type,
2470 const char *startSpecifier,
2471 unsigned specifierLen) {
2472 const analyze_printf::PrintfConversionSpecifier &CS =
2473 FS.getConversionSpecifier();
2474
2475 FixItHint fixit =
2476 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2477 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2478 Amt.getConstantLength()))
2479 : FixItHint();
2480
2481 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2482 << type << CS.toString(),
2483 getLocationOfByte(Amt.getStart()),
2484 /*IsStringLocation*/true,
2485 getSpecifierRange(startSpecifier, specifierLen),
2486 fixit);
2487 }
2488
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)2489 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2490 const analyze_printf::OptionalFlag &flag,
2491 const char *startSpecifier,
2492 unsigned specifierLen) {
2493 // Warn about pointless flag with a fixit removal.
2494 const analyze_printf::PrintfConversionSpecifier &CS =
2495 FS.getConversionSpecifier();
2496 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2497 << flag.toString() << CS.toString(),
2498 getLocationOfByte(flag.getPosition()),
2499 /*IsStringLocation*/true,
2500 getSpecifierRange(startSpecifier, specifierLen),
2501 FixItHint::CreateRemoval(
2502 getSpecifierRange(flag.getPosition(), 1)));
2503 }
2504
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)2505 void CheckPrintfHandler::HandleIgnoredFlag(
2506 const analyze_printf::PrintfSpecifier &FS,
2507 const analyze_printf::OptionalFlag &ignoredFlag,
2508 const analyze_printf::OptionalFlag &flag,
2509 const char *startSpecifier,
2510 unsigned specifierLen) {
2511 // Warn about ignored flag with a fixit removal.
2512 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2513 << ignoredFlag.toString() << flag.toString(),
2514 getLocationOfByte(ignoredFlag.getPosition()),
2515 /*IsStringLocation*/true,
2516 getSpecifierRange(startSpecifier, specifierLen),
2517 FixItHint::CreateRemoval(
2518 getSpecifierRange(ignoredFlag.getPosition(), 1)));
2519 }
2520
2521 // Determines if the specified is a C++ class or struct containing
2522 // a member with the specified name and kind (e.g. a CXXMethodDecl named
2523 // "c_str()").
2524 template<typename MemberKind>
2525 static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)2526 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2527 const RecordType *RT = Ty->getAs<RecordType>();
2528 llvm::SmallPtrSet<MemberKind*, 1> Results;
2529
2530 if (!RT)
2531 return Results;
2532 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2533 if (!RD)
2534 return Results;
2535
2536 LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2537 Sema::LookupMemberName);
2538
2539 // We just need to include all members of the right kind turned up by the
2540 // filter, at this point.
2541 if (S.LookupQualifiedName(R, RT->getDecl()))
2542 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2543 NamedDecl *decl = (*I)->getUnderlyingDecl();
2544 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2545 Results.insert(FK);
2546 }
2547 return Results;
2548 }
2549
2550 // Check if a (w)string was passed when a (w)char* was needed, and offer a
2551 // better diagnostic if so. AT is assumed to be valid.
2552 // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E,const CharSourceRange & CSR)2553 bool CheckPrintfHandler::checkForCStrMembers(
2554 const analyze_printf::ArgType &AT, const Expr *E,
2555 const CharSourceRange &CSR) {
2556 typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2557
2558 MethodSet Results =
2559 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2560
2561 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2562 MI != ME; ++MI) {
2563 const CXXMethodDecl *Method = *MI;
2564 if (Method->getNumParams() == 0 &&
2565 AT.matchesType(S.Context, Method->getResultType())) {
2566 // FIXME: Suggest parens if the expression needs them.
2567 SourceLocation EndLoc =
2568 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2569 S.Diag(E->getLocStart(), diag::note_printf_c_str)
2570 << "c_str()"
2571 << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2572 return true;
2573 }
2574 }
2575
2576 return false;
2577 }
2578
2579 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2580 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2581 &FS,
2582 const char *startSpecifier,
2583 unsigned specifierLen) {
2584
2585 using namespace analyze_format_string;
2586 using namespace analyze_printf;
2587 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2588
2589 if (FS.consumesDataArgument()) {
2590 if (atFirstArg) {
2591 atFirstArg = false;
2592 usesPositionalArgs = FS.usesPositionalArg();
2593 }
2594 else if (usesPositionalArgs != FS.usesPositionalArg()) {
2595 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2596 startSpecifier, specifierLen);
2597 return false;
2598 }
2599 }
2600
2601 // First check if the field width, precision, and conversion specifier
2602 // have matching data arguments.
2603 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2604 startSpecifier, specifierLen)) {
2605 return false;
2606 }
2607
2608 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2609 startSpecifier, specifierLen)) {
2610 return false;
2611 }
2612
2613 if (!CS.consumesDataArgument()) {
2614 // FIXME: Technically specifying a precision or field width here
2615 // makes no sense. Worth issuing a warning at some point.
2616 return true;
2617 }
2618
2619 // Consume the argument.
2620 unsigned argIndex = FS.getArgIndex();
2621 if (argIndex < NumDataArgs) {
2622 // The check to see if the argIndex is valid will come later.
2623 // We set the bit here because we may exit early from this
2624 // function if we encounter some other error.
2625 CoveredArgs.set(argIndex);
2626 }
2627
2628 // Check for using an Objective-C specific conversion specifier
2629 // in a non-ObjC literal.
2630 if (!ObjCContext && CS.isObjCArg()) {
2631 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2632 specifierLen);
2633 }
2634
2635 // Check for invalid use of field width
2636 if (!FS.hasValidFieldWidth()) {
2637 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2638 startSpecifier, specifierLen);
2639 }
2640
2641 // Check for invalid use of precision
2642 if (!FS.hasValidPrecision()) {
2643 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2644 startSpecifier, specifierLen);
2645 }
2646
2647 // Check each flag does not conflict with any other component.
2648 if (!FS.hasValidThousandsGroupingPrefix())
2649 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2650 if (!FS.hasValidLeadingZeros())
2651 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2652 if (!FS.hasValidPlusPrefix())
2653 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2654 if (!FS.hasValidSpacePrefix())
2655 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2656 if (!FS.hasValidAlternativeForm())
2657 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2658 if (!FS.hasValidLeftJustified())
2659 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2660
2661 // Check that flags are not ignored by another flag
2662 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2663 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2664 startSpecifier, specifierLen);
2665 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2666 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2667 startSpecifier, specifierLen);
2668
2669 // Check the length modifier is valid with the given conversion specifier.
2670 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2671 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2672 diag::warn_format_nonsensical_length);
2673 else if (!FS.hasStandardLengthModifier())
2674 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2675 else if (!FS.hasStandardLengthConversionCombination())
2676 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2677 diag::warn_format_non_standard_conversion_spec);
2678
2679 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2680 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2681
2682 // The remaining checks depend on the data arguments.
2683 if (HasVAListArg)
2684 return true;
2685
2686 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2687 return false;
2688
2689 const Expr *Arg = getDataArg(argIndex);
2690 if (!Arg)
2691 return true;
2692
2693 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2694 }
2695
requiresParensToAddCast(const Expr * E)2696 static bool requiresParensToAddCast(const Expr *E) {
2697 // FIXME: We should have a general way to reason about operator
2698 // precedence and whether parens are actually needed here.
2699 // Take care of a few common cases where they aren't.
2700 const Expr *Inside = E->IgnoreImpCasts();
2701 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2702 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2703
2704 switch (Inside->getStmtClass()) {
2705 case Stmt::ArraySubscriptExprClass:
2706 case Stmt::CallExprClass:
2707 case Stmt::CharacterLiteralClass:
2708 case Stmt::CXXBoolLiteralExprClass:
2709 case Stmt::DeclRefExprClass:
2710 case Stmt::FloatingLiteralClass:
2711 case Stmt::IntegerLiteralClass:
2712 case Stmt::MemberExprClass:
2713 case Stmt::ObjCArrayLiteralClass:
2714 case Stmt::ObjCBoolLiteralExprClass:
2715 case Stmt::ObjCBoxedExprClass:
2716 case Stmt::ObjCDictionaryLiteralClass:
2717 case Stmt::ObjCEncodeExprClass:
2718 case Stmt::ObjCIvarRefExprClass:
2719 case Stmt::ObjCMessageExprClass:
2720 case Stmt::ObjCPropertyRefExprClass:
2721 case Stmt::ObjCStringLiteralClass:
2722 case Stmt::ObjCSubscriptRefExprClass:
2723 case Stmt::ParenExprClass:
2724 case Stmt::StringLiteralClass:
2725 case Stmt::UnaryOperatorClass:
2726 return false;
2727 default:
2728 return true;
2729 }
2730 }
2731
2732 bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)2733 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2734 const char *StartSpecifier,
2735 unsigned SpecifierLen,
2736 const Expr *E) {
2737 using namespace analyze_format_string;
2738 using namespace analyze_printf;
2739 // Now type check the data expression that matches the
2740 // format specifier.
2741 const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2742 ObjCContext);
2743 if (!AT.isValid())
2744 return true;
2745
2746 QualType ExprTy = E->getType();
2747 if (AT.matchesType(S.Context, ExprTy))
2748 return true;
2749
2750 // Look through argument promotions for our error message's reported type.
2751 // This includes the integral and floating promotions, but excludes array
2752 // and function pointer decay; seeing that an argument intended to be a
2753 // string has type 'char [6]' is probably more confusing than 'char *'.
2754 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2755 if (ICE->getCastKind() == CK_IntegralCast ||
2756 ICE->getCastKind() == CK_FloatingCast) {
2757 E = ICE->getSubExpr();
2758 ExprTy = E->getType();
2759
2760 // Check if we didn't match because of an implicit cast from a 'char'
2761 // or 'short' to an 'int'. This is done because printf is a varargs
2762 // function.
2763 if (ICE->getType() == S.Context.IntTy ||
2764 ICE->getType() == S.Context.UnsignedIntTy) {
2765 // All further checking is done on the subexpression.
2766 if (AT.matchesType(S.Context, ExprTy))
2767 return true;
2768 }
2769 }
2770 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
2771 // Special case for 'a', which has type 'int' in C.
2772 // Note, however, that we do /not/ want to treat multibyte constants like
2773 // 'MooV' as characters! This form is deprecated but still exists.
2774 if (ExprTy == S.Context.IntTy)
2775 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
2776 ExprTy = S.Context.CharTy;
2777 }
2778
2779 // %C in an Objective-C context prints a unichar, not a wchar_t.
2780 // If the argument is an integer of some kind, believe the %C and suggest
2781 // a cast instead of changing the conversion specifier.
2782 QualType IntendedTy = ExprTy;
2783 if (ObjCContext &&
2784 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
2785 if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
2786 !ExprTy->isCharType()) {
2787 // 'unichar' is defined as a typedef of unsigned short, but we should
2788 // prefer using the typedef if it is visible.
2789 IntendedTy = S.Context.UnsignedShortTy;
2790
2791 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
2792 Sema::LookupOrdinaryName);
2793 if (S.LookupName(Result, S.getCurScope())) {
2794 NamedDecl *ND = Result.getFoundDecl();
2795 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
2796 if (TD->getUnderlyingType() == IntendedTy)
2797 IntendedTy = S.Context.getTypedefType(TD);
2798 }
2799 }
2800 }
2801
2802 // Special-case some of Darwin's platform-independence types by suggesting
2803 // casts to primitive types that are known to be large enough.
2804 bool ShouldNotPrintDirectly = false;
2805 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2806 if (const TypedefType *UserTy = IntendedTy->getAs<TypedefType>()) {
2807 StringRef Name = UserTy->getDecl()->getName();
2808 QualType CastTy = llvm::StringSwitch<QualType>(Name)
2809 .Case("NSInteger", S.Context.LongTy)
2810 .Case("NSUInteger", S.Context.UnsignedLongTy)
2811 .Case("SInt32", S.Context.IntTy)
2812 .Case("UInt32", S.Context.UnsignedIntTy)
2813 .Default(QualType());
2814
2815 if (!CastTy.isNull()) {
2816 ShouldNotPrintDirectly = true;
2817 IntendedTy = CastTy;
2818 }
2819 }
2820 }
2821
2822 // We may be able to offer a FixItHint if it is a supported type.
2823 PrintfSpecifier fixedFS = FS;
2824 bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2825 S.Context, ObjCContext);
2826
2827 if (success) {
2828 // Get the fix string from the fixed format specifier
2829 SmallString<16> buf;
2830 llvm::raw_svector_ostream os(buf);
2831 fixedFS.toString(os);
2832
2833 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2834
2835 if (IntendedTy == ExprTy) {
2836 // In this case, the specifier is wrong and should be changed to match
2837 // the argument.
2838 EmitFormatDiagnostic(
2839 S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2840 << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2841 << E->getSourceRange(),
2842 E->getLocStart(),
2843 /*IsStringLocation*/false,
2844 SpecRange,
2845 FixItHint::CreateReplacement(SpecRange, os.str()));
2846
2847 } else {
2848 // The canonical type for formatting this value is different from the
2849 // actual type of the expression. (This occurs, for example, with Darwin's
2850 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2851 // should be printed as 'long' for 64-bit compatibility.)
2852 // Rather than emitting a normal format/argument mismatch, we want to
2853 // add a cast to the recommended type (and correct the format string
2854 // if necessary).
2855 SmallString<16> CastBuf;
2856 llvm::raw_svector_ostream CastFix(CastBuf);
2857 CastFix << "(";
2858 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2859 CastFix << ")";
2860
2861 SmallVector<FixItHint,4> Hints;
2862 if (!AT.matchesType(S.Context, IntendedTy))
2863 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2864
2865 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2866 // If there's already a cast present, just replace it.
2867 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2868 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2869
2870 } else if (!requiresParensToAddCast(E)) {
2871 // If the expression has high enough precedence,
2872 // just write the C-style cast.
2873 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2874 CastFix.str()));
2875 } else {
2876 // Otherwise, add parens around the expression as well as the cast.
2877 CastFix << "(";
2878 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2879 CastFix.str()));
2880
2881 SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2882 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2883 }
2884
2885 if (ShouldNotPrintDirectly) {
2886 // The expression has a type that should not be printed directly.
2887 // We extract the name from the typedef because we don't want to show
2888 // the underlying type in the diagnostic.
2889 StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
2890
2891 EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2892 << Name << IntendedTy
2893 << E->getSourceRange(),
2894 E->getLocStart(), /*IsStringLocation=*/false,
2895 SpecRange, Hints);
2896 } else {
2897 // In this case, the expression could be printed using a different
2898 // specifier, but we've decided that the specifier is probably correct
2899 // and we should cast instead. Just use the normal warning message.
2900 EmitFormatDiagnostic(
2901 S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2902 << AT.getRepresentativeTypeName(S.Context) << ExprTy
2903 << E->getSourceRange(),
2904 E->getLocStart(), /*IsStringLocation*/false,
2905 SpecRange, Hints);
2906 }
2907 }
2908 } else {
2909 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2910 SpecifierLen);
2911 // Since the warning for passing non-POD types to variadic functions
2912 // was deferred until now, we emit a warning for non-POD
2913 // arguments here.
2914 if (S.isValidVarArgType(ExprTy) == Sema::VAK_Invalid) {
2915 unsigned DiagKind;
2916 if (ExprTy->isObjCObjectType())
2917 DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2918 else
2919 DiagKind = diag::warn_non_pod_vararg_with_format_string;
2920
2921 EmitFormatDiagnostic(
2922 S.PDiag(DiagKind)
2923 << S.getLangOpts().CPlusPlus11
2924 << ExprTy
2925 << CallType
2926 << AT.getRepresentativeTypeName(S.Context)
2927 << CSR
2928 << E->getSourceRange(),
2929 E->getLocStart(), /*IsStringLocation*/false, CSR);
2930
2931 checkForCStrMembers(AT, E, CSR);
2932 } else
2933 EmitFormatDiagnostic(
2934 S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2935 << AT.getRepresentativeTypeName(S.Context) << ExprTy
2936 << CSR
2937 << E->getSourceRange(),
2938 E->getLocStart(), /*IsStringLocation*/false, CSR);
2939 }
2940
2941 return true;
2942 }
2943
2944 //===--- CHECK: Scanf format string checking ------------------------------===//
2945
2946 namespace {
2947 class CheckScanfHandler : public CheckFormatHandler {
2948 public:
CheckScanfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType)2949 CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2950 const Expr *origFormatExpr, unsigned firstDataArg,
2951 unsigned numDataArgs, const char *beg, bool hasVAListArg,
2952 ArrayRef<const Expr *> Args,
2953 unsigned formatIdx, bool inFunctionCall,
2954 Sema::VariadicCallType CallType)
2955 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2956 numDataArgs, beg, hasVAListArg,
2957 Args, formatIdx, inFunctionCall, CallType)
2958 {}
2959
2960 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2961 const char *startSpecifier,
2962 unsigned specifierLen);
2963
2964 bool HandleInvalidScanfConversionSpecifier(
2965 const analyze_scanf::ScanfSpecifier &FS,
2966 const char *startSpecifier,
2967 unsigned specifierLen);
2968
2969 void HandleIncompleteScanList(const char *start, const char *end);
2970 };
2971 }
2972
HandleIncompleteScanList(const char * start,const char * end)2973 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2974 const char *end) {
2975 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2976 getLocationOfByte(end), /*IsStringLocation*/true,
2977 getSpecifierRange(start, end - start));
2978 }
2979
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2980 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2981 const analyze_scanf::ScanfSpecifier &FS,
2982 const char *startSpecifier,
2983 unsigned specifierLen) {
2984
2985 const analyze_scanf::ScanfConversionSpecifier &CS =
2986 FS.getConversionSpecifier();
2987
2988 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2989 getLocationOfByte(CS.getStart()),
2990 startSpecifier, specifierLen,
2991 CS.getStart(), CS.getLength());
2992 }
2993
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)2994 bool CheckScanfHandler::HandleScanfSpecifier(
2995 const analyze_scanf::ScanfSpecifier &FS,
2996 const char *startSpecifier,
2997 unsigned specifierLen) {
2998
2999 using namespace analyze_scanf;
3000 using namespace analyze_format_string;
3001
3002 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3003
3004 // Handle case where '%' and '*' don't consume an argument. These shouldn't
3005 // be used to decide if we are using positional arguments consistently.
