1 //===-- tsan_rtl_thread.cc ------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_common/sanitizer_placement_new.h"
15 #include "tsan_rtl.h"
16 #include "tsan_mman.h"
17 #include "tsan_platform.h"
18 #include "tsan_report.h"
19 #include "tsan_sync.h"
20
21 namespace __tsan {
22
23 // ThreadContext implementation.
24
ThreadContext(int tid)25 ThreadContext::ThreadContext(int tid)
26 : ThreadContextBase(tid)
27 , thr()
28 , sync()
29 , epoch0()
30 , epoch1()
31 , dead_info() {
32 }
33
34 #ifndef TSAN_GO
~ThreadContext()35 ThreadContext::~ThreadContext() {
36 }
37 #endif
38
OnDead()39 void ThreadContext::OnDead() {
40 sync.Reset();
41 }
42
OnJoined(void * arg)43 void ThreadContext::OnJoined(void *arg) {
44 ThreadState *caller_thr = static_cast<ThreadState *>(arg);
45 caller_thr->clock.acquire(&sync);
46 StatInc(caller_thr, StatSyncAcquire);
47 }
48
49 struct OnCreatedArgs {
50 ThreadState *thr;
51 uptr pc;
52 };
53
OnCreated(void * arg)54 void ThreadContext::OnCreated(void *arg) {
55 thr = 0;
56 if (tid == 0)
57 return;
58 OnCreatedArgs *args = static_cast<OnCreatedArgs *>(arg);
59 args->thr->fast_state.IncrementEpoch();
60 // Can't increment epoch w/o writing to the trace as well.
61 TraceAddEvent(args->thr, args->thr->fast_state, EventTypeMop, 0);
62 args->thr->clock.set(args->thr->tid, args->thr->fast_state.epoch());
63 args->thr->fast_synch_epoch = args->thr->fast_state.epoch();
64 args->thr->clock.release(&sync);
65 StatInc(args->thr, StatSyncRelease);
66 #ifdef TSAN_GO
67 creation_stack.ObtainCurrent(args->thr, args->pc);
68 #else
69 creation_stack_id = CurrentStackId(args->thr, args->pc);
70 #endif
71 if (reuse_count == 0)
72 StatInc(args->thr, StatThreadMaxTid);
73 }
74
OnReset(void * arg)75 void ThreadContext::OnReset(void *arg) {
76 OnCreatedArgs *args = static_cast<OnCreatedArgs *>(arg);
77 StatInc(args->thr, StatThreadReuse);
78 sync.Reset();
79 DestroyAndFree(dead_info);
80 }
81
82 struct OnStartedArgs {
83 ThreadState *thr;
84 uptr stk_addr;
85 uptr stk_size;
86 uptr tls_addr;
87 uptr tls_size;
88 };
89
OnStarted(void * arg)90 void ThreadContext::OnStarted(void *arg) {
91 OnStartedArgs *args = static_cast<OnStartedArgs*>(arg);
92 thr = args->thr;
93 // RoundUp so that one trace part does not contain events
94 // from different threads.
95 epoch0 = RoundUp(epoch1 + 1, kTracePartSize);
96 epoch1 = (u64)-1;
97 new(thr) ThreadState(CTX(), tid, unique_id,
98 epoch0, args->stk_addr, args->stk_size, args->tls_addr, args->tls_size);
99 #ifdef TSAN_GO
100 // Setup dynamic shadow stack.
101 const int kInitStackSize = 8;
102 args->thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
103 kInitStackSize * sizeof(uptr));
104 args->thr->shadow_stack_pos = thr->shadow_stack;
105 args->thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
106 #endif
107 #ifndef TSAN_GO
108 AllocatorThreadStart(args->thr);
109 #endif
110 thr = args->thr;
111 thr->fast_synch_epoch = epoch0;
112 thr->clock.set(tid, epoch0);
113 thr->clock.acquire(&sync);
114 thr->fast_state.SetHistorySize(flags()->history_size);
115 const uptr trace = (epoch0 / kTracePartSize) % TraceParts();
116 thr->trace.headers[trace].epoch0 = epoch0;
117 StatInc(thr, StatSyncAcquire);
118 DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
119 "tls_addr=%zx tls_size=%zx\n",
120 tid, (uptr)epoch0, args->stk_addr, args->stk_size,
121 args->tls_addr, args->tls_size);
122 thr->is_alive = true;
123 }
124
OnFinished()125 void ThreadContext::OnFinished() {
126 if (!detached) {
127 thr->fast_state.IncrementEpoch();
128 // Can't increment epoch w/o writing to the trace as well.
129 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
130 thr->clock.set(thr->tid, thr->fast_state.epoch());
131 thr->fast_synch_epoch = thr->fast_state.epoch();
132 thr->clock.release(&sync);
133 StatInc(thr, StatSyncRelease);
134 }
135 // Save from info about the thread.
