1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/TargetOptions.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/Triple.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/ConvertUTF.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Target/Mangler.h"
51
52 using namespace clang;
53 using namespace CodeGen;
54
55 static const char AnnotationSection[] = "llvm.metadata";
56
createCXXABI(CodeGenModule & CGM)57 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
58 switch (CGM.getContext().getTargetInfo().getCXXABI().getKind()) {
59 case TargetCXXABI::GenericAArch64:
60 case TargetCXXABI::GenericARM:
61 case TargetCXXABI::iOS:
62 case TargetCXXABI::GenericItanium:
63 return *CreateItaniumCXXABI(CGM);
64 case TargetCXXABI::Microsoft:
65 return *CreateMicrosoftCXXABI(CGM);
66 }
67
68 llvm_unreachable("invalid C++ ABI kind");
69 }
70
71
CodeGenModule(ASTContext & C,const CodeGenOptions & CGO,const TargetOptions & TO,llvm::Module & M,const llvm::DataLayout & TD,DiagnosticsEngine & diags)72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73 const TargetOptions &TO, llvm::Module &M,
74 const llvm::DataLayout &TD,
75 DiagnosticsEngine &diags)
76 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TargetOpts(TO),
77 TheModule(M), TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
78 ABI(createCXXABI(*this)),
79 Types(*this),
80 TBAA(0),
81 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
82 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
83 RRData(0), CFConstantStringClassRef(0),
84 ConstantStringClassRef(0), NSConstantStringType(0),
85 VMContext(M.getContext()),
86 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
87 BlockObjectAssign(0), BlockObjectDispose(0),
88 BlockDescriptorType(0), GenericBlockLiteralType(0),
89 SanitizerBlacklist(CGO.SanitizerBlacklistFile),
90 SanOpts(SanitizerBlacklist.isIn(M) ?
91 SanitizerOptions::Disabled : LangOpts.Sanitize) {
92
93 // Initialize the type cache.
94 llvm::LLVMContext &LLVMContext = M.getContext();
95 VoidTy = llvm::Type::getVoidTy(LLVMContext);
96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100 FloatTy = llvm::Type::getFloatTy(LLVMContext);
101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103 PointerAlignInBytes =
104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
107 Int8PtrTy = Int8Ty->getPointerTo(0);
108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
109
110 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
111
112 if (LangOpts.ObjC1)
113 createObjCRuntime();
114 if (LangOpts.OpenCL)
115 createOpenCLRuntime();
116 if (LangOpts.CUDA)
117 createCUDARuntime();
118
119 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
120 if (SanOpts.Thread ||
121 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
122 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
123 ABI.getMangleContext());
124
125 // If debug info or coverage generation is enabled, create the CGDebugInfo
126 // object.
127 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
128 CodeGenOpts.EmitGcovArcs ||
129 CodeGenOpts.EmitGcovNotes)
130 DebugInfo = new CGDebugInfo(*this);
131
132 Block.GlobalUniqueCount = 0;
133
134 if (C.getLangOpts().ObjCAutoRefCount)
135 ARCData = new ARCEntrypoints();
136 RRData = new RREntrypoints();
137 }
138
~CodeGenModule()139 CodeGenModule::~CodeGenModule() {
140 delete ObjCRuntime;
141 delete OpenCLRuntime;
142 delete CUDARuntime;
143 delete TheTargetCodeGenInfo;
144 delete &ABI;
145 delete TBAA;
146 delete DebugInfo;
147 delete ARCData;
148 delete RRData;
149 }
150
createObjCRuntime()151 void CodeGenModule::createObjCRuntime() {
152 // This is just isGNUFamily(), but we want to force implementors of
153 // new ABIs to decide how best to do this.
154 switch (LangOpts.ObjCRuntime.getKind()) {
155 case ObjCRuntime::GNUstep:
156 case ObjCRuntime::GCC:
157 case ObjCRuntime::ObjFW:
158 ObjCRuntime = CreateGNUObjCRuntime(*this);
159 return;
160
161 case ObjCRuntime::FragileMacOSX:
162 case ObjCRuntime::MacOSX:
163 case ObjCRuntime::iOS:
164 ObjCRuntime = CreateMacObjCRuntime(*this);
165 return;
166 }
167 llvm_unreachable("bad runtime kind");
168 }
169
createOpenCLRuntime()170 void CodeGenModule::createOpenCLRuntime() {
171 OpenCLRuntime = new CGOpenCLRuntime(*this);
172 }
173
createCUDARuntime()174 void CodeGenModule::createCUDARuntime() {
175 CUDARuntime = CreateNVCUDARuntime(*this);
176 }
177
Release()178 void CodeGenModule::Release() {
179 EmitDeferred();
180 EmitCXXGlobalInitFunc();
181 EmitCXXGlobalDtorFunc();
182 if (ObjCRuntime)
183 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
184 AddGlobalCtor(ObjCInitFunction);
185 EmitCtorList(GlobalCtors, "llvm.global_ctors");
186 EmitCtorList(GlobalDtors, "llvm.global_dtors");
187 EmitGlobalAnnotations();
188 EmitLLVMUsed();
189
190 if (CodeGenOpts.ModulesAutolink) {
191 EmitModuleLinkOptions();
192 }
193
194 SimplifyPersonality();
195
196 if (getCodeGenOpts().EmitDeclMetadata)
197 EmitDeclMetadata();
198
199 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
200 EmitCoverageFile();
201
202 if (DebugInfo)
203 DebugInfo->finalize();
204 }
205
UpdateCompletedType(const TagDecl * TD)206 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
207 // Make sure that this type is translated.
208 Types.UpdateCompletedType(TD);
209 }
210
getTBAAInfo(QualType QTy)211 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
212 if (!TBAA)
213 return 0;
214 return TBAA->getTBAAInfo(QTy);
215 }
216
getTBAAInfoForVTablePtr()217 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
218 if (!TBAA)
219 return 0;
220 return TBAA->getTBAAInfoForVTablePtr();
221 }
222
getTBAAStructInfo(QualType QTy)223 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
224 if (!TBAA)
225 return 0;
226 return TBAA->getTBAAStructInfo(QTy);
227 }
228
DecorateInstruction(llvm::Instruction * Inst,llvm::MDNode * TBAAInfo)229 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
230 llvm::MDNode *TBAAInfo) {
231 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
232 }
233
isTargetDarwin() const234 bool CodeGenModule::isTargetDarwin() const {
235 return getContext().getTargetInfo().getTriple().isOSDarwin();
236 }
237
Error(SourceLocation loc,StringRef error)238 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
239 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
240 getDiags().Report(Context.getFullLoc(loc), diagID);
241 }
242
243 /// ErrorUnsupported - Print out an error that codegen doesn't support the
244 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type,bool OmitOnError)245 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
246 bool OmitOnError) {
247 if (OmitOnError && getDiags().hasErrorOccurred())
248 return;
249 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
250 "cannot compile this %0 yet");
251 std::string Msg = Type;
252 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
253 << Msg << S->getSourceRange();
254 }
255
256 /// ErrorUnsupported - Print out an error that codegen doesn't support the
257 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type,bool OmitOnError)258 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
259 bool OmitOnError) {
260 if (OmitOnError && getDiags().hasErrorOccurred())
261 return;
262 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
263 "cannot compile this %0 yet");
264 std::string Msg = Type;
265 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
266 }
267
getSize(CharUnits size)268 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
269 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
270 }
271
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const272 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
273 const NamedDecl *D) const {
274 // Internal definitions always have default visibility.
275 if (GV->hasLocalLinkage()) {
276 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
277 return;
278 }
279
280 // Set visibility for definitions.
281 LinkageInfo LV = D->getLinkageAndVisibility();
282 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
283 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
284 }
285
GetLLVMTLSModel(StringRef S)286 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
287 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
288 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
289 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
290 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
291 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
292 }
293
GetLLVMTLSModel(CodeGenOptions::TLSModel M)294 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
295 CodeGenOptions::TLSModel M) {
296 switch (M) {
297 case CodeGenOptions::GeneralDynamicTLSModel:
298 return llvm::GlobalVariable::GeneralDynamicTLSModel;
299 case CodeGenOptions::LocalDynamicTLSModel:
300 return llvm::GlobalVariable::LocalDynamicTLSModel;
301 case CodeGenOptions::InitialExecTLSModel:
302 return llvm::GlobalVariable::InitialExecTLSModel;
303 case CodeGenOptions::LocalExecTLSModel:
304 return llvm::GlobalVariable::LocalExecTLSModel;
305 }
306 llvm_unreachable("Invalid TLS model!");
307 }
308
setTLSMode(llvm::GlobalVariable * GV,const VarDecl & D) const309 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
310 const VarDecl &D) const {
311 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
312
313 llvm::GlobalVariable::ThreadLocalMode TLM;
314 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
315
316 // Override the TLS model if it is explicitly specified.
317 if (D.hasAttr<TLSModelAttr>()) {
318 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
319 TLM = GetLLVMTLSModel(Attr->getModel());
320 }
321
322 GV->setThreadLocalMode(TLM);
323 }
324
325 /// Set the symbol visibility of type information (vtable and RTTI)
326 /// associated with the given type.
setTypeVisibility(llvm::GlobalValue * GV,const CXXRecordDecl * RD,TypeVisibilityKind TVK) const327 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
328 const CXXRecordDecl *RD,
329 TypeVisibilityKind TVK) const {
330 setGlobalVisibility(GV, RD);
331
332 if (!CodeGenOpts.HiddenWeakVTables)
333 return;
334
335 // We never want to drop the visibility for RTTI names.
336 if (TVK == TVK_ForRTTIName)
337 return;
338
339 // We want to drop the visibility to hidden for weak type symbols.
340 // This isn't possible if there might be unresolved references
341 // elsewhere that rely on this symbol being visible.
342
343 // This should be kept roughly in sync with setThunkVisibility
344 // in CGVTables.cpp.
345
346 // Preconditions.
347 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
348 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
349 return;
350
351 // Don't override an explicit visibility attribute.
352 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
353 return;
354
355 switch (RD->getTemplateSpecializationKind()) {
356 // We have to disable the optimization if this is an EI definition
357 // because there might be EI declarations in other shared objects.
358 case TSK_ExplicitInstantiationDefinition:
359 case TSK_ExplicitInstantiationDeclaration:
360 return;
361
362 // Every use of a non-template class's type information has to emit it.
363 case TSK_Undeclared:
364 break;
365
366 // In theory, implicit instantiations can ignore the possibility of
367 // an explicit instantiation declaration because there necessarily
368 // must be an EI definition somewhere with default visibility. In
369 // practice, it's possible to have an explicit instantiation for
370 // an arbitrary template class, and linkers aren't necessarily able
371 // to deal with mixed-visibility symbols.
372 case TSK_ExplicitSpecialization:
373 case TSK_ImplicitInstantiation:
374 return;
375 }
376
377 // If there's a key function, there may be translation units
378 // that don't have the key function's definition. But ignore
379 // this if we're emitting RTTI under -fno-rtti.
380 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
381 // FIXME: what should we do if we "lose" the key function during
382 // the emission of the file?
383 if (Context.getCurrentKeyFunction(RD))
384 return;
385 }
386
387 // Otherwise, drop the visibility to hidden.
388 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
389 GV->setUnnamedAddr(true);
390 }
391
getMangledName(GlobalDecl GD)392 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
393 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
394
395 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
396 if (!Str.empty())
397 return Str;
398
399 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
400 IdentifierInfo *II = ND->getIdentifier();
401 assert(II && "Attempt to mangle unnamed decl.");
402
403 Str = II->getName();
404 return Str;
405 }
406
407 SmallString<256> Buffer;
408 llvm::raw_svector_ostream Out(Buffer);
409 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
410 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
411 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
412 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
413 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
414 getCXXABI().getMangleContext().mangleBlock(BD, Out,
415 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
416 else
417 getCXXABI().getMangleContext().mangleName(ND, Out);
418
419 // Allocate space for the mangled name.
