• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_MESSAGE_LOOP_H_
6 #define BASE_MESSAGE_LOOP_H_
7 #pragma once
8 
9 #include <queue>
10 #include <string>
11 
12 #include "base/base_api.h"
13 #include "base/basictypes.h"
14 #include "base/memory/ref_counted.h"
15 #include "base/message_pump.h"
16 #include "base/observer_list.h"
17 #include "base/synchronization/lock.h"
18 #include "base/task.h"
19 
20 #if defined(OS_WIN)
21 // We need this to declare base::MessagePumpWin::Dispatcher, which we should
22 // really just eliminate.
23 #include "base/message_pump_win.h"
24 #elif defined(OS_POSIX)
25 #include "base/message_pump_libevent.h"
26 #if !defined(OS_MACOSX)
27 #include "base/message_pump_glib.h"
28 typedef struct _XDisplay Display;
29 #endif
30 #endif
31 #if defined(TOUCH_UI)
32 #include "base/message_pump_glib_x_dispatch.h"
33 #endif
34 
35 namespace base {
36 class Histogram;
37 }
38 
39 // A MessageLoop is used to process events for a particular thread.  There is
40 // at most one MessageLoop instance per thread.
41 //
42 // Events include at a minimum Task instances submitted to PostTask or those
43 // managed by TimerManager.  Depending on the type of message pump used by the
44 // MessageLoop other events such as UI messages may be processed.  On Windows
45 // APC calls (as time permits) and signals sent to a registered set of HANDLEs
46 // may also be processed.
47 //
48 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
49 // on the thread where the MessageLoop's Run method executes.
50 //
51 // NOTE: MessageLoop has task reentrancy protection.  This means that if a
52 // task is being processed, a second task cannot start until the first task is
53 // finished.  Reentrancy can happen when processing a task, and an inner
54 // message pump is created.  That inner pump then processes native messages
55 // which could implicitly start an inner task.  Inner message pumps are created
56 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
57 // (DoDragDrop), printer functions (StartDoc) and *many* others.
58 //
59 // Sample workaround when inner task processing is needed:
60 //   bool old_state = MessageLoop::current()->NestableTasksAllowed();
61 //   MessageLoop::current()->SetNestableTasksAllowed(true);
62 //   HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here.
63 //   MessageLoop::current()->SetNestableTasksAllowed(old_state);
64 //   // Process hr  (the result returned by DoDragDrop().
65 //
66 // Please be SURE your task is reentrant (nestable) and all global variables
67 // are stable and accessible before calling SetNestableTasksAllowed(true).
68 //
69 class BASE_API MessageLoop : public base::MessagePump::Delegate {
70  public:
71 #if defined(OS_WIN)
72   typedef base::MessagePumpWin::Dispatcher Dispatcher;
73   typedef base::MessagePumpForUI::Observer Observer;
74 #elif !defined(OS_MACOSX)
75 #if defined(TOUCH_UI)
76   typedef base::MessagePumpGlibXDispatcher Dispatcher;
77 #else
78   typedef base::MessagePumpForUI::Dispatcher Dispatcher;
79 #endif
80   typedef base::MessagePumpForUI::Observer Observer;
81 #endif
82 
83   // A MessageLoop has a particular type, which indicates the set of
84   // asynchronous events it may process in addition to tasks and timers.
85   //
86   // TYPE_DEFAULT
87   //   This type of ML only supports tasks and timers.
88   //
89   // TYPE_UI
90   //   This type of ML also supports native UI events (e.g., Windows messages).
91   //   See also MessageLoopForUI.
92   //
93   // TYPE_IO
94   //   This type of ML also supports asynchronous IO.  See also
95   //   MessageLoopForIO.
96   //
97   enum Type {
98     TYPE_DEFAULT,
99     TYPE_UI,
100     TYPE_IO
101   };
102 
103   // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
104   // is typical to make use of the current thread's MessageLoop instance.
105   explicit MessageLoop(Type type = TYPE_DEFAULT);
106   ~MessageLoop();
107 
108   // Returns the MessageLoop object for the current thread, or null if none.
