• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 //  Software License Agreement:  http://www.webmproject.org/license/software/
5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // main entry for the decoder
9 //
10 // Authors: Vikas Arora (vikaas.arora@gmail.com)
11 //          Jyrki Alakuijala (jyrki@google.com)
12 
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include "./vp8li.h"
16 #include "../dsp/lossless.h"
17 #include "../dsp/yuv.h"
18 #include "../utils/huffman.h"
19 #include "../utils/utils.h"
20 
21 #if defined(__cplusplus) || defined(c_plusplus)
22 extern "C" {
23 #endif
24 
25 #define NUM_ARGB_CACHE_ROWS          16
26 
27 static const int kCodeLengthLiterals = 16;
28 static const int kCodeLengthRepeatCode = 16;
29 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
30 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
31 
32 // -----------------------------------------------------------------------------
33 //  Five Huffman codes are used at each meta code:
34 //  1. green + length prefix codes + color cache codes,
35 //  2. alpha,
36 //  3. red,
37 //  4. blue, and,
38 //  5. distance prefix codes.
39 typedef enum {
40   GREEN = 0,
41   RED   = 1,
42   BLUE  = 2,
43   ALPHA = 3,
44   DIST  = 4
45 } HuffIndex;
46 
47 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
48   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
49   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
50   NUM_DISTANCE_CODES
51 };
52 
53 
54 #define NUM_CODE_LENGTH_CODES       19
55 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
56   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
57 };
58 
59 #define CODE_TO_PLANE_CODES        120
60 static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
61    0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
62    0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
63    0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
64    0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
65    0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
66    0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
67    0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
68    0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
69    0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
70    0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
71    0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
72    0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
73 };
74 
75 static int DecodeImageStream(int xsize, int ysize,
76                              int is_level0,
77                              VP8LDecoder* const dec,
78                              uint32_t** const decoded_data);
79 
80 //------------------------------------------------------------------------------
81 
VP8LCheckSignature(const uint8_t * const data,size_t size)82 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
83   return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
84 }
85 
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)86 static int ReadImageInfo(VP8LBitReader* const br,
87                          int* const width, int* const height,
88                          int* const has_alpha) {
89   const uint8_t signature = VP8LReadBits(br, 8);
90   if (!VP8LCheckSignature(&signature, 1)) {
91     return 0;
92   }
93   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
94   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
95   *has_alpha = VP8LReadBits(br, 1);
96   VP8LReadBits(br, VP8L_VERSION_BITS);  // Read/ignore the version number.
97   return 1;
98 }
99 
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)100 int VP8LGetInfo(const uint8_t* data, size_t data_size,
101                 int* const width, int* const height, int* const has_alpha) {
102   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
103     return 0;         // not enough data
104   } else {
105     int w, h, a;
106     VP8LBitReader br;
107     VP8LInitBitReader(&br, data, data_size);
108     if (!ReadImageInfo(&br, &w, &h, &a)) {
109       return 0;
110     }
111     if (width != NULL) *width = w;
112     if (height != NULL) *height = h;
113     if (has_alpha != NULL) *has_alpha = a;
114     return 1;
115   }
116 }
117 
118 //------------------------------------------------------------------------------
119 
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)120 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
121                                        VP8LBitReader* const br) {
122   int extra_bits, offset;
123   if (distance_symbol < 4) {
124     return distance_symbol + 1;
125   }
126   extra_bits = (distance_symbol - 2) >> 1;
127   offset = (2 + (distance_symbol & 1)) << extra_bits;
128   return offset + VP8LReadBits(br, extra_bits) + 1;
129 }
130 
GetCopyLength(int length_symbol,VP8LBitReader * const br)131 static WEBP_INLINE int GetCopyLength(int length_symbol,
132                                      VP8LBitReader* const br) {
133   // Length and distance prefixes are encoded the same way.