420 Out.flush();
421 size_t Length = Buffer.size();
422 char *Name = MangledNamesAllocator.Allocate<char>(Length);
423 std::copy(Buffer.begin(), Buffer.end(), Name);
424
425 Str = StringRef(Name, Length);
426
427 return Str;
428 }
429
getBlockMangledName(GlobalDecl GD,MangleBuffer & Buffer,const BlockDecl * BD)430 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
431 const BlockDecl *BD) {
432 MangleContext &MangleCtx = getCXXABI().getMangleContext();
433 const Decl *D = GD.getDecl();
434 llvm::raw_svector_ostream Out(Buffer.getBuffer());
435 if (D == 0)
436 MangleCtx.mangleGlobalBlock(BD,
437 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
438 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
439 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
440 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
441 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
442 else
443 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
444 }
445
GetGlobalValue(StringRef Name)446 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
447 return getModule().getNamedValue(Name);
448 }
449
450 /// AddGlobalCtor - Add a function to the list that will be called before
451 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority)452 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
453 // FIXME: Type coercion of void()* types.
454 GlobalCtors.push_back(std::make_pair(Ctor, Priority));
455 }
456
457 /// AddGlobalDtor - Add a function to the list that will be called
458 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority)459 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
460 // FIXME: Type coercion of void()* types.
461 GlobalDtors.push_back(std::make_pair(Dtor, Priority));
462 }
463
EmitCtorList(const CtorList & Fns,const char * GlobalName)464 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
465 // Ctor function type is void()*.
466 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
467 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
468
469 // Get the type of a ctor entry, { i32, void ()* }.
470 llvm::StructType *CtorStructTy =
471 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
472
473 // Construct the constructor and destructor arrays.
474 SmallVector<llvm::Constant*, 8> Ctors;
475 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
476 llvm::Constant *S[] = {
477 llvm::ConstantInt::get(Int32Ty, I->second, false),
478 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
479 };
480 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
481 }
482
483 if (!Ctors.empty()) {
484 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
485 new llvm::GlobalVariable(TheModule, AT, false,
486 llvm::GlobalValue::AppendingLinkage,
487 llvm::ConstantArray::get(AT, Ctors),
488 GlobalName);
489 }
490 }
491
492 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(const FunctionDecl * D)493 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
494 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
495
496 if (Linkage == GVA_Internal)
497 return llvm::Function::InternalLinkage;
498
499 if (D->hasAttr<DLLExportAttr>())
500 return llvm::Function::DLLExportLinkage;
501
502 if (D->hasAttr<WeakAttr>())
503 return llvm::Function::WeakAnyLinkage;
504
505 // In C99 mode, 'inline' functions are guaranteed to have a strong
506 // definition somewhere else, so we can use available_externally linkage.
507 if (Linkage == GVA_C99Inline)
508 return llvm::Function::AvailableExternallyLinkage;
509
510 // Note that Apple's kernel linker doesn't support symbol
511 // coalescing, so we need to avoid linkonce and weak linkages there.
512 // Normally, this means we just map to internal, but for explicit
513 // instantiations we'll map to external.
514
515 // In C++, the compiler has to emit a definition in every translation unit
516 // that references the function. We should use linkonce_odr because
517 // a) if all references in this translation unit are optimized away, we
518 // don't need to codegen it. b) if the function persists, it needs to be
519 // merged with other definitions. c) C++ has the ODR, so we know the
520 // definition is dependable.
521 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
522 return !Context.getLangOpts().AppleKext
523 ? llvm::Function::LinkOnceODRLinkage
524 : llvm::Function::InternalLinkage;
525
526 // An explicit instantiation of a template has weak linkage, since
527 // explicit instantiations can occur in multiple translation units
528 // and must all be equivalent. However, we are not allowed to
529 // throw away these explicit instantiations.
530 if (Linkage == GVA_ExplicitTemplateInstantiation)
531 return !Context.getLangOpts().AppleKext
532 ? llvm::Function::WeakODRLinkage
533 : llvm::Function::ExternalLinkage;
534
535 // Otherwise, we have strong external linkage.
536 assert(Linkage == GVA_StrongExternal);
537 return llvm::Function::ExternalLinkage;
538 }
539
540
541 /// SetFunctionDefinitionAttributes - Set attributes for a global.
542 ///
543 /// FIXME: This is currently only done for aliases and functions, but not for
544 /// variables (these details are set in EmitGlobalVarDefinition for variables).
SetFunctionDefinitionAttributes(const FunctionDecl * D,llvm::GlobalValue * GV)545 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
546 llvm::GlobalValue *GV) {
547 SetCommonAttributes(D, GV);
548 }
549
SetLLVMFunctionAttributes(const Decl * D,const CGFunctionInfo & Info,llvm::Function * F)550 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
551 const CGFunctionInfo &Info,
552 llvm::Function *F) {
553 unsigned CallingConv;
554 AttributeListType AttributeList;
555 ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
556 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
557 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
558 }
559
560 /// Determines whether the language options require us to model
561 /// unwind exceptions. We treat -fexceptions as mandating this
562 /// except under the fragile ObjC ABI with only ObjC exceptions
563 /// enabled. This means, for example, that C with -fexceptions
564 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)565 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
566 // If exceptions are completely disabled, obviously this is false.
567 if (!LangOpts.Exceptions) return false;
568
569 // If C++ exceptions are enabled, this is true.
570 if (LangOpts.CXXExceptions) return true;
571
572 // If ObjC exceptions are enabled, this depends on the ABI.
573 if (LangOpts.ObjCExceptions) {
574 return LangOpts.ObjCRuntime.hasUnwindExceptions();
575 }
576
577 return true;
578 }
579
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)580 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
581 llvm::Function *F) {
582 if (CodeGenOpts.UnwindTables)
583 F->setHasUWTable();
584
585 if (!hasUnwindExceptions(LangOpts))
586 F->addFnAttr(llvm::Attribute::NoUnwind);
587
588 if (D->hasAttr<NakedAttr>()) {
589 // Naked implies noinline: we should not be inlining such functions.
590 F->addFnAttr(llvm::Attribute::Naked);
591 F->addFnAttr(llvm::Attribute::NoInline);
592 }
593
594 if (D->hasAttr<NoInlineAttr>())
595 F->addFnAttr(llvm::Attribute::NoInline);
596
597 // (noinline wins over always_inline, and we can't specify both in IR)
598 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
599 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
600 llvm::Attribute::NoInline))
601 F->addFnAttr(llvm::Attribute::AlwaysInline);
602
603 // FIXME: Communicate hot and cold attributes to LLVM more directly.
604 if (D->hasAttr<ColdAttr>())
605 F->addFnAttr(llvm::Attribute::OptimizeForSize);
606
607 if (D->hasAttr<MinSizeAttr>())
608 F->addFnAttr(llvm::Attribute::MinSize);
609
610 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
611 F->setUnnamedAddr(true);
612
613 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
614 if (MD->isVirtual())
615 F->setUnnamedAddr(true);
616
617 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
618 F->addFnAttr(llvm::Attribute::StackProtect);
619 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
620 F->addFnAttr(llvm::Attribute::StackProtectReq);
621
622 // Add sanitizer attributes if function is not blacklisted.
623 if (!SanitizerBlacklist.isIn(*F)) {
624 // When AddressSanitizer is enabled, set SanitizeAddress attribute
625 // unless __attribute__((no_sanitize_address)) is used.
626 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
627 F->addFnAttr(llvm::Attribute::SanitizeAddress);
628 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
629 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
630 F->addFnAttr(llvm::Attribute::SanitizeThread);
631 }
632 // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
633 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
634 F->addFnAttr(llvm::Attribute::SanitizeMemory);
635 }
636
637 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
638 if (alignment)
639 F->setAlignment(alignment);
640
641 // C++ ABI requires 2-byte alignment for member functions.
642 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
643 F->setAlignment(2);
644 }
645
SetCommonAttributes(const Decl * D,llvm::GlobalValue * GV)646 void CodeGenModule::SetCommonAttributes(const Decl *D,
647 llvm::GlobalValue *GV) {
648 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
649 setGlobalVisibility(GV, ND);
650 else
651 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
652
653 if (D->hasAttr<UsedAttr>())
654 AddUsedGlobal(GV);
655
656 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
657 GV->setSection(SA->getName());
658
659 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
660 }
661
SetInternalFunctionAttributes(const Decl * D,llvm::Function * F,const CGFunctionInfo & FI)662 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
663 llvm::Function *F,
664 const CGFunctionInfo &FI) {
665 SetLLVMFunctionAttributes(D, FI, F);
666 SetLLVMFunctionAttributesForDefinition(D, F);
667
668 F->setLinkage(llvm::Function::InternalLinkage);
669
670 SetCommonAttributes(D, F);
671 }
672
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction)673 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
674 llvm::Function *F,
675 bool IsIncompleteFunction) {
676 if (unsigned IID = F->getIntrinsicID()) {
677 // If this is an intrinsic function, set the function's attributes
678 // to the intrinsic's attributes.
679 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
680 (llvm::Intrinsic::ID)IID));
681 return;
682 }
683
684 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
685
686 if (!IsIncompleteFunction)
687 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
688
689 // Only a few attributes are set on declarations; these may later be
690 // overridden by a definition.
691
692 if (FD->hasAttr<DLLImportAttr>()) {
693 F->setLinkage(llvm::Function::DLLImportLinkage);
694 } else if (FD->hasAttr<WeakAttr>() ||
695 FD->isWeakImported()) {
696 // "extern_weak" is overloaded in LLVM; we probably should have
697 // separate linkage types for this.
698 F->setLinkage(llvm::Function::ExternalWeakLinkage);
699 } else {
700 F->setLinkage(llvm::Function::ExternalLinkage);
701
702 LinkageInfo LV = FD->getLinkageAndVisibility();
703 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
704 F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
705 }
706 }
707
708 if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
709 F->setSection(SA->getName());
710 }
711
AddUsedGlobal(llvm::GlobalValue * GV)712 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
713 assert(!GV->isDeclaration() &&
714 "Only globals with definition can force usage.");
715 LLVMUsed.push_back(GV);
716 }
717
EmitLLVMUsed()718 void CodeGenModule::EmitLLVMUsed() {
719 // Don't create llvm.used if there is no need.
720 if (LLVMUsed.empty())
721 return;
722
723 // Convert LLVMUsed to what ConstantArray needs.
724 SmallVector<llvm::Constant*, 8> UsedArray;
725 UsedArray.resize(LLVMUsed.size());
726 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
727 UsedArray[i] =
728 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
729 Int8PtrTy);
730 }
731
732 if (UsedArray.empty())
733 return;
734 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
735
736 llvm::GlobalVariable *GV =
737 new llvm::GlobalVariable(getModule(), ATy, false,
738 llvm::GlobalValue::AppendingLinkage,
739 llvm::ConstantArray::get(ATy, UsedArray),
740 "llvm.used");
741
742 GV->setSection("llvm.metadata");
743 }
744
745 /// \brief Add link options implied by the given module, including modules
746 /// it depends on, using a postorder walk.
addLinkOptionsPostorder(llvm::LLVMContext & Context,Module * Mod,SmallVectorImpl<llvm::Value * > & Metadata,llvm::SmallPtrSet<Module *,16> & Visited)747 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
748 Module *Mod,
749 SmallVectorImpl<llvm::Value *> &Metadata,
750 llvm::SmallPtrSet<Module *, 16> &Visited) {
751 // Import this module's parent.
752 if (Mod->Parent && Visited.insert(Mod->Parent)) {
753 addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
754 }
755
756 // Import this module's dependencies.
757 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
758 if (Visited.insert(Mod->Imports[I-1]))
759 addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
760 }
761
762 // Add linker options to link against the libraries/frameworks
763 // described by this module.
764 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
765 // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
766 // We need to know more about the linker to know how to encode these
767 // options propertly.
768
769 // Link against a framework.
770 if (Mod->LinkLibraries[I-1].IsFramework) {
771 llvm::Value *Args[2] = {
772 llvm::MDString::get(Context, "-framework"),
773 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
774 };
775
776 Metadata.push_back(llvm::MDNode::get(Context, Args));
777 continue;
778 }
779
780 // Link against a library.
781 llvm::Value *OptString
782 = llvm::MDString::get(Context,
783 "-l" + Mod->LinkLibraries[I-1].Library);
784 Metadata.push_back(llvm::MDNode::get(Context, OptString));
785 }
786 }
787
EmitModuleLinkOptions()788 void CodeGenModule::EmitModuleLinkOptions() {
789 // Collect the set of all of the modules we want to visit to emit link
790 // options, which is essentially the imported modules and all of their
791 // non-explicit child modules.