136 dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
137 ThreadDeadInfo();
138 for (uptr i = 0; i < TraceParts(); i++) {
139 dead_info->trace.headers[i].epoch0 = thr->trace.headers[i].epoch0;
140 dead_info->trace.headers[i].stack0.CopyFrom(
141 thr->trace.headers[i].stack0);
142 }
143 epoch1 = thr->fast_state.epoch();
144
145 #ifndef TSAN_GO
146 AllocatorThreadFinish(thr);
147 #endif
148 thr->~ThreadState();
149 StatAggregate(CTX()->stat, thr->stat);
150 thr = 0;
151 }
152
MaybeReportThreadLeak(ThreadContextBase * tctx_base,void * unused)153 static void MaybeReportThreadLeak(ThreadContextBase *tctx_base, void *unused) {
154 ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
155 if (tctx->detached)
156 return;
157 if (tctx->status != ThreadStatusCreated
158 && tctx->status != ThreadStatusRunning
159 && tctx->status != ThreadStatusFinished)
160 return;
161 ScopedReport rep(ReportTypeThreadLeak);
162 rep.AddThread(tctx);
163 OutputReport(CTX(), rep);
164 }
165
ThreadFinalize(ThreadState * thr)166 void ThreadFinalize(ThreadState *thr) {
167 CHECK_GT(thr->in_rtl, 0);
168 if (!flags()->report_thread_leaks)
169 return;
170 ThreadRegistryLock l(CTX()->thread_registry);
171 CTX()->thread_registry->RunCallbackForEachThreadLocked(
172 MaybeReportThreadLeak, 0);
173 }
174
ThreadCount(ThreadState * thr)175 int ThreadCount(ThreadState *thr) {
176 CHECK_GT(thr->in_rtl, 0);
177 Context *ctx = CTX();
178 uptr result;
179 ctx->thread_registry->GetNumberOfThreads(0, 0, &result);
180 return (int)result;
181 }
182
ThreadCreate(ThreadState * thr,uptr pc,uptr uid,bool detached)183 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
184 CHECK_GT(thr->in_rtl, 0);
185 StatInc(thr, StatThreadCreate);
186 Context *ctx = CTX();
187 OnCreatedArgs args = { thr, pc };
188 int tid = ctx->thread_registry->CreateThread(uid, detached, thr->tid, &args);
189 DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
190 StatSet(thr, StatThreadMaxAlive, ctx->thread_registry->GetMaxAliveThreads());
191 return tid;
192 }
193
ThreadStart(ThreadState * thr,int tid,uptr os_id)194 void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
195 CHECK_GT(thr->in_rtl, 0);
196 uptr stk_addr = 0;
197 uptr stk_size = 0;
198 uptr tls_addr = 0;
199 uptr tls_size = 0;
200 GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
201
202 if (tid) {
203 if (stk_addr && stk_size)
204 MemoryRangeImitateWrite(thr, /*pc=*/ 1, stk_addr, stk_size);
205
206 if (tls_addr && tls_size) {
207 // Check that the thr object is in tls;
208 const uptr thr_beg = (uptr)thr;
209 const uptr thr_end = (uptr)thr + sizeof(*thr);
210 CHECK_GE(thr_beg, tls_addr);
211 CHECK_LE(thr_beg, tls_addr + tls_size);
212 CHECK_GE(thr_end, tls_addr);
213 CHECK_LE(thr_end, tls_addr + tls_size);
214 // Since the thr object is huge, skip it.