3006 if (FS.consumesDataArgument()) {
3007 if (atFirstArg) {
3008 atFirstArg = false;
3009 usesPositionalArgs = FS.usesPositionalArg();
3010 }
3011 else if (usesPositionalArgs != FS.usesPositionalArg()) {
3012 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3013 startSpecifier, specifierLen);
3014 return false;
3015 }
3016 }
3017
3018 // Check if the field with is non-zero.
3019 const OptionalAmount &Amt = FS.getFieldWidth();
3020 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3021 if (Amt.getConstantAmount() == 0) {
3022 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3023 Amt.getConstantLength());
3024 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3025 getLocationOfByte(Amt.getStart()),
3026 /*IsStringLocation*/true, R,
3027 FixItHint::CreateRemoval(R));
3028 }
3029 }
3030
3031 if (!FS.consumesDataArgument()) {
3032 // FIXME: Technically specifying a precision or field width here
3033 // makes no sense. Worth issuing a warning at some point.
3034 return true;
3035 }
3036
3037 // Consume the argument.
3038 unsigned argIndex = FS.getArgIndex();
3039 if (argIndex < NumDataArgs) {
3040 // The check to see if the argIndex is valid will come later.
3041 // We set the bit here because we may exit early from this
3042 // function if we encounter some other error.
3043 CoveredArgs.set(argIndex);
3044 }
3045
3046 // Check the length modifier is valid with the given conversion specifier.
3047 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3048 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3049 diag::warn_format_nonsensical_length);
3050 else if (!FS.hasStandardLengthModifier())
3051 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3052 else if (!FS.hasStandardLengthConversionCombination())
3053 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3054 diag::warn_format_non_standard_conversion_spec);
3055
3056 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3057 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3058
3059 // The remaining checks depend on the data arguments.
3060 if (HasVAListArg)
3061 return true;
3062
3063 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3064 return false;
3065
3066 // Check that the argument type matches the format specifier.
3067 const Expr *Ex = getDataArg(argIndex);
3068 if (!Ex)
3069 return true;
3070
3071 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3072 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3073 ScanfSpecifier fixedFS = FS;
3074 bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3075 S.Context);
3076
3077 if (success) {
3078 // Get the fix string from the fixed format specifier.
3079 SmallString<128> buf;
3080 llvm::raw_svector_ostream os(buf);
3081 fixedFS.toString(os);
3082
3083 EmitFormatDiagnostic(
3084 S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3085 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3086 << Ex->getSourceRange(),
3087 Ex->getLocStart(),
3088 /*IsStringLocation*/false,
3089 getSpecifierRange(startSpecifier, specifierLen),
3090 FixItHint::CreateReplacement(
3091 getSpecifierRange(startSpecifier, specifierLen),
3092 os.str()));
3093 } else {
3094 EmitFormatDiagnostic(
3095 S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3096 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3097 << Ex->getSourceRange(),
3098 Ex->getLocStart(),
3099 /*IsStringLocation*/false,
3100 getSpecifierRange(startSpecifier, specifierLen));
3101 }
3102 }
3103
3104 return true;
3105 }
3106
CheckFormatString(const StringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,bool inFunctionCall,VariadicCallType CallType)3107 void Sema::CheckFormatString(const StringLiteral *FExpr,
3108 const Expr *OrigFormatExpr,
3109 ArrayRef<const Expr *> Args,
3110 bool HasVAListArg, unsigned format_idx,
3111 unsigned firstDataArg, FormatStringType Type,
3112 bool inFunctionCall, VariadicCallType CallType) {
3113
3114 // CHECK: is the format string a wide literal?
3115 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3116 CheckFormatHandler::EmitFormatDiagnostic(
3117 *this, inFunctionCall, Args[format_idx],
3118 PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3119 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3120 return;
3121 }
3122
3123 // Str - The format string. NOTE: this is NOT null-terminated!
3124 StringRef StrRef = FExpr->getString();
3125 const char *Str = StrRef.data();
3126 unsigned StrLen = StrRef.size();
3127 const unsigned numDataArgs = Args.size() - firstDataArg;
3128
3129 // CHECK: empty format string?
3130 if (StrLen == 0 && numDataArgs > 0) {
3131 CheckFormatHandler::EmitFormatDiagnostic(
3132 *this, inFunctionCall, Args[format_idx],
3133 PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3134 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3135 return;
3136 }
3137
3138 if (Type == FST_Printf || Type == FST_NSString) {
3139 CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3140 numDataArgs, (Type == FST_NSString),
3141 Str, HasVAListArg, Args, format_idx,
3142 inFunctionCall, CallType);
3143
3144 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3145 getLangOpts(),
3146 Context.getTargetInfo()))
3147 H.DoneProcessing();
3148 } else if (Type == FST_Scanf) {
3149 CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3150 Str, HasVAListArg, Args, format_idx,
3151 inFunctionCall, CallType);
3152
3153 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3154 getLangOpts(),
3155 Context.getTargetInfo()))
3156 H.DoneProcessing();
3157 } // TODO: handle other formats
3158 }
3159
3160 //===--- CHECK: Standard memory functions ---------------------------------===//
3161
3162 /// \brief Determine whether the given type is a dynamic class type (e.g.,
3163 /// whether it has a vtable).
isDynamicClassType(QualType T)3164 static bool isDynamicClassType(QualType T) {
3165 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3166 if (CXXRecordDecl *Definition = Record->getDefinition())
3167 if (Definition->isDynamicClass())
3168 return true;
3169
3170 return false;
3171 }
3172
3173 /// \brief If E is a sizeof expression, returns its argument expression,
3174 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)3175 static const Expr *getSizeOfExprArg(const Expr* E) {
3176 if (const UnaryExprOrTypeTraitExpr *SizeOf =
3177 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3178 if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3179 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3180
3181 return 0;
3182 }
3183
3184 /// \brief If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)3185 static QualType getSizeOfArgType(const Expr* E) {
3186 if (const UnaryExprOrTypeTraitExpr *SizeOf =
3187 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3188 if (SizeOf->getKind() == clang::UETT_SizeOf)
3189 return SizeOf->getTypeOfArgument();
3190
3191 return QualType();
3192 }
3193
3194 /// \brief Check for dangerous or invalid arguments to memset().
3195 ///
3196 /// This issues warnings on known problematic, dangerous or unspecified
3197 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3198 /// function calls.
3199 ///
3200 /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)3201 void Sema::CheckMemaccessArguments(const CallExpr *Call,
3202 unsigned BId,
3203 IdentifierInfo *FnName) {
3204 assert(BId != 0);
3205
3206 // It is possible to have a non-standard definition of memset. Validate
3207 // we have enough arguments, and if not, abort further checking.
3208 unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3209 if (Call->getNumArgs() < ExpectedNumArgs)
3210 return;
3211
3212 unsigned LastArg = (BId == Builtin::BImemset ||
3213 BId == Builtin::BIstrndup ? 1 : 2);
3214 unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3215 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3216
3217 // We have special checking when the length is a sizeof expression.
3218 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3219 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3220 llvm::FoldingSetNodeID SizeOfArgID;
3221
3222 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3223 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3224 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3225
3226 QualType DestTy = Dest->getType();
3227 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3228 QualType PointeeTy = DestPtrTy->getPointeeType();
3229
3230 // Never warn about void type pointers. This can be used to suppress
3231 // false positives.
3232 if (PointeeTy->isVoidType())
3233 continue;
3234
3235 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3236 // actually comparing the expressions for equality. Because computing the
3237 // expression IDs can be expensive, we only do this if the diagnostic is
3238 // enabled.
3239 if (SizeOfArg &&
3240 Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3241 SizeOfArg->getExprLoc())) {
3242 // We only compute IDs for expressions if the warning is enabled, and
3243 // cache the sizeof arg's ID.
3244 if (SizeOfArgID == llvm::FoldingSetNodeID())
3245 SizeOfArg->Profile(SizeOfArgID, Context, true);
3246 llvm::FoldingSetNodeID DestID;
3247 Dest->Profile(DestID, Context, true);
3248 if (DestID == SizeOfArgID) {
3249 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3250 // over sizeof(src) as well.
3251 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3252 StringRef ReadableName = FnName->getName();
3253
3254 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3255 if (UnaryOp->getOpcode() == UO_AddrOf)
3256 ActionIdx = 1; // If its an address-of operator, just remove it.
3257 if (!PointeeTy->isIncompleteType() &&
3258 (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3259 ActionIdx = 2; // If the pointee's size is sizeof(char),
3260 // suggest an explicit length.
3261
3262 // If the function is defined as a builtin macro, do not show macro
3263 // expansion.
3264 SourceLocation SL = SizeOfArg->getExprLoc();
3265 SourceRange DSR = Dest->getSourceRange();
3266 SourceRange SSR = SizeOfArg->getSourceRange();
3267 SourceManager &SM = PP.getSourceManager();
3268
3269 if (SM.isMacroArgExpansion(SL)) {
3270 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3271 SL = SM.getSpellingLoc(SL);
3272 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3273 SM.getSpellingLoc(DSR.getEnd()));
3274 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3275 SM.getSpellingLoc(SSR.getEnd()));
3276 }
3277
3278 DiagRuntimeBehavior(SL, SizeOfArg,
3279 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3280 << ReadableName
3281 << PointeeTy
3282 << DestTy
3283 << DSR
3284 << SSR);
3285 DiagRuntimeBehavior(SL, SizeOfArg,
3286 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3287 << ActionIdx
3288 << SSR);
3289
3290 break;
3291 }
3292 }
3293
3294 // Also check for cases where the sizeof argument is the exact same
3295 // type as the memory argument, and where it points to a user-defined
3296 // record type.
3297 if (SizeOfArgTy != QualType()) {
3298 if (PointeeTy->isRecordType() &&
3299 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3300 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3301 PDiag(diag::warn_sizeof_pointer_type_memaccess)
3302 << FnName << SizeOfArgTy << ArgIdx
3303 << PointeeTy << Dest->getSourceRange()
3304 << LenExpr->getSourceRange());
3305 break;
3306 }
3307 }
3308
3309 // Always complain about dynamic classes.
3310 if (isDynamicClassType(PointeeTy)) {
3311
3312 unsigned OperationType = 0;
3313 // "overwritten" if we're warning about the destination for any call
3314 // but memcmp; otherwise a verb appropriate to the call.
3315 if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3316 if (BId == Builtin::BImemcpy)
3317 OperationType = 1;
3318 else if(BId == Builtin::BImemmove)
3319 OperationType = 2;
3320 else if (BId == Builtin::BImemcmp)
3321 OperationType = 3;
3322 }
3323
3324 DiagRuntimeBehavior(
3325 Dest->getExprLoc(), Dest,
3326 PDiag(diag::warn_dyn_class_memaccess)
3327 << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3328 << FnName << PointeeTy
3329 << OperationType
3330 << Call->getCallee()->getSourceRange());
3331 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3332 BId != Builtin::BImemset)
3333 DiagRuntimeBehavior(
3334 Dest->getExprLoc(), Dest,
3335 PDiag(diag::warn_arc_object_memaccess)
3336 << ArgIdx << FnName << PointeeTy
3337 << Call->getCallee()->getSourceRange());
3338 else
3339 continue;
3340
3341 DiagRuntimeBehavior(
3342 Dest->getExprLoc(), Dest,
3343 PDiag(diag::note_bad_memaccess_silence)
3344 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3345 break;
3346 }
3347 }
3348 }
3349
3350 // A little helper routine: ignore addition and subtraction of integer literals.
3351 // This intentionally does not ignore all integer constant expressions because
3352 // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)3353 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3354 Ex = Ex->IgnoreParenCasts();
3355
3356 for (;;) {
3357 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3358 if (!BO || !BO->isAdditiveOp())
3359 break;
3360
3361 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3362 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3363
3364 if (isa<IntegerLiteral>(RHS))
3365 Ex = LHS;
3366 else if (isa<IntegerLiteral>(LHS))
3367 Ex = RHS;
3368 else
3369 break;
3370 }
3371
3372 return Ex;
3373 }
3374
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)3375 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3376 ASTContext &Context) {
3377 // Only handle constant-sized or VLAs, but not flexible members.
3378 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3379 // Only issue the FIXIT for arrays of size > 1.
3380 if (CAT->getSize().getSExtValue() <= 1)
3381 return false;
3382 } else if (!Ty->isVariableArrayType()) {
3383 return false;
3384 }
3385 return true;
3386 }
3387
3388 // Warn if the user has made the 'size' argument to strlcpy or strlcat
3389 // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)3390 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3391 IdentifierInfo *FnName) {
3392
3393 // Don't crash if the user has the wrong number of arguments
3394 if (Call->getNumArgs() != 3)
3395 return;
3396
3397 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3398 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3399 const Expr *CompareWithSrc = NULL;
3400
3401 // Look for 'strlcpy(dst, x, sizeof(x))'
3402 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3403 CompareWithSrc = Ex;
3404 else {
3405 // Look for 'strlcpy(dst, x, strlen(x))'
3406 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3407 if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3408 && SizeCall->getNumArgs() == 1)
3409 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3410 }
3411 }
3412
3413 if (!CompareWithSrc)
3414 return;
3415
3416 // Determine if the argument to sizeof/strlen is equal to the source
3417 // argument. In principle there's all kinds of things you could do
3418 // here, for instance creating an == expression and evaluating it with
3419 // EvaluateAsBooleanCondition, but this uses a more direct technique:
3420 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3421 if (!SrcArgDRE)
3422 return;
3423
3424 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3425 if (!CompareWithSrcDRE ||
3426 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3427 return;
3428
3429 const Expr *OriginalSizeArg = Call->getArg(2);
3430 Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3431 << OriginalSizeArg->getSourceRange() << FnName;
3432
3433 // Output a FIXIT hint if the destination is an array (rather than a
3434 // pointer to an array). This could be enhanced to handle some
3435 // pointers if we know the actual size, like if DstArg is 'array+2'
3436 // we could say 'sizeof(array)-2'.
3437 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3438 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3439 return;
3440
3441 SmallString<128> sizeString;
3442 llvm::raw_svector_ostream OS(sizeString);
3443 OS << "sizeof(";
3444 DstArg->printPretty(OS, 0, getPrintingPolicy());
3445 OS << ")";
3446
3447 Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3448 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3449 OS.str());
3450 }
3451
3452 /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)3453 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3454 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3455 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3456 return D1->getDecl() == D2->getDecl();
3457 return false;
3458 }
3459
getStrlenExprArg(const Expr * E)3460 static const Expr *getStrlenExprArg(const Expr *E) {
3461 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3462 const FunctionDecl *FD = CE->getDirectCallee();
3463 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3464 return 0;
3465 return CE->getArg(0)->IgnoreParenCasts();
3466 }
3467 return 0;
3468 }
3469
3470 // Warn on anti-patterns as the 'size' argument to strncat.
3471 // The correct size argument should look like following:
3472 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)3473 void Sema::CheckStrncatArguments(const CallExpr *CE,
3474 IdentifierInfo *FnName) {
3475 // Don't crash if the user has the wrong number of arguments.
3476 if (CE->getNumArgs() < 3)
3477 return;
3478 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3479 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3480 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3481
3482 // Identify common expressions, which are wrongly used as the size argument
3483 // to strncat and may lead to buffer overflows.
3484 unsigned PatternType = 0;
3485 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3486 // - sizeof(dst)
3487 if (referToTheSameDecl(SizeOfArg, DstArg))
3488 PatternType = 1;
3489 // - sizeof(src)
3490 else if (referToTheSameDecl(SizeOfArg, SrcArg))
3491 PatternType = 2;
3492 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3493 if (BE->getOpcode() == BO_Sub) {
3494 const Expr *L = BE->getLHS()->IgnoreParenCasts();
3495 const Expr *R = BE->getRHS()->IgnoreParenCasts();
3496 // - sizeof(dst) - strlen(dst)
3497 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3498 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3499 PatternType = 1;
3500 // - sizeof(src) - (anything)
3501 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3502 PatternType = 2;
3503 }
3504 }
3505
3506 if (PatternType == 0)
3507 return;
3508
3509 // Generate the diagnostic.
3510 SourceLocation SL = LenArg->getLocStart();
3511 SourceRange SR = LenArg->getSourceRange();
3512 SourceManager &SM = PP.getSourceManager();
3513
3514 // If the function is defined as a builtin macro, do not show macro expansion.
3515 if (SM.isMacroArgExpansion(SL)) {
3516 SL = SM.getSpellingLoc(SL);
3517 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3518 SM.getSpellingLoc(SR.getEnd()));
3519 }
3520
3521 // Check if the destination is an array (rather than a pointer to an array).
3522 QualType DstTy = DstArg->getType();
3523 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3524 Context);
3525 if (!isKnownSizeArray) {
3526 if (PatternType == 1)
3527 Diag(SL, diag::warn_strncat_wrong_size) << SR;
3528 else
3529 Diag(SL, diag::warn_strncat_src_size) << SR;
3530 return;
3531 }
3532
3533 if (PatternType == 1)
3534 Diag(SL, diag::warn_strncat_large_size) << SR;
3535 else
3536 Diag(SL, diag::warn_strncat_src_size) << SR;
3537
3538 SmallString<128> sizeString;
3539 llvm::raw_svector_ostream OS(sizeString);
3540 OS << "sizeof(";
3541 DstArg->printPretty(OS, 0, getPrintingPolicy());
3542 OS << ") - ";
3543 OS << "strlen(";
3544 DstArg->printPretty(OS, 0, getPrintingPolicy());
3545 OS << ") - 1";
3546
3547 Diag(SL, diag::note_strncat_wrong_size)
3548 << FixItHint::CreateReplacement(SR, OS.str());
3549 }
3550
3551 //===--- CHECK: Return Address of Stack Variable --------------------------===//
3552
3553 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3554 Decl *ParentDecl);
3555 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3556 Decl *ParentDecl);
3557
3558 /// CheckReturnStackAddr - Check if a return statement returns the address
3559 /// of a stack variable.
3560 void
CheckReturnStackAddr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc)3561 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3562 SourceLocation ReturnLoc) {
3563
3564 Expr *stackE = 0;
3565 SmallVector<DeclRefExpr *, 8> refVars;
3566
3567 // Perform checking for returned stack addresses, local blocks,
3568 // label addresses or references to temporaries.