792 llvm::SetVector<clang::Module *> LinkModules;
793 llvm::SmallPtrSet<clang::Module *, 16> Visited;
794 SmallVector<clang::Module *, 16> Stack;
795
796 // Seed the stack with imported modules.
797 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
798 MEnd = ImportedModules.end();
799 M != MEnd; ++M) {
800 if (Visited.insert(*M))
801 Stack.push_back(*M);
802 }
803
804 // Find all of the modules to import, making a little effort to prune
805 // non-leaf modules.
806 while (!Stack.empty()) {
807 clang::Module *Mod = Stack.back();
808 Stack.pop_back();
809
810 bool AnyChildren = false;
811
812 // Visit the submodules of this module.
813 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
814 SubEnd = Mod->submodule_end();
815 Sub != SubEnd; ++Sub) {
816 // Skip explicit children; they need to be explicitly imported to be
817 // linked against.
818 if ((*Sub)->IsExplicit)
819 continue;
820
821 if (Visited.insert(*Sub)) {
822 Stack.push_back(*Sub);
823 AnyChildren = true;
824 }
825 }
826
827 // We didn't find any children, so add this module to the list of
828 // modules to link against.
829 if (!AnyChildren) {
830 LinkModules.insert(Mod);
831 }
832 }
833
834 // Add link options for all of the imported modules in reverse topological
835 // order.
836 SmallVector<llvm::Value *, 16> MetadataArgs;
837 Visited.clear();
838 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
839 MEnd = LinkModules.end();
840 M != MEnd; ++M) {
841 if (Visited.insert(*M))
842 addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
843 }
844 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
845
846 // Add the linker options metadata flag.
847 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
848 llvm::MDNode::get(getLLVMContext(), MetadataArgs));
849 }
850
EmitDeferred()851 void CodeGenModule::EmitDeferred() {
852 // Emit code for any potentially referenced deferred decls. Since a
853 // previously unused static decl may become used during the generation of code
854 // for a static function, iterate until no changes are made.
855
856 while (true) {
857 if (!DeferredVTables.empty()) {
858 EmitDeferredVTables();
859
860 // Emitting a v-table doesn't directly cause more v-tables to
861 // become deferred, although it can cause functions to be
862 // emitted that then need those v-tables.
863 assert(DeferredVTables.empty());
864 }
865
866 // Stop if we're out of both deferred v-tables and deferred declarations.
867 if (DeferredDeclsToEmit.empty()) break;
868
869 GlobalDecl D = DeferredDeclsToEmit.back();
870 DeferredDeclsToEmit.pop_back();
871
872 // Check to see if we've already emitted this. This is necessary
873 // for a couple of reasons: first, decls can end up in the
874 // deferred-decls queue multiple times, and second, decls can end
875 // up with definitions in unusual ways (e.g. by an extern inline
876 // function acquiring a strong function redefinition). Just
877 // ignore these cases.
878 //
879 // TODO: That said, looking this up multiple times is very wasteful.
880 StringRef Name = getMangledName(D);
881 llvm::GlobalValue *CGRef = GetGlobalValue(Name);
882 assert(CGRef && "Deferred decl wasn't referenced?");
883
884 if (!CGRef->isDeclaration())
885 continue;
886
887 // GlobalAlias::isDeclaration() defers to the aliasee, but for our
888 // purposes an alias counts as a definition.
889 if (isa<llvm::GlobalAlias>(CGRef))
890 continue;
891
892 // Otherwise, emit the definition and move on to the next one.
893 EmitGlobalDefinition(D);
894 }
895 }
896
EmitGlobalAnnotations()897 void CodeGenModule::EmitGlobalAnnotations() {
898 if (Annotations.empty())
899 return;
900
901 // Create a new global variable for the ConstantStruct in the Module.
902 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
903 Annotations[0]->getType(), Annotations.size()), Annotations);
904 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
905 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
906 "llvm.global.annotations");
907 gv->setSection(AnnotationSection);
908 }
909
EmitAnnotationString(StringRef Str)910 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
911 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
912 if (i != AnnotationStrings.end())
913 return i->second;
914
915 // Not found yet, create a new global.
916 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
917 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
918 true, llvm::GlobalValue::PrivateLinkage, s, ".str");
919 gv->setSection(AnnotationSection);
920 gv->setUnnamedAddr(true);
921 AnnotationStrings[Str] = gv;
922 return gv;
923 }
924
EmitAnnotationUnit(SourceLocation Loc)925 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
926 SourceManager &SM = getContext().getSourceManager();
927 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
928 if (PLoc.isValid())
929 return EmitAnnotationString(PLoc.getFilename());
930 return EmitAnnotationString(SM.getBufferName(Loc));
931 }
932
EmitAnnotationLineNo(SourceLocation L)933 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
934 SourceManager &SM = getContext().getSourceManager();
935 PresumedLoc PLoc = SM.getPresumedLoc(L);
936 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
937 SM.getExpansionLineNumber(L);
938 return llvm::ConstantInt::get(Int32Ty, LineNo);
939 }
940
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)941 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
942 const AnnotateAttr *AA,
943 SourceLocation L) {
944 // Get the globals for file name, annotation, and the line number.
945 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
946 *UnitGV = EmitAnnotationUnit(L),
947 *LineNoCst = EmitAnnotationLineNo(L);
948
949 // Create the ConstantStruct for the global annotation.
950 llvm::Constant *Fields[4] = {
951 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
952 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
953 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
954 LineNoCst
955 };
956 return llvm::ConstantStruct::getAnon(Fields);
957 }
958
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)959 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
960 llvm::GlobalValue *GV) {
961 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
962 // Get the struct elements for these annotations.
963 for (specific_attr_iterator<AnnotateAttr>
964 ai = D->specific_attr_begin<AnnotateAttr>(),
965 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
966 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
967 }
968
MayDeferGeneration(const ValueDecl * Global)969 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
970 // Never defer when EmitAllDecls is specified.
971 if (LangOpts.EmitAllDecls)
972 return false;
973
974 return !getContext().DeclMustBeEmitted(Global);
975 }
976
GetAddrOfUuidDescriptor(const CXXUuidofExpr * E)977 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
978 const CXXUuidofExpr* E) {
979 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
980 // well-formed.
981 StringRef Uuid;
982 if (E->isTypeOperand())
983 Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
984 else {
985 // Special case: __uuidof(0) means an all-zero GUID.
986 Expr *Op = E->getExprOperand();
987 if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
988 Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
989 else
990 Uuid = "00000000-0000-0000-0000-000000000000";
991 }
992 std::string Name = "__uuid_" + Uuid.str();
993
994 // Look for an existing global.
995 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
996 return GV;
997
998 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
999 assert(Init && "failed to initialize as constant");
1000
1001 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1002 // first field is declared as "long", which for many targets is 8 bytes.
1003 // Those architectures are not supported. (With the MS abi, long is always 4
1004 // bytes.)
1005 llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1006 if (Init->getType() != GuidType) {
1007 DiagnosticsEngine &Diags = getDiags();
1008 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1009 "__uuidof codegen is not supported on this architecture");
1010 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1011 Init = llvm::UndefValue::get(GuidType);
1012 }
1013
1014 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1015 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1016 GV->setUnnamedAddr(true);
1017 return GV;
1018 }
1019
GetWeakRefReference(const ValueDecl * VD)1020 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1021 const AliasAttr *AA = VD->getAttr<AliasAttr>();
1022 assert(AA && "No alias?");
1023
1024 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1025
1026 // See if there is already something with the target's name in the module.
1027 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1028 if (Entry) {
1029 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1030 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1031 }
1032
1033 llvm::Constant *Aliasee;
1034 if (isa<llvm::FunctionType>(DeclTy))
1035 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1036 GlobalDecl(cast<FunctionDecl>(VD)),
1037 /*ForVTable=*/false);
1038 else
1039 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1040 llvm::PointerType::getUnqual(DeclTy), 0);
1041
1042 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1043 F->setLinkage(llvm::Function::ExternalWeakLinkage);
1044 WeakRefReferences.insert(F);
1045
1046 return Aliasee;
1047 }
1048
EmitGlobal(GlobalDecl GD)1049 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1050 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1051
1052 // Weak references don't produce any output by themselves.
1053 if (Global->hasAttr<WeakRefAttr>())
1054 return;
1055
1056 // If this is an alias definition (which otherwise looks like a declaration)
1057 // emit it now.
1058 if (Global->hasAttr<AliasAttr>())
1059 return EmitAliasDefinition(GD);
1060
1061 // If this is CUDA, be selective about which declarations we emit.
1062 if (LangOpts.CUDA) {
1063 if (CodeGenOpts.CUDAIsDevice) {
1064 if (!Global->hasAttr<CUDADeviceAttr>() &&
1065 !Global->hasAttr<CUDAGlobalAttr>() &&
1066 !Global->hasAttr<CUDAConstantAttr>() &&
1067 !Global->hasAttr<CUDASharedAttr>())
1068 return;
1069 } else {
1070 if (!Global->hasAttr<CUDAHostAttr>() && (
1071 Global->hasAttr<CUDADeviceAttr>() ||
1072 Global->hasAttr<CUDAConstantAttr>() ||
1073 Global->hasAttr<CUDASharedAttr>()))
1074 return;
1075 }
1076 }
1077
1078 // Ignore declarations, they will be emitted on their first use.
1079 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1080 // Forward declarations are emitted lazily on first use.
1081 if (!FD->doesThisDeclarationHaveABody()) {
1082 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1083 return;
1084
1085 const FunctionDecl *InlineDefinition = 0;
1086 FD->getBody(InlineDefinition);
1087
1088 StringRef MangledName = getMangledName(GD);
1089 DeferredDecls.erase(MangledName);
1090 EmitGlobalDefinition(InlineDefinition);
1091 return;
1092 }
1093 } else {
1094 const VarDecl *VD = cast<VarDecl>(Global);
1095 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1096
1097 if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1098 return;
1099 }
1100
1101 // Defer code generation when possible if this is a static definition, inline
1102 // function etc. These we only want to emit if they are used.
1103 if (!MayDeferGeneration(Global)) {
1104 // Emit the definition if it can't be deferred.
1105 EmitGlobalDefinition(GD);
1106 return;
1107 }
1108
1109 // If we're deferring emission of a C++ variable with an
1110 // initializer, remember the order in which it appeared in the file.
1111 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1112 cast<VarDecl>(Global)->hasInit()) {
1113 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1114 CXXGlobalInits.push_back(0);
1115 }
1116
1117 // If the value has already been used, add it directly to the
1118 // DeferredDeclsToEmit list.
1119 StringRef MangledName = getMangledName(GD);
1120 if (GetGlobalValue(MangledName))
1121 DeferredDeclsToEmit.push_back(GD);
1122 else {
1123 // Otherwise, remember that we saw a deferred decl with this name. The
1124 // first use of the mangled name will cause it to move into
1125 // DeferredDeclsToEmit.
1126 DeferredDecls[MangledName] = GD;
1127 }
1128 }
1129
1130 namespace {
1131 struct FunctionIsDirectlyRecursive :
1132 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1133 const StringRef Name;
1134 const Builtin::Context &BI;
1135 bool Result;
FunctionIsDirectlyRecursive__anon758f53c10111::FunctionIsDirectlyRecursive1136 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1137 Name(N), BI(C), Result(false) {
1138 }
1139 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1140
TraverseCallExpr__anon758f53c10111::FunctionIsDirectlyRecursive1141 bool TraverseCallExpr(CallExpr *E) {
1142 const FunctionDecl *FD = E->getDirectCallee();
1143 if (!FD)
1144 return true;
1145 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1146 if (Attr && Name == Attr->getLabel()) {
1147 Result = true;
1148 return false;
1149 }
1150 unsigned BuiltinID = FD->getBuiltinID();
1151 if (!BuiltinID)
1152 return true;
1153 StringRef BuiltinName = BI.GetName(BuiltinID);
1154 if (BuiltinName.startswith("__builtin_") &&
1155 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1156 Result = true;
1157 return false;
1158 }
1159 return true;
1160 }
1161 };
1162 }
1163
1164 // isTriviallyRecursive - Check if this function calls another
1165 // decl that, because of the asm attribute or the other decl being a builtin,
1166 // ends up pointing to itself.