134   return GetCopyDistance(length_symbol, br);
135 }
136 
PlaneCodeToDistance(int xsize,int plane_code)137 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
138   if (plane_code > CODE_TO_PLANE_CODES) {
139     return plane_code - CODE_TO_PLANE_CODES;
140   } else {
141     const int dist_code = code_to_plane_lut[plane_code - 1];
142     const int yoffset = dist_code >> 4;
143     const int xoffset = 8 - (dist_code & 0xf);
144     const int dist = yoffset * xsize + xoffset;
145     return (dist >= 1) ? dist : 1;
146   }
147 }
148 
149 //------------------------------------------------------------------------------
150 // Decodes the next Huffman code from bit-stream.
151 // FillBitWindow(br) needs to be called at minimum every second call
152 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanTree * tree,VP8LBitReader * const br)153 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
154                                   VP8LBitReader* const br) {
155   const HuffmanTreeNode* node = tree->root_;
156   int num_bits = 0;
157   uint32_t bits = VP8LPrefetchBits(br);
158   assert(node != NULL);
159   while (!HuffmanTreeNodeIsLeaf(node)) {
160     node = HuffmanTreeNextNode(node, bits & 1);
161     bits >>= 1;
162     ++num_bits;
163   }
164   VP8LDiscardBits(br, num_bits);
165   return node->symbol_;
166 }
167 
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)168 static int ReadHuffmanCodeLengths(
169     VP8LDecoder* const dec, const int* const code_length_code_lengths,
170     int num_symbols, int* const code_lengths) {
171   int ok = 0;
172   VP8LBitReader* const br = &dec->br_;
173   int symbol;
174   int max_symbol;
175   int prev_code_len = DEFAULT_CODE_LENGTH;
176   HuffmanTree tree;
177 
178   if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
179                                 NUM_CODE_LENGTH_CODES)) {
180     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
181     return 0;
182   }
183 
184   if (VP8LReadBits(br, 1)) {    // use length
185     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
186     max_symbol = 2 + VP8LReadBits(br, length_nbits);
187     if (max_symbol > num_symbols) {
188       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
189       goto End;
190     }
191   } else {
192     max_symbol = num_symbols;
193   }
194 
195   symbol = 0;
196   while (symbol < num_symbols) {
197     int code_len;
198     if (max_symbol-- == 0) break;
199     VP8LFillBitWindow(br);
200     code_len = ReadSymbol(&tree, br);
201     if (code_len < kCodeLengthLiterals) {
202       code_lengths[symbol++] = code_len;
203       if (code_len != 0) prev_code_len = code_len;
204     } else {
205       const int use_prev = (code_len == kCodeLengthRepeatCode);
206       const int slot = code_len - kCodeLengthLiterals;
207       const int extra_bits = kCodeLengthExtraBits[slot];
208       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
209       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
210       if (symbol + repeat > num_symbols) {
211         dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
212         goto End;
213       } else {
214         const int length = use_prev ? prev_code_len : 0;
215         while (repeat-- > 0) code_lengths[symbol++] = length;
216       }
217     }
218   }
219   ok = 1;
220 
221  End:
222   HuffmanTreeRelease(&tree);
223   return ok;
224 }
225 
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,HuffmanTree * const tree)226 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
227                            HuffmanTree* const tree) {
228   int ok = 0;
229   VP8LBitReader* const br = &dec->br_;
230   const int simple_code = VP8LReadBits(br, 1);
231 
232   if (simple_code) {  // Read symbols, codes & code lengths directly.
233     int symbols[2];
234     int codes[2];
235     int code_lengths[2];
236     const int num_symbols = VP8LReadBits(br, 1) + 1;
237     const int first_symbol_len_code = VP8LReadBits(br, 1);
238     // The first code is either 1 bit or 8 bit code.
239     symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
240     codes[0] = 0;
241     code_lengths[0] = num_symbols - 1;
242     // The second code (if present), is always 8 bit long.