109   static MessageLoop* current();
110 
111   static void EnableHistogrammer(bool enable_histogrammer);
112 
113   // A DestructionObserver is notified when the current MessageLoop is being
114   // destroyed.  These obsevers are notified prior to MessageLoop::current()
115   // being changed to return NULL.  This gives interested parties the chance to
116   // do final cleanup that depends on the MessageLoop.
117   //
118   // NOTE: Any tasks posted to the MessageLoop during this notification will
119   // not be run.  Instead, they will be deleted.
120   //
121   class BASE_API DestructionObserver {
122    public:
123     virtual void WillDestroyCurrentMessageLoop() = 0;
124 
125    protected:
126     virtual ~DestructionObserver();
127   };
128 
129   // Add a DestructionObserver, which will start receiving notifications
130   // immediately.
131   void AddDestructionObserver(DestructionObserver* destruction_observer);
132 
133   // Remove a DestructionObserver.  It is safe to call this method while a
134   // DestructionObserver is receiving a notification callback.
135   void RemoveDestructionObserver(DestructionObserver* destruction_observer);
136 
137   // The "PostTask" family of methods call the task's Run method asynchronously
138   // from within a message loop at some point in the future.
139   //
140   // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
141   // with normal UI or IO event processing.  With the PostDelayedTask variant,
142   // tasks are called after at least approximately 'delay_ms' have elapsed.
143   //
144   // The NonNestable variants work similarly except that they promise never to
145   // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
146   // such tasks get deferred until the top-most MessageLoop::Run is executing.
147   //
148   // The MessageLoop takes ownership of the Task, and deletes it after it has
149   // been Run().
150   //
151   // NOTE: These methods may be called on any thread.  The Task will be invoked
152   // on the thread that executes MessageLoop::Run().
153 
154   void PostTask(
155       const tracked_objects::Location& from_here, Task* task);
156 
157   void PostDelayedTask(
158       const tracked_objects::Location& from_here, Task* task, int64 delay_ms);
159 
160   void PostNonNestableTask(
161       const tracked_objects::Location& from_here, Task* task);
162 
163   void PostNonNestableDelayedTask(
164       const tracked_objects::Location& from_here, Task* task, int64 delay_ms);
165 
166   // A variant on PostTask that deletes the given object.  This is useful
167   // if the object needs to live until the next run of the MessageLoop (for
168   // example, deleting a RenderProcessHost from within an IPC callback is not
169   // good).
170   //
171   // NOTE: This method may be called on any thread.  The object will be deleted
172   // on the thread that executes MessageLoop::Run().  If this is not the same
173   // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
174   // from RefCountedThreadSafe<T>!
175   template <class T>
DeleteSoon(const tracked_objects::Location & from_here,const T * object)176   void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
177     PostNonNestableTask(from_here, new DeleteTask<T>(object));
178   }
179 
180   // A variant on PostTask that releases the given reference counted object
181   // (by calling its Release method).  This is useful if the object needs to
182   // live until the next run of the MessageLoop, or if the object needs to be
183   // released on a particular thread.
184   //
185   // NOTE: This method may be called on any thread.  The object will be
186   // released (and thus possibly deleted) on the thread that executes
187   // MessageLoop::Run().  If this is not the same as the thread that calls
188   // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
189   // RefCountedThreadSafe<T>!
190   template <class T>
ReleaseSoon(const tracked_objects::Location & from_here,const T * object)191   void ReleaseSoon(const tracked_objects::Location& from_here,
192                    const T* object) {
193     PostNonNestableTask(from_here, new ReleaseTask<T>(object));
194   }
195 
196   // Run the message loop.
197   void Run();
198 
199   // Process all pending tasks, windows messages, etc., but don't wait/sleep.
200   // Return as soon as all items that can be run are taken care of.
201   void RunAllPending();
202 
203   // Signals the Run method to return after it is done processing all pending
204   // messages.  This method may only be called on the same thread that called
205   // Run, and Run must still be on the call stack.
206   //
207   // Use QuitTask if you need to Quit another thread's MessageLoop, but note
208   // that doing so is fairly dangerous if the target thread makes nested calls
209   // to MessageLoop::Run.  The problem being that you won't know which nested
210   // run loop you are quiting, so be careful!