1167 bool
isTriviallyRecursive(const FunctionDecl * FD)1168 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1169 StringRef Name;
1170 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1171 // asm labels are a special kind of mangling we have to support.
1172 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1173 if (!Attr)
1174 return false;
1175 Name = Attr->getLabel();
1176 } else {
1177 Name = FD->getName();
1178 }
1179
1180 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1181 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1182 return Walker.Result;
1183 }
1184
1185 bool
shouldEmitFunction(const FunctionDecl * F)1186 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1187 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1188 return true;
1189 if (CodeGenOpts.OptimizationLevel == 0 &&
1190 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1191 return false;
1192 // PR9614. Avoid cases where the source code is lying to us. An available
1193 // externally function should have an equivalent function somewhere else,
1194 // but a function that calls itself is clearly not equivalent to the real
1195 // implementation.
1196 // This happens in glibc's btowc and in some configure checks.
1197 return !isTriviallyRecursive(F);
1198 }
1199
EmitGlobalDefinition(GlobalDecl GD)1200 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1201 const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1202
1203 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1204 Context.getSourceManager(),
1205 "Generating code for declaration");
1206
1207 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1208 // At -O0, don't generate IR for functions with available_externally
1209 // linkage.
1210 if (!shouldEmitFunction(Function))
1211 return;
1212
1213 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1214 // Make sure to emit the definition(s) before we emit the thunks.
1215 // This is necessary for the generation of certain thunks.
1216 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1217 EmitCXXConstructor(CD, GD.getCtorType());
1218 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1219 EmitCXXDestructor(DD, GD.getDtorType());
1220 else
1221 EmitGlobalFunctionDefinition(GD);
1222
1223 if (Method->isVirtual())
1224 getVTables().EmitThunks(GD);
1225
1226 return;
1227 }
1228
1229 return EmitGlobalFunctionDefinition(GD);
1230 }
1231
1232 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1233 return EmitGlobalVarDefinition(VD);
1234
1235 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1236 }
1237
1238 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1239 /// module, create and return an llvm Function with the specified type. If there
1240 /// is something in the module with the specified name, return it potentially
1241 /// bitcasted to the right type.
1242 ///
1243 /// If D is non-null, it specifies a decl that correspond to this. This is used
1244 /// to set the attributes on the function when it is first created.
1245 llvm::Constant *
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl D,bool ForVTable,llvm::AttributeSet ExtraAttrs)1246 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1247 llvm::Type *Ty,
1248 GlobalDecl D, bool ForVTable,
1249 llvm::AttributeSet ExtraAttrs) {
1250 // Lookup the entry, lazily creating it if necessary.
1251 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1252 if (Entry) {
1253 if (WeakRefReferences.erase(Entry)) {
1254 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1255 if (FD && !FD->hasAttr<WeakAttr>())
1256 Entry->setLinkage(llvm::Function::ExternalLinkage);
1257 }
1258
1259 if (Entry->getType()->getElementType() == Ty)
1260 return Entry;
1261
1262 // Make sure the result is of the correct type.
1263 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1264 }
1265
1266 // This function doesn't have a complete type (for example, the return
1267 // type is an incomplete struct). Use a fake type instead, and make
1268 // sure not to try to set attributes.
1269 bool IsIncompleteFunction = false;
1270
1271 llvm::FunctionType *FTy;
1272 if (isa<llvm::FunctionType>(Ty)) {
1273 FTy = cast<llvm::FunctionType>(Ty);
1274 } else {
1275 FTy = llvm::FunctionType::get(VoidTy, false);
1276 IsIncompleteFunction = true;
1277 }
1278
1279 llvm::Function *F = llvm::Function::Create(FTy,
1280 llvm::Function::ExternalLinkage,
1281 MangledName, &getModule());
1282 assert(F->getName() == MangledName && "name was uniqued!");
1283 if (D.getDecl())
1284 SetFunctionAttributes(D, F, IsIncompleteFunction);
1285 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1286 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1287 F->addAttributes(llvm::AttributeSet::FunctionIndex,
1288 llvm::AttributeSet::get(VMContext,
1289 llvm::AttributeSet::FunctionIndex,
1290 B));
1291 }
1292
1293 // This is the first use or definition of a mangled name. If there is a
1294 // deferred decl with this name, remember that we need to emit it at the end
1295 // of the file.
1296 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1297 if (DDI != DeferredDecls.end()) {
1298 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1299 // list, and remove it from DeferredDecls (since we don't need it anymore).
1300 DeferredDeclsToEmit.push_back(DDI->second);
1301 DeferredDecls.erase(DDI);
1302
1303 // Otherwise, there are cases we have to worry about where we're
1304 // using a declaration for which we must emit a definition but where
1305 // we might not find a top-level definition:
1306 // - member functions defined inline in their classes
1307 // - friend functions defined inline in some class
1308 // - special member functions with implicit definitions
1309 // If we ever change our AST traversal to walk into class methods,
1310 // this will be unnecessary.
1311 //
1312 // We also don't emit a definition for a function if it's going to be an entry
1313 // in a vtable, unless it's already marked as used.
1314 } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1315 // Look for a declaration that's lexically in a record.
1316 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1317 FD = FD->getMostRecentDecl();
1318 do {
1319 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1320 if (FD->isImplicit() && !ForVTable) {
1321 assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1322 DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1323 break;
1324 } else if (FD->doesThisDeclarationHaveABody()) {
1325 DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1326 break;
1327 }
1328 }
1329 FD = FD->getPreviousDecl();
1330 } while (FD);
1331 }
1332
1333 // Make sure the result is of the requested type.
1334 if (!IsIncompleteFunction) {
1335 assert(F->getType()->getElementType() == Ty);
1336 return F;
1337 }
1338
1339 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1340 return llvm::ConstantExpr::getBitCast(F, PTy);
1341 }
1342
1343 /// GetAddrOfFunction - Return the address of the given function. If Ty is
1344 /// non-null, then this function will use the specified type if it has to
1345 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable)1346 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1347 llvm::Type *Ty,
1348 bool ForVTable) {
1349 // If there was no specific requested type, just convert it now.
1350 if (!Ty)
1351 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1352
1353 StringRef MangledName = getMangledName(GD);
1354 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1355 }
1356
1357 /// CreateRuntimeFunction - Create a new runtime function with the specified
1358 /// type and name.
1359 llvm::Constant *
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeSet ExtraAttrs)1360 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1361 StringRef Name,
1362 llvm::AttributeSet ExtraAttrs) {
1363 llvm::Constant *C
1364 = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1365 ExtraAttrs);
1366 if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1367 if (F->empty())
1368 F->setCallingConv(getRuntimeCC());
1369 return C;
1370 }
1371
1372 /// isTypeConstant - Determine whether an object of this type can be emitted
1373 /// as a constant.
1374 ///
1375 /// If ExcludeCtor is true, the duration when the object's constructor runs
1376 /// will not be considered. The caller will need to verify that the object is
1377 /// not written to during its construction.
isTypeConstant(QualType Ty,bool ExcludeCtor)1378 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1379 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1380 return false;
1381
1382 if (Context.getLangOpts().CPlusPlus) {
1383 if (const CXXRecordDecl *Record
1384 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1385 return ExcludeCtor && !Record->hasMutableFields() &&
1386 Record->hasTrivialDestructor();
1387 }
1388
1389 return true;
1390 }
1391
1392 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1393 /// create and return an llvm GlobalVariable with the specified type. If there
1394 /// is something in the module with the specified name, return it potentially
1395 /// bitcasted to the right type.
1396 ///
1397 /// If D is non-null, it specifies a decl that correspond to this. This is used
1398 /// to set the attributes on the global when it is first created.
1399 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::PointerType * Ty,const VarDecl * D,bool UnnamedAddr)1400 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1401 llvm::PointerType *Ty,
1402 const VarDecl *D,
1403 bool UnnamedAddr) {
1404 // Lookup the entry, lazily creating it if necessary.
1405 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1406 if (Entry) {
1407 if (WeakRefReferences.erase(Entry)) {
1408 if (D && !D->hasAttr<WeakAttr>())
1409 Entry->setLinkage(llvm::Function::ExternalLinkage);
1410 }
1411
1412 if (UnnamedAddr)
1413 Entry->setUnnamedAddr(true);
1414
1415 if (Entry->getType() == Ty)
1416 return Entry;
1417
1418 // Make sure the result is of the correct type.
1419 return llvm::ConstantExpr::getBitCast(Entry, Ty);
1420 }
1421
1422 // This is the first use or definition of a mangled name. If there is a
1423 // deferred decl with this name, remember that we need to emit it at the end
1424 // of the file.
1425 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1426 if (DDI != DeferredDecls.end()) {
1427 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1428 // list, and remove it from DeferredDecls (since we don't need it anymore).
1429 DeferredDeclsToEmit.push_back(DDI->second);
1430 DeferredDecls.erase(DDI);
1431 }
1432
1433 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1434 llvm::GlobalVariable *GV =
1435 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1436 llvm::GlobalValue::ExternalLinkage,
1437 0, MangledName, 0,
1438 llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1439
1440 // Handle things which are present even on external declarations.
1441 if (D) {
1442 // FIXME: This code is overly simple and should be merged with other global
1443 // handling.
1444 GV->setConstant(isTypeConstant(D->getType(), false));
1445
1446 // Set linkage and visibility in case we never see a definition.
1447 LinkageInfo LV = D->getLinkageAndVisibility();
1448 if (LV.getLinkage() != ExternalLinkage) {
1449 // Don't set internal linkage on declarations.
1450 } else {
1451 if (D->hasAttr<DLLImportAttr>())
1452 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1453 else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1454 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1455
1456 // Set visibility on a declaration only if it's explicit.
1457 if (LV.isVisibilityExplicit())
1458 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1459 }
1460
1461 if (D->isThreadSpecified())
1462 setTLSMode(GV, *D);
1463 }
1464
1465 if (AddrSpace != Ty->getAddressSpace())
1466 return llvm::ConstantExpr::getBitCast(GV, Ty);
1467 else
1468 return GV;
1469 }
1470
1471
1472 llvm::GlobalVariable *
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage)1473 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1474 llvm::Type *Ty,
1475 llvm::GlobalValue::LinkageTypes Linkage) {
1476 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1477 llvm::GlobalVariable *OldGV = 0;
1478
1479
1480 if (GV) {
1481 // Check if the variable has the right type.
1482 if (GV->getType()->getElementType() == Ty)
1483 return GV;
1484
1485 // Because C++ name mangling, the only way we can end up with an already
1486 // existing global with the same name is if it has been declared extern "C".
1487 assert(GV->isDeclaration() && "Declaration has wrong type!");
1488 OldGV = GV;
1489 }
1490
1491 // Create a new variable.
1492 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1493 Linkage, 0, Name);
1494
1495 if (OldGV) {
1496 // Replace occurrences of the old variable if needed.
1497 GV->takeName(OldGV);
1498
1499 if (!OldGV->use_empty()) {
1500 llvm::Constant *NewPtrForOldDecl =
1501 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1502 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1503 }
1504
1505 OldGV->eraseFromParent();
1506 }
1507
1508 return GV;
1509 }
1510
1511 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1512 /// given global variable. If Ty is non-null and if the global doesn't exist,
1513 /// then it will be created with the specified type instead of whatever the
1514 /// normal requested type would be.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty)1515 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1516 llvm::Type *Ty) {
1517 assert(D->hasGlobalStorage() && "Not a global variable");
1518 QualType ASTTy = D->getType();
1519 if (Ty == 0)
1520 Ty = getTypes().ConvertTypeForMem(ASTTy);
1521
1522 llvm::PointerType *PTy =
1523 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1524
1525 StringRef MangledName = getMangledName(D);
1526 return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1527 }
1528
1529 /// CreateRuntimeVariable - Create a new runtime global variable with the
1530 /// specified type and name.
