1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetRegisterInfo.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "llvm/Support/raw_ostream.h"
20
21 using namespace llvm;
22
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const unsigned * SRILaneMasks)23 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
24 regclass_iterator RCB, regclass_iterator RCE,
25 const char *const *SRINames,
26 const unsigned *SRILaneMasks)
27 : InfoDesc(ID), SubRegIndexNames(SRINames),
28 SubRegIndexLaneMasks(SRILaneMasks),
29 RegClassBegin(RCB), RegClassEnd(RCE) {
30 }
31
~TargetRegisterInfo()32 TargetRegisterInfo::~TargetRegisterInfo() {}
33
print(raw_ostream & OS) const34 void PrintReg::print(raw_ostream &OS) const {
35 if (!Reg)
36 OS << "%noreg";
37 else if (TargetRegisterInfo::isStackSlot(Reg))
38 OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
39 else if (TargetRegisterInfo::isVirtualRegister(Reg))
40 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
41 else if (TRI && Reg < TRI->getNumRegs())
42 OS << '%' << TRI->getName(Reg);
43 else
44 OS << "%physreg" << Reg;
45 if (SubIdx) {
46 if (TRI)
47 OS << ':' << TRI->getSubRegIndexName(SubIdx);
48 else
49 OS << ":sub(" << SubIdx << ')';
50 }
51 }
52
print(raw_ostream & OS) const53 void PrintRegUnit::print(raw_ostream &OS) const {
54 // Generic printout when TRI is missing.
55 if (!TRI) {
56 OS << "Unit~" << Unit;
57 return;
58 }
59
60 // Check for invalid register units.
61 if (Unit >= TRI->getNumRegUnits()) {
62 OS << "BadUnit~" << Unit;
63 return;
64 }
65
66 // Normal units have at least one root.
67 MCRegUnitRootIterator Roots(Unit, TRI);
68 assert(Roots.isValid() && "Unit has no roots.");
69 OS << TRI->getName(*Roots);
70 for (++Roots; Roots.isValid(); ++Roots)
71 OS << '~' << TRI->getName(*Roots);
72 }
73
74 /// getAllocatableClass - Return the maximal subclass of the given register
75 /// class that is alloctable, or NULL.
76 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const77 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
78 if (!RC || RC->isAllocatable())
79 return RC;
80
81 const unsigned *SubClass = RC->getSubClassMask();
82 for (unsigned Base = 0, BaseE = getNumRegClasses();
83 Base < BaseE; Base += 32) {
84 unsigned Idx = Base;
85 for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
86 unsigned Offset = CountTrailingZeros_32(Mask);
87 const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
88 if (SubRC->isAllocatable())
89 return SubRC;
90 Mask >>= Offset;
91 Idx += Offset + 1;
92 }
93 }
94 return NULL;
95 }
96
97 /// getMinimalPhysRegClass - Returns the Register Class of a physical
98 /// register of the given type, picking the most sub register class of
99 /// the right type that contains this physreg.
100 const TargetRegisterClass *
getMinimalPhysRegClass(unsigned reg,EVT VT) const101 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
102 assert(isPhysicalRegister(reg) && "reg must be a physical register");
103
104 // Pick the most sub register class of the right type that contains
105 // this physreg.
106 const TargetRegisterClass* BestRC = 0;
107 for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
108 const TargetRegisterClass* RC = *I;
109 if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
110 (!BestRC || BestRC->hasSubClass(RC)))
111 BestRC = RC;
112 }
113
114 assert(BestRC && "Couldn't find the register class");
115 return BestRC;
116 }
117
118 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
119 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)120 static void getAllocatableSetForRC(const MachineFunction &MF,
121 const TargetRegisterClass *RC, BitVector &R){
122 assert(RC->isAllocatable() && "invalid for nonallocatable sets");
123 ArrayRef<uint16_t> Order = RC->getRawAllocationOrder(MF);
124 for (unsigned i = 0; i != Order.size(); ++i)
125 R.set(Order[i]);
126 }
127
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const128 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
129 const TargetRegisterClass *RC) const {
130 BitVector Allocatable(getNumRegs());
131 if (RC) {
132 // A register class with no allocatable subclass returns an empty set.
133 const TargetRegisterClass *SubClass = getAllocatableClass(RC);
134 if (SubClass)
135 getAllocatableSetForRC(MF, SubClass, Allocatable);
136 } else {
137 for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
138 E = regclass_end(); I != E; ++I)
139 if ((*I)->isAllocatable())
140 getAllocatableSetForRC(MF, *I, Allocatable);
141 }
142
143 // Mask out the reserved registers
144 BitVector Reserved = getReservedRegs(MF);
145 Allocatable &= Reserved.flip();
146
147 return Allocatable;
148 }
149
150 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI)151 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
152 const uint32_t *B,
153 const TargetRegisterInfo *TRI) {
154 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
155 if (unsigned Common = *A++ & *B++)
156 return TRI->getRegClass(I + CountTrailingZeros_32(Common));
157 return 0;
158 }
159
160 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B) const161 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
162 const TargetRegisterClass *B) const {
163 // First take care of the trivial cases.
