1
2 /*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10 #ifndef SkTypes_DEFINED
11 #define SkTypes_DEFINED
12
13 #include "SkPreConfig.h"
14 #include "SkUserConfig.h"
15 #include "SkPostConfig.h"
16
17 #ifndef SK_IGNORE_STDINT_DOT_H
18 #include <stdint.h>
19 #endif
20
21 #include <stdio.h>
22
23 /** \file SkTypes.h
24 */
25
26 /** See SkGraphics::GetVersion() to retrieve these at runtime
27 */
28 #define SKIA_VERSION_MAJOR 1
29 #define SKIA_VERSION_MINOR 0
30 #define SKIA_VERSION_PATCH 0
31
32 /*
33 memory wrappers to be implemented by the porting layer (platform)
34 */
35
36 /** Called internally if we run out of memory. The platform implementation must
37 not return, but should either throw an exception or otherwise exit.
38 */
39 SK_API extern void sk_out_of_memory(void);
40 /** Called internally if we hit an unrecoverable error.
41 The platform implementation must not return, but should either throw
42 an exception or otherwise exit.
43 */
44 SK_API extern void sk_throw(void);
45
46 enum {
47 SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
48 SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
49 };
50 /** Return a block of memory (at least 4-byte aligned) of at least the
51 specified size. If the requested memory cannot be returned, either
52 return null (if SK_MALLOC_TEMP bit is clear) or call sk_throw()
53 (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
54 */
55 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
56 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
57 */
58 SK_API extern void* sk_malloc_throw(size_t size);
59 /** Same as standard realloc(), but this one never returns null on failure. It will throw
60 an exception if it fails.
61 */
62 SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
63 /** Free memory returned by sk_malloc(). It is safe to pass null.
64 */
65 SK_API extern void sk_free(void*);
66
67 // bzero is safer than memset, but we can't rely on it, so... sk_bzero()
sk_bzero(void * buffer,size_t size)68 static inline void sk_bzero(void* buffer, size_t size) {
69 memset(buffer, 0, size);
70 }
71
72 ///////////////////////////////////////////////////////////////////////////////
73
74 #ifdef SK_OVERRIDE_GLOBAL_NEW
75 #include <new>
76
new(size_t size)77 inline void* operator new(size_t size) {
78 return sk_malloc_throw(size);
79 }
80
delete(void * p)81 inline void operator delete(void* p) {
82 sk_free(p);
83 }
84 #endif
85
86 ///////////////////////////////////////////////////////////////////////////////
87
88 #define SK_INIT_TO_AVOID_WARNING = 0
89
90 #ifndef SkDebugf
91 void SkDebugf(const char format[], ...);
92 #endif
93
94 #ifdef SK_DEBUG
95 #define SkASSERT(cond) SK_DEBUGBREAK(cond)
96 #define SkDEBUGFAIL(message) SkASSERT(false && message)
97 #define SkDEBUGCODE(code) code
98 #define SkDECLAREPARAM(type, var) , type var
99 #define SkPARAM(var) , var
100 // #define SkDEBUGF(args ) SkDebugf##args
101 #define SkDEBUGF(args ) SkDebugf args
102 #define SkAssertResult(cond) SkASSERT(cond)
103 #else
104 #define SkASSERT(cond)
105 #define SkDEBUGFAIL(message)
106 #define SkDEBUGCODE(code)
107 #define SkDEBUGF(args)
108 #define SkDECLAREPARAM(type, var)
109 #define SkPARAM(var)
110
111 // unlike SkASSERT, this guy executes its condition in the non-debug build
112 #define SkAssertResult(cond) cond
113 #endif
114
115 #ifdef SK_DEVELOPER
116 #define SkDEVCODE(code) code
117 // the 'toString' helper functions convert Sk* objects to human-readable
118 // form in developer mode
119 #define SK_DEVELOPER_TO_STRING() virtual void toString(SkString* str) const SK_OVERRIDE;
120 #else
121 #define SkDEVCODE(code)
122 #define SK_DEVELOPER_TO_STRING()
123 #endif
124
125 template <bool>
126 struct SkCompileAssert {
127 };
128
129 #define SK_COMPILE_ASSERT(expr, msg) \
130 typedef SkCompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
131
132 /*
133 * Usage: SK_MACRO_CONCAT(a, b) to construct the symbol ab
134 *
135 * SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly
136 *
137 */
138 #define SK_MACRO_CONCAT(X, Y) SK_MACRO_CONCAT_IMPL_PRIV(X, Y)
139 #define SK_MACRO_CONCAT_IMPL_PRIV(X, Y) X ## Y
140
141 /*
142 * Usage: SK_MACRO_APPEND_LINE(foo) to make foo123, where 123 is the current
143 * line number. Easy way to construct
144 * unique names for local functions or
145 * variables.