1531 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)1532 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1533 StringRef Name) {
1534 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1535 true);
1536 }
1537
EmitTentativeDefinition(const VarDecl * D)1538 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1539 assert(!D->getInit() && "Cannot emit definite definitions here!");
1540
1541 if (MayDeferGeneration(D)) {
1542 // If we have not seen a reference to this variable yet, place it
1543 // into the deferred declarations table to be emitted if needed
1544 // later.
1545 StringRef MangledName = getMangledName(D);
1546 if (!GetGlobalValue(MangledName)) {
1547 DeferredDecls[MangledName] = D;
1548 return;
1549 }
1550 }
1551
1552 // The tentative definition is the only definition.
1553 EmitGlobalVarDefinition(D);
1554 }
1555
GetTargetTypeStoreSize(llvm::Type * Ty) const1556 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1557 return Context.toCharUnitsFromBits(
1558 TheDataLayout.getTypeStoreSizeInBits(Ty));
1559 }
1560
1561 llvm::Constant *
MaybeEmitGlobalStdInitializerListInitializer(const VarDecl * D,const Expr * rawInit)1562 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1563 const Expr *rawInit) {
1564 ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1565 if (const ExprWithCleanups *withCleanups =
1566 dyn_cast<ExprWithCleanups>(rawInit)) {
1567 cleanups = withCleanups->getObjects();
1568 rawInit = withCleanups->getSubExpr();
1569 }
1570
1571 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1572 if (!init || !init->initializesStdInitializerList() ||
1573 init->getNumInits() == 0)
1574 return 0;
1575
1576 ASTContext &ctx = getContext();
1577 unsigned numInits = init->getNumInits();
1578 // FIXME: This check is here because we would otherwise silently miscompile
1579 // nested global std::initializer_lists. Better would be to have a real
1580 // implementation.
1581 for (unsigned i = 0; i < numInits; ++i) {
1582 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1583 if (inner && inner->initializesStdInitializerList()) {
1584 ErrorUnsupported(inner, "nested global std::initializer_list");
1585 return 0;
1586 }
1587 }
1588
1589 // Synthesize a fake VarDecl for the array and initialize that.
1590 QualType elementType = init->getInit(0)->getType();
1591 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1592 QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1593 ArrayType::Normal, 0);
1594
1595 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1596 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1597 arrayType, D->getLocation());
1598 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1599 D->getDeclContext()),
1600 D->getLocStart(), D->getLocation(),
1601 name, arrayType, sourceInfo,
1602 SC_Static, SC_Static);
1603
1604 // Now clone the InitListExpr to initialize the array instead.
1605 // Incredible hack: we want to use the existing InitListExpr here, so we need
1606 // to tell it that it no longer initializes a std::initializer_list.
1607 ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1608 init->getNumInits());
1609 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1610 init->getRBraceLoc());
1611 arrayInit->setType(arrayType);
1612
1613 if (!cleanups.empty())
1614 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1615
1616 backingArray->setInit(arrayInit);
1617
1618 // Emit the definition of the array.
1619 EmitGlobalVarDefinition(backingArray);
1620
1621 // Inspect the initializer list to validate it and determine its type.
1622 // FIXME: doing this every time is probably inefficient; caching would be nice
1623 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1624 RecordDecl::field_iterator field = record->field_begin();
1625 if (field == record->field_end()) {
1626 ErrorUnsupported(D, "weird std::initializer_list");
1627 return 0;
1628 }
1629 QualType elementPtr = ctx.getPointerType(elementType.withConst());
1630 // Start pointer.
1631 if (!ctx.hasSameType(field->getType(), elementPtr)) {
1632 ErrorUnsupported(D, "weird std::initializer_list");
1633 return 0;
1634 }
1635 ++field;
1636 if (field == record->field_end()) {
1637 ErrorUnsupported(D, "weird std::initializer_list");
1638 return 0;
1639 }
1640 bool isStartEnd = false;
1641 if (ctx.hasSameType(field->getType(), elementPtr)) {
1642 // End pointer.
1643 isStartEnd = true;
1644 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1645 ErrorUnsupported(D, "weird std::initializer_list");
1646 return 0;
1647 }
1648
1649 // Now build an APValue representing the std::initializer_list.
1650 APValue initListValue(APValue::UninitStruct(), 0, 2);
1651 APValue &startField = initListValue.getStructField(0);
1652 APValue::LValuePathEntry startOffsetPathEntry;
1653 startOffsetPathEntry.ArrayIndex = 0;
1654 startField = APValue(APValue::LValueBase(backingArray),
1655 CharUnits::fromQuantity(0),
1656 llvm::makeArrayRef(startOffsetPathEntry),
1657 /*IsOnePastTheEnd=*/false, 0);
1658
1659 if (isStartEnd) {
1660 APValue &endField = initListValue.getStructField(1);
1661 APValue::LValuePathEntry endOffsetPathEntry;
1662 endOffsetPathEntry.ArrayIndex = numInits;
1663 endField = APValue(APValue::LValueBase(backingArray),
1664 ctx.getTypeSizeInChars(elementType) * numInits,
1665 llvm::makeArrayRef(endOffsetPathEntry),
1666 /*IsOnePastTheEnd=*/true, 0);
1667 } else {
1668 APValue &sizeField = initListValue.getStructField(1);
1669 sizeField = APValue(llvm::APSInt(numElements));
1670 }
1671
1672 // Emit the constant for the initializer_list.
1673 llvm::Constant *llvmInit =
1674 EmitConstantValueForMemory(initListValue, D->getType());
1675 assert(llvmInit && "failed to initialize as constant");
1676 return llvmInit;
1677 }
1678
GetGlobalVarAddressSpace(const VarDecl * D,unsigned AddrSpace)1679 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1680 unsigned AddrSpace) {
1681 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1682 if (D->hasAttr<CUDAConstantAttr>())
1683 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1684 else if (D->hasAttr<CUDASharedAttr>())
1685 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1686 else
1687 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1688 }
1689
1690 return AddrSpace;
1691 }
1692
EmitGlobalVarDefinition(const VarDecl * D)1693 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1694 llvm::Constant *Init = 0;
1695 QualType ASTTy = D->getType();
1696 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1697 bool NeedsGlobalCtor = false;
1698 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1699
1700 const VarDecl *InitDecl;
1701 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1702
1703 if (!InitExpr) {
1704 // This is a tentative definition; tentative definitions are
1705 // implicitly initialized with { 0 }.
1706 //
1707 // Note that tentative definitions are only emitted at the end of
1708 // a translation unit, so they should never have incomplete
1709 // type. In addition, EmitTentativeDefinition makes sure that we
1710 // never attempt to emit a tentative definition if a real one
1711 // exists. A use may still exists, however, so we still may need
1712 // to do a RAUW.
1713 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1714 Init = EmitNullConstant(D->getType());
1715 } else {
1716 // If this is a std::initializer_list, emit the special initializer.
1717 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1718 // An empty init list will perform zero-initialization, which happens
1719 // to be exactly what we want.
1720 // FIXME: It does so in a global constructor, which is *not* what we
1721 // want.
1722
1723 if (!Init) {
1724 initializedGlobalDecl = GlobalDecl(D);
1725 Init = EmitConstantInit(*InitDecl);
1726 }
1727 if (!Init) {
1728 QualType T = InitExpr->getType();
1729 if (D->getType()->isReferenceType())
1730 T = D->getType();
1731
1732 if (getLangOpts().CPlusPlus) {
1733 Init = EmitNullConstant(T);
1734 NeedsGlobalCtor = true;
1735 } else {
1736 ErrorUnsupported(D, "static initializer");
1737 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1738 }
1739 } else {
1740 // We don't need an initializer, so remove the entry for the delayed
1741 // initializer position (just in case this entry was delayed) if we
1742 // also don't need to register a destructor.
1743 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1744 DelayedCXXInitPosition.erase(D);
1745 }
1746 }
1747
1748 llvm::Type* InitType = Init->getType();
1749 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1750
1751 // Strip off a bitcast if we got one back.
1752 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1753 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1754 // all zero index gep.
1755 CE->getOpcode() == llvm::Instruction::GetElementPtr);
1756 Entry = CE->getOperand(0);
1757 }
1758
1759 // Entry is now either a Function or GlobalVariable.
1760 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1761
1762 // We have a definition after a declaration with the wrong type.
1763 // We must make a new GlobalVariable* and update everything that used OldGV
1764 // (a declaration or tentative definition) with the new GlobalVariable*
1765 // (which will be a definition).
1766 //
1767 // This happens if there is a prototype for a global (e.g.
1768 // "extern int x[];") and then a definition of a different type (e.g.
1769 // "int x[10];"). This also happens when an initializer has a different type
1770 // from the type of the global (this happens with unions).
1771 if (GV == 0 ||
1772 GV->getType()->getElementType() != InitType ||
1773 GV->getType()->getAddressSpace() !=
1774 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1775
1776 // Move the old entry aside so that we'll create a new one.
1777 Entry->setName(StringRef());
1778
1779 // Make a new global with the correct type, this is now guaranteed to work.
1780 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1781
1782 // Replace all uses of the old global with the new global
1783 llvm::Constant *NewPtrForOldDecl =
1784 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1785 Entry->replaceAllUsesWith(NewPtrForOldDecl);
1786
1787 // Erase the old global, since it is no longer used.
1788 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1789 }
1790
1791 if (D->hasAttr<AnnotateAttr>())
1792 AddGlobalAnnotations(D, GV);
1793
1794 GV->setInitializer(Init);
1795
1796 // If it is safe to mark the global 'constant', do so now.
1797 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1798 isTypeConstant(D->getType(), true));
1799
1800 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1801
1802 // Set the llvm linkage type as appropriate.
1803 llvm::GlobalValue::LinkageTypes Linkage =
1804 GetLLVMLinkageVarDefinition(D, GV);
1805 GV->setLinkage(Linkage);
1806 if (Linkage == llvm::GlobalVariable::CommonLinkage)
1807 // common vars aren't constant even if declared const.
1808 GV->setConstant(false);
1809
1810 SetCommonAttributes(D, GV);
1811
1812 // Emit the initializer function if necessary.
1813 if (NeedsGlobalCtor || NeedsGlobalDtor)
1814 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1815
1816 // If we are compiling with ASan, add metadata indicating dynamically
1817 // initialized globals.
1818 if (SanOpts.Address && NeedsGlobalCtor) {
1819 llvm::Module &M = getModule();
1820
1821 llvm::NamedMDNode *DynamicInitializers =
1822 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1823 llvm::Value *GlobalToAdd[] = { GV };
1824 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1825 DynamicInitializers->addOperand(ThisGlobal);
1826 }
1827
1828 // Emit global variable debug information.
1829 if (CGDebugInfo *DI = getModuleDebugInfo())
1830 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1831 DI->EmitGlobalVariable(GV, D);
1832 }
1833
1834 llvm::GlobalValue::LinkageTypes
GetLLVMLinkageVarDefinition(const VarDecl * D,llvm::GlobalVariable * GV)1835 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1836 llvm::GlobalVariable *GV) {
1837 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1838 if (Linkage == GVA_Internal)
1839 return llvm::Function::InternalLinkage;
1840 else if (D->hasAttr<DLLImportAttr>())
1841 return llvm::Function::DLLImportLinkage;
1842 else if (D->hasAttr<DLLExportAttr>())
1843 return llvm::Function::DLLExportLinkage;
1844 else if (D->hasAttr<WeakAttr>()) {
1845 if (GV->isConstant())
1846 return llvm::GlobalVariable::WeakODRLinkage;
1847 else
1848 return llvm::GlobalVariable::WeakAnyLinkage;
1849 } else if (Linkage == GVA_TemplateInstantiation ||
1850 Linkage == GVA_ExplicitTemplateInstantiation)
1851 return llvm::GlobalVariable::WeakODRLinkage;
1852 else if (!getLangOpts().CPlusPlus &&
1853 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1854 D->getAttr<CommonAttr>()) &&
1855 !D->hasExternalStorage() && !D->getInit() &&
1856 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1857 !D->getAttr<WeakImportAttr>()) {
1858 // Thread local vars aren't considered common linkage.
1859 return llvm::GlobalVariable::CommonLinkage;
1860 }
1861 return llvm::GlobalVariable::ExternalLinkage;
1862 }
1863
1864 /// Replace the uses of a function that was declared with a non-proto type.