3569 if (lhsType->isPointerType() ||
3570 (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3571 stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3572 } else if (lhsType->isReferenceType()) {
3573 stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3574 }
3575
3576 if (stackE == 0)
3577 return; // Nothing suspicious was found.
3578
3579 SourceLocation diagLoc;
3580 SourceRange diagRange;
3581 if (refVars.empty()) {
3582 diagLoc = stackE->getLocStart();
3583 diagRange = stackE->getSourceRange();
3584 } else {
3585 // We followed through a reference variable. 'stackE' contains the
3586 // problematic expression but we will warn at the return statement pointing
3587 // at the reference variable. We will later display the "trail" of
3588 // reference variables using notes.
3589 diagLoc = refVars[0]->getLocStart();
3590 diagRange = refVars[0]->getSourceRange();
3591 }
3592
3593 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3594 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3595 : diag::warn_ret_stack_addr)
3596 << DR->getDecl()->getDeclName() << diagRange;
3597 } else if (isa<BlockExpr>(stackE)) { // local block.
3598 Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3599 } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3600 Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3601 } else { // local temporary.
3602 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3603 : diag::warn_ret_local_temp_addr)
3604 << diagRange;
3605 }
3606
3607 // Display the "trail" of reference variables that we followed until we
3608 // found the problematic expression using notes.
3609 for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3610 VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3611 // If this var binds to another reference var, show the range of the next
3612 // var, otherwise the var binds to the problematic expression, in which case
3613 // show the range of the expression.
3614 SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3615 : stackE->getSourceRange();
3616 Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3617 << VD->getDeclName() << range;
3618 }
3619 }
3620
3621 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3622 /// check if the expression in a return statement evaluates to an address
3623 /// to a location on the stack, a local block, an address of a label, or a
3624 /// reference to local temporary. The recursion is used to traverse the
3625 /// AST of the return expression, with recursion backtracking when we
3626 /// encounter a subexpression that (1) clearly does not lead to one of the
3627 /// above problematic expressions (2) is something we cannot determine leads to
3628 /// a problematic expression based on such local checking.
3629 ///
3630 /// Both EvalAddr and EvalVal follow through reference variables to evaluate
3631 /// the expression that they point to. Such variables are added to the
3632 /// 'refVars' vector so that we know what the reference variable "trail" was.
3633 ///
3634 /// EvalAddr processes expressions that are pointers that are used as
3635 /// references (and not L-values). EvalVal handles all other values.
3636 /// At the base case of the recursion is a check for the above problematic
3637 /// expressions.
3638 ///
3639 /// This implementation handles:
3640 ///
3641 /// * pointer-to-pointer casts
3642 /// * implicit conversions from array references to pointers
3643 /// * taking the address of fields
3644 /// * arbitrary interplay between "&" and "*" operators
3645 /// * pointer arithmetic from an address of a stack variable
3646 /// * taking the address of an array element where the array is on the stack
EvalAddr(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)3647 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3648 Decl *ParentDecl) {
3649 if (E->isTypeDependent())
3650 return NULL;
3651
3652 // We should only be called for evaluating pointer expressions.
3653 assert((E->getType()->isAnyPointerType() ||
3654 E->getType()->isBlockPointerType() ||
3655 E->getType()->isObjCQualifiedIdType()) &&
3656 "EvalAddr only works on pointers");
3657
3658 E = E->IgnoreParens();
3659
3660 // Our "symbolic interpreter" is just a dispatch off the currently
3661 // viewed AST node. We then recursively traverse the AST by calling
3662 // EvalAddr and EvalVal appropriately.
3663 switch (E->getStmtClass()) {
3664 case Stmt::DeclRefExprClass: {
3665 DeclRefExpr *DR = cast<DeclRefExpr>(E);
3666
3667 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3668 // If this is a reference variable, follow through to the expression that
3669 // it points to.
3670 if (V->hasLocalStorage() &&
3671 V->getType()->isReferenceType() && V->hasInit()) {
3672 // Add the reference variable to the "trail".
3673 refVars.push_back(DR);
3674 return EvalAddr(V->getInit(), refVars, ParentDecl);
3675 }
3676
3677 return NULL;
3678 }
3679
3680 case Stmt::UnaryOperatorClass: {
3681 // The only unary operator that make sense to handle here
3682 // is AddrOf. All others don't make sense as pointers.
3683 UnaryOperator *U = cast<UnaryOperator>(E);
3684
3685 if (U->getOpcode() == UO_AddrOf)
3686 return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3687 else
3688 return NULL;
3689 }
3690
3691 case Stmt::BinaryOperatorClass: {
3692 // Handle pointer arithmetic. All other binary operators are not valid
3693 // in this context.
3694 BinaryOperator *B = cast<BinaryOperator>(E);
3695 BinaryOperatorKind op = B->getOpcode();
3696
3697 if (op != BO_Add && op != BO_Sub)
3698 return NULL;
3699
3700 Expr *Base = B->getLHS();
3701
3702 // Determine which argument is the real pointer base. It could be
3703 // the RHS argument instead of the LHS.
3704 if (!Base->getType()->isPointerType()) Base = B->getRHS();
3705
3706 assert (Base->getType()->isPointerType());
3707 return EvalAddr(Base, refVars, ParentDecl);
3708 }
3709
3710 // For conditional operators we need to see if either the LHS or RHS are
3711 // valid DeclRefExpr*s. If one of them is valid, we return it.
3712 case Stmt::ConditionalOperatorClass: {
3713 ConditionalOperator *C = cast<ConditionalOperator>(E);
3714
3715 // Handle the GNU extension for missing LHS.
3716 if (Expr *lhsExpr = C->getLHS()) {
3717 // In C++, we can have a throw-expression, which has 'void' type.
3718 if (!lhsExpr->getType()->isVoidType())
3719 if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3720 return LHS;
3721 }
3722
3723 // In C++, we can have a throw-expression, which has 'void' type.
3724 if (C->getRHS()->getType()->isVoidType())
3725 return NULL;
3726
3727 return EvalAddr(C->getRHS(), refVars, ParentDecl);
3728 }
3729
3730 case Stmt::BlockExprClass:
3731 if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3732 return E; // local block.
3733 return NULL;
3734
3735 case Stmt::AddrLabelExprClass:
3736 return E; // address of label.
3737
3738 case Stmt::ExprWithCleanupsClass:
3739 return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3740 ParentDecl);
3741
3742 // For casts, we need to handle conversions from arrays to
3743 // pointer values, and pointer-to-pointer conversions.
3744 case Stmt::ImplicitCastExprClass:
3745 case Stmt::CStyleCastExprClass:
3746 case Stmt::CXXFunctionalCastExprClass:
3747 case Stmt::ObjCBridgedCastExprClass:
3748 case Stmt::CXXStaticCastExprClass:
3749 case Stmt::CXXDynamicCastExprClass:
3750 case Stmt::CXXConstCastExprClass:
3751 case Stmt::CXXReinterpretCastExprClass: {
3752 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3753 switch (cast<CastExpr>(E)->getCastKind()) {
3754 case CK_BitCast:
3755 case CK_LValueToRValue:
3756 case CK_NoOp:
3757 case CK_BaseToDerived:
3758 case CK_DerivedToBase:
3759 case CK_UncheckedDerivedToBase:
3760 case CK_Dynamic:
3761 case CK_CPointerToObjCPointerCast:
3762 case CK_BlockPointerToObjCPointerCast:
3763 case CK_AnyPointerToBlockPointerCast:
3764 return EvalAddr(SubExpr, refVars, ParentDecl);
3765
3766 case CK_ArrayToPointerDecay:
3767 return EvalVal(SubExpr, refVars, ParentDecl);
3768
3769 default:
3770 return 0;
3771 }
3772 }
3773
3774 case Stmt::MaterializeTemporaryExprClass:
3775 if (Expr *Result = EvalAddr(
3776 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3777 refVars, ParentDecl))
3778 return Result;
3779
3780 return E;
3781
3782 // Everything else: we simply don't reason about them.
3783 default:
3784 return NULL;
3785 }
3786 }
3787
3788
3789 /// EvalVal - This function is complements EvalAddr in the mutual recursion.
3790 /// See the comments for EvalAddr for more details.
EvalVal(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)3791 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3792 Decl *ParentDecl) {
3793 do {
3794 // We should only be called for evaluating non-pointer expressions, or
3795 // expressions with a pointer type that are not used as references but instead
3796 // are l-values (e.g., DeclRefExpr with a pointer type).
3797
3798 // Our "symbolic interpreter" is just a dispatch off the currently
3799 // viewed AST node. We then recursively traverse the AST by calling
3800 // EvalAddr and EvalVal appropriately.
3801
3802 E = E->IgnoreParens();
3803 switch (E->getStmtClass()) {
3804 case Stmt::ImplicitCastExprClass: {
3805 ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3806 if (IE->getValueKind() == VK_LValue) {
3807 E = IE->getSubExpr();
3808 continue;
3809 }
3810 return NULL;
3811 }
3812
3813 case Stmt::ExprWithCleanupsClass:
3814 return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3815
3816 case Stmt::DeclRefExprClass: {
3817 // When we hit a DeclRefExpr we are looking at code that refers to a
3818 // variable's name. If it's not a reference variable we check if it has
3819 // local storage within the function, and if so, return the expression.
3820 DeclRefExpr *DR = cast<DeclRefExpr>(E);
3821
3822 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3823 // Check if it refers to itself, e.g. "int& i = i;".
3824 if (V == ParentDecl)
3825 return DR;
3826
3827 if (V->hasLocalStorage()) {
3828 if (!V->getType()->isReferenceType())
3829 return DR;
3830
3831 // Reference variable, follow through to the expression that
3832 // it points to.
3833 if (V->hasInit()) {
3834 // Add the reference variable to the "trail".
3835 refVars.push_back(DR);
3836 return EvalVal(V->getInit(), refVars, V);
3837 }
3838 }
3839 }
3840
3841 return NULL;
3842 }
3843
3844 case Stmt::UnaryOperatorClass: {
3845 // The only unary operator that make sense to handle here
3846 // is Deref. All others don't resolve to a "name." This includes
3847 // handling all sorts of rvalues passed to a unary operator.
3848 UnaryOperator *U = cast<UnaryOperator>(E);
3849
3850 if (U->getOpcode() == UO_Deref)
3851 return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3852
3853 return NULL;
3854 }
3855
3856 case Stmt::ArraySubscriptExprClass: {
3857 // Array subscripts are potential references to data on the stack. We
3858 // retrieve the DeclRefExpr* for the array variable if it indeed
3859 // has local storage.
3860 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3861 }
3862
3863 case Stmt::ConditionalOperatorClass: {
3864 // For conditional operators we need to see if either the LHS or RHS are
3865 // non-NULL Expr's. If one is non-NULL, we return it.
3866 ConditionalOperator *C = cast<ConditionalOperator>(E);
3867
3868 // Handle the GNU extension for missing LHS.
3869 if (Expr *lhsExpr = C->getLHS())
3870 if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3871 return LHS;
3872
3873 return EvalVal(C->getRHS(), refVars, ParentDecl);
3874 }
3875
3876 // Accesses to members are potential references to data on the stack.
3877 case Stmt::MemberExprClass: {
3878 MemberExpr *M = cast<MemberExpr>(E);
3879
3880 // Check for indirect access. We only want direct field accesses.
3881 if (M->isArrow())
3882 return NULL;
3883
3884 // Check whether the member type is itself a reference, in which case
3885 // we're not going to refer to the member, but to what the member refers to.
3886 if (M->getMemberDecl()->getType()->isReferenceType())
3887 return NULL;
3888
3889 return EvalVal(M->getBase(), refVars, ParentDecl);
3890 }
3891
3892 case Stmt::MaterializeTemporaryExprClass:
3893 if (Expr *Result = EvalVal(
3894 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3895 refVars, ParentDecl))
3896 return Result;
3897
3898 return E;
3899
3900 default:
3901 // Check that we don't return or take the address of a reference to a
3902 // temporary. This is only useful in C++.
3903 if (!E->isTypeDependent() && E->isRValue())
3904 return E;
3905
3906 // Everything else: we simply don't reason about them.
3907 return NULL;
3908 }
3909 } while (true);
3910 }
3911
3912 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3913
3914 /// Check for comparisons of floating point operands using != and ==.
3915 /// Issue a warning if these are no self-comparisons, as they are not likely
3916 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS)3917 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3918 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3919 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3920
3921 // Special case: check for x == x (which is OK).
3922 // Do not emit warnings for such cases.
3923 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3924 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3925 if (DRL->getDecl() == DRR->getDecl())
3926 return;
3927
3928
3929 // Special case: check for comparisons against literals that can be exactly
3930 // represented by APFloat. In such cases, do not emit a warning. This
3931 // is a heuristic: often comparison against such literals are used to
3932 // detect if a value in a variable has not changed. This clearly can
3933 // lead to false negatives.
3934 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3935 if (FLL->isExact())
3936 return;
3937 } else
3938 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3939 if (FLR->isExact())
3940 return;
3941
3942 // Check for comparisons with builtin types.
3943 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3944 if (CL->isBuiltinCall())
3945 return;
3946
3947 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3948 if (CR->isBuiltinCall())
3949 return;
3950
3951 // Emit the diagnostic.
3952 Diag(Loc, diag::warn_floatingpoint_eq)
3953 << LHS->getSourceRange() << RHS->getSourceRange();
3954 }
3955
3956 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3957 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3958
3959 namespace {
3960
3961 /// Structure recording the 'active' range of an integer-valued
3962 /// expression.
3963 struct IntRange {
3964 /// The number of bits active in the int.
3965 unsigned Width;
3966
3967 /// True if the int is known not to have negative values.
3968 bool NonNegative;
3969
IntRange__anon58ed84f90511::IntRange3970 IntRange(unsigned Width, bool NonNegative)
3971 : Width(Width), NonNegative(NonNegative)
3972 {}
3973
3974 /// Returns the range of the bool type.
forBoolType__anon58ed84f90511::IntRange3975 static IntRange forBoolType() {
3976 return IntRange(1, true);
3977 }
3978
3979 /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon58ed84f90511::IntRange3980 static IntRange forValueOfType(ASTContext &C, QualType T) {
3981 return forValueOfCanonicalType(C,
3982 T->getCanonicalTypeInternal().getTypePtr());
3983 }
3984
3985 /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon58ed84f90511::IntRange3986 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3987 assert(T->isCanonicalUnqualified());
3988
3989 if (const VectorType *VT = dyn_cast<VectorType>(T))
3990 T = VT->getElementType().getTypePtr();
3991 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3992 T = CT->getElementType().getTypePtr();
3993
3994 // For enum types, use the known bit width of the enumerators.
3995 if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3996 EnumDecl *Enum = ET->getDecl();
3997 if (!Enum->isCompleteDefinition())
3998 return IntRange(C.getIntWidth(QualType(T, 0)), false);
3999
4000 unsigned NumPositive = Enum->getNumPositiveBits();
4001 unsigned NumNegative = Enum->getNumNegativeBits();
4002
4003 if (NumNegative == 0)
4004 return IntRange(NumPositive, true/*NonNegative*/);
4005 else
4006 return IntRange(std::max(NumPositive + 1, NumNegative),
4007 false/*NonNegative*/);
4008 }
4009
4010 const BuiltinType *BT = cast<BuiltinType>(T);
4011 assert(BT->isInteger());
4012
4013 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4014 }
4015
4016 /// Returns the "target" range of a canonical integral type, i.e.
4017 /// the range of values expressible in the type.
4018 ///
4019 /// This matches forValueOfCanonicalType except that enums have the
4020 /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon58ed84f90511::IntRange4021 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4022 assert(T->isCanonicalUnqualified());
4023
4024 if (const VectorType *VT = dyn_cast<VectorType>(T))
4025 T = VT->getElementType().getTypePtr();
4026 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4027 T = CT->getElementType().getTypePtr();
4028 if (const EnumType *ET = dyn_cast<EnumType>(T))
4029 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4030
4031 const BuiltinType *BT = cast<BuiltinType>(T);
4032 assert(BT->isInteger());
4033
4034 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4035 }
4036
4037 /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon58ed84f90511::IntRange4038 static IntRange join(IntRange L, IntRange R) {
4039 return IntRange(std::max(L.Width, R.Width),
4040 L.NonNegative && R.NonNegative);
4041 }
4042
4043 /// Returns the infinum of two ranges: i.e. their aggressive merge.
meet__anon58ed84f90511::IntRange4044 static IntRange meet(IntRange L, IntRange R) {
4045 return IntRange(std::min(L.Width, R.Width),
4046 L.NonNegative || R.NonNegative);
4047 }
4048 };
4049
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)4050 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4051 unsigned MaxWidth) {
4052 if (value.isSigned() && value.isNegative())
4053 return IntRange(value.getMinSignedBits(), false);
4054
4055 if (value.getBitWidth() > MaxWidth)
4056 value = value.trunc(MaxWidth);
4057
4058 // isNonNegative() just checks the sign bit without considering
4059 // signedness.
4060 return IntRange(value.getActiveBits(), true);
4061 }
4062
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)4063 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4064 unsigned MaxWidth) {
4065 if (result.isInt())
4066 return GetValueRange(C, result.getInt(), MaxWidth);
4067
4068 if (result.isVector()) {
4069 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4070 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4071 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4072 R = IntRange::join(R, El);
4073 }
4074 return R;
4075 }
4076
4077 if (result.isComplexInt()) {
4078 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4079 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4080 return IntRange::join(R, I);
4081 }
4082
4083 // This can happen with lossless casts to intptr_t of "based" lvalues.
4084 // Assume it might use arbitrary bits.
4085 // FIXME: The only reason we need to pass the type in here is to get
4086 // the sign right on this one case. It would be nice if APValue
4087 // preserved this.
4088 assert(result.isLValue() || result.isAddrLabelDiff());
4089 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4090 }
4091
4092 /// Pseudo-evaluate the given integer expression, estimating the
4093 /// range of values it might take.
4094 ///
4095 /// \param MaxWidth - the width to which the value will be truncated
GetExprRange(ASTContext & C,Expr * E,unsigned MaxWidth)4096 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4097 E = E->IgnoreParens();
4098
4099 // Try a full evaluation first.