215 MemoryRangeImitateWrite(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
216 MemoryRangeImitateWrite(thr, /*pc=*/ 2,
217 thr_end, tls_addr + tls_size - thr_end);
218 }
219 }
220
221 OnStartedArgs args = { thr, stk_addr, stk_size, tls_addr, tls_size };
222 CTX()->thread_registry->StartThread(tid, os_id, &args);
223 }
224
ThreadFinish(ThreadState * thr)225 void ThreadFinish(ThreadState *thr) {
226 CHECK_GT(thr->in_rtl, 0);
227 StatInc(thr, StatThreadFinish);
228 if (thr->stk_addr && thr->stk_size)
229 DontNeedShadowFor(thr->stk_addr, thr->stk_size);
230 if (thr->tls_addr && thr->tls_size)
231 DontNeedShadowFor(thr->tls_addr, thr->tls_size);
232 thr->is_alive = false;
233 Context *ctx = CTX();
234 ctx->thread_registry->FinishThread(thr->tid);
235 }
236
FindThreadByUid(ThreadContextBase * tctx,void * arg)237 static bool FindThreadByUid(ThreadContextBase *tctx, void *arg) {
238 uptr uid = (uptr)arg;
239 if (tctx->user_id == uid && tctx->status != ThreadStatusInvalid) {
240 tctx->user_id = 0;
241 return true;
242 }
243 return false;
244 }
245
ThreadTid(ThreadState * thr,uptr pc,uptr uid)246 int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
247 CHECK_GT(thr->in_rtl, 0);
248 Context *ctx = CTX();
249 int res = ctx->thread_registry->FindThread(FindThreadByUid, (void*)uid);
250 DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
251 return res;
252 }
253
ThreadJoin(ThreadState * thr,uptr pc,int tid)254 void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
255 CHECK_GT(thr->in_rtl, 0);
256 CHECK_GT(tid, 0);
257 CHECK_LT(tid, kMaxTid);
258 DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
259 Context *ctx = CTX();
260 ctx->thread_registry->JoinThread(tid, thr);
261 }
262
ThreadDetach(ThreadState * thr,uptr pc,int tid)263 void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
264 CHECK_GT(thr->in_rtl, 0);
265 CHECK_GT(tid, 0);
266 CHECK_LT(tid, kMaxTid);
267 Context *ctx = CTX();
268 ctx->thread_registry->DetachThread(tid);
269 }
270
ThreadSetName(ThreadState * thr,const char * name)271 void ThreadSetName(ThreadState *thr, const char *name) {
272 CHECK_GT(thr->in_rtl, 0);
273 CTX()->thread_registry->SetThreadName(thr->tid, name);
274 }
275
MemoryAccessRange(ThreadState * thr,uptr pc,uptr addr,uptr size,bool is_write)276 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
277 uptr size, bool is_write) {
278 if (size == 0)
279 return;
280
281 u64 *shadow_mem = (u64*)MemToShadow(addr);
282 DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
283 thr->tid, (void*)pc, (void*)addr,
284 (int)size, is_write);
285
286 #if TSAN_DEBUG
287 if (!IsAppMem(addr)) {
288 Printf("Access to non app mem %zx\n", addr);
289 DCHECK(IsAppMem(addr));
290 }
291 if (!IsAppMem(addr + size - 1)) {
292 Printf("Access to non app mem %zx\n", addr + size - 1);
293 DCHECK(IsAppMem(addr + size - 1));
294 }
295 if (!IsShadowMem((uptr)shadow_mem)) {
296 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
297 DCHECK(IsShadowMem((uptr)shadow_mem));
298 }
299 if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
300 Printf("Bad shadow addr %p (%zx)\n",
301 shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
302 DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
303 }
304 #endif
305
306 StatInc(thr, StatMopRange);
307
308 FastState fast_state = thr->fast_state;
309 if (fast_state.GetIgnoreBit())
310 return;
311
312 fast_state.IncrementEpoch();
313 thr->fast_state = fast_state;
314 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
315
316 bool unaligned = (addr % kShadowCell) != 0;
317
318 // Handle unaligned beginning, if any.
319 for (; addr % kShadowCell && size; addr++, size--) {
320 int const kAccessSizeLog = 0;
321 Shadow cur(fast_state);
322 cur.SetWrite(is_write);
323 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
324 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
325 shadow_mem, cur);
326 }
327 if (unaligned)
328 shadow_mem += kShadowCnt;
329 // Handle middle part, if any.
330 for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
331 int const kAccessSizeLog = 3;
332 Shadow cur(fast_state);
333 cur.SetWrite(is_write);
334 cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
335 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
336 shadow_mem, cur);
337 shadow_mem += kShadowCnt;
338 }
339 // Handle ending, if any.
340 for (; size; addr++, size--) {
341 int const kAccessSizeLog = 0;
342 Shadow cur(fast_state);
343 cur.SetWrite(is_write);
344 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
345 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
346 shadow_mem, cur);
347 }
348 }
349
MemoryAccessRangeStep(ThreadState * thr,uptr pc,uptr addr,uptr size,uptr step,bool is_write)350 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
351 uptr size, uptr step, bool is_write) {
352 if (size == 0)
353 return;
354 FastState fast_state = thr->fast_state;
355 if (fast_state.GetIgnoreBit())
356 return;
357 StatInc(thr, StatMopRange);
358 fast_state.IncrementEpoch();
359 thr->fast_state = fast_state;
360 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
361
362 for (uptr addr_end = addr + size; addr < addr_end; addr += step) {
363 u64 *shadow_mem = (u64*)MemToShadow(addr);
364 Shadow cur(fast_state);
365 cur.SetWrite(is_write);
366 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kSizeLog1);
367 MemoryAccessImpl(thr, addr, kSizeLog1, is_write, false,
368 shadow_mem, cur);
369 }
370 }
371 } // namespace __tsan
372