1865 /// We want to silently drop extra arguments from call sites
replaceUsesOfNonProtoConstant(llvm::Constant * old,llvm::Function * newFn)1866 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1867 llvm::Function *newFn) {
1868 // Fast path.
1869 if (old->use_empty()) return;
1870
1871 llvm::Type *newRetTy = newFn->getReturnType();
1872 SmallVector<llvm::Value*, 4> newArgs;
1873
1874 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1875 ui != ue; ) {
1876 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1877 llvm::User *user = *use;
1878
1879 // Recognize and replace uses of bitcasts. Most calls to
1880 // unprototyped functions will use bitcasts.
1881 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1882 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1883 replaceUsesOfNonProtoConstant(bitcast, newFn);
1884 continue;
1885 }
1886
1887 // Recognize calls to the function.
1888 llvm::CallSite callSite(user);
1889 if (!callSite) continue;
1890 if (!callSite.isCallee(use)) continue;
1891
1892 // If the return types don't match exactly, then we can't
1893 // transform this call unless it's dead.
1894 if (callSite->getType() != newRetTy && !callSite->use_empty())
1895 continue;
1896
1897 // Get the call site's attribute list.
1898 SmallVector<llvm::AttributeSet, 8> newAttrs;
1899 llvm::AttributeSet oldAttrs = callSite.getAttributes();
1900
1901 // Collect any return attributes from the call.
1902 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1903 newAttrs.push_back(
1904 llvm::AttributeSet::get(newFn->getContext(),
1905 oldAttrs.getRetAttributes()));
1906
1907 // If the function was passed too few arguments, don't transform.
1908 unsigned newNumArgs = newFn->arg_size();
1909 if (callSite.arg_size() < newNumArgs) continue;
1910
1911 // If extra arguments were passed, we silently drop them.
1912 // If any of the types mismatch, we don't transform.
1913 unsigned argNo = 0;
1914 bool dontTransform = false;
1915 for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1916 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1917 if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1918 dontTransform = true;
1919 break;
1920 }
1921
1922 // Add any parameter attributes.
1923 if (oldAttrs.hasAttributes(argNo + 1))
1924 newAttrs.
1925 push_back(llvm::
1926 AttributeSet::get(newFn->getContext(),
1927 oldAttrs.getParamAttributes(argNo + 1)));
1928 }
1929 if (dontTransform)
1930 continue;
1931
1932 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1933 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1934 oldAttrs.getFnAttributes()));
1935
1936 // Okay, we can transform this. Create the new call instruction and copy
1937 // over the required information.
1938 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1939
1940 llvm::CallSite newCall;
1941 if (callSite.isCall()) {
1942 newCall = llvm::CallInst::Create(newFn, newArgs, "",
1943 callSite.getInstruction());
1944 } else {
1945 llvm::InvokeInst *oldInvoke =
1946 cast<llvm::InvokeInst>(callSite.getInstruction());
1947 newCall = llvm::InvokeInst::Create(newFn,
1948 oldInvoke->getNormalDest(),
1949 oldInvoke->getUnwindDest(),
1950 newArgs, "",
1951 callSite.getInstruction());
1952 }
1953 newArgs.clear(); // for the next iteration
1954
1955 if (!newCall->getType()->isVoidTy())
1956 newCall->takeName(callSite.getInstruction());
1957 newCall.setAttributes(
1958 llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1959 newCall.setCallingConv(callSite.getCallingConv());
1960
1961 // Finally, remove the old call, replacing any uses with the new one.
1962 if (!callSite->use_empty())
1963 callSite->replaceAllUsesWith(newCall.getInstruction());
1964
1965 // Copy debug location attached to CI.
1966 if (!callSite->getDebugLoc().isUnknown())
1967 newCall->setDebugLoc(callSite->getDebugLoc());
1968 callSite->eraseFromParent();
1969 }
1970 }
1971
1972 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1973 /// implement a function with no prototype, e.g. "int foo() {}". If there are
1974 /// existing call uses of the old function in the module, this adjusts them to
1975 /// call the new function directly.
1976 ///
1977 /// This is not just a cleanup: the always_inline pass requires direct calls to
1978 /// functions to be able to inline them. If there is a bitcast in the way, it
1979 /// won't inline them. Instcombine normally deletes these calls, but it isn't
1980 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)1981 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1982 llvm::Function *NewFn) {
1983 // If we're redefining a global as a function, don't transform it.
1984 if (!isa<llvm::Function>(Old)) return;
1985
1986 replaceUsesOfNonProtoConstant(Old, NewFn);
1987 }
1988
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)1989 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1990 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1991 // If we have a definition, this might be a deferred decl. If the
1992 // instantiation is explicit, make sure we emit it at the end.
1993 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1994 GetAddrOfGlobalVar(VD);
1995
1996 EmitTopLevelDecl(VD);
1997 }
1998
EmitGlobalFunctionDefinition(GlobalDecl GD)1999 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2000 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2001
2002 // Compute the function info and LLVM type.
2003 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2004 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2005
2006 // Get or create the prototype for the function.
2007 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2008
2009 // Strip off a bitcast if we got one back.
2010 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2011 assert(CE->getOpcode() == llvm::Instruction::BitCast);
2012 Entry = CE->getOperand(0);
2013 }
2014
2015
2016 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2017 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2018
2019 // If the types mismatch then we have to rewrite the definition.
2020 assert(OldFn->isDeclaration() &&
2021 "Shouldn't replace non-declaration");
2022
2023 // F is the Function* for the one with the wrong type, we must make a new
2024 // Function* and update everything that used F (a declaration) with the new
2025 // Function* (which will be a definition).
2026 //
2027 // This happens if there is a prototype for a function
2028 // (e.g. "int f()") and then a definition of a different type
2029 // (e.g. "int f(int x)"). Move the old function aside so that it
2030 // doesn't interfere with GetAddrOfFunction.
2031 OldFn->setName(StringRef());
2032 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2033
2034 // This might be an implementation of a function without a
2035 // prototype, in which case, try to do special replacement of
2036 // calls which match the new prototype. The really key thing here
2037 // is that we also potentially drop arguments from the call site
2038 // so as to make a direct call, which makes the inliner happier
2039 // and suppresses a number of optimizer warnings (!) about
2040 // dropping arguments.
2041 if (!OldFn->use_empty()) {
2042 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2043 OldFn->removeDeadConstantUsers();
2044 }
2045
2046 // Replace uses of F with the Function we will endow with a body.
2047 if (!Entry->use_empty()) {
2048 llvm::Constant *NewPtrForOldDecl =
2049 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2050 Entry->replaceAllUsesWith(NewPtrForOldDecl);
2051 }
2052
2053 // Ok, delete the old function now, which is dead.
2054 OldFn->eraseFromParent();
2055
2056 Entry = NewFn;
2057 }
2058
2059 // We need to set linkage and visibility on the function before
2060 // generating code for it because various parts of IR generation
2061 // want to propagate this information down (e.g. to local static
2062 // declarations).
2063 llvm::Function *Fn = cast<llvm::Function>(Entry);
2064 setFunctionLinkage(D, Fn);
2065
2066 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2067 setGlobalVisibility(Fn, D);
2068
2069 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2070
2071 SetFunctionDefinitionAttributes(D, Fn);
2072 SetLLVMFunctionAttributesForDefinition(D, Fn);
2073
2074 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2075 AddGlobalCtor(Fn, CA->getPriority());
2076 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2077 AddGlobalDtor(Fn, DA->getPriority());
2078 if (D->hasAttr<AnnotateAttr>())
2079 AddGlobalAnnotations(D, Fn);
2080 }
2081
EmitAliasDefinition(GlobalDecl GD)2082 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2083 const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2084 const AliasAttr *AA = D->getAttr<AliasAttr>();
2085 assert(AA && "Not an alias?");
2086
2087 StringRef MangledName = getMangledName(GD);
2088
2089 // If there is a definition in the module, then it wins over the alias.
2090 // This is dubious, but allow it to be safe. Just ignore the alias.
2091 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2092 if (Entry && !Entry->isDeclaration())
2093 return;
2094
2095 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2096
2097 // Create a reference to the named value. This ensures that it is emitted
2098 // if a deferred decl.
2099 llvm::Constant *Aliasee;
2100 if (isa<llvm::FunctionType>(DeclTy))
2101 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2102 /*ForVTable=*/false);
2103 else
2104 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2105 llvm::PointerType::getUnqual(DeclTy), 0);
2106
2107 // Create the new alias itself, but don't set a name yet.
2108 llvm::GlobalValue *GA =
2109 new llvm::GlobalAlias(Aliasee->getType(),
2110 llvm::Function::ExternalLinkage,
2111 "", Aliasee, &getModule());
2112
2113 if (Entry) {
2114 assert(Entry->isDeclaration());
2115
2116 // If there is a declaration in the module, then we had an extern followed
2117 // by the alias, as in:
2118 // extern int test6();
2119 // ...
2120 // int test6() __attribute__((alias("test7")));
2121 //
2122 // Remove it and replace uses of it with the alias.
2123 GA->takeName(Entry);
2124
2125 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2126 Entry->getType()));
2127 Entry->eraseFromParent();
2128 } else {
2129 GA->setName(MangledName);
2130 }
2131
2132 // Set attributes which are particular to an alias; this is a
2133 // specialization of the attributes which may be set on a global
2134 // variable/function.
2135 if (D->hasAttr<DLLExportAttr>()) {
2136 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2137 // The dllexport attribute is ignored for undefined symbols.
2138 if (FD->hasBody())
2139 GA->setLinkage(llvm::Function::DLLExportLinkage);
2140 } else {
2141 GA->setLinkage(llvm::Function::DLLExportLinkage);
2142 }
2143 } else if (D->hasAttr<WeakAttr>() ||
2144 D->hasAttr<WeakRefAttr>() ||
2145 D->isWeakImported()) {
2146 GA->setLinkage(llvm::Function::WeakAnyLinkage);
2147 }
2148
2149 SetCommonAttributes(D, GA);
2150 }
2151
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)2152 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2153 ArrayRef<llvm::Type*> Tys) {
2154 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2155 Tys);
2156 }
2157
2158 static llvm::StringMapEntry<llvm::Constant*> &
GetConstantCFStringEntry(llvm::StringMap<llvm::Constant * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)2159 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2160 const StringLiteral *Literal,
2161 bool TargetIsLSB,
2162 bool &IsUTF16,
2163 unsigned &StringLength) {
2164 StringRef String = Literal->getString();
2165 unsigned NumBytes = String.size();
2166
2167 // Check for simple case.
2168 if (!Literal->containsNonAsciiOrNull()) {
2169 StringLength = NumBytes;
2170 return Map.GetOrCreateValue(String);
2171 }
2172
2173 // Otherwise, convert the UTF8 literals into a string of shorts.
2174 IsUTF16 = true;
2175
2176 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2177 const UTF8 *FromPtr = (const UTF8 *)String.data();
2178 UTF16 *ToPtr = &ToBuf[0];
2179
2180 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2181 &ToPtr, ToPtr + NumBytes,
2182 strictConversion);
2183
2184 // ConvertUTF8toUTF16 returns the length in ToPtr.
2185 StringLength = ToPtr - &ToBuf[0];
2186
2187 // Add an explicit null.
2188 *ToPtr = 0;
2189 return Map.
2190 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2191 (StringLength + 1) * 2));
2192 }
2193
2194 static llvm::StringMapEntry<llvm::Constant*> &
GetConstantStringEntry(llvm::StringMap<llvm::Constant * > & Map,const StringLiteral * Literal,unsigned & StringLength)2195 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2196 const StringLiteral *Literal,
2197 unsigned &StringLength) {
2198 StringRef String = Literal->getString();
2199 StringLength = String.size();
2200 return Map.GetOrCreateValue(String);
2201 }
2202
2203 llvm::Constant *
GetAddrOfConstantCFString(const StringLiteral * Literal)2204 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2205 unsigned StringLength = 0;
2206 bool isUTF16 = false;
2207 llvm::StringMapEntry<llvm::Constant*> &Entry =
2208 GetConstantCFStringEntry(CFConstantStringMap, Literal,
2209 getDataLayout().isLittleEndian(),
2210 isUTF16, StringLength);
2211
2212 if (llvm::Constant *C = Entry.getValue())
2213 return C;
2214
2215 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2216 llvm::Constant *Zeros[] = { Zero, Zero };
2217
2218 // If we don't already have it, get __CFConstantStringClassReference.