211   //
212   void Quit();
213 
214   // This method is a variant of Quit, that does not wait for pending messages
215   // to be processed before returning from Run.
216   void QuitNow();
217 
218   // Invokes Quit on the current MessageLoop when run.  Useful to schedule an
219   // arbitrary MessageLoop to Quit.
220   class QuitTask : public Task {
221    public:
Run()222     virtual void Run() {
223       MessageLoop::current()->Quit();
224     }
225   };
226 
227   // Returns the type passed to the constructor.
type()228   Type type() const { return type_; }
229 
230   // Optional call to connect the thread name with this loop.
set_thread_name(const std::string & thread_name)231   void set_thread_name(const std::string& thread_name) {
232     DCHECK(thread_name_.empty()) << "Should not rename this thread!";
233     thread_name_ = thread_name;
234   }
thread_name()235   const std::string& thread_name() const { return thread_name_; }
236 
237   // Enables or disables the recursive task processing. This happens in the case
238   // of recursive message loops. Some unwanted message loop may occurs when
239   // using common controls or printer functions. By default, recursive task
240   // processing is disabled.
241   //
242   // The specific case where tasks get queued is:
243   // - The thread is running a message loop.
244   // - It receives a task #1 and execute it.
245   // - The task #1 implicitly start a message loop, like a MessageBox in the
246   //   unit test. This can also be StartDoc or GetSaveFileName.
247   // - The thread receives a task #2 before or while in this second message
248   //   loop.
249   // - With NestableTasksAllowed set to true, the task #2 will run right away.
250   //   Otherwise, it will get executed right after task #1 completes at "thread
251   //   message loop level".
252   void SetNestableTasksAllowed(bool allowed);
253   bool NestableTasksAllowed() const;
254 
255   // Enables nestable tasks on |loop| while in scope.
256   class ScopedNestableTaskAllower {
257    public:
ScopedNestableTaskAllower(MessageLoop * loop)258     explicit ScopedNestableTaskAllower(MessageLoop* loop)
259         : loop_(loop),
260           old_state_(loop_->NestableTasksAllowed()) {
261       loop_->SetNestableTasksAllowed(true);
262     }
~ScopedNestableTaskAllower()263     ~ScopedNestableTaskAllower() {
264       loop_->SetNestableTasksAllowed(old_state_);
265     }
266 
267    private:
268     MessageLoop* loop_;
269     bool old_state_;
270   };
271 
272   // Enables or disables the restoration during an exception of the unhandled
273   // exception filter that was active when Run() was called. This can happen
274   // if some third party code call SetUnhandledExceptionFilter() and never
275   // restores the previous filter.
set_exception_restoration(bool restore)276   void set_exception_restoration(bool restore) {
277     exception_restoration_ = restore;
278   }
279 
280   // Returns true if we are currently running a nested message loop.
281   bool IsNested();
282 
283   // A TaskObserver is an object that receives task notifications from the
284   // MessageLoop.
285   //
286   // NOTE: A TaskObserver implementation should be extremely fast!
287   class BASE_API TaskObserver {
288    public:
289     TaskObserver();
290 
291     // This method is called before processing a task.
292     virtual void WillProcessTask(const Task* task) = 0;
293 
294     // This method is called after processing a task.
295     virtual void DidProcessTask(const Task* task) = 0;
296 
297    protected:
298     virtual ~TaskObserver();
299   };
300 
301   // These functions can only be called on the same thread that |this| is
302   // running on.
303   void AddTaskObserver(TaskObserver* task_observer);
304   void RemoveTaskObserver(TaskObserver* task_observer);
305 
306   // Returns true if the message loop has high resolution timers enabled.
307   // Provided for testing.
high_resolution_timers_enabled()308   bool high_resolution_timers_enabled() {
309 #if defined(OS_WIN)
310     return !high_resolution_timer_expiration_.is_null();
311 #else
312     return true;
313 #endif
314   }
315 
316   // When we go into high resolution timer mode, we will stay in hi-res mode
317   // for at least 1s.
318   static const int kHighResolutionTimerModeLeaseTimeMs = 1000;
319 
320   // Asserts that the MessageLoop is "idle".