164 if (A == B)
165 return A;
166 if (!A || !B)
167 return 0;
168
169 // Register classes are ordered topologically, so the largest common
170 // sub-class it the common sub-class with the smallest ID.
171 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
172 }
173
174 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const175 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
176 const TargetRegisterClass *B,
177 unsigned Idx) const {
178 assert(A && B && "Missing register class");
179 assert(Idx && "Bad sub-register index");
180
181 // Find Idx in the list of super-register indices.
182 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
183 if (RCI.getSubReg() == Idx)
184 // The bit mask contains all register classes that are projected into B
185 // by Idx. Find a class that is also a sub-class of A.
186 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
187 return 0;
188 }
189
190 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const191 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
192 const TargetRegisterClass *RCB, unsigned SubB,
193 unsigned &PreA, unsigned &PreB) const {
194 assert(RCA && SubA && RCB && SubB && "Invalid arguments");
195
196 // Search all pairs of sub-register indices that project into RCA and RCB
197 // respectively. This is quadratic, but usually the sets are very small. On
198 // most targets like X86, there will only be a single sub-register index
199 // (e.g., sub_16bit projecting into GR16).
200 //
201 // The worst case is a register class like DPR on ARM.
202 // We have indices dsub_0..dsub_7 projecting into that class.
203 //
204 // It is very common that one register class is a sub-register of the other.
205 // Arrange for RCA to be the larger register so the answer will be found in
206 // the first iteration. This makes the search linear for the most common
207 // case.
208 const TargetRegisterClass *BestRC = 0;
209 unsigned *BestPreA = &PreA;
210 unsigned *BestPreB = &PreB;
211 if (RCA->getSize() < RCB->getSize()) {
212 std::swap(RCA, RCB);
213 std::swap(SubA, SubB);
214 std::swap(BestPreA, BestPreB);
215 }
216
217 // Also terminate the search one we have found a register class as small as
218 // RCA.
219 unsigned MinSize = RCA->getSize();
220
221 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
222 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
223 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
224 // Check if a common super-register class exists for this index pair.
225 const TargetRegisterClass *RC =
226 firstCommonClass(IA.getMask(), IB.getMask(), this);
227 if (!RC || RC->getSize() < MinSize)
228 continue;
229
230 // The indexes must compose identically: PreA+SubA == PreB+SubB.
231 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
232 if (FinalA != FinalB)
233 continue;
234
235 // Is RC a better candidate than BestRC?
236 if (BestRC && RC->getSize() >= BestRC->getSize())
237 continue;
238
239 // Yes, RC is the smallest super-register seen so far.
240 BestRC = RC;
241 *BestPreA = IA.getSubReg();
242 *BestPreB = IB.getSubReg();
243
244 // Bail early if we reached MinSize. We won't find a better candidate.
245 if (BestRC->getSize() == MinSize)
246 return BestRC;
247 }
248 }
249 return BestRC;
250 }
251
252 // Compute target-independent register allocator hints to help eliminate copies.
253 void
getRegAllocationHints(unsigned VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM) const254 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
255 ArrayRef<MCPhysReg> Order,
256 SmallVectorImpl<MCPhysReg> &Hints,
257 const MachineFunction &MF,
258 const VirtRegMap *VRM) const {
259 const MachineRegisterInfo &MRI = MF.getRegInfo();
260 std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
261
262 // Hints with HintType != 0 were set by target-dependent code.
263 // Such targets must provide their own implementation of
264 // TRI::getRegAllocationHints to interpret those hint types.
265 assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
266
267 // Target-independent hints are either a physical or a virtual register.
268 unsigned Phys = Hint.second;
269 if (VRM && isVirtualRegister(Phys))
270 Phys = VRM->getPhys(Phys);
271
272 // Check that Phys is a valid hint in VirtReg's register class.
273 if (!isPhysicalRegister(Phys))
274 return;
275 if (MRI.isReserved(Phys))
276 return;
277 // Check that Phys is in the allocation order. We shouldn't heed hints
278 // from VirtReg's register class if they aren't in the allocation order. The
279 // target probably has a reason for removing the register.
280 if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
281 return;
282
283 // All clear, tell the register allocator to prefer this register.
284 Hints.push_back(Phys);
285 }
286