4100 Expr::EvalResult result;
4101 if (E->EvaluateAsRValue(result, C))
4102 return GetValueRange(C, result.Val, E->getType(), MaxWidth);
4103
4104 // I think we only want to look through implicit casts here; if the
4105 // user has an explicit widening cast, we should treat the value as
4106 // being of the new, wider type.
4107 if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4108 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4109 return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4110
4111 IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
4112
4113 bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4114
4115 // Assume that non-integer casts can span the full range of the type.
4116 if (!isIntegerCast)
4117 return OutputTypeRange;
4118
4119 IntRange SubRange
4120 = GetExprRange(C, CE->getSubExpr(),
4121 std::min(MaxWidth, OutputTypeRange.Width));
4122
4123 // Bail out if the subexpr's range is as wide as the cast type.
4124 if (SubRange.Width >= OutputTypeRange.Width)
4125 return OutputTypeRange;
4126
4127 // Otherwise, we take the smaller width, and we're non-negative if
4128 // either the output type or the subexpr is.
4129 return IntRange(SubRange.Width,
4130 SubRange.NonNegative || OutputTypeRange.NonNegative);
4131 }
4132
4133 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4134 // If we can fold the condition, just take that operand.
4135 bool CondResult;
4136 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4137 return GetExprRange(C, CondResult ? CO->getTrueExpr()
4138 : CO->getFalseExpr(),
4139 MaxWidth);
4140
4141 // Otherwise, conservatively merge.
4142 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4143 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4144 return IntRange::join(L, R);
4145 }
4146
4147 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4148 switch (BO->getOpcode()) {
4149
4150 // Boolean-valued operations are single-bit and positive.
4151 case BO_LAnd:
4152 case BO_LOr:
4153 case BO_LT:
4154 case BO_GT:
4155 case BO_LE:
4156 case BO_GE:
4157 case BO_EQ:
4158 case BO_NE:
4159 return IntRange::forBoolType();
4160
4161 // The type of the assignments is the type of the LHS, so the RHS
4162 // is not necessarily the same type.
4163 case BO_MulAssign:
4164 case BO_DivAssign:
4165 case BO_RemAssign:
4166 case BO_AddAssign:
4167 case BO_SubAssign:
4168 case BO_XorAssign:
4169 case BO_OrAssign:
4170 // TODO: bitfields?
4171 return IntRange::forValueOfType(C, E->getType());
4172
4173 // Simple assignments just pass through the RHS, which will have
4174 // been coerced to the LHS type.
4175 case BO_Assign:
4176 // TODO: bitfields?
4177 return GetExprRange(C, BO->getRHS(), MaxWidth);
4178
4179 // Operations with opaque sources are black-listed.
4180 case BO_PtrMemD:
4181 case BO_PtrMemI:
4182 return IntRange::forValueOfType(C, E->getType());
4183
4184 // Bitwise-and uses the *infinum* of the two source ranges.
4185 case BO_And:
4186 case BO_AndAssign:
4187 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4188 GetExprRange(C, BO->getRHS(), MaxWidth));
4189
4190 // Left shift gets black-listed based on a judgement call.
4191 case BO_Shl:
4192 // ...except that we want to treat '1 << (blah)' as logically
4193 // positive. It's an important idiom.
4194 if (IntegerLiteral *I
4195 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4196 if (I->getValue() == 1) {
4197 IntRange R = IntRange::forValueOfType(C, E->getType());
4198 return IntRange(R.Width, /*NonNegative*/ true);
4199 }
4200 }
4201 // fallthrough
4202
4203 case BO_ShlAssign:
4204 return IntRange::forValueOfType(C, E->getType());
4205
4206 // Right shift by a constant can narrow its left argument.
4207 case BO_Shr:
4208 case BO_ShrAssign: {
4209 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4210
4211 // If the shift amount is a positive constant, drop the width by
4212 // that much.
4213 llvm::APSInt shift;
4214 if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4215 shift.isNonNegative()) {
4216 unsigned zext = shift.getZExtValue();
4217 if (zext >= L.Width)
4218 L.Width = (L.NonNegative ? 0 : 1);
4219 else
4220 L.Width -= zext;
4221 }
4222
4223 return L;
4224 }
4225
4226 // Comma acts as its right operand.
4227 case BO_Comma:
4228 return GetExprRange(C, BO->getRHS(), MaxWidth);
4229
4230 // Black-list pointer subtractions.
4231 case BO_Sub:
4232 if (BO->getLHS()->getType()->isPointerType())
4233 return IntRange::forValueOfType(C, E->getType());
4234 break;
4235
4236 // The width of a division result is mostly determined by the size
4237 // of the LHS.
4238 case BO_Div: {
4239 // Don't 'pre-truncate' the operands.
4240 unsigned opWidth = C.getIntWidth(E->getType());
4241 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4242
4243 // If the divisor is constant, use that.
4244 llvm::APSInt divisor;
4245 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4246 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4247 if (log2 >= L.Width)
4248 L.Width = (L.NonNegative ? 0 : 1);
4249 else
4250 L.Width = std::min(L.Width - log2, MaxWidth);
4251 return L;
4252 }
4253
4254 // Otherwise, just use the LHS's width.
4255 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4256 return IntRange(L.Width, L.NonNegative && R.NonNegative);
4257 }
4258
4259 // The result of a remainder can't be larger than the result of
4260 // either side.
4261 case BO_Rem: {
4262 // Don't 'pre-truncate' the operands.
4263 unsigned opWidth = C.getIntWidth(E->getType());
4264 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4265 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4266
4267 IntRange meet = IntRange::meet(L, R);
4268 meet.Width = std::min(meet.Width, MaxWidth);
4269 return meet;
4270 }
4271
4272 // The default behavior is okay for these.
4273 case BO_Mul:
4274 case BO_Add:
4275 case BO_Xor:
4276 case BO_Or:
4277 break;
4278 }
4279
4280 // The default case is to treat the operation as if it were closed
4281 // on the narrowest type that encompasses both operands.
4282 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4283 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4284 return IntRange::join(L, R);
4285 }
4286
4287 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4288 switch (UO->getOpcode()) {
4289 // Boolean-valued operations are white-listed.
4290 case UO_LNot:
4291 return IntRange::forBoolType();
4292
4293 // Operations with opaque sources are black-listed.
4294 case UO_Deref:
4295 case UO_AddrOf: // should be impossible
4296 return IntRange::forValueOfType(C, E->getType());
4297
4298 default:
4299 return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4300 }
4301 }
4302
4303 if (dyn_cast<OffsetOfExpr>(E)) {
4304 IntRange::forValueOfType(C, E->getType());
4305 }
4306
4307 if (FieldDecl *BitField = E->getBitField())
4308 return IntRange(BitField->getBitWidthValue(C),
4309 BitField->getType()->isUnsignedIntegerOrEnumerationType());
4310
4311 return IntRange::forValueOfType(C, E->getType());
4312 }
4313
GetExprRange(ASTContext & C,Expr * E)4314 static IntRange GetExprRange(ASTContext &C, Expr *E) {
4315 return GetExprRange(C, E, C.getIntWidth(E->getType()));
4316 }
4317
4318 /// Checks whether the given value, which currently has the given
4319 /// source semantics, has the same value when coerced through the
4320 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)4321 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4322 const llvm::fltSemantics &Src,
4323 const llvm::fltSemantics &Tgt) {
4324 llvm::APFloat truncated = value;
4325
4326 bool ignored;
4327 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4328 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4329
4330 return truncated.bitwiseIsEqual(value);
4331 }
4332
4333 /// Checks whether the given value, which currently has the given
4334 /// source semantics, has the same value when coerced through the
4335 /// target semantics.
4336 ///
4337 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)4338 static bool IsSameFloatAfterCast(const APValue &value,
4339 const llvm::fltSemantics &Src,
4340 const llvm::fltSemantics &Tgt) {
4341 if (value.isFloat())
4342 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4343
4344 if (value.isVector()) {
4345 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4346 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4347 return false;
4348 return true;
4349 }
4350
4351 assert(value.isComplexFloat());
4352 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4353 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4354 }
4355
4356 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4357
IsZero(Sema & S,Expr * E)4358 static bool IsZero(Sema &S, Expr *E) {
4359 // Suppress cases where we are comparing against an enum constant.
4360 if (const DeclRefExpr *DR =
4361 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4362 if (isa<EnumConstantDecl>(DR->getDecl()))
4363 return false;
4364
4365 // Suppress cases where the '0' value is expanded from a macro.
4366 if (E->getLocStart().isMacroID())
4367 return false;
4368
4369 llvm::APSInt Value;
4370 return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4371 }
4372
HasEnumType(Expr * E)4373 static bool HasEnumType(Expr *E) {
4374 // Strip off implicit integral promotions.
4375 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4376 if (ICE->getCastKind() != CK_IntegralCast &&
4377 ICE->getCastKind() != CK_NoOp)
4378 break;
4379 E = ICE->getSubExpr();
4380 }
4381
4382 return E->getType()->isEnumeralType();
4383 }
4384
CheckTrivialUnsignedComparison(Sema & S,BinaryOperator * E)4385 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4386 BinaryOperatorKind op = E->getOpcode();
4387 if (E->isValueDependent())
4388 return;
4389
4390 if (op == BO_LT && IsZero(S, E->getRHS())) {
4391 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4392 << "< 0" << "false" << HasEnumType(E->getLHS())
4393 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4394 } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4395 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4396 << ">= 0" << "true" << HasEnumType(E->getLHS())
4397 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4398 } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4399 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4400 << "0 >" << "false" << HasEnumType(E->getRHS())
4401 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4402 } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4403 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4404 << "0 <=" << "true" << HasEnumType(E->getRHS())
4405 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4406 }
4407 }
4408
DiagnoseOutOfRangeComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,llvm::APSInt Value,bool RhsConstant)4409 static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4410 Expr *Constant, Expr *Other,
4411 llvm::APSInt Value,
4412 bool RhsConstant) {
4413 // 0 values are handled later by CheckTrivialUnsignedComparison().
4414 if (Value == 0)
4415 return;
4416
4417 BinaryOperatorKind op = E->getOpcode();
4418 QualType OtherT = Other->getType();
4419 QualType ConstantT = Constant->getType();
4420 QualType CommonT = E->getLHS()->getType();
4421 if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4422 return;
4423 assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4424 && "comparison with non-integer type");
4425
4426 bool ConstantSigned = ConstantT->isSignedIntegerType();
4427 bool CommonSigned = CommonT->isSignedIntegerType();
4428
4429 bool EqualityOnly = false;
4430
4431 // TODO: Investigate using GetExprRange() to get tighter bounds on
4432 // on the bit ranges.
4433 IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4434 unsigned OtherWidth = OtherRange.Width;
4435
4436 if (CommonSigned) {
4437 // The common type is signed, therefore no signed to unsigned conversion.
4438 if (!OtherRange.NonNegative) {
4439 // Check that the constant is representable in type OtherT.
4440 if (ConstantSigned) {
4441 if (OtherWidth >= Value.getMinSignedBits())
4442 return;
4443 } else { // !ConstantSigned
4444 if (OtherWidth >= Value.getActiveBits() + 1)
4445 return;
4446 }
4447 } else { // !OtherSigned
4448 // Check that the constant is representable in type OtherT.
4449 // Negative values are out of range.
4450 if (ConstantSigned) {
4451 if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4452 return;
4453 } else { // !ConstantSigned
4454 if (OtherWidth >= Value.getActiveBits())
4455 return;
4456 }
4457 }
4458 } else { // !CommonSigned
4459 if (OtherRange.NonNegative) {
4460 if (OtherWidth >= Value.getActiveBits())
4461 return;
4462 } else if (!OtherRange.NonNegative && !ConstantSigned) {
4463 // Check to see if the constant is representable in OtherT.
4464 if (OtherWidth > Value.getActiveBits())
4465 return;
4466 // Check to see if the constant is equivalent to a negative value
4467 // cast to CommonT.
4468 if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4469 Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4470 return;
4471 // The constant value rests between values that OtherT can represent after
4472 // conversion. Relational comparison still works, but equality
4473 // comparisons will be tautological.
4474 EqualityOnly = true;
4475 } else { // OtherSigned && ConstantSigned
4476 assert(0 && "Two signed types converted to unsigned types.");
4477 }
4478 }
4479
4480 bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4481
4482 bool IsTrue = true;
4483 if (op == BO_EQ || op == BO_NE) {
4484 IsTrue = op == BO_NE;
4485 } else if (EqualityOnly) {
4486 return;
4487 } else if (RhsConstant) {
4488 if (op == BO_GT || op == BO_GE)
4489 IsTrue = !PositiveConstant;
4490 else // op == BO_LT || op == BO_LE
4491 IsTrue = PositiveConstant;
4492 } else {
4493 if (op == BO_LT || op == BO_LE)
4494 IsTrue = !PositiveConstant;
4495 else // op == BO_GT || op == BO_GE
4496 IsTrue = PositiveConstant;
4497 }
4498
4499 // If this is a comparison to an enum constant, include that
4500 // constant in the diagnostic.
4501 const EnumConstantDecl *ED = 0;
4502 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4503 ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4504
4505 SmallString<64> PrettySourceValue;
4506 llvm::raw_svector_ostream OS(PrettySourceValue);
4507 if (ED)
4508 OS << '\'' << *ED << "' (" << Value << ")";
4509 else
4510 OS << Value;
4511
4512 S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4513 << OS.str() << OtherT << IsTrue
4514 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4515 }
4516
4517 /// Analyze the operands of the given comparison. Implements the
4518 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)4519 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4520 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4521 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4522 }
4523
4524 /// \brief Implements -Wsign-compare.
4525 ///
4526 /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)4527 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4528 // The type the comparison is being performed in.
4529 QualType T = E->getLHS()->getType();
4530 assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4531 && "comparison with mismatched types");
4532 if (E->isValueDependent())
4533 return AnalyzeImpConvsInComparison(S, E);
4534
4535 Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4536 Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4537
4538 bool IsComparisonConstant = false;
4539
4540 // Check whether an integer constant comparison results in a value
4541 // of 'true' or 'false'.
4542 if (T->isIntegralType(S.Context)) {
4543 llvm::APSInt RHSValue;
4544 bool IsRHSIntegralLiteral =
4545 RHS->isIntegerConstantExpr(RHSValue, S.Context);
4546 llvm::APSInt LHSValue;
4547 bool IsLHSIntegralLiteral =
4548 LHS->isIntegerConstantExpr(LHSValue, S.Context);
4549 if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4550 DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4551 else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4552 DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4553 else
4554 IsComparisonConstant =
4555 (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4556 } else if (!T->hasUnsignedIntegerRepresentation())
4557 IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4558
4559 // We don't do anything special if this isn't an unsigned integral
4560 // comparison: we're only interested in integral comparisons, and
4561 // signed comparisons only happen in cases we don't care to warn about.
4562 //
4563 // We also don't care about value-dependent expressions or expressions
4564 // whose result is a constant.
4565 if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4566 return AnalyzeImpConvsInComparison(S, E);
4567
4568 // Check to see if one of the (unmodified) operands is of different
4569 // signedness.
4570 Expr *signedOperand, *unsignedOperand;
4571 if (LHS->getType()->hasSignedIntegerRepresentation()) {
4572 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4573 "unsigned comparison between two signed integer expressions?");
4574 signedOperand = LHS;
4575 unsignedOperand = RHS;
4576 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4577 signedOperand = RHS;
4578 unsignedOperand = LHS;
4579 } else {
4580 CheckTrivialUnsignedComparison(S, E);
4581 return AnalyzeImpConvsInComparison(S, E);
4582 }
4583
4584 // Otherwise, calculate the effective range of the signed operand.
4585 IntRange signedRange = GetExprRange(S.Context, signedOperand);
4586
4587 // Go ahead and analyze implicit conversions in the operands. Note
4588 // that we skip the implicit conversions on both sides.
4589 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4590 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4591
4592 // If the signed range is non-negative, -Wsign-compare won't fire,
4593 // but we should still check for comparisons which are always true
4594 // or false.
4595 if (signedRange.NonNegative)
4596 return CheckTrivialUnsignedComparison(S, E);
4597
4598 // For (in)equality comparisons, if the unsigned operand is a
4599 // constant which cannot collide with a overflowed signed operand,
4600 // then reinterpreting the signed operand as unsigned will not
4601 // change the result of the comparison.
4602 if (E->isEqualityOp()) {
4603 unsigned comparisonWidth = S.Context.getIntWidth(T);
4604 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4605
4606 // We should never be unable to prove that the unsigned operand is
4607 // non-negative.
4608 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4609
4610 if (unsignedRange.Width < comparisonWidth)
4611 return;
4612 }
4613
4614 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4615 S.PDiag(diag::warn_mixed_sign_comparison)
4616 << LHS->getType() << RHS->getType()
4617 << LHS->getSourceRange() << RHS->getSourceRange());
4618 }
4619
4620 /// Analyzes an attempt to assign the given value to a bitfield.
4621 ///
4622 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)4623 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4624 SourceLocation InitLoc) {
4625 assert(Bitfield->isBitField());
4626 if (Bitfield->isInvalidDecl())
4627 return false;
4628
4629 // White-list bool bitfields.
4630 if (Bitfield->getType()->isBooleanType())
4631 return false;
4632
4633 // Ignore value- or type-dependent expressions.
4634 if (Bitfield->getBitWidth()->isValueDependent() ||
4635 Bitfield->getBitWidth()->isTypeDependent() ||
4636 Init->isValueDependent() ||
4637 Init->isTypeDependent())
4638 return false;
4639
4640 Expr *OriginalInit = Init->IgnoreParenImpCasts();
4641
4642 llvm::APSInt Value;
4643 if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4644 return false;
4645
4646 unsigned OriginalWidth = Value.getBitWidth();
4647 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4648
4649 if (OriginalWidth <= FieldWidth)
4650 return false;
4651
4652 // Compute the value which the bitfield will contain.
4653 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4654 TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4655
4656 // Check whether the stored value is equal to the original value.
4657 TruncatedValue = TruncatedValue.extend(OriginalWidth);
4658 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4659 return false;
4660
4661 // Special-case bitfields of width 1: booleans are naturally 0/1, and
4662 // therefore don't strictly fit into a signed bitfield of width 1.