321   void AssertIdle() const;
322 
323 #if defined(OS_WIN)
set_os_modal_loop(bool os_modal_loop)324   void set_os_modal_loop(bool os_modal_loop) {
325     os_modal_loop_ = os_modal_loop;
326   }
327 
os_modal_loop()328   bool os_modal_loop() const {
329     return os_modal_loop_;
330   }
331 #endif  // OS_WIN
332 
333   //----------------------------------------------------------------------------
334  protected:
335   struct RunState {
336     // Used to count how many Run() invocations are on the stack.
337     int run_depth;
338 
339     // Used to record that Quit() was called, or that we should quit the pump
340     // once it becomes idle.
341     bool quit_received;
342 
343 #if !defined(OS_MACOSX)
344     Dispatcher* dispatcher;
345 #endif
346   };
347 
348   class AutoRunState : RunState {
349    public:
350     explicit AutoRunState(MessageLoop* loop);
351     ~AutoRunState();
352    private:
353     MessageLoop* loop_;
354     RunState* previous_state_;
355   };
356 
357   // This structure is copied around by value.
358   struct PendingTask {
PendingTaskPendingTask359     PendingTask(Task* task, bool nestable)
360         : task(task), sequence_num(0), nestable(nestable) {
361     }
362 
363     // Used to support sorting.
364     bool operator<(const PendingTask& other) const;
365 
366     Task* task;                        // The task to run.
367     base::TimeTicks delayed_run_time;  // The time when the task should be run.
368     int sequence_num;                  // Secondary sort key for run time.
369     bool nestable;                     // OK to dispatch from a nested loop.
370   };
371 
372   class TaskQueue : public std::queue<PendingTask> {
373    public:
Swap(TaskQueue * queue)374     void Swap(TaskQueue* queue) {
375       c.swap(queue->c);  // Calls std::deque::swap
376     }
377   };
378 
379   typedef std::priority_queue<PendingTask> DelayedTaskQueue;
380 
381 #if defined(OS_WIN)
pump_win()382   base::MessagePumpWin* pump_win() {
383     return static_cast<base::MessagePumpWin*>(pump_.get());
384   }
385 #elif defined(OS_POSIX)
pump_libevent()386   base::MessagePumpLibevent* pump_libevent() {
387     return static_cast<base::MessagePumpLibevent*>(pump_.get());
388   }
389 #endif
390 
391   // A function to encapsulate all the exception handling capability in the
392   // stacks around the running of a main message loop.  It will run the message
393   // loop in a SEH try block or not depending on the set_SEH_restoration()
394   // flag invoking respectively RunInternalInSEHFrame() or RunInternal().
395   void RunHandler();
396 
397 #if defined(OS_WIN)
398   __declspec(noinline) void RunInternalInSEHFrame();
399 #endif
400 
401   // A surrounding stack frame around the running of the message loop that
402   // supports all saving and restoring of state, as is needed for any/all (ugly)
403   // recursive calls.
404   void RunInternal();
405 
406   // Called to process any delayed non-nestable tasks.
407   bool ProcessNextDelayedNonNestableTask();
408 
409   // Runs the specified task and deletes it.
410   void RunTask(Task* task);
411 
412   // Calls RunTask or queues the pending_task on the deferred task list if it
413   // cannot be run right now.  Returns true if the task was run.
414   bool DeferOrRunPendingTask(const PendingTask& pending_task);
415 
416   // Adds the pending task to delayed_work_queue_.
417   void AddToDelayedWorkQueue(const PendingTask& pending_task);
418 
419   // Load tasks from the incoming_queue_ into work_queue_ if the latter is
420   // empty.  The former requires a lock to access, while the latter is directly
421   // accessible on this thread.
422   void ReloadWorkQueue();
423 
424   // Delete tasks that haven't run yet without running them.  Used in the
425   // destructor to make sure all the task's destructors get called.  Returns
426   // true if some work was done.
427   bool DeletePendingTasks();
428 
429   // Post a task to our incomming queue.
430   void PostTask_Helper(const tracked_objects::Location& from_here, Task* task,
431                        int64 delay_ms, bool nestable);
432 
433   // Start recording histogram info about events and action IF it was enabled
434   // and IF the statistics recorder can accept a registration of our histogram.