146 */
147 #define SK_MACRO_APPEND_LINE(name) SK_MACRO_CONCAT(name, __LINE__)
148
149 ///////////////////////////////////////////////////////////////////////
150
151 /**
152 * Fast type for signed 8 bits. Use for parameter passing and local variables,
153 * not for storage.
154 */
155 typedef int S8CPU;
156
157 /**
158 * Fast type for unsigned 8 bits. Use for parameter passing and local
159 * variables, not for storage
160 */
161 typedef unsigned U8CPU;
162
163 /**
164 * Fast type for signed 16 bits. Use for parameter passing and local variables,
165 * not for storage
166 */
167 typedef int S16CPU;
168
169 /**
170 * Fast type for unsigned 16 bits. Use for parameter passing and local
171 * variables, not for storage
172 */
173 typedef unsigned U16CPU;
174
175 /**
176 * Meant to be faster than bool (doesn't promise to be 0 or 1,
177 * just 0 or non-zero
178 */
179 typedef int SkBool;
180
181 /**
182 * Meant to be a small version of bool, for storage purposes. Will be 0 or 1
183 */
184 typedef uint8_t SkBool8;
185
186 #ifdef SK_DEBUG
187 SK_API int8_t SkToS8(long);
188 SK_API uint8_t SkToU8(size_t);
189 SK_API int16_t SkToS16(long);
190 SK_API uint16_t SkToU16(size_t);
191 SK_API int32_t SkToS32(long);
192 SK_API uint32_t SkToU32(size_t);
193 #else
194 #define SkToS8(x) ((int8_t)(x))
195 #define SkToU8(x) ((uint8_t)(x))
196 #define SkToS16(x) ((int16_t)(x))
197 #define SkToU16(x) ((uint16_t)(x))
198 #define SkToS32(x) ((int32_t)(x))
199 #define SkToU32(x) ((uint32_t)(x))
200 #endif
201
202 /** Returns 0 or 1 based on the condition
203 */
204 #define SkToBool(cond) ((cond) != 0)
205
206 #define SK_MaxS16 32767
207 #define SK_MinS16 -32767
208 #define SK_MaxU16 0xFFFF
209 #define SK_MinU16 0
210 #define SK_MaxS32 0x7FFFFFFF
211 #define SK_MinS32 -SK_MaxS32
212 #define SK_MaxU32 0xFFFFFFFF
213 #define SK_MinU32 0
214 #define SK_NaN32 (1 << 31)
215
216 /** Returns true if the value can be represented with signed 16bits
217 */
SkIsS16(long x)218 static inline bool SkIsS16(long x) {
219 return (int16_t)x == x;
220 }
221
222 /** Returns true if the value can be represented with unsigned 16bits
223 */
SkIsU16(long x)224 static inline bool SkIsU16(long x) {
225 return (uint16_t)x == x;
226 }
227
228 //////////////////////////////////////////////////////////////////////////////
229 #ifndef SK_OFFSETOF
230 #define SK_OFFSETOF(type, field) (size_t)((char*)&(((type*)1)->field) - (char*)1)
231 #endif
232
233 /** Returns the number of entries in an array (not a pointer)
234 */
235 #define SK_ARRAY_COUNT(array) (sizeof(array) / sizeof(array[0]))
236
237 #define SkAlign2(x) (((x) + 1) >> 1 << 1)
238 #define SkIsAlign2(x) (0 == ((x) & 1))
239
240 #define SkAlign4(x) (((x) + 3) >> 2 << 2)
241 #define SkIsAlign4(x) (0 == ((x) & 3))
242
243 #define SkAlign8(x) (((x) + 7) >> 3 << 3)
244 #define SkIsAlign8(x) (0 == ((x) & 7))
245
246 typedef uint32_t SkFourByteTag;
247 #define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
248
249 /** 32 bit integer to hold a unicode value
250 */
251 typedef int32_t SkUnichar;
252 /** 32 bit value to hold a millisecond count
253 */
254 typedef uint32_t SkMSec;
255 /** 1 second measured in milliseconds
256 */
257 #define SK_MSec1 1000
258 /** maximum representable milliseconds
259 */
260 #define SK_MSecMax 0x7FFFFFFF
261 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
262 */
263 #define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0)
264 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
265 */
266 #define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0)
267
268 /****************************************************************************
269 The rest of these only build with C++
270 */
271 #ifdef __cplusplus
272
273 /** Faster than SkToBool for integral conditions. Returns 0 or 1
274 */
Sk32ToBool(uint32_t n)275 static inline int Sk32ToBool(uint32_t n) {
276 return (n | (0-n)) >> 31;
277 }
278
SkTSwap(T & a,T & b)279 template <typename T> inline void SkTSwap(T& a, T& b) {
280 T c(a);
281 a = b;
282 b = c;
283 }
284
SkAbs32(int32_t value)285 static inline int32_t SkAbs32(int32_t value) {
286 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
287 if (value < 0)
288 value = -value;
289 return value;
290 #else
291 int32_t mask = value >> 31;
292 return (value ^ mask) - mask;