4663 if (FieldWidth == 1 && Value == 1)
4664 return false;
4665
4666 std::string PrettyValue = Value.toString(10);
4667 std::string PrettyTrunc = TruncatedValue.toString(10);
4668
4669 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4670 << PrettyValue << PrettyTrunc << OriginalInit->getType()
4671 << Init->getSourceRange();
4672
4673 return true;
4674 }
4675
4676 /// Analyze the given simple or compound assignment for warning-worthy
4677 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)4678 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4679 // Just recurse on the LHS.
4680 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4681
4682 // We want to recurse on the RHS as normal unless we're assigning to
4683 // a bitfield.
4684 if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4685 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4686 E->getOperatorLoc())) {
4687 // Recurse, ignoring any implicit conversions on the RHS.
4688 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4689 E->getOperatorLoc());
4690 }
4691 }
4692
4693 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4694 }
4695
4696 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)4697 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4698 SourceLocation CContext, unsigned diag,
4699 bool pruneControlFlow = false) {
4700 if (pruneControlFlow) {
4701 S.DiagRuntimeBehavior(E->getExprLoc(), E,
4702 S.PDiag(diag)
4703 << SourceType << T << E->getSourceRange()
4704 << SourceRange(CContext));
4705 return;
4706 }
4707 S.Diag(E->getExprLoc(), diag)
4708 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4709 }
4710
4711 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)4712 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4713 SourceLocation CContext, unsigned diag,
4714 bool pruneControlFlow = false) {
4715 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4716 }
4717
4718 /// Diagnose an implicit cast from a literal expression. Does not warn when the
4719 /// cast wouldn't lose information.
DiagnoseFloatingLiteralImpCast(Sema & S,FloatingLiteral * FL,QualType T,SourceLocation CContext)4720 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4721 SourceLocation CContext) {
4722 // Try to convert the literal exactly to an integer. If we can, don't warn.
4723 bool isExact = false;
4724 const llvm::APFloat &Value = FL->getValue();
4725 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4726 T->hasUnsignedIntegerRepresentation());
4727 if (Value.convertToInteger(IntegerValue,
4728 llvm::APFloat::rmTowardZero, &isExact)
4729 == llvm::APFloat::opOK && isExact)
4730 return;
4731
4732 SmallString<16> PrettySourceValue;
4733 Value.toString(PrettySourceValue);
4734 SmallString<16> PrettyTargetValue;
4735 if (T->isSpecificBuiltinType(BuiltinType::Bool))
4736 PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4737 else
4738 IntegerValue.toString(PrettyTargetValue);
4739
4740 S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4741 << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4742 << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4743 }
4744
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)4745 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4746 if (!Range.Width) return "0";
4747
4748 llvm::APSInt ValueInRange = Value;
4749 ValueInRange.setIsSigned(!Range.NonNegative);
4750 ValueInRange = ValueInRange.trunc(Range.Width);
4751 return ValueInRange.toString(10);
4752 }
4753
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)4754 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4755 if (!isa<ImplicitCastExpr>(Ex))
4756 return false;
4757
4758 Expr *InnerE = Ex->IgnoreParenImpCasts();
4759 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4760 const Type *Source =
4761 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4762 if (Target->isDependentType())
4763 return false;
4764
4765 const BuiltinType *FloatCandidateBT =
4766 dyn_cast<BuiltinType>(ToBool ? Source : Target);
4767 const Type *BoolCandidateType = ToBool ? Target : Source;
4768
4769 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4770 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4771 }
4772
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)4773 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4774 SourceLocation CC) {
4775 unsigned NumArgs = TheCall->getNumArgs();
4776 for (unsigned i = 0; i < NumArgs; ++i) {
4777 Expr *CurrA = TheCall->getArg(i);
4778 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4779 continue;
4780
4781 bool IsSwapped = ((i > 0) &&
4782 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4783 IsSwapped |= ((i < (NumArgs - 1)) &&
4784 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4785 if (IsSwapped) {
4786 // Warn on this floating-point to bool conversion.
4787 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4788 CurrA->getType(), CC,
4789 diag::warn_impcast_floating_point_to_bool);
4790 }
4791 }
4792 }
4793
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=0)4794 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4795 SourceLocation CC, bool *ICContext = 0) {
4796 if (E->isTypeDependent() || E->isValueDependent()) return;
4797
4798 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4799 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4800 if (Source == Target) return;
4801 if (Target->isDependentType()) return;
4802
4803 // If the conversion context location is invalid don't complain. We also
4804 // don't want to emit a warning if the issue occurs from the expansion of
4805 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4806 // delay this check as long as possible. Once we detect we are in that
4807 // scenario, we just return.
4808 if (CC.isInvalid())
4809 return;
4810
4811 // Diagnose implicit casts to bool.
4812 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4813 if (isa<StringLiteral>(E))
4814 // Warn on string literal to bool. Checks for string literals in logical
4815 // expressions, for instances, assert(0 && "error here"), is prevented
4816 // by a check in AnalyzeImplicitConversions().
4817 return DiagnoseImpCast(S, E, T, CC,
4818 diag::warn_impcast_string_literal_to_bool);
4819 if (Source->isFunctionType()) {
4820 // Warn on function to bool. Checks free functions and static member
4821 // functions. Weakly imported functions are excluded from the check,
4822 // since it's common to test their value to check whether the linker
4823 // found a definition for them.
4824 ValueDecl *D = 0;
4825 if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4826 D = R->getDecl();
4827 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4828 D = M->getMemberDecl();
4829 }
4830
4831 if (D && !D->isWeak()) {
4832 if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4833 S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4834 << F << E->getSourceRange() << SourceRange(CC);
4835 S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4836 << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4837 QualType ReturnType;
4838 UnresolvedSet<4> NonTemplateOverloads;
4839 S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4840 if (!ReturnType.isNull()
4841 && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4842 S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4843 << FixItHint::CreateInsertion(
4844 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4845 return;
4846 }
4847 }
4848 }
4849 }
4850
4851 // Strip vector types.
4852 if (isa<VectorType>(Source)) {
4853 if (!isa<VectorType>(Target)) {
4854 if (S.SourceMgr.isInSystemMacro(CC))
4855 return;
4856 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4857 }
4858
4859 // If the vector cast is cast between two vectors of the same size, it is
4860 // a bitcast, not a conversion.
4861 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4862 return;
4863
4864 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4865 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4866 }
4867
4868 // Strip complex types.
4869 if (isa<ComplexType>(Source)) {
4870 if (!isa<ComplexType>(Target)) {
4871 if (S.SourceMgr.isInSystemMacro(CC))
4872 return;
4873
4874 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4875 }
4876
4877 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4878 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4879 }
4880
4881 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4882 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4883
4884 // If the source is floating point...
4885 if (SourceBT && SourceBT->isFloatingPoint()) {
4886 // ...and the target is floating point...
4887 if (TargetBT && TargetBT->isFloatingPoint()) {
4888 // ...then warn if we're dropping FP rank.
4889
4890 // Builtin FP kinds are ordered by increasing FP rank.
4891 if (SourceBT->getKind() > TargetBT->getKind()) {
4892 // Don't warn about float constants that are precisely
4893 // representable in the target type.
4894 Expr::EvalResult result;
4895 if (E->EvaluateAsRValue(result, S.Context)) {
4896 // Value might be a float, a float vector, or a float complex.
4897 if (IsSameFloatAfterCast(result.Val,
4898 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4899 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4900 return;
4901 }
4902
4903 if (S.SourceMgr.isInSystemMacro(CC))
4904 return;
4905
4906 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4907 }
4908 return;
4909 }
4910
4911 // If the target is integral, always warn.
4912 if (TargetBT && TargetBT->isInteger()) {
4913 if (S.SourceMgr.isInSystemMacro(CC))
4914 return;
4915
4916 Expr *InnerE = E->IgnoreParenImpCasts();
4917 // We also want to warn on, e.g., "int i = -1.234"
4918 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4919 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4920 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4921
4922 if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4923 DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4924 } else {
4925 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4926 }
4927 }
4928
4929 // If the target is bool, warn if expr is a function or method call.
4930 if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4931 isa<CallExpr>(E)) {
4932 // Check last argument of function call to see if it is an
4933 // implicit cast from a type matching the type the result
4934 // is being cast to.
4935 CallExpr *CEx = cast<CallExpr>(E);
4936 unsigned NumArgs = CEx->getNumArgs();
4937 if (NumArgs > 0) {
4938 Expr *LastA = CEx->getArg(NumArgs - 1);
4939 Expr *InnerE = LastA->IgnoreParenImpCasts();
4940 const Type *InnerType =
4941 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4942 if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4943 // Warn on this floating-point to bool conversion
4944 DiagnoseImpCast(S, E, T, CC,
4945 diag::warn_impcast_floating_point_to_bool);
4946 }
4947 }
4948 }
4949 return;
4950 }
4951
4952 if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4953 == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4954 && !Target->isBlockPointerType() && !Target->isMemberPointerType()
4955 && Target->isScalarType() && !Target->isNullPtrType()) {
4956 SourceLocation Loc = E->getSourceRange().getBegin();
4957 if (Loc.isMacroID())
4958 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4959 if (!Loc.isMacroID() || CC.isMacroID())
4960 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4961 << T << clang::SourceRange(CC)
4962 << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4963 }
4964
4965 if (!Source->isIntegerType() || !Target->isIntegerType())
4966 return;
4967
4968 // TODO: remove this early return once the false positives for constant->bool
4969 // in templates, macros, etc, are reduced or removed.
4970 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4971 return;
4972
4973 IntRange SourceRange = GetExprRange(S.Context, E);
4974 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4975
4976 if (SourceRange.Width > TargetRange.Width) {
4977 // If the source is a constant, use a default-on diagnostic.
4978 // TODO: this should happen for bitfield stores, too.
4979 llvm::APSInt Value(32);
4980 if (E->isIntegerConstantExpr(Value, S.Context)) {
4981 if (S.SourceMgr.isInSystemMacro(CC))
4982 return;
4983
4984 std::string PrettySourceValue = Value.toString(10);
4985 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4986
4987 S.DiagRuntimeBehavior(E->getExprLoc(), E,
4988 S.PDiag(diag::warn_impcast_integer_precision_constant)
4989 << PrettySourceValue << PrettyTargetValue
4990 << E->getType() << T << E->getSourceRange()
4991 << clang::SourceRange(CC));
4992 return;
4993 }
4994
4995 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4996 if (S.SourceMgr.isInSystemMacro(CC))
4997 return;
4998
4999 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5000 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5001 /* pruneControlFlow */ true);
5002 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5003 }
5004
5005 if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5006 (!TargetRange.NonNegative && SourceRange.NonNegative &&
5007 SourceRange.Width == TargetRange.Width)) {
5008
5009 if (S.SourceMgr.isInSystemMacro(CC))
5010 return;
5011
5012 unsigned DiagID = diag::warn_impcast_integer_sign;
5013
5014 // Traditionally, gcc has warned about this under -Wsign-compare.
5015 // We also want to warn about it in -Wconversion.
5016 // So if -Wconversion is off, use a completely identical diagnostic
5017 // in the sign-compare group.
5018 // The conditional-checking code will
5019 if (ICContext) {
5020 DiagID = diag::warn_impcast_integer_sign_conditional;
5021 *ICContext = true;
5022 }
5023
5024 return DiagnoseImpCast(S, E, T, CC, DiagID);
5025 }
5026
5027 // Diagnose conversions between different enumeration types.
5028 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5029 // type, to give us better diagnostics.
5030 QualType SourceType = E->getType();
5031 if (!S.getLangOpts().CPlusPlus) {
5032 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5033 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5034 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5035 SourceType = S.Context.getTypeDeclType(Enum);
5036 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5037 }
5038 }
5039
5040 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5041 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5042 if (SourceEnum->getDecl()->hasNameForLinkage() &&
5043 TargetEnum->getDecl()->hasNameForLinkage() &&
5044 SourceEnum != TargetEnum) {
5045 if (S.SourceMgr.isInSystemMacro(CC))
5046 return;
5047
5048 return DiagnoseImpCast(S, E, SourceType, T, CC,
5049 diag::warn_impcast_different_enum_types);
5050 }
5051
5052 return;
5053 }
5054
5055 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5056 SourceLocation CC, QualType T);
5057
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)5058 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5059 SourceLocation CC, bool &ICContext) {
5060 E = E->IgnoreParenImpCasts();
5061
5062 if (isa<ConditionalOperator>(E))
5063 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5064
5065 AnalyzeImplicitConversions(S, E, CC);
5066 if (E->getType() != T)
5067 return CheckImplicitConversion(S, E, T, CC, &ICContext);
5068 return;
5069 }
5070
CheckConditionalOperator(Sema & S,ConditionalOperator * E,SourceLocation CC,QualType T)5071 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5072 SourceLocation CC, QualType T) {
5073 AnalyzeImplicitConversions(S, E->getCond(), CC);
5074
5075 bool Suspicious = false;
5076 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5077 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5078
5079 // If -Wconversion would have warned about either of the candidates
5080 // for a signedness conversion to the context type...
5081 if (!Suspicious) return;
5082
5083 // ...but it's currently ignored...
5084 if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5085 CC))
5086 return;
5087
5088 // ...then check whether it would have warned about either of the
5089 // candidates for a signedness conversion to the condition type.
5090 if (E->getType() == T) return;
5091
5092 Suspicious = false;
5093 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5094 E->getType(), CC, &Suspicious);
5095 if (!Suspicious)
5096 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5097 E->getType(), CC, &Suspicious);
5098 }
5099
5100 /// AnalyzeImplicitConversions - Find and report any interesting
5101 /// implicit conversions in the given expression. There are a couple
5102 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC)5103 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5104 QualType T = OrigE->getType();
5105 Expr *E = OrigE->IgnoreParenImpCasts();
5106
5107 if (E->isTypeDependent() || E->isValueDependent())
5108 return;
5109
5110 // For conditional operators, we analyze the arguments as if they
5111 // were being fed directly into the output.
5112 if (isa<ConditionalOperator>(E)) {
5113 ConditionalOperator *CO = cast<ConditionalOperator>(E);
5114 CheckConditionalOperator(S, CO, CC, T);
5115 return;
5116 }
5117
5118 // Check implicit argument conversions for function calls.
5119 if (CallExpr *Call = dyn_cast<CallExpr>(E))
5120 CheckImplicitArgumentConversions(S, Call, CC);
5121
5122 // Go ahead and check any implicit conversions we might have skipped.
5123 // The non-canonical typecheck is just an optimization;
5124 // CheckImplicitConversion will filter out dead implicit conversions.
5125 if (E->getType() != T)
5126 CheckImplicitConversion(S, E, T, CC);
5127
5128 // Now continue drilling into this expression.
5129
5130 // Skip past explicit casts.
5131 if (isa<ExplicitCastExpr>(E)) {
5132 E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5133 return AnalyzeImplicitConversions(S, E, CC);
5134 }
5135
5136 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5137 // Do a somewhat different check with comparison operators.
5138 if (BO->isComparisonOp())
5139 return AnalyzeComparison(S, BO);
5140
5141 // And with simple assignments.
5142 if (BO->getOpcode() == BO_Assign)
5143 return AnalyzeAssignment(S, BO);
5144 }
5145
5146 // These break the otherwise-useful invariant below. Fortunately,
5147 // we don't really need to recurse into them, because any internal
5148 // expressions should have been analyzed already when they were
5149 // built into statements.
5150 if (isa<StmtExpr>(E)) return;
5151
5152 // Don't descend into unevaluated contexts.
5153 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5154
5155 // Now just recurse over the expression's children.
5156 CC = E->getExprLoc();
5157 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5158 bool IsLogicalOperator = BO && BO->isLogicalOp();
5159 for (Stmt::child_range I = E->children(); I; ++I) {
5160 Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5161 if (!ChildExpr)
5162 continue;
5163
5164 if (IsLogicalOperator &&
5165 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5166 // Ignore checking string literals that are in logical operators.
5167 continue;
5168 AnalyzeImplicitConversions(S, ChildExpr, CC);
5169 }
5170 }
5171
5172 } // end anonymous namespace
5173
5174 /// Diagnoses "dangerous" implicit conversions within the given
5175 /// expression (which is a full expression). Implements -Wconversion
5176 /// and -Wsign-compare.
5177 ///
5178 /// \param CC the "context" location of the implicit conversion, i.e.
5179 /// the most location of the syntactic entity requiring the implicit
5180 /// conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)5181 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5182 // Don't diagnose in unevaluated contexts.
5183 if (isUnevaluatedContext())
5184 return;
5185
5186 // Don't diagnose for value- or type-dependent expressions.
5187 if (E->isTypeDependent() || E->isValueDependent())
5188 return;
5189
5190 // Check for array bounds violations in cases where the check isn't triggered
5191 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5192 // ArraySubscriptExpr is on the RHS of a variable initialization.
5193 CheckArrayAccess(E);
5194
5195 // This is not the right CC for (e.g.) a variable initialization.
5196 AnalyzeImplicitConversions(*this, E, CC);
5197 }
5198
5199 /// Diagnose when expression is an integer constant expression and its evaluation
5200 /// results in integer overflow
CheckForIntOverflow(Expr * E)5201 void Sema::CheckForIntOverflow (Expr *E) {
5202 if (isa<BinaryOperator>(E->IgnoreParens())) {
5203 llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
5204 E->EvaluateForOverflow(Context, &Diags);
5205 }
5206 }
5207
5208 namespace {
5209 /// \brief Visitor for expressions which looks for unsequenced operations on the
5210 /// same object.
5211 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5212 /// \brief A tree of sequenced regions within an expression. Two regions are
5213 /// unsequenced if one is an ancestor or a descendent of the other. When we
5214 /// finish processing an expression with sequencing, such as a comma
5215 /// expression, we fold its tree nodes into its parent, since they are
5216 /// unsequenced with respect to nodes we will visit later.
5217 class SequenceTree {
5218 struct Value {
Value__anon58ed84f90611::SequenceChecker::SequenceTree::Value5219 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5220 unsigned Parent : 31;
5221 bool Merged : 1;
5222 };
5223 llvm::SmallVector<Value, 8> Values;
5224
5225 public:
5226 /// \brief A region within an expression which may be sequenced with respect
5227 /// to some other region.