435   void StartHistogrammer();
436 
437   // Add occurence of event to our histogram, so that we can see what is being
438   // done in a specific MessageLoop instance (i.e., specific thread).
439   // If message_histogram_ is NULL, this is a no-op.
440   void HistogramEvent(int event);
441 
442   // base::MessagePump::Delegate methods:
443   virtual bool DoWork();
444   virtual bool DoDelayedWork(base::TimeTicks* next_delayed_work_time);
445   virtual bool DoIdleWork();
446 
447   Type type_;
448 
449   // A list of tasks that need to be processed by this instance.  Note that
450   // this queue is only accessed (push/pop) by our current thread.
451   TaskQueue work_queue_;
452 
453   // Contains delayed tasks, sorted by their 'delayed_run_time' property.
454   DelayedTaskQueue delayed_work_queue_;
455 
456   // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
457   base::TimeTicks recent_time_;
458 
459   // A queue of non-nestable tasks that we had to defer because when it came
460   // time to execute them we were in a nested message loop.  They will execute
461   // once we're out of nested message loops.
462   TaskQueue deferred_non_nestable_work_queue_;
463 
464   scoped_refptr<base::MessagePump> pump_;
465 
466   ObserverList<DestructionObserver> destruction_observers_;
467 
468   // A recursion block that prevents accidentally running additonal tasks when
469   // insider a (accidentally induced?) nested message pump.
470   bool nestable_tasks_allowed_;
471 
472   bool exception_restoration_;
473 
474   std::string thread_name_;
475   // A profiling histogram showing the counts of various messages and events.
476   base::Histogram* message_histogram_;
477 
478   // A null terminated list which creates an incoming_queue of tasks that are
479   // acquired under a mutex for processing on this instance's thread. These
480   // tasks have not yet been sorted out into items for our work_queue_ vs
481   // items that will be handled by the TimerManager.
482   TaskQueue incoming_queue_;
483   // Protect access to incoming_queue_.
484   mutable base::Lock incoming_queue_lock_;
485 
486   RunState* state_;
487 
488 #if defined(OS_WIN)
489   base::TimeTicks high_resolution_timer_expiration_;
490   // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
491   // which enter a modal message loop.
492   bool os_modal_loop_;
493 #endif
494 
495   // The next sequence number to use for delayed tasks.
496   int next_sequence_num_;
497 
498   ObserverList<TaskObserver> task_observers_;
499 
500  private:
501   DISALLOW_COPY_AND_ASSIGN(MessageLoop);
502 };
503 
504 //-----------------------------------------------------------------------------
505 // MessageLoopForUI extends MessageLoop with methods that are particular to a
506 // MessageLoop instantiated with TYPE_UI.
507 //
508 // This class is typically used like so:
509 //   MessageLoopForUI::current()->...call some method...
510 //
511 class BASE_API MessageLoopForUI : public MessageLoop {
512  public:
MessageLoopForUI()513   MessageLoopForUI() : MessageLoop(TYPE_UI) {
514   }
515 
516   // Returns the MessageLoopForUI of the current thread.
current()517   static MessageLoopForUI* current() {
518     MessageLoop* loop = MessageLoop::current();
519 #ifdef ANDROID
520     DCHECK_EQ(static_cast<int>(MessageLoop::TYPE_UI),
521               static_cast<int>(loop->type()));
522 #else
523     DCHECK_EQ(MessageLoop::TYPE_UI, loop->type());
524 #endif
525     return static_cast<MessageLoopForUI*>(loop);
526   }
527 
528 #if defined(OS_WIN)
529   void DidProcessMessage(const MSG& message);
530 #endif  // defined(OS_WIN)
531 
532 #if defined(USE_X11)
533   // Returns the Xlib Display that backs the MessagePump for this MessageLoop.
534   //
535   // This allows for raw access to the X11 server in situations where our
536   // abstractions do not provide enough power.
537   //
538   // Be careful how this is used. The MessagePump in general expects
539   // exclusive access to the Display. Calling things like XNextEvent() will
540   // likely break things in subtle, hard to detect, ways.