293 #endif
294 }
295
SkTAbs(T value)296 template <typename T> inline T SkTAbs(T value) {
297 if (value < 0) {
298 value = -value;
299 }
300 return value;
301 }
302
SkMax32(int32_t a,int32_t b)303 static inline int32_t SkMax32(int32_t a, int32_t b) {
304 if (a < b)
305 a = b;
306 return a;
307 }
308
SkMin32(int32_t a,int32_t b)309 static inline int32_t SkMin32(int32_t a, int32_t b) {
310 if (a > b)
311 a = b;
312 return a;
313 }
314
SkSign32(int32_t a)315 static inline int32_t SkSign32(int32_t a) {
316 return (a >> 31) | ((unsigned) -a >> 31);
317 }
318
SkFastMin32(int32_t value,int32_t max)319 static inline int32_t SkFastMin32(int32_t value, int32_t max) {
320 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
321 if (value > max)
322 value = max;
323 return value;
324 #else
325 int diff = max - value;
326 // clear diff if it is negative (clear if value > max)
327 diff &= (diff >> 31);
328 return value + diff;
329 #endif
330 }
331
332 /** Returns signed 32 bit value pinned between min and max, inclusively
333 */
SkPin32(int32_t value,int32_t min,int32_t max)334 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
335 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
336 if (value < min)
337 value = min;
338 if (value > max)
339 value = max;
340 #else
341 if (value < min)
342 value = min;
343 else if (value > max)
344 value = max;
345 #endif
346 return value;
347 }
348
SkSetClearShift(uint32_t bits,bool cond,unsigned shift)349 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
350 unsigned shift) {
351 SkASSERT((int)cond == 0 || (int)cond == 1);
352 return (bits & ~(1 << shift)) | ((int)cond << shift);
353 }
354
SkSetClearMask(uint32_t bits,bool cond,uint32_t mask)355 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
356 uint32_t mask) {
357 return cond ? bits | mask : bits & ~mask;
358 }
359
360 ///////////////////////////////////////////////////////////////////////////////
361
362 /** Use to combine multiple bits in a bitmask in a type safe way.
363 */
364 template <typename T>
SkTBitOr(T a,T b)365 T SkTBitOr(T a, T b) {
366 return (T)(a | b);
367 }
368
369 /**
370 * Use to cast a pointer to a different type, and maintaining strict-aliasing
371 */
SkTCast(const void * ptr)372 template <typename Dst> Dst SkTCast(const void* ptr) {
373 union {
374 const void* src;
375 Dst dst;
376 } data;
377 data.src = ptr;
378 return data.dst;
379 }
380
381 //////////////////////////////////////////////////////////////////////////////
382
383 /** \class SkNoncopyable
384
385 SkNoncopyable is the base class for objects that may do not want to
386 be copied. It hides its copy-constructor and its assignment-operator.
387 */
388 class SK_API SkNoncopyable {
389 public:
SkNoncopyable()390 SkNoncopyable() {}
391
392 private:
393 SkNoncopyable(const SkNoncopyable&);
394 SkNoncopyable& operator=(const SkNoncopyable&);
395 };
396
397 class SkAutoFree : SkNoncopyable {
398 public:
SkAutoFree()399 SkAutoFree() : fPtr(NULL) {}
SkAutoFree(void * ptr)400 explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
~SkAutoFree()401 ~SkAutoFree() { sk_free(fPtr); }
402
403 /** Return the currently allocate buffer, or null
404 */
get()405 void* get() const { return fPtr; }
406
407 /** Assign a new ptr allocated with sk_malloc (or null), and return the
408 previous ptr. Note it is the caller's responsibility to sk_free the
409 returned ptr.
410 */
set(void * ptr)411 void* set(void* ptr) {
412 void* prev = fPtr;
413 fPtr = ptr;
414 return prev;
415 }
416
417 /** Transfer ownership of the current ptr to the caller, setting the
418 internal reference to null. Note the caller is reponsible for calling
419 sk_free on the returned address.
420 */
detach()421 void* detach() { return this->set(NULL); }
422
423 /** Free the current buffer, and set the internal reference to NULL. Same
424 as calling sk_free(detach())
425 */
free()426 void free() {
427 sk_free(fPtr);
428 fPtr = NULL;
429 }
430
431 private:
432 void* fPtr;
433 // illegal
434 SkAutoFree(const SkAutoFree&);
435 SkAutoFree& operator=(const SkAutoFree&);
436 };
437
438 /**
439 * Manage an allocated block of heap memory. This object is the sole manager of
440 * the lifetime of the block, so the caller must not call sk_free() or delete
441 * on the block, unless detach() was called.