5228 class Seq {
Seq(unsigned N)5229 explicit Seq(unsigned N) : Index(N) {}
5230 unsigned Index;
5231 friend class SequenceTree;
5232 public:
Seq()5233 Seq() : Index(0) {}
5234 };
5235
SequenceTree()5236 SequenceTree() { Values.push_back(Value(0)); }
root() const5237 Seq root() const { return Seq(0); }
5238
5239 /// \brief Create a new sequence of operations, which is an unsequenced
5240 /// subset of \p Parent. This sequence of operations is sequenced with
5241 /// respect to other children of \p Parent.
allocate(Seq Parent)5242 Seq allocate(Seq Parent) {
5243 Values.push_back(Value(Parent.Index));
5244 return Seq(Values.size() - 1);
5245 }
5246
5247 /// \brief Merge a sequence of operations into its parent.
merge(Seq S)5248 void merge(Seq S) {
5249 Values[S.Index].Merged = true;
5250 }
5251
5252 /// \brief Determine whether two operations are unsequenced. This operation
5253 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5254 /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)5255 bool isUnsequenced(Seq Cur, Seq Old) {
5256 unsigned C = representative(Cur.Index);
5257 unsigned Target = representative(Old.Index);
5258 while (C >= Target) {
5259 if (C == Target)
5260 return true;
5261 C = Values[C].Parent;
5262 }
5263 return false;
5264 }
5265
5266 private:
5267 /// \brief Pick a representative for a sequence.
representative(unsigned K)5268 unsigned representative(unsigned K) {
5269 if (Values[K].Merged)
5270 // Perform path compression as we go.
5271 return Values[K].Parent = representative(Values[K].Parent);
5272 return K;
5273 }
5274 };
5275
5276 /// An object for which we can track unsequenced uses.
5277 typedef NamedDecl *Object;
5278
5279 /// Different flavors of object usage which we track. We only track the
5280 /// least-sequenced usage of each kind.
5281 enum UsageKind {
5282 /// A read of an object. Multiple unsequenced reads are OK.
5283 UK_Use,
5284 /// A modification of an object which is sequenced before the value
5285 /// computation of the expression, such as ++n.
5286 UK_ModAsValue,
5287 /// A modification of an object which is not sequenced before the value
5288 /// computation of the expression, such as n++.
5289 UK_ModAsSideEffect,
5290
5291 UK_Count = UK_ModAsSideEffect + 1
5292 };
5293
5294 struct Usage {
Usage__anon58ed84f90611::SequenceChecker::Usage5295 Usage() : Use(0), Seq() {}
5296 Expr *Use;
5297 SequenceTree::Seq Seq;
5298 };
5299
5300 struct UsageInfo {
UsageInfo__anon58ed84f90611::SequenceChecker::UsageInfo5301 UsageInfo() : Diagnosed(false) {}
5302 Usage Uses[UK_Count];
5303 /// Have we issued a diagnostic for this variable already?
5304 bool Diagnosed;
5305 };
5306 typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5307
5308 Sema &SemaRef;
5309 /// Sequenced regions within the expression.
5310 SequenceTree Tree;
5311 /// Declaration modifications and references which we have seen.
5312 UsageInfoMap UsageMap;
5313 /// The region we are currently within.
5314 SequenceTree::Seq Region;
5315 /// Filled in with declarations which were modified as a side-effect
5316 /// (that is, post-increment operations).
5317 llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5318 /// Expressions to check later. We defer checking these to reduce
5319 /// stack usage.
5320 llvm::SmallVectorImpl<Expr*> &WorkList;
5321
5322 /// RAII object wrapping the visitation of a sequenced subexpression of an
5323 /// expression. At the end of this process, the side-effects of the evaluation
5324 /// become sequenced with respect to the value computation of the result, so
5325 /// we downgrade any UK_ModAsSideEffect within the evaluation to
5326 /// UK_ModAsValue.
5327 struct SequencedSubexpression {
SequencedSubexpression__anon58ed84f90611::SequenceChecker::SequencedSubexpression5328 SequencedSubexpression(SequenceChecker &Self)
5329 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5330 Self.ModAsSideEffect = &ModAsSideEffect;
5331 }
~SequencedSubexpression__anon58ed84f90611::SequenceChecker::SequencedSubexpression5332 ~SequencedSubexpression() {
5333 for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5334 UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5335 U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5336 Self.addUsage(U, ModAsSideEffect[I].first,
5337 ModAsSideEffect[I].second.Use, UK_ModAsValue);
5338 }
5339 Self.ModAsSideEffect = OldModAsSideEffect;
5340 }
5341
5342 SequenceChecker &Self;
5343 llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5344 llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5345 };
5346
5347 /// \brief Find the object which is produced by the specified expression,
5348 /// if any.
getObject(Expr * E,bool Mod) const5349 Object getObject(Expr *E, bool Mod) const {
5350 E = E->IgnoreParenCasts();
5351 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5352 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5353 return getObject(UO->getSubExpr(), Mod);
5354 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5355 if (BO->getOpcode() == BO_Comma)
5356 return getObject(BO->getRHS(), Mod);
5357 if (Mod && BO->isAssignmentOp())
5358 return getObject(BO->getLHS(), Mod);
5359 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5360 // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5361 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5362 return ME->getMemberDecl();
5363 } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5364 // FIXME: If this is a reference, map through to its value.
5365 return DRE->getDecl();
5366 return 0;
5367 }
5368
5369 /// \brief Note that an object was modified or used by an expression.
addUsage(UsageInfo & UI,Object O,Expr * Ref,UsageKind UK)5370 void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5371 Usage &U = UI.Uses[UK];
5372 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5373 if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5374 ModAsSideEffect->push_back(std::make_pair(O, U));
5375 U.Use = Ref;
5376 U.Seq = Region;
5377 }
5378 }
5379 /// \brief Check whether a modification or use conflicts with a prior usage.
checkUsage(Object O,UsageInfo & UI,Expr * Ref,UsageKind OtherKind,bool IsModMod)5380 void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5381 bool IsModMod) {
5382 if (UI.Diagnosed)
5383 return;
5384
5385 const Usage &U = UI.Uses[OtherKind];
5386 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5387 return;
5388
5389 Expr *Mod = U.Use;
5390 Expr *ModOrUse = Ref;
5391 if (OtherKind == UK_Use)
5392 std::swap(Mod, ModOrUse);
5393
5394 SemaRef.Diag(Mod->getExprLoc(),
5395 IsModMod ? diag::warn_unsequenced_mod_mod
5396 : diag::warn_unsequenced_mod_use)
5397 << O << SourceRange(ModOrUse->getExprLoc());
5398 UI.Diagnosed = true;
5399 }
5400
notePreUse(Object O,Expr * Use)5401 void notePreUse(Object O, Expr *Use) {
5402 UsageInfo &U = UsageMap[O];
5403 // Uses conflict with other modifications.
5404 checkUsage(O, U, Use, UK_ModAsValue, false);
5405 }
notePostUse(Object O,Expr * Use)5406 void notePostUse(Object O, Expr *Use) {
5407 UsageInfo &U = UsageMap[O];
5408 checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5409 addUsage(U, O, Use, UK_Use);
5410 }
5411
notePreMod(Object O,Expr * Mod)5412 void notePreMod(Object O, Expr *Mod) {
5413 UsageInfo &U = UsageMap[O];
5414 // Modifications conflict with other modifications and with uses.
5415 checkUsage(O, U, Mod, UK_ModAsValue, true);
5416 checkUsage(O, U, Mod, UK_Use, false);
5417 }
notePostMod(Object O,Expr * Use,UsageKind UK)5418 void notePostMod(Object O, Expr *Use, UsageKind UK) {
5419 UsageInfo &U = UsageMap[O];
5420 checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5421 addUsage(U, O, Use, UK);
5422 }
5423
5424 public:
SequenceChecker(Sema & S,Expr * E,llvm::SmallVectorImpl<Expr * > & WorkList)5425 SequenceChecker(Sema &S, Expr *E,
5426 llvm::SmallVectorImpl<Expr*> &WorkList)
5427 : EvaluatedExprVisitor<SequenceChecker>(S.Context), SemaRef(S),
5428 Region(Tree.root()), ModAsSideEffect(0), WorkList(WorkList) {
5429 Visit(E);
5430 }
5431
VisitStmt(Stmt * S)5432 void VisitStmt(Stmt *S) {
5433 // Skip all statements which aren't expressions for now.
5434 }
5435
VisitExpr(Expr * E)5436 void VisitExpr(Expr *E) {
5437 // By default, just recurse to evaluated subexpressions.
5438 EvaluatedExprVisitor<SequenceChecker>::VisitStmt(E);
5439 }
5440
VisitCastExpr(CastExpr * E)5441 void VisitCastExpr(CastExpr *E) {
5442 Object O = Object();
5443 if (E->getCastKind() == CK_LValueToRValue)
5444 O = getObject(E->getSubExpr(), false);
5445
5446 if (O)
5447 notePreUse(O, E);
5448 VisitExpr(E);
5449 if (O)
5450 notePostUse(O, E);
5451 }
5452
VisitBinComma(BinaryOperator * BO)5453 void VisitBinComma(BinaryOperator *BO) {
5454 // C++11 [expr.comma]p1:
5455 // Every value computation and side effect associated with the left
5456 // expression is sequenced before every value computation and side
5457 // effect associated with the right expression.
5458 SequenceTree::Seq LHS = Tree.allocate(Region);
5459 SequenceTree::Seq RHS = Tree.allocate(Region);
5460 SequenceTree::Seq OldRegion = Region;
5461
5462 {
5463 SequencedSubexpression SeqLHS(*this);
5464 Region = LHS;
5465 Visit(BO->getLHS());
5466 }
5467
5468 Region = RHS;
5469 Visit(BO->getRHS());
5470
5471 Region = OldRegion;
5472
5473 // Forget that LHS and RHS are sequenced. They are both unsequenced
5474 // with respect to other stuff.
5475 Tree.merge(LHS);
5476 Tree.merge(RHS);
5477 }
5478
VisitBinAssign(BinaryOperator * BO)5479 void VisitBinAssign(BinaryOperator *BO) {
5480 // The modification is sequenced after the value computation of the LHS
5481 // and RHS, so check it before inspecting the operands and update the
5482 // map afterwards.
5483 Object O = getObject(BO->getLHS(), true);
5484 if (!O)
5485 return VisitExpr(BO);
5486
5487 notePreMod(O, BO);
5488
5489 // C++11 [expr.ass]p7:
5490 // E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5491 // only once.
5492 //
5493 // Therefore, for a compound assignment operator, O is considered used
5494 // everywhere except within the evaluation of E1 itself.
5495 if (isa<CompoundAssignOperator>(BO))
5496 notePreUse(O, BO);
5497
5498 Visit(BO->getLHS());
5499
5500 if (isa<CompoundAssignOperator>(BO))
5501 notePostUse(O, BO);
5502
5503 Visit(BO->getRHS());
5504
5505 notePostMod(O, BO, UK_ModAsValue);
5506 }
VisitCompoundAssignOperator(CompoundAssignOperator * CAO)5507 void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5508 VisitBinAssign(CAO);
5509 }
5510
VisitUnaryPreInc(UnaryOperator * UO)5511 void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(UnaryOperator * UO)5512 void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(UnaryOperator * UO)5513 void VisitUnaryPreIncDec(UnaryOperator *UO) {
5514 Object O = getObject(UO->getSubExpr(), true);
5515 if (!O)
5516 return VisitExpr(UO);
5517
5518 notePreMod(O, UO);
5519 Visit(UO->getSubExpr());
5520 notePostMod(O, UO, UK_ModAsValue);
5521 }
5522
VisitUnaryPostInc(UnaryOperator * UO)5523 void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(UnaryOperator * UO)5524 void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(UnaryOperator * UO)5525 void VisitUnaryPostIncDec(UnaryOperator *UO) {
5526 Object O = getObject(UO->getSubExpr(), true);
5527 if (!O)
5528 return VisitExpr(UO);
5529
5530 notePreMod(O, UO);
5531 Visit(UO->getSubExpr());
5532 notePostMod(O, UO, UK_ModAsSideEffect);
5533 }
5534
5535 /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
VisitBinLOr(BinaryOperator * BO)5536 void VisitBinLOr(BinaryOperator *BO) {
5537 // The side-effects of the LHS of an '&&' are sequenced before the
5538 // value computation of the RHS, and hence before the value computation
5539 // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5540 // as if they were unconditionally sequenced.
5541 {
5542 SequencedSubexpression Sequenced(*this);
5543 Visit(BO->getLHS());
5544 }
5545
5546 bool Result;
5547 if (!BO->getLHS()->isValueDependent() &&
5548 BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5549 if (!Result)
5550 Visit(BO->getRHS());
5551 } else {
5552 // Check for unsequenced operations in the RHS, treating it as an
5553 // entirely separate evaluation.
5554 //
5555 // FIXME: If there are operations in the RHS which are unsequenced
5556 // with respect to operations outside the RHS, and those operations
5557 // are unconditionally evaluated, diagnose them.
5558 WorkList.push_back(BO->getRHS());
5559 }
5560 }
VisitBinLAnd(BinaryOperator * BO)5561 void VisitBinLAnd(BinaryOperator *BO) {
5562 {
5563 SequencedSubexpression Sequenced(*this);
5564 Visit(BO->getLHS());
5565 }
5566
5567 bool Result;
5568 if (!BO->getLHS()->isValueDependent() &&
5569 BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5570 if (Result)
5571 Visit(BO->getRHS());
5572 } else {
5573 WorkList.push_back(BO->getRHS());
5574 }
5575 }
5576
5577 // Only visit the condition, unless we can be sure which subexpression will
5578 // be chosen.
VisitAbstractConditionalOperator(AbstractConditionalOperator * CO)5579 void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5580 SequencedSubexpression Sequenced(*this);
5581 Visit(CO->getCond());
5582
5583 bool Result;
5584 if (!CO->getCond()->isValueDependent() &&
5585 CO->getCond()->EvaluateAsBooleanCondition(Result, SemaRef.Context))
5586 Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5587 else {
5588 WorkList.push_back(CO->getTrueExpr());
5589 WorkList.push_back(CO->getFalseExpr());
5590 }
5591 }
5592
VisitCXXConstructExpr(CXXConstructExpr * CCE)5593 void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5594 if (!CCE->isListInitialization())
5595 return VisitExpr(CCE);
5596
5597 // In C++11, list initializations are sequenced.
5598 llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5599 SequenceTree::Seq Parent = Region;
5600 for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5601 E = CCE->arg_end();
5602 I != E; ++I) {
5603 Region = Tree.allocate(Parent);
5604 Elts.push_back(Region);
5605 Visit(*I);
5606 }
5607
5608 // Forget that the initializers are sequenced.
5609 Region = Parent;
5610 for (unsigned I = 0; I < Elts.size(); ++I)
5611 Tree.merge(Elts[I]);
5612 }
5613
VisitInitListExpr(InitListExpr * ILE)5614 void VisitInitListExpr(InitListExpr *ILE) {
5615 if (!SemaRef.getLangOpts().CPlusPlus11)
5616 return VisitExpr(ILE);
5617
5618 // In C++11, list initializations are sequenced.
5619 llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5620 SequenceTree::Seq Parent = Region;
5621 for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
5622 Expr *E = ILE->getInit(I);
5623 if (!E) continue;
5624 Region = Tree.allocate(Parent);
5625 Elts.push_back(Region);
5626 Visit(E);
5627 }
5628
5629 // Forget that the initializers are sequenced.
5630 Region = Parent;
5631 for (unsigned I = 0; I < Elts.size(); ++I)
5632 Tree.merge(Elts[I]);
5633 }
5634 };
5635 }
5636
CheckUnsequencedOperations(Expr * E)5637 void Sema::CheckUnsequencedOperations(Expr *E) {
5638 llvm::SmallVector<Expr*, 8> WorkList;
5639 WorkList.push_back(E);
5640 while (!WorkList.empty()) {
5641 Expr *Item = WorkList.back();
5642 WorkList.pop_back();
5643 SequenceChecker(*this, Item, WorkList);
5644 }
5645 }
5646
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)5647 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
5648 bool IsConstexpr) {
5649 CheckImplicitConversions(E, CheckLoc);
5650 CheckUnsequencedOperations(E);
5651 if (!IsConstexpr && !E->isValueDependent())
5652 CheckForIntOverflow(E);
5653 }
5654
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)5655 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
5656 FieldDecl *BitField,
5657 Expr *Init) {
5658 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
5659 }
5660
5661 /// CheckParmsForFunctionDef - Check that the parameters of the given
5662 /// function are appropriate for the definition of a function. This
5663 /// takes care of any checks that cannot be performed on the
5664 /// declaration itself, e.g., that the types of each of the function
5665 /// parameters are complete.
CheckParmsForFunctionDef(ParmVarDecl ** P,ParmVarDecl ** PEnd,bool CheckParameterNames)5666 bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
5667 bool CheckParameterNames) {
5668 bool HasInvalidParm = false;
5669 for (; P != PEnd; ++P) {
5670 ParmVarDecl *Param = *P;
5671
5672 // C99 6.7.5.3p4: the parameters in a parameter type list in a
5673 // function declarator that is part of a function definition of
5674 // that function shall not have incomplete type.
5675 //
5676 // This is also C++ [dcl.fct]p6.
5677 if (!Param->isInvalidDecl() &&
5678 RequireCompleteType(Param->getLocation(), Param->getType(),
5679 diag::err_typecheck_decl_incomplete_type)) {
5680 Param->setInvalidDecl();
5681 HasInvalidParm = true;
5682 }
5683
5684 // C99 6.9.1p5: If the declarator includes a parameter type list, the
5685 // declaration of each parameter shall include an identifier.
5686 if (CheckParameterNames &&
5687 Param->getIdentifier() == 0 &&
5688 !Param->isImplicit() &&
5689 !getLangOpts().CPlusPlus)
5690 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
5691
5692 // C99 6.7.5.3p12:
5693 // If the function declarator is not part of a definition of that
5694 // function, parameters may have incomplete type and may use the [*]
5695 // notation in their sequences of declarator specifiers to specify
5696 // variable length array types.
5697 QualType PType = Param->getOriginalType();
5698 if (const ArrayType *AT = Context.getAsArrayType(PType)) {
5699 if (AT->getSizeModifier() == ArrayType::Star) {
5700 // FIXME: This diagnostic should point the '[*]' if source-location
5701 // information is added for it.