2219 if (!CFConstantStringClassRef) {
2220 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2221 Ty = llvm::ArrayType::get(Ty, 0);
2222 llvm::Constant *GV = CreateRuntimeVariable(Ty,
2223 "__CFConstantStringClassReference");
2224 // Decay array -> ptr
2225 CFConstantStringClassRef =
2226 llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2227 }
2228
2229 QualType CFTy = getContext().getCFConstantStringType();
2230
2231 llvm::StructType *STy =
2232 cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2233
2234 llvm::Constant *Fields[4];
2235
2236 // Class pointer.
2237 Fields[0] = CFConstantStringClassRef;
2238
2239 // Flags.
2240 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2241 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2242 llvm::ConstantInt::get(Ty, 0x07C8);
2243
2244 // String pointer.
2245 llvm::Constant *C = 0;
2246 if (isUTF16) {
2247 ArrayRef<uint16_t> Arr =
2248 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2249 const_cast<char *>(Entry.getKey().data())),
2250 Entry.getKey().size() / 2);
2251 C = llvm::ConstantDataArray::get(VMContext, Arr);
2252 } else {
2253 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2254 }
2255
2256 llvm::GlobalValue::LinkageTypes Linkage;
2257 if (isUTF16)
2258 // FIXME: why do utf strings get "_" labels instead of "L" labels?
2259 Linkage = llvm::GlobalValue::InternalLinkage;
2260 else
2261 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2262 // when using private linkage. It is not clear if this is a bug in ld
2263 // or a reasonable new restriction.
2264 Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2265
2266 // Note: -fwritable-strings doesn't make the backing store strings of
2267 // CFStrings writable. (See <rdar://problem/10657500>)
2268 llvm::GlobalVariable *GV =
2269 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2270 Linkage, C, ".str");
2271 GV->setUnnamedAddr(true);
2272 if (isUTF16) {
2273 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2274 GV->setAlignment(Align.getQuantity());
2275 } else {
2276 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2277 GV->setAlignment(Align.getQuantity());
2278 }
2279
2280 // String.
2281 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2282
2283 if (isUTF16)
2284 // Cast the UTF16 string to the correct type.
2285 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2286
2287 // String length.
2288 Ty = getTypes().ConvertType(getContext().LongTy);
2289 Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2290
2291 // The struct.
2292 C = llvm::ConstantStruct::get(STy, Fields);
2293 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2294 llvm::GlobalVariable::PrivateLinkage, C,
2295 "_unnamed_cfstring_");
2296 if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2297 GV->setSection(Sect);
2298 Entry.setValue(GV);
2299
2300 return GV;
2301 }
2302
2303 static RecordDecl *
CreateRecordDecl(const ASTContext & Ctx,RecordDecl::TagKind TK,DeclContext * DC,IdentifierInfo * Id)2304 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2305 DeclContext *DC, IdentifierInfo *Id) {
2306 SourceLocation Loc;
2307 if (Ctx.getLangOpts().CPlusPlus)
2308 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2309 else
2310 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2311 }
2312
2313 llvm::Constant *
GetAddrOfConstantString(const StringLiteral * Literal)2314 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2315 unsigned StringLength = 0;
2316 llvm::StringMapEntry<llvm::Constant*> &Entry =
2317 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2318
2319 if (llvm::Constant *C = Entry.getValue())
2320 return C;
2321
2322 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2323 llvm::Constant *Zeros[] = { Zero, Zero };
2324
2325 // If we don't already have it, get _NSConstantStringClassReference.
2326 if (!ConstantStringClassRef) {
2327 std::string StringClass(getLangOpts().ObjCConstantStringClass);
2328 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2329 llvm::Constant *GV;
2330 if (LangOpts.ObjCRuntime.isNonFragile()) {
2331 std::string str =
2332 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2333 : "OBJC_CLASS_$_" + StringClass;
2334 GV = getObjCRuntime().GetClassGlobal(str);
2335 // Make sure the result is of the correct type.
2336 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2337 ConstantStringClassRef =
2338 llvm::ConstantExpr::getBitCast(GV, PTy);
2339 } else {
2340 std::string str =
2341 StringClass.empty() ? "_NSConstantStringClassReference"
2342 : "_" + StringClass + "ClassReference";
2343 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2344 GV = CreateRuntimeVariable(PTy, str);
2345 // Decay array -> ptr
2346 ConstantStringClassRef =
2347 llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2348 }
2349 }
2350
2351 if (!NSConstantStringType) {
2352 // Construct the type for a constant NSString.
2353 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2354 Context.getTranslationUnitDecl(),
2355 &Context.Idents.get("__builtin_NSString"));
2356 D->startDefinition();
2357
2358 QualType FieldTypes[3];
2359
2360 // const int *isa;
2361 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2362 // const char *str;
2363 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2364 // unsigned int length;
2365 FieldTypes[2] = Context.UnsignedIntTy;
2366
2367 // Create fields
2368 for (unsigned i = 0; i < 3; ++i) {
2369 FieldDecl *Field = FieldDecl::Create(Context, D,
2370 SourceLocation(),
2371 SourceLocation(), 0,
2372 FieldTypes[i], /*TInfo=*/0,
2373 /*BitWidth=*/0,
2374 /*Mutable=*/false,
2375 ICIS_NoInit);
2376 Field->setAccess(AS_public);
2377 D->addDecl(Field);
2378 }
2379
2380 D->completeDefinition();
2381 QualType NSTy = Context.getTagDeclType(D);
2382 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2383 }
2384
2385 llvm::Constant *Fields[3];
2386
2387 // Class pointer.
2388 Fields[0] = ConstantStringClassRef;
2389
2390 // String pointer.
2391 llvm::Constant *C =
2392 llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2393
2394 llvm::GlobalValue::LinkageTypes Linkage;
2395 bool isConstant;
2396 Linkage = llvm::GlobalValue::PrivateLinkage;
2397 isConstant = !LangOpts.WritableStrings;
2398
2399 llvm::GlobalVariable *GV =
2400 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2401 ".str");
2402 GV->setUnnamedAddr(true);
2403 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2404 GV->setAlignment(Align.getQuantity());
2405 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2406
2407 // String length.
2408 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2409 Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2410
2411 // The struct.
2412 C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2413 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2414 llvm::GlobalVariable::PrivateLinkage, C,
2415 "_unnamed_nsstring_");
2416 // FIXME. Fix section.
2417 if (const char *Sect =
2418 LangOpts.ObjCRuntime.isNonFragile()
2419 ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2420 : getContext().getTargetInfo().getNSStringSection())
2421 GV->setSection(Sect);
2422 Entry.setValue(GV);
2423
2424 return GV;
2425 }
2426
getObjCFastEnumerationStateType()2427 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2428 if (ObjCFastEnumerationStateType.isNull()) {
2429 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2430 Context.getTranslationUnitDecl(),
2431 &Context.Idents.get("__objcFastEnumerationState"));
2432 D->startDefinition();
2433
2434 QualType FieldTypes[] = {
2435 Context.UnsignedLongTy,
2436 Context.getPointerType(Context.getObjCIdType()),
2437 Context.getPointerType(Context.UnsignedLongTy),
2438 Context.getConstantArrayType(Context.UnsignedLongTy,
2439 llvm::APInt(32, 5), ArrayType::Normal, 0)
2440 };
2441
2442 for (size_t i = 0; i < 4; ++i) {
2443 FieldDecl *Field = FieldDecl::Create(Context,
2444 D,
2445 SourceLocation(),
2446 SourceLocation(), 0,
2447 FieldTypes[i], /*TInfo=*/0,
2448 /*BitWidth=*/0,
2449 /*Mutable=*/false,
2450 ICIS_NoInit);
2451 Field->setAccess(AS_public);
2452 D->addDecl(Field);
2453 }
2454
2455 D->completeDefinition();
2456 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2457 }
2458
2459 return ObjCFastEnumerationStateType;
2460 }
2461
2462 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)2463 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2464 assert(!E->getType()->isPointerType() && "Strings are always arrays");
2465
2466 // Don't emit it as the address of the string, emit the string data itself
2467 // as an inline array.
2468 if (E->getCharByteWidth() == 1) {
2469 SmallString<64> Str(E->getString());
2470
2471 // Resize the string to the right size, which is indicated by its type.
2472 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2473 Str.resize(CAT->getSize().getZExtValue());
2474 return llvm::ConstantDataArray::getString(VMContext, Str, false);
2475 }
2476
2477 llvm::ArrayType *AType =
2478 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2479 llvm::Type *ElemTy = AType->getElementType();
2480 unsigned NumElements = AType->getNumElements();
2481
2482 // Wide strings have either 2-byte or 4-byte elements.
2483 if (ElemTy->getPrimitiveSizeInBits() == 16) {
2484 SmallVector<uint16_t, 32> Elements;
2485 Elements.reserve(NumElements);
2486
2487 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2488 Elements.push_back(E->getCodeUnit(i));
2489 Elements.resize(NumElements);
2490 return llvm::ConstantDataArray::get(VMContext, Elements);
2491 }
2492
2493 assert(ElemTy->getPrimitiveSizeInBits() == 32);
2494 SmallVector<uint32_t, 32> Elements;
2495 Elements.reserve(NumElements);
2496
2497 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2498 Elements.push_back(E->getCodeUnit(i));
2499 Elements.resize(NumElements);
2500 return llvm::ConstantDataArray::get(VMContext, Elements);
2501 }
2502
2503 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2504 /// constant array for the given string literal.
2505 llvm::Constant *
GetAddrOfConstantStringFromLiteral(const StringLiteral * S)2506 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2507 CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2508 if (S->isAscii() || S->isUTF8()) {
2509 SmallString<64> Str(S->getString());
2510
2511 // Resize the string to the right size, which is indicated by its type.
2512 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2513 Str.resize(CAT->getSize().getZExtValue());
2514 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2515 }
2516
2517 // FIXME: the following does not memoize wide strings.
2518 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2519 llvm::GlobalVariable *GV =
2520 new llvm::GlobalVariable(getModule(),C->getType(),
2521 !LangOpts.WritableStrings,
2522 llvm::GlobalValue::PrivateLinkage,
2523 C,".str");
2524
2525 GV->setAlignment(Align.getQuantity());
2526 GV->setUnnamedAddr(true);
2527 return GV;
2528 }
2529
2530 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2531 /// array for the given ObjCEncodeExpr node.
2532 llvm::Constant *
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)2533 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2534 std::string Str;
2535 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2536
2537 return GetAddrOfConstantCString(Str);
2538 }
2539
2540
2541 /// GenerateWritableString -- Creates storage for a string literal.
GenerateStringLiteral(StringRef str,bool constant,CodeGenModule & CGM,const char * GlobalName,unsigned Alignment)2542 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2543 bool constant,
2544 CodeGenModule &CGM,
2545 const char *GlobalName,
2546 unsigned Alignment) {
2547 // Create Constant for this string literal. Don't add a '\0'.
2548 llvm::Constant *C =
2549 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2550
2551 // Create a global variable for this string
2552 llvm::GlobalVariable *GV =
2553 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2554 llvm::GlobalValue::PrivateLinkage,
2555 C, GlobalName);
2556 GV->setAlignment(Alignment);
2557 GV->setUnnamedAddr(true);
2558 return GV;
2559 }
2560
2561 /// GetAddrOfConstantString - Returns a pointer to a character array
2562 /// containing the literal. This contents are exactly that of the
2563 /// given string, i.e. it will not be null terminated automatically;
2564 /// see GetAddrOfConstantCString. Note that whether the result is
2565 /// actually a pointer to an LLVM constant depends on
2566 /// Feature.WriteableStrings.
2567 ///
2568 /// The result has pointer to array type.
GetAddrOfConstantString(StringRef Str,const char * GlobalName,unsigned Alignment)2569 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2570 const char *GlobalName,
2571 unsigned Alignment) {
2572 // Get the default prefix if a name wasn't specified.