541   Display* GetDisplay();
542 #endif  // defined(OS_X11)
543 
544 #if !defined(OS_MACOSX)
545   // Please see message_pump_win/message_pump_glib for definitions of these
546   // methods.
547   void AddObserver(Observer* observer);
548   void RemoveObserver(Observer* observer);
549   void Run(Dispatcher* dispatcher);
550 
551  protected:
552   // TODO(rvargas): Make this platform independent.
pump_ui()553   base::MessagePumpForUI* pump_ui() {
554     return static_cast<base::MessagePumpForUI*>(pump_.get());
555   }
556 #endif  // !defined(OS_MACOSX)
557 };
558 
559 // Do not add any member variables to MessageLoopForUI!  This is important b/c
560 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
561 // data that you need should be stored on the MessageLoop's pump_ instance.
562 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
563                MessageLoopForUI_should_not_have_extra_member_variables);
564 
565 //-----------------------------------------------------------------------------
566 // MessageLoopForIO extends MessageLoop with methods that are particular to a
567 // MessageLoop instantiated with TYPE_IO.
568 //
569 // This class is typically used like so:
570 //   MessageLoopForIO::current()->...call some method...
571 //
572 class BASE_API MessageLoopForIO : public MessageLoop {
573  public:
574 #if defined(OS_WIN)
575   typedef base::MessagePumpForIO::IOHandler IOHandler;
576   typedef base::MessagePumpForIO::IOContext IOContext;
577   typedef base::MessagePumpForIO::IOObserver IOObserver;
578 #elif defined(OS_POSIX)
579   typedef base::MessagePumpLibevent::Watcher Watcher;
580   typedef base::MessagePumpLibevent::FileDescriptorWatcher
581       FileDescriptorWatcher;
582   typedef base::MessagePumpLibevent::IOObserver IOObserver;
583 
584   enum Mode {
585     WATCH_READ = base::MessagePumpLibevent::WATCH_READ,
586     WATCH_WRITE = base::MessagePumpLibevent::WATCH_WRITE,
587     WATCH_READ_WRITE = base::MessagePumpLibevent::WATCH_READ_WRITE
588   };
589 
590 #endif
591 
MessageLoopForIO()592   MessageLoopForIO() : MessageLoop(TYPE_IO) {
593   }
594 
595   // Returns the MessageLoopForIO of the current thread.
current()596   static MessageLoopForIO* current() {
597     MessageLoop* loop = MessageLoop::current();
598 #ifdef ANDROID
599     DCHECK_EQ(static_cast<int>(MessageLoop::TYPE_IO),
600               static_cast<int>(loop->type()));
601 #else
602     DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
603 #endif
604     return static_cast<MessageLoopForIO*>(loop);
605   }
606 
AddIOObserver(IOObserver * io_observer)607   void AddIOObserver(IOObserver* io_observer) {
608     pump_io()->AddIOObserver(io_observer);
609   }
610 
RemoveIOObserver(IOObserver * io_observer)611   void RemoveIOObserver(IOObserver* io_observer) {
612     pump_io()->RemoveIOObserver(io_observer);
613   }
614 
615 #if defined(OS_WIN)
616   // Please see MessagePumpWin for definitions of these methods.
617   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
618   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
619 
620  protected:
621   // TODO(rvargas): Make this platform independent.
pump_io()622   base::MessagePumpForIO* pump_io() {
623     return static_cast<base::MessagePumpForIO*>(pump_.get());
624   }
625 
626 #elif defined(OS_POSIX)
627   // Please see MessagePumpLibevent for definition.
628   bool WatchFileDescriptor(int fd,
629                            bool persistent,
630                            Mode mode,
631                            FileDescriptorWatcher *controller,
632                            Watcher *delegate);
633 
634  private:
pump_io()635   base::MessagePumpLibevent* pump_io() {
636     return static_cast<base::MessagePumpLibevent*>(pump_.get());
637   }
638 #endif  // defined(OS_POSIX)
639 };
640 
641 // Do not add any member variables to MessageLoopForIO!  This is important b/c
642 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
643 // data that you need should be stored on the MessageLoop's pump_ instance.
644 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
645                MessageLoopForIO_should_not_have_extra_member_variables);
646 
647 #endif  // BASE_MESSAGE_LOOP_H_
648