5702 Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
5703 }
5704 }
5705 }
5706
5707 return HasInvalidParm;
5708 }
5709
5710 /// CheckCastAlign - Implements -Wcast-align, which warns when a
5711 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)5712 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
5713 // This is actually a lot of work to potentially be doing on every
5714 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
5715 if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
5716 TRange.getBegin())
5717 == DiagnosticsEngine::Ignored)
5718 return;
5719
5720 // Ignore dependent types.
5721 if (T->isDependentType() || Op->getType()->isDependentType())
5722 return;
5723
5724 // Require that the destination be a pointer type.
5725 const PointerType *DestPtr = T->getAs<PointerType>();
5726 if (!DestPtr) return;
5727
5728 // If the destination has alignment 1, we're done.
5729 QualType DestPointee = DestPtr->getPointeeType();
5730 if (DestPointee->isIncompleteType()) return;
5731 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5732 if (DestAlign.isOne()) return;
5733
5734 // Require that the source be a pointer type.
5735 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5736 if (!SrcPtr) return;
5737 QualType SrcPointee = SrcPtr->getPointeeType();
5738
5739 // Whitelist casts from cv void*. We already implicitly
5740 // whitelisted casts to cv void*, since they have alignment 1.
5741 // Also whitelist casts involving incomplete types, which implicitly
5742 // includes 'void'.
5743 if (SrcPointee->isIncompleteType()) return;
5744
5745 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5746 if (SrcAlign >= DestAlign) return;
5747
5748 Diag(TRange.getBegin(), diag::warn_cast_align)
5749 << Op->getType() << T
5750 << static_cast<unsigned>(SrcAlign.getQuantity())
5751 << static_cast<unsigned>(DestAlign.getQuantity())
5752 << TRange << Op->getSourceRange();
5753 }
5754
getElementType(const Expr * BaseExpr)5755 static const Type* getElementType(const Expr *BaseExpr) {
5756 const Type* EltType = BaseExpr->getType().getTypePtr();
5757 if (EltType->isAnyPointerType())
5758 return EltType->getPointeeType().getTypePtr();
5759 else if (EltType->isArrayType())
5760 return EltType->getBaseElementTypeUnsafe();
5761 return EltType;
5762 }
5763
5764 /// \brief Check whether this array fits the idiom of a size-one tail padded
5765 /// array member of a struct.
5766 ///
5767 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
5768 /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,llvm::APInt Size,const NamedDecl * ND)5769 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5770 const NamedDecl *ND) {
5771 if (Size != 1 || !ND) return false;
5772
5773 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5774 if (!FD) return false;
5775
5776 // Don't consider sizes resulting from macro expansions or template argument
5777 // substitution to form C89 tail-padded arrays.
5778
5779 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5780 while (TInfo) {
5781 TypeLoc TL = TInfo->getTypeLoc();
5782 // Look through typedefs.
5783 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
5784 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
5785 TInfo = TDL->getTypeSourceInfo();
5786 continue;
5787 }
5788 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
5789 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5790 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5791 return false;
5792 }
5793 break;
5794 }
5795
5796 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5797 if (!RD) return false;
5798 if (RD->isUnion()) return false;
5799 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5800 if (!CRD->isStandardLayout()) return false;
5801 }
5802
5803 // See if this is the last field decl in the record.
5804 const Decl *D = FD;
5805 while ((D = D->getNextDeclInContext()))
5806 if (isa<FieldDecl>(D))
5807 return false;
5808 return true;
5809 }
5810
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)5811 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5812 const ArraySubscriptExpr *ASE,
5813 bool AllowOnePastEnd, bool IndexNegated) {
5814 IndexExpr = IndexExpr->IgnoreParenImpCasts();
5815 if (IndexExpr->isValueDependent())
5816 return;
5817
5818 const Type *EffectiveType = getElementType(BaseExpr);
5819 BaseExpr = BaseExpr->IgnoreParenCasts();
5820 const ConstantArrayType *ArrayTy =
5821 Context.getAsConstantArrayType(BaseExpr->getType());
5822 if (!ArrayTy)
5823 return;
5824
5825 llvm::APSInt index;
5826 if (!IndexExpr->EvaluateAsInt(index, Context))
5827 return;
5828 if (IndexNegated)
5829 index = -index;
5830
5831 const NamedDecl *ND = NULL;
5832 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5833 ND = dyn_cast<NamedDecl>(DRE->getDecl());
5834 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5835 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5836
5837 if (index.isUnsigned() || !index.isNegative()) {
5838 llvm::APInt size = ArrayTy->getSize();
5839 if (!size.isStrictlyPositive())
5840 return;
5841
5842 const Type* BaseType = getElementType(BaseExpr);
5843 if (BaseType != EffectiveType) {
5844 // Make sure we're comparing apples to apples when comparing index to size
5845 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5846 uint64_t array_typesize = Context.getTypeSize(BaseType);
5847 // Handle ptrarith_typesize being zero, such as when casting to void*
5848 if (!ptrarith_typesize) ptrarith_typesize = 1;
5849 if (ptrarith_typesize != array_typesize) {
5850 // There's a cast to a different size type involved
5851 uint64_t ratio = array_typesize / ptrarith_typesize;
5852 // TODO: Be smarter about handling cases where array_typesize is not a
5853 // multiple of ptrarith_typesize
5854 if (ptrarith_typesize * ratio == array_typesize)
5855 size *= llvm::APInt(size.getBitWidth(), ratio);
5856 }
5857 }
5858
5859 if (size.getBitWidth() > index.getBitWidth())
5860 index = index.zext(size.getBitWidth());
5861 else if (size.getBitWidth() < index.getBitWidth())
5862 size = size.zext(index.getBitWidth());
5863
5864 // For array subscripting the index must be less than size, but for pointer
5865 // arithmetic also allow the index (offset) to be equal to size since
5866 // computing the next address after the end of the array is legal and
5867 // commonly done e.g. in C++ iterators and range-based for loops.
5868 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5869 return;
5870
5871 // Also don't warn for arrays of size 1 which are members of some
5872 // structure. These are often used to approximate flexible arrays in C89
5873 // code.
5874 if (IsTailPaddedMemberArray(*this, size, ND))
5875 return;
5876
5877 // Suppress the warning if the subscript expression (as identified by the
5878 // ']' location) and the index expression are both from macro expansions
5879 // within a system header.
5880 if (ASE) {
5881 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5882 ASE->getRBracketLoc());
5883 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5884 SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5885 IndexExpr->getLocStart());
5886 if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5887 return;
5888 }
5889 }
5890
5891 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5892 if (ASE)
5893 DiagID = diag::warn_array_index_exceeds_bounds;
5894
5895 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5896 PDiag(DiagID) << index.toString(10, true)
5897 << size.toString(10, true)
5898 << (unsigned)size.getLimitedValue(~0U)
5899 << IndexExpr->getSourceRange());
5900 } else {
5901 unsigned DiagID = diag::warn_array_index_precedes_bounds;
5902 if (!ASE) {
5903 DiagID = diag::warn_ptr_arith_precedes_bounds;
5904 if (index.isNegative()) index = -index;
5905 }
5906
5907 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5908 PDiag(DiagID) << index.toString(10, true)
5909 << IndexExpr->getSourceRange());
5910 }
5911
5912 if (!ND) {
5913 // Try harder to find a NamedDecl to point at in the note.
5914 while (const ArraySubscriptExpr *ASE =
5915 dyn_cast<ArraySubscriptExpr>(BaseExpr))
5916 BaseExpr = ASE->getBase()->IgnoreParenCasts();
5917 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5918 ND = dyn_cast<NamedDecl>(DRE->getDecl());
5919 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5920 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5921 }
5922
5923 if (ND)
5924 DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5925 PDiag(diag::note_array_index_out_of_bounds)
5926 << ND->getDeclName());
5927 }
5928
CheckArrayAccess(const Expr * expr)5929 void Sema::CheckArrayAccess(const Expr *expr) {
5930 int AllowOnePastEnd = 0;
5931 while (expr) {
5932 expr = expr->IgnoreParenImpCasts();
5933 switch (expr->getStmtClass()) {
5934 case Stmt::ArraySubscriptExprClass: {
5935 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5936 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5937 AllowOnePastEnd > 0);
5938 return;
5939 }
5940 case Stmt::UnaryOperatorClass: {
5941 // Only unwrap the * and & unary operators
5942 const UnaryOperator *UO = cast<UnaryOperator>(expr);
5943 expr = UO->getSubExpr();
5944 switch (UO->getOpcode()) {
5945 case UO_AddrOf:
5946 AllowOnePastEnd++;
5947 break;
5948 case UO_Deref:
5949 AllowOnePastEnd--;
5950 break;
5951 default:
5952 return;
5953 }
5954 break;
5955 }
5956 case Stmt::ConditionalOperatorClass: {
5957 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5958 if (const Expr *lhs = cond->getLHS())
5959 CheckArrayAccess(lhs);
5960 if (const Expr *rhs = cond->getRHS())
5961 CheckArrayAccess(rhs);
5962 return;
5963 }
5964 default:
5965 return;
5966 }
5967 }
5968 }
5969
5970 //===--- CHECK: Objective-C retain cycles ----------------------------------//
5971
5972 namespace {
5973 struct RetainCycleOwner {
RetainCycleOwner__anon58ed84f90711::RetainCycleOwner5974 RetainCycleOwner() : Variable(0), Indirect(false) {}
5975 VarDecl *Variable;
5976 SourceRange Range;
5977 SourceLocation Loc;
5978 bool Indirect;
5979
setLocsFrom__anon58ed84f90711::RetainCycleOwner5980 void setLocsFrom(Expr *e) {
5981 Loc = e->getExprLoc();
5982 Range = e->getSourceRange();
5983 }
5984 };
5985 }
5986
5987 /// Consider whether capturing the given variable can possibly lead to
5988 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)5989 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
5990 // In ARC, it's captured strongly iff the variable has __strong
5991 // lifetime. In MRR, it's captured strongly if the variable is
5992 // __block and has an appropriate type.
5993 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5994 return false;
5995
5996 owner.Variable = var;
5997 if (ref)
5998 owner.setLocsFrom(ref);
5999 return true;
6000 }
6001
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)6002 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6003 while (true) {
6004 e = e->IgnoreParens();
6005 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6006 switch (cast->getCastKind()) {
6007 case CK_BitCast:
6008 case CK_LValueBitCast:
6009 case CK_LValueToRValue:
6010 case CK_ARCReclaimReturnedObject:
6011 e = cast->getSubExpr();
6012 continue;
6013
6014 default:
6015 return false;
6016 }
6017 }
6018
6019 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6020 ObjCIvarDecl *ivar = ref->getDecl();
6021 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6022 return false;
6023
6024 // Try to find a retain cycle in the base.
6025 if (!findRetainCycleOwner(S, ref->getBase(), owner))
6026 return false;
6027
6028 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6029 owner.Indirect = true;
6030 return true;
6031 }
6032
6033 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6034 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6035 if (!var) return false;
6036 return considerVariable(var, ref, owner);
6037 }
6038
6039 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6040 if (member->isArrow()) return false;
6041
6042 // Don't count this as an indirect ownership.
6043 e = member->getBase();
6044 continue;
6045 }
6046
6047 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6048 // Only pay attention to pseudo-objects on property references.
6049 ObjCPropertyRefExpr *pre
6050 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6051 ->IgnoreParens());
6052 if (!pre) return false;
6053 if (pre->isImplicitProperty()) return false;
6054 ObjCPropertyDecl *property = pre->getExplicitProperty();
6055 if (!property->isRetaining() &&
6056 !(property->getPropertyIvarDecl() &&
6057 property->getPropertyIvarDecl()->getType()
6058 .getObjCLifetime() == Qualifiers::OCL_Strong))
6059 return false;
6060
6061 owner.Indirect = true;
6062 if (pre->isSuperReceiver()) {
6063 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6064 if (!owner.Variable)
6065 return false;
6066 owner.Loc = pre->getLocation();
6067 owner.Range = pre->getSourceRange();
6068 return true;
6069 }
6070 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6071 ->getSourceExpr());
6072 continue;
6073 }
6074
6075 // Array ivars?
6076
6077 return false;
6078 }
6079 }
6080
6081 namespace {
6082 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
FindCaptureVisitor__anon58ed84f90811::FindCaptureVisitor6083 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6084 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6085 Variable(variable), Capturer(0) {}
6086
6087 VarDecl *Variable;
6088 Expr *Capturer;
6089
VisitDeclRefExpr__anon58ed84f90811::FindCaptureVisitor6090 void VisitDeclRefExpr(DeclRefExpr *ref) {
6091 if (ref->getDecl() == Variable && !Capturer)
6092 Capturer = ref;
6093 }
6094
VisitObjCIvarRefExpr__anon58ed84f90811::FindCaptureVisitor6095 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6096 if (Capturer) return;
6097 Visit(ref->getBase());
6098 if (Capturer && ref->isFreeIvar())
6099 Capturer = ref;
6100 }
6101
VisitBlockExpr__anon58ed84f90811::FindCaptureVisitor6102 void VisitBlockExpr(BlockExpr *block) {
6103 // Look inside nested blocks
6104 if (block->getBlockDecl()->capturesVariable(Variable))
6105 Visit(block->getBlockDecl()->getBody());
6106 }
6107
VisitOpaqueValueExpr__anon58ed84f90811::FindCaptureVisitor6108 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6109 if (Capturer) return;
6110 if (OVE->getSourceExpr())
6111 Visit(OVE->getSourceExpr());
6112 }
6113 };
6114 }
6115
6116 /// Check whether the given argument is a block which captures a
6117 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)6118 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6119 assert(owner.Variable && owner.Loc.isValid());
6120
6121 e = e->IgnoreParenCasts();
6122
6123 // Look through [^{...} copy] and Block_copy(^{...}).
6124 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6125 Selector Cmd = ME->getSelector();
6126 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6127 e = ME->getInstanceReceiver();
6128 if (!e)
6129 return 0;
6130 e = e->IgnoreParenCasts();
6131 }
6132 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6133 if (CE->getNumArgs() == 1) {
6134 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6135 if (Fn) {
6136 const IdentifierInfo *FnI = Fn->getIdentifier();
6137 if (FnI && FnI->isStr("_Block_copy")) {
6138 e = CE->getArg(0)->IgnoreParenCasts();
6139 }
6140 }
6141 }
6142 }
6143
6144 BlockExpr *block = dyn_cast<BlockExpr>(e);
6145 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6146 return 0;
6147
6148 FindCaptureVisitor visitor(S.Context, owner.Variable);
6149 visitor.Visit(block->getBlockDecl()->getBody());
6150 return visitor.Capturer;
6151 }
6152
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)6153 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6154 RetainCycleOwner &owner) {
6155 assert(capturer);
6156 assert(owner.Variable && owner.Loc.isValid());
6157
6158 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6159 << owner.Variable << capturer->getSourceRange();
6160 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6161 << owner.Indirect << owner.Range;
6162 }
6163
6164 /// Check for a keyword selector that starts with the word 'add' or
6165 /// 'set'.
isSetterLikeSelector(Selector sel)6166 static bool isSetterLikeSelector(Selector sel) {
6167 if (sel.isUnarySelector()) return false;
6168
6169 StringRef str = sel.getNameForSlot(0);
6170 while (!str.empty() && str.front() == '_') str = str.substr(1);
6171 if (str.startswith("set"))
6172 str = str.substr(3);
6173 else if (str.startswith("add")) {
6174 // Specially whitelist 'addOperationWithBlock:'.
6175 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6176 return false;
6177 str = str.substr(3);
6178 }
6179 else
6180 return false;
6181
6182 if (str.empty()) return true;
6183 return !isLowercase(str.front());
6184 }
6185
6186 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)6187 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6188 // Only check instance methods whose selector looks like a setter.
6189 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6190 return;
6191
6192 // Try to find a variable that the receiver is strongly owned by.
6193 RetainCycleOwner owner;
6194 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6195 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6196 return;
6197 } else {
6198 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6199 owner.Variable = getCurMethodDecl()->getSelfDecl();
6200 owner.Loc = msg->getSuperLoc();
6201 owner.Range = msg->getSuperLoc();
6202 }
6203
6204 // Check whether the receiver is captured by any of the arguments.
6205 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6206 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6207 return diagnoseRetainCycle(*this, capturer, owner);
6208 }
6209
6210 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)6211 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6212 RetainCycleOwner owner;
6213 if (!findRetainCycleOwner(*this, receiver, owner))
6214 return;
6215
6216 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6217 diagnoseRetainCycle(*this, capturer, owner);
6218 }
6219
checkRetainCycles(VarDecl * Var,Expr * Init)6220 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6221 RetainCycleOwner Owner;
6222 if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6223 return;
6224
6225 // Because we don't have an expression for the variable, we have to set the
6226 // location explicitly here.
6227 Owner.Loc = Var->getLocation();
6228 Owner.Range = Var->getSourceRange();
6229
6230 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6231 diagnoseRetainCycle(*this, Capturer, Owner);
6232 }
6233
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)6234 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6235 Expr *RHS, bool isProperty) {
6236 // Check if RHS is an Objective-C object literal, which also can get
6237 // immediately zapped in a weak reference. Note that we explicitly
6238 // allow ObjCStringLiterals, since those are designed to never really die.
6239 RHS = RHS->IgnoreParenImpCasts();
6240
6241 // This enum needs to match with the 'select' in
6242 // warn_objc_arc_literal_assign (off-by-1).
6243 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6244 if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6245 return false;
6246
6247 S.Diag(Loc, diag::warn_arc_literal_assign)
6248 << (unsigned) Kind
6249 << (isProperty ? 0 : 1)
6250 << RHS->getSourceRange();
6251
6252 return true;
6253 }
6254
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)6255 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6256 Qualifiers::ObjCLifetime LT,
6257 Expr *RHS, bool isProperty) {
6258 // Strip off any implicit cast added to get to the one ARC-specific.