2573 if (!GlobalName)
2574 GlobalName = ".str";
2575
2576 // Don't share any string literals if strings aren't constant.
2577 if (LangOpts.WritableStrings)
2578 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2579
2580 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2581 ConstantStringMap.GetOrCreateValue(Str);
2582
2583 if (llvm::GlobalVariable *GV = Entry.getValue()) {
2584 if (Alignment > GV->getAlignment()) {
2585 GV->setAlignment(Alignment);
2586 }
2587 return GV;
2588 }
2589
2590 // Create a global variable for this.
2591 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2592 Alignment);
2593 Entry.setValue(GV);
2594 return GV;
2595 }
2596
2597 /// GetAddrOfConstantCString - Returns a pointer to a character
2598 /// array containing the literal and a terminating '\0'
2599 /// character. The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName,unsigned Alignment)2600 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2601 const char *GlobalName,
2602 unsigned Alignment) {
2603 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2604 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2605 }
2606
2607 /// EmitObjCPropertyImplementations - Emit information for synthesized
2608 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)2609 void CodeGenModule::EmitObjCPropertyImplementations(const
2610 ObjCImplementationDecl *D) {
2611 for (ObjCImplementationDecl::propimpl_iterator
2612 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2613 ObjCPropertyImplDecl *PID = *i;
2614
2615 // Dynamic is just for type-checking.
2616 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2617 ObjCPropertyDecl *PD = PID->getPropertyDecl();
2618
2619 // Determine which methods need to be implemented, some may have
2620 // been overridden. Note that ::isPropertyAccessor is not the method
2621 // we want, that just indicates if the decl came from a
2622 // property. What we want to know is if the method is defined in
2623 // this implementation.
2624 if (!D->getInstanceMethod(PD->getGetterName()))
2625 CodeGenFunction(*this).GenerateObjCGetter(
2626 const_cast<ObjCImplementationDecl *>(D), PID);
2627 if (!PD->isReadOnly() &&
2628 !D->getInstanceMethod(PD->getSetterName()))
2629 CodeGenFunction(*this).GenerateObjCSetter(
2630 const_cast<ObjCImplementationDecl *>(D), PID);
2631 }
2632 }
2633 }
2634
needsDestructMethod(ObjCImplementationDecl * impl)2635 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2636 const ObjCInterfaceDecl *iface = impl->getClassInterface();
2637 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2638 ivar; ivar = ivar->getNextIvar())
2639 if (ivar->getType().isDestructedType())
2640 return true;
2641
2642 return false;
2643 }
2644
2645 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2646 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)2647 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2648 // We might need a .cxx_destruct even if we don't have any ivar initializers.
2649 if (needsDestructMethod(D)) {
2650 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2651 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2652 ObjCMethodDecl *DTORMethod =
2653 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2654 cxxSelector, getContext().VoidTy, 0, D,
2655 /*isInstance=*/true, /*isVariadic=*/false,
2656 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2657 /*isDefined=*/false, ObjCMethodDecl::Required);
2658 D->addInstanceMethod(DTORMethod);
2659 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2660 D->setHasDestructors(true);
2661 }
2662
2663 // If the implementation doesn't have any ivar initializers, we don't need
2664 // a .cxx_construct.
2665 if (D->getNumIvarInitializers() == 0)
2666 return;
2667
2668 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2669 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2670 // The constructor returns 'self'.
2671 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2672 D->getLocation(),
2673 D->getLocation(),
2674 cxxSelector,
2675 getContext().getObjCIdType(), 0,
2676 D, /*isInstance=*/true,
2677 /*isVariadic=*/false,
2678 /*isPropertyAccessor=*/true,
2679 /*isImplicitlyDeclared=*/true,
2680 /*isDefined=*/false,
2681 ObjCMethodDecl::Required);
2682 D->addInstanceMethod(CTORMethod);
2683 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2684 D->setHasNonZeroConstructors(true);
2685 }
2686
2687 /// EmitNamespace - Emit all declarations in a namespace.
EmitNamespace(const NamespaceDecl * ND)2688 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2689 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2690 I != E; ++I)
2691 EmitTopLevelDecl(*I);
2692 }
2693
2694 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)2695 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2696 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2697 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2698 ErrorUnsupported(LSD, "linkage spec");
2699 return;
2700 }
2701
2702 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2703 I != E; ++I) {
2704 // Meta-data for ObjC class includes references to implemented methods.
2705 // Generate class's method definitions first.
2706 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2707 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2708 MEnd = OID->meth_end();
2709 M != MEnd; ++M)
2710 EmitTopLevelDecl(*M);
2711 }
2712 EmitTopLevelDecl(*I);
2713 }
2714 }
2715
2716 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)2717 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2718 // If an error has occurred, stop code generation, but continue
2719 // parsing and semantic analysis (to ensure all warnings and errors
2720 // are emitted).
2721 if (Diags.hasErrorOccurred())
2722 return;
2723
2724 // Ignore dependent declarations.
2725 if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2726 return;
2727
2728 switch (D->getKind()) {
2729 case Decl::CXXConversion:
2730 case Decl::CXXMethod:
2731 case Decl::Function:
2732 // Skip function templates
2733 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2734 cast<FunctionDecl>(D)->isLateTemplateParsed())
2735 return;
2736
2737 EmitGlobal(cast<FunctionDecl>(D));
2738 break;
2739
2740 case Decl::Var:
2741 EmitGlobal(cast<VarDecl>(D));
2742 break;
2743
2744 // Indirect fields from global anonymous structs and unions can be
2745 // ignored; only the actual variable requires IR gen support.
2746 case Decl::IndirectField:
2747 break;
2748
2749 // C++ Decls
2750 case Decl::Namespace:
2751 EmitNamespace(cast<NamespaceDecl>(D));
2752 break;
2753 // No code generation needed.
2754 case Decl::UsingShadow:
2755 case Decl::Using:
2756 case Decl::UsingDirective:
2757 case Decl::ClassTemplate:
2758 case Decl::FunctionTemplate:
2759 case Decl::TypeAliasTemplate:
2760 case Decl::NamespaceAlias:
2761 case Decl::Block:
2762 case Decl::Empty:
2763 break;
2764 case Decl::CXXConstructor:
2765 // Skip function templates
2766 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2767 cast<FunctionDecl>(D)->isLateTemplateParsed())
2768 return;
2769
2770 EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2771 break;
2772 case Decl::CXXDestructor:
2773 if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2774 return;
2775 EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2776 break;
2777
2778 case Decl::StaticAssert:
2779 // Nothing to do.
2780 break;
2781
2782 // Objective-C Decls
2783
2784 // Forward declarations, no (immediate) code generation.
2785 case Decl::ObjCInterface:
2786 case Decl::ObjCCategory:
2787 break;
2788
2789 case Decl::ObjCProtocol: {
2790 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2791 if (Proto->isThisDeclarationADefinition())
2792 ObjCRuntime->GenerateProtocol(Proto);
2793 break;
2794 }
2795
2796 case Decl::ObjCCategoryImpl:
2797 // Categories have properties but don't support synthesize so we
2798 // can ignore them here.
2799 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2800 break;
2801
2802 case Decl::ObjCImplementation: {
2803 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2804 EmitObjCPropertyImplementations(OMD);
2805 EmitObjCIvarInitializations(OMD);
2806 ObjCRuntime->GenerateClass(OMD);
2807 // Emit global variable debug information.
2808 if (CGDebugInfo *DI = getModuleDebugInfo())
2809 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2810 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2811 OMD->getClassInterface()), OMD->getLocation());
2812 break;
2813 }
2814 case Decl::ObjCMethod: {
2815 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2816 // If this is not a prototype, emit the body.
2817 if (OMD->getBody())
2818 CodeGenFunction(*this).GenerateObjCMethod(OMD);
2819 break;
2820 }
2821 case Decl::ObjCCompatibleAlias:
2822 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2823 break;
2824
2825 case Decl::LinkageSpec:
2826 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2827 break;
2828
2829 case Decl::FileScopeAsm: {
2830 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2831 StringRef AsmString = AD->getAsmString()->getString();
2832
2833 const std::string &S = getModule().getModuleInlineAsm();
2834 if (S.empty())
2835 getModule().setModuleInlineAsm(AsmString);
2836 else if (S.end()[-1] == '\n')
2837 getModule().setModuleInlineAsm(S + AsmString.str());
2838 else
2839 getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2840 break;
2841 }
2842
2843 case Decl::Import: {
2844 ImportDecl *Import = cast<ImportDecl>(D);
2845
2846 // Ignore import declarations that come from imported modules.
2847 if (clang::Module *Owner = Import->getOwningModule()) {
2848 if (getLangOpts().CurrentModule.empty() ||
2849 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2850 break;
2851 }
2852
2853 ImportedModules.insert(Import->getImportedModule());
2854 break;
2855 }
2856
2857 default:
2858 // Make sure we handled everything we should, every other kind is a
2859 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
2860 // function. Need to recode Decl::Kind to do that easily.
2861 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2862 }
2863 }
2864
2865 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)2866 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2867 const void *Ptr) {
2868 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2869 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2870 return llvm::ConstantInt::get(i64, PtrInt);
2871 }
2872
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)2873 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2874 llvm::NamedMDNode *&GlobalMetadata,
2875 GlobalDecl D,
2876 llvm::GlobalValue *Addr) {
2877 if (!GlobalMetadata)
2878 GlobalMetadata =
2879 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2880
2881 // TODO: should we report variant information for ctors/dtors?
2882 llvm::Value *Ops[] = {
2883 Addr,
2884 GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2885 };
2886 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2887 }
2888
2889 /// Emits metadata nodes associating all the global values in the
2890 /// current module with the Decls they came from. This is useful for
2891 /// projects using IR gen as a subroutine.
2892 ///
2893 /// Since there's currently no way to associate an MDNode directly
2894 /// with an llvm::GlobalValue, we create a global named metadata
2895 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()2896 void CodeGenModule::EmitDeclMetadata() {
2897 llvm::NamedMDNode *GlobalMetadata = 0;
2898
2899 // StaticLocalDeclMap
2900 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2901 I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2902 I != E; ++I) {
2903 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2904 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2905 }
2906 }
2907
2908 /// Emits metadata nodes for all the local variables in the current
2909 /// function.
EmitDeclMetadata()2910 void CodeGenFunction::EmitDeclMetadata() {
2911 if (LocalDeclMap.empty()) return;
2912
2913 llvm::LLVMContext &Context = getLLVMContext();
2914
2915 // Find the unique metadata ID for this name.
2916 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2917
2918 llvm::NamedMDNode *GlobalMetadata = 0;
2919
2920 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2921 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2922 const Decl *D = I->first;
2923 llvm::Value *Addr = I->second;
2924
2925 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2926 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2927 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2928 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2929 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2930 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2931 }
2932 }
2933 }
2934
EmitCoverageFile()2935 void CodeGenModule::EmitCoverageFile() {
2936 if (!getCodeGenOpts().CoverageFile.empty()) {
2937 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2938 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2939 llvm::LLVMContext &Ctx = TheModule.getContext();
2940 llvm::MDString *CoverageFile =
2941 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2942 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2943 llvm::MDNode *CU = CUNode->getOperand(i);
2944 llvm::Value *node[] = { CoverageFile, CU };
2945 llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2946 GCov->addOperand(N);
2947 }
2948 }
2949 }
2950 }
2951
EmitUuidofInitializer(StringRef Uuid,QualType GuidType)2952 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2953 QualType GuidType) {
2954 // Sema has checked that all uuid strings are of the form
2955 // "12345678-1234-1234-1234-1234567890ab".
2956 assert(Uuid.size() == 36);
2957 const char *Uuidstr = Uuid.data();
2958 for (int i = 0; i < 36; ++i) {
2959 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2960 else assert(isHexDigit(Uuidstr[i]));
2961 }
2962
2963 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16);
2964 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16);
2965 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2966 static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
2967
2968 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2969 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2970 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2971 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2972 APValue& Arr = InitStruct.getStructField(3);
2973 Arr = APValue(APValue::UninitArray(), 8, 8);
2974 for (int t = 0; t < 8; ++t)
2975 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
2976 llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
2977
2978 return EmitConstantValue(InitStruct, GuidType);
2979 }
2980