442 */
443 class SkAutoMalloc : public SkNoncopyable {
444 public:
445 explicit SkAutoMalloc(size_t size = 0) {
446 fPtr = size ? sk_malloc_throw(size) : NULL;
447 fSize = size;
448 }
449
~SkAutoMalloc()450 ~SkAutoMalloc() {
451 sk_free(fPtr);
452 }
453
454 /**
455 * Passed to reset to specify what happens if the requested size is smaller
456 * than the current size (and the current block was dynamically allocated).
457 */
458 enum OnShrink {
459 /**
460 * If the requested size is smaller than the current size, and the
461 * current block is dynamically allocated, free the old block and
462 * malloc a new block of the smaller size.
463 */
464 kAlloc_OnShrink,
465
466 /**
467 * If the requested size is smaller than the current size, and the
468 * current block is dynamically allocated, just return the old
469 * block.
470 */
471 kReuse_OnShrink
472 };
473
474 /**
475 * Reallocates the block to a new size. The ptr may or may not change.
476 */
477 void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink) {
478 if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
479 return fPtr;
480 }
481
482 sk_free(fPtr);
483 fPtr = size ? sk_malloc_throw(size) : NULL;
484 fSize = size;
485
486 return fPtr;
487 }
488
489 /**
490 * Releases the block back to the heap
491 */
free()492 void free() {
493 this->reset(0);
494 }
495
496 /**
497 * Return the allocated block.
498 */
get()499 void* get() { return fPtr; }
get()500 const void* get() const { return fPtr; }
501
502 /** Transfer ownership of the current ptr to the caller, setting the
503 internal reference to null. Note the caller is reponsible for calling
504 sk_free on the returned address.
505 */
detach()506 void* detach() {
507 void* ptr = fPtr;
508 fPtr = NULL;
509 fSize = 0;
510 return ptr;
511 }
512
513 private:
514 void* fPtr;
515 size_t fSize; // can be larger than the requested size (see kReuse)
516 };
517
518 /**
519 * Manage an allocated block of memory. If the requested size is <= kSize, then
520 * the allocation will come from the stack rather than the heap. This object
521 * is the sole manager of the lifetime of the block, so the caller must not
522 * call sk_free() or delete on the block.
523 */
524 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
525 public:
526 /**
527 * Creates initially empty storage. get() returns a ptr, but it is to
528 * a zero-byte allocation. Must call reset(size) to return an allocated
529 * block.
530 */
SkAutoSMalloc()531 SkAutoSMalloc() {
532 fPtr = fStorage;
533 fSize = 0;
534 }
535
536 /**
537 * Allocate a block of the specified size. If size <= kSize, then the
538 * allocation will come from the stack, otherwise it will be dynamically
539 * allocated.
540 */
SkAutoSMalloc(size_t size)541 explicit SkAutoSMalloc(size_t size) {
542 fPtr = fStorage;
543 fSize = 0;
544 this->reset(size);
545 }
546
547 /**
548 * Free the allocated block (if any). If the block was small enought to
549 * have been allocated on the stack (size <= kSize) then this does nothing.
550 */
~SkAutoSMalloc()551 ~SkAutoSMalloc() {
552 if (fPtr != (void*)fStorage) {
553 sk_free(fPtr);
554 }
555 }
556
557 /**
558 * Return the allocated block. May return non-null even if the block is
559 * of zero size. Since this may be on the stack or dynamically allocated,
560 * the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
561 * to manage it.
562 */
get()563 void* get() const { return fPtr; }
564
565 /**
566 * Return a new block of the requested size, freeing (as necessary) any
567 * previously allocated block. As with the constructor, if size <= kSize
568 * then the return block may be allocated locally, rather than from the
569 * heap.
570 */
571 void* reset(size_t size,
572 SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink) {
573 if (size == fSize || (SkAutoMalloc::kReuse_OnShrink == shrink &&
574 size < fSize)) {
575 return fPtr;
576 }
577
578 if (fPtr != (void*)fStorage) {
579 sk_free(fPtr);
580 }
581
582 if (size <= kSize) {
583 fPtr = fStorage;
584 } else {
585 fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
586 }
587 return fPtr;
588 }
589
590 private:
591 void* fPtr;
592 size_t fSize; // can be larger than the requested size (see kReuse)
593 uint32_t fStorage[(kSize + 3) >> 2];
594 };
595
596 #endif /* C++ */
597
598 #endif
599