6259 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6260 if (cast->getCastKind() == CK_ARCConsumeObject) {
6261 S.Diag(Loc, diag::warn_arc_retained_assign)
6262 << (LT == Qualifiers::OCL_ExplicitNone)
6263 << (isProperty ? 0 : 1)
6264 << RHS->getSourceRange();
6265 return true;
6266 }
6267 RHS = cast->getSubExpr();
6268 }
6269
6270 if (LT == Qualifiers::OCL_Weak &&
6271 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6272 return true;
6273
6274 return false;
6275 }
6276
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)6277 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6278 QualType LHS, Expr *RHS) {
6279 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6280
6281 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6282 return false;
6283
6284 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6285 return true;
6286
6287 return false;
6288 }
6289
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)6290 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6291 Expr *LHS, Expr *RHS) {
6292 QualType LHSType;
6293 // PropertyRef on LHS type need be directly obtained from
6294 // its declaration as it has a PsuedoType.
6295 ObjCPropertyRefExpr *PRE
6296 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6297 if (PRE && !PRE->isImplicitProperty()) {
6298 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6299 if (PD)
6300 LHSType = PD->getType();
6301 }
6302
6303 if (LHSType.isNull())
6304 LHSType = LHS->getType();
6305
6306 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6307
6308 if (LT == Qualifiers::OCL_Weak) {
6309 DiagnosticsEngine::Level Level =
6310 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6311 if (Level != DiagnosticsEngine::Ignored)
6312 getCurFunction()->markSafeWeakUse(LHS);
6313 }
6314
6315 if (checkUnsafeAssigns(Loc, LHSType, RHS))
6316 return;
6317
6318 // FIXME. Check for other life times.
6319 if (LT != Qualifiers::OCL_None)
6320 return;
6321
6322 if (PRE) {
6323 if (PRE->isImplicitProperty())
6324 return;
6325 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6326 if (!PD)
6327 return;
6328
6329 unsigned Attributes = PD->getPropertyAttributes();
6330 if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6331 // when 'assign' attribute was not explicitly specified
6332 // by user, ignore it and rely on property type itself
6333 // for lifetime info.
6334 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6335 if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6336 LHSType->isObjCRetainableType())
6337 return;
6338
6339 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6340 if (cast->getCastKind() == CK_ARCConsumeObject) {
6341 Diag(Loc, diag::warn_arc_retained_property_assign)
6342 << RHS->getSourceRange();
6343 return;
6344 }
6345 RHS = cast->getSubExpr();
6346 }
6347 }
6348 else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6349 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6350 return;
6351 }
6352 }
6353 }
6354
6355 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6356
6357 namespace {
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)6358 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6359 SourceLocation StmtLoc,
6360 const NullStmt *Body) {
6361 // Do not warn if the body is a macro that expands to nothing, e.g:
6362 //
6363 // #define CALL(x)
6364 // if (condition)
6365 // CALL(0);
6366 //
6367 if (Body->hasLeadingEmptyMacro())
6368 return false;
6369
6370 // Get line numbers of statement and body.
6371 bool StmtLineInvalid;
6372 unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6373 &StmtLineInvalid);
6374 if (StmtLineInvalid)
6375 return false;
6376
6377 bool BodyLineInvalid;
6378 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6379 &BodyLineInvalid);
6380 if (BodyLineInvalid)
6381 return false;
6382
6383 // Warn if null statement and body are on the same line.
6384 if (StmtLine != BodyLine)
6385 return false;
6386
6387 return true;
6388 }
6389 } // Unnamed namespace
6390
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)6391 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6392 const Stmt *Body,
6393 unsigned DiagID) {
6394 // Since this is a syntactic check, don't emit diagnostic for template
6395 // instantiations, this just adds noise.
6396 if (CurrentInstantiationScope)
6397 return;
6398
6399 // The body should be a null statement.
6400 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6401 if (!NBody)
6402 return;
6403
6404 // Do the usual checks.
6405 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6406 return;
6407
6408 Diag(NBody->getSemiLoc(), DiagID);
6409 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6410 }
6411
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)6412 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6413 const Stmt *PossibleBody) {
6414 assert(!CurrentInstantiationScope); // Ensured by caller
6415
6416 SourceLocation StmtLoc;
6417 const Stmt *Body;
6418 unsigned DiagID;
6419 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6420 StmtLoc = FS->getRParenLoc();
6421 Body = FS->getBody();
6422 DiagID = diag::warn_empty_for_body;
6423 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6424 StmtLoc = WS->getCond()->getSourceRange().getEnd();
6425 Body = WS->getBody();
6426 DiagID = diag::warn_empty_while_body;
6427 } else
6428 return; // Neither `for' nor `while'.
6429
6430 // The body should be a null statement.
6431 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6432 if (!NBody)
6433 return;
6434
6435 // Skip expensive checks if diagnostic is disabled.
6436 if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6437 DiagnosticsEngine::Ignored)
6438 return;
6439
6440 // Do the usual checks.
6441 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6442 return;
6443
6444 // `for(...);' and `while(...);' are popular idioms, so in order to keep
6445 // noise level low, emit diagnostics only if for/while is followed by a
6446 // CompoundStmt, e.g.:
6447 // for (int i = 0; i < n; i++);
6448 // {
6449 // a(i);
6450 // }
6451 // or if for/while is followed by a statement with more indentation
6452 // than for/while itself:
6453 // for (int i = 0; i < n; i++);
6454 // a(i);
6455 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6456 if (!ProbableTypo) {
6457 bool BodyColInvalid;
6458 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6459 PossibleBody->getLocStart(),
6460 &BodyColInvalid);
6461 if (BodyColInvalid)
6462 return;
6463
6464 bool StmtColInvalid;
6465 unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6466 S->getLocStart(),
6467 &StmtColInvalid);
6468 if (StmtColInvalid)
6469 return;
6470
6471 if (BodyCol > StmtCol)
6472 ProbableTypo = true;
6473 }
6474
6475 if (ProbableTypo) {
6476 Diag(NBody->getSemiLoc(), DiagID);
6477 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6478 }
6479 }
6480
6481 //===--- Layout compatibility ----------------------------------------------//
6482
6483 namespace {
6484
6485 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6486
6487 /// \brief Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)6488 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6489 // C++11 [dcl.enum] p8:
6490 // Two enumeration types are layout-compatible if they have the same
6491 // underlying type.
6492 return ED1->isComplete() && ED2->isComplete() &&
6493 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6494 }
6495
6496 /// \brief Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)6497 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6498 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6499 return false;
6500
6501 if (Field1->isBitField() != Field2->isBitField())
6502 return false;
6503
6504 if (Field1->isBitField()) {
6505 // Make sure that the bit-fields are the same length.
6506 unsigned Bits1 = Field1->getBitWidthValue(C);
6507 unsigned Bits2 = Field2->getBitWidthValue(C);
6508
6509 if (Bits1 != Bits2)
6510 return false;
6511 }
6512
6513 return true;
6514 }
6515
6516 /// \brief Check if two standard-layout structs are layout-compatible.
6517 /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)6518 bool isLayoutCompatibleStruct(ASTContext &C,
6519 RecordDecl *RD1,
6520 RecordDecl *RD2) {
6521 // If both records are C++ classes, check that base classes match.
6522 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6523 // If one of records is a CXXRecordDecl we are in C++ mode,
6524 // thus the other one is a CXXRecordDecl, too.
6525 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6526 // Check number of base classes.
6527 if (D1CXX->getNumBases() != D2CXX->getNumBases())
6528 return false;
6529
6530 // Check the base classes.
6531 for (CXXRecordDecl::base_class_const_iterator
6532 Base1 = D1CXX->bases_begin(),
6533 BaseEnd1 = D1CXX->bases_end(),
6534 Base2 = D2CXX->bases_begin();
6535 Base1 != BaseEnd1;
6536 ++Base1, ++Base2) {
6537 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6538 return false;
6539 }
6540 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6541 // If only RD2 is a C++ class, it should have zero base classes.
6542 if (D2CXX->getNumBases() > 0)
6543 return false;
6544 }
6545
6546 // Check the fields.
6547 RecordDecl::field_iterator Field2 = RD2->field_begin(),
6548 Field2End = RD2->field_end(),
6549 Field1 = RD1->field_begin(),
6550 Field1End = RD1->field_end();
6551 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6552 if (!isLayoutCompatible(C, *Field1, *Field2))
6553 return false;
6554 }
6555 if (Field1 != Field1End || Field2 != Field2End)
6556 return false;
6557
6558 return true;
6559 }
6560
6561 /// \brief Check if two standard-layout unions are layout-compatible.
6562 /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)6563 bool isLayoutCompatibleUnion(ASTContext &C,
6564 RecordDecl *RD1,
6565 RecordDecl *RD2) {
6566 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6567 for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6568 Field2End = RD2->field_end();
6569 Field2 != Field2End; ++Field2) {
6570 UnmatchedFields.insert(*Field2);
6571 }
6572
6573 for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6574 Field1End = RD1->field_end();
6575 Field1 != Field1End; ++Field1) {
6576 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6577 I = UnmatchedFields.begin(),
6578 E = UnmatchedFields.end();
6579
6580 for ( ; I != E; ++I) {
6581 if (isLayoutCompatible(C, *Field1, *I)) {
6582 bool Result = UnmatchedFields.erase(*I);
6583 (void) Result;
6584 assert(Result);
6585 break;
6586 }
6587 }
6588 if (I == E)
6589 return false;
6590 }
6591
6592 return UnmatchedFields.empty();
6593 }
6594
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)6595 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
6596 if (RD1->isUnion() != RD2->isUnion())
6597 return false;
6598
6599 if (RD1->isUnion())
6600 return isLayoutCompatibleUnion(C, RD1, RD2);
6601 else
6602 return isLayoutCompatibleStruct(C, RD1, RD2);
6603 }
6604
6605 /// \brief Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)6606 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
6607 if (T1.isNull() || T2.isNull())
6608 return false;
6609
6610 // C++11 [basic.types] p11:
6611 // If two types T1 and T2 are the same type, then T1 and T2 are
6612 // layout-compatible types.
6613 if (C.hasSameType(T1, T2))
6614 return true;
6615
6616 T1 = T1.getCanonicalType().getUnqualifiedType();
6617 T2 = T2.getCanonicalType().getUnqualifiedType();
6618
6619 const Type::TypeClass TC1 = T1->getTypeClass();
6620 const Type::TypeClass TC2 = T2->getTypeClass();
6621
6622 if (TC1 != TC2)
6623 return false;
6624
6625 if (TC1 == Type::Enum) {
6626 return isLayoutCompatible(C,
6627 cast<EnumType>(T1)->getDecl(),
6628 cast<EnumType>(T2)->getDecl());
6629 } else if (TC1 == Type::Record) {
6630 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
6631 return false;
6632
6633 return isLayoutCompatible(C,
6634 cast<RecordType>(T1)->getDecl(),
6635 cast<RecordType>(T2)->getDecl());
6636 }
6637
6638 return false;
6639 }
6640 }
6641
6642 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
6643
6644 namespace {
6645 /// \brief Given a type tag expression find the type tag itself.
6646 ///
6647 /// \param TypeExpr Type tag expression, as it appears in user's code.
6648 ///
6649 /// \param VD Declaration of an identifier that appears in a type tag.
6650 ///
6651 /// \param MagicValue Type tag magic value.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue)6652 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
6653 const ValueDecl **VD, uint64_t *MagicValue) {
6654 while(true) {
6655 if (!TypeExpr)
6656 return false;
6657
6658 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
6659
6660 switch (TypeExpr->getStmtClass()) {
6661 case Stmt::UnaryOperatorClass: {
6662 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
6663 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
6664 TypeExpr = UO->getSubExpr();
6665 continue;
6666 }
6667 return false;
6668 }
6669
6670 case Stmt::DeclRefExprClass: {
6671 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
6672 *VD = DRE->getDecl();
6673 return true;
6674 }
6675
6676 case Stmt::IntegerLiteralClass: {
6677 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
6678 llvm::APInt MagicValueAPInt = IL->getValue();
6679 if (MagicValueAPInt.getActiveBits() <= 64) {
6680 *MagicValue = MagicValueAPInt.getZExtValue();
6681 return true;
6682 } else
6683 return false;
6684 }
6685
6686 case Stmt::BinaryConditionalOperatorClass:
6687 case Stmt::ConditionalOperatorClass: {
6688 const AbstractConditionalOperator *ACO =
6689 cast<AbstractConditionalOperator>(TypeExpr);
6690 bool Result;
6691 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
6692 if (Result)
6693 TypeExpr = ACO->getTrueExpr();
6694 else
6695 TypeExpr = ACO->getFalseExpr();
6696 continue;
6697 }
6698 return false;
6699 }
6700
6701 case Stmt::BinaryOperatorClass: {
6702 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
6703 if (BO->getOpcode() == BO_Comma) {
6704 TypeExpr = BO->getRHS();
6705 continue;
6706 }
6707 return false;
6708 }
6709
6710 default:
6711 return false;
6712 }
6713 }
6714 }
6715
6716 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
6717 ///
6718 /// \param TypeExpr Expression that specifies a type tag.
6719 ///
6720 /// \param MagicValues Registered magic values.
6721 ///
6722 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
6723 /// kind.
6724 ///
6725 /// \param TypeInfo Information about the corresponding C type.
6726 ///
6727 /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo)6728 bool GetMatchingCType(
6729 const IdentifierInfo *ArgumentKind,
6730 const Expr *TypeExpr, const ASTContext &Ctx,
6731 const llvm::DenseMap<Sema::TypeTagMagicValue,
6732 Sema::TypeTagData> *MagicValues,
6733 bool &FoundWrongKind,
6734 Sema::TypeTagData &TypeInfo) {
6735 FoundWrongKind = false;
6736
6737 // Variable declaration that has type_tag_for_datatype attribute.
6738 const ValueDecl *VD = NULL;
6739
6740 uint64_t MagicValue;
6741
6742 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
6743 return false;
6744
6745 if (VD) {
6746 for (specific_attr_iterator<TypeTagForDatatypeAttr>
6747 I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
6748 E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
6749 I != E; ++I) {
6750 if (I->getArgumentKind() != ArgumentKind) {
6751 FoundWrongKind = true;
6752 return false;
6753 }
6754 TypeInfo.Type = I->getMatchingCType();
6755 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
6756 TypeInfo.MustBeNull = I->getMustBeNull();
6757 return true;
6758 }
6759 return false;
6760 }
6761
6762 if (!MagicValues)
6763 return false;
6764
6765 llvm::DenseMap<Sema::TypeTagMagicValue,
6766 Sema::TypeTagData>::const_iterator I =
6767 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
6768 if (I == MagicValues->end())
6769 return false;
6770
6771 TypeInfo = I->second;
6772 return true;
6773 }
6774 } // unnamed namespace
6775
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)6776 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
6777 uint64_t MagicValue, QualType Type,
6778 bool LayoutCompatible,
6779 bool MustBeNull) {
6780 if (!TypeTagForDatatypeMagicValues)
6781 TypeTagForDatatypeMagicValues.reset(
6782 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
6783
6784 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
6785 (*TypeTagForDatatypeMagicValues)[Magic] =
6786 TypeTagData(Type, LayoutCompatible, MustBeNull);
6787 }
6788
6789 namespace {
IsSameCharType(QualType T1,QualType T2)6790 bool IsSameCharType(QualType T1, QualType T2) {
6791 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
6792 if (!BT1)
6793 return false;
6794
6795 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
6796 if (!BT2)
6797 return false;
6798
6799 BuiltinType::Kind T1Kind = BT1->getKind();
6800 BuiltinType::Kind T2Kind = BT2->getKind();
6801
6802 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
6803 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
6804 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6805 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6806 }
6807 } // unnamed namespace
6808
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const Expr * const * ExprArgs)6809 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6810 const Expr * const *ExprArgs) {
6811 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6812 bool IsPointerAttr = Attr->getIsPointer();
6813
6814 const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6815 bool FoundWrongKind;
6816 TypeTagData TypeInfo;
6817 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6818 TypeTagForDatatypeMagicValues.get(),
6819 FoundWrongKind, TypeInfo)) {
6820 if (FoundWrongKind)
6821 Diag(TypeTagExpr->getExprLoc(),
6822 diag::warn_type_tag_for_datatype_wrong_kind)
6823 << TypeTagExpr->getSourceRange();
6824 return;
6825 }
6826
6827 const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6828 if (IsPointerAttr) {
6829 // Skip implicit cast of pointer to `void *' (as a function argument).
6830 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6831 if (ICE->getType()->isVoidPointerType() &&
6832 ICE->getCastKind() == CK_BitCast)
6833 ArgumentExpr = ICE->getSubExpr();
6834 }
6835 QualType ArgumentType = ArgumentExpr->getType();
6836
6837 // Passing a `void*' pointer shouldn't trigger a warning.
6838 if (IsPointerAttr && ArgumentType->isVoidPointerType())
6839 return;
6840
6841 if (TypeInfo.MustBeNull) {
6842 // Type tag with matching void type requires a null pointer.
6843 if (!ArgumentExpr->isNullPointerConstant(Context,
6844 Expr::NPC_ValueDependentIsNotNull)) {
6845 Diag(ArgumentExpr->getExprLoc(),
6846 diag::warn_type_safety_null_pointer_required)
6847 << ArgumentKind->getName()
6848 << ArgumentExpr->getSourceRange()
6849 << TypeTagExpr->getSourceRange();
6850 }
6851 return;
6852 }
6853
6854 QualType RequiredType = TypeInfo.Type;
6855 if (IsPointerAttr)
6856 RequiredType = Context.getPointerType(RequiredType);
6857
6858 bool mismatch = false;
6859 if (!TypeInfo.LayoutCompatible) {
6860 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6861
6862 // C++11 [basic.fundamental] p1:
6863 // Plain char, signed char, and unsigned char are three distinct types.
6864 //
6865 // But we treat plain `char' as equivalent to `signed char' or `unsigned
6866 // char' depending on the current char signedness mode.
6867 if (mismatch)
6868 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6869 RequiredType->getPointeeType())) ||
6870 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6871 mismatch = false;
6872 } else
6873 if (IsPointerAttr)
6874 mismatch = !isLayoutCompatible(Context,
6875 ArgumentType->getPointeeType(),
6876 RequiredType->getPointeeType());
6877 else
6878 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6879
6880 if (mismatch)
6881 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6882 << ArgumentType << ArgumentKind->getName()
6883 << TypeInfo.LayoutCompatible << RequiredType
6884 << ArgumentExpr->getSourceRange()
6885 << TypeTagExpr->getSourceRange();
6886 }
6887