243     if (num_symbols == 2) {
244       symbols[1] = VP8LReadBits(br, 8);
245       codes[1] = 1;
246       code_lengths[1] = num_symbols - 1;
247     }
248     ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
249                                   alphabet_size, num_symbols);
250   } else {  // Decode Huffman-coded code lengths.
251     int* code_lengths = NULL;
252     int i;
253     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
254     const int num_codes = VP8LReadBits(br, 4) + 4;
255     if (num_codes > NUM_CODE_LENGTH_CODES) {
256       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
257       return 0;
258     }
259 
260     code_lengths =
261         (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
262     if (code_lengths == NULL) {
263       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
264       return 0;
265     }
266 
267     for (i = 0; i < num_codes; ++i) {
268       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
269     }
270     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
271                                 code_lengths);
272     if (ok) {
273       ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
274     }
275     free(code_lengths);
276   }
277   ok = ok && !br->error_;
278   if (!ok) {
279     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
280     return 0;
281   }
282   return 1;
283 }
284 
DeleteHtreeGroups(HTreeGroup * htree_groups,int num_htree_groups)285 static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
286   if (htree_groups != NULL) {
287     int i, j;
288     for (i = 0; i < num_htree_groups; ++i) {
289       HuffmanTree* const htrees = htree_groups[i].htrees_;
290       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
291         HuffmanTreeRelease(&htrees[j]);
292       }
293     }
294     free(htree_groups);
295   }
296 }
297 
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)298 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
299                             int color_cache_bits, int allow_recursion) {
300   int i, j;
301   VP8LBitReader* const br = &dec->br_;
302   VP8LMetadata* const hdr = &dec->hdr_;
303   uint32_t* huffman_image = NULL;
304   HTreeGroup* htree_groups = NULL;
305   int num_htree_groups = 1;
306 
307   if (allow_recursion && VP8LReadBits(br, 1)) {
308     // use meta Huffman codes.
309     const int huffman_precision = VP8LReadBits(br, 3) + 2;
310     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
311     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
312     const int huffman_pixs = huffman_xsize * huffman_ysize;
313     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
314                            &huffman_image)) {
315       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
316       goto Error;
317     }
318     hdr->huffman_subsample_bits_ = huffman_precision;
319     for (i = 0; i < huffman_pixs; ++i) {
320       // The huffman data is stored in red and green bytes.
321       const int group = (huffman_image[i] >> 8) & 0xffff;
322       huffman_image[i] = group;
323       if (group >= num_htree_groups) {
324         num_htree_groups = group + 1;
325       }
326     }
327   }
328 
329   if (br->error_) goto Error;
330 
331   assert(num_htree_groups <= 0x10000);
332   htree_groups =
333       (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
334                                   sizeof(*htree_groups));
335   if (htree_groups == NULL) {
336     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
337     goto Error;
338   }
339 
340   for (i = 0; i < num_htree_groups; ++i) {
341     HuffmanTree* const htrees = htree_groups[i].htrees_;
342     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
343       int alphabet_size = kAlphabetSize[j];
344       if (j == 0 && color_cache_bits > 0) {
345         alphabet_size += 1 << color_cache_bits;
346       }
347       if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
348     }
349   }
350 
351   // All OK. Finalize pointers and return.
352   hdr->huffman_image_ = huffman_image;
353   hdr->num_htree_groups_ = num_htree_groups;
354   hdr->htree_groups_ = htree_groups;
355   return 1;
356 
357  Error:
358   free(huffman_image);
359   DeleteHtreeGroups(htree_groups, num_htree_groups);
360   return 0;
361 }
362 
363 //------------------------------------------------------------------------------
364 // Scaling.
365 
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)366 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
367   const int num_channels = 4;
368   const int in_width = io->mb_w;
369   const int out_width = io->scaled_width;
370   const int in_height = io->mb_h;
371   const int out_height = io->scaled_height;
372   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
373   int32_t* work;        // Rescaler work area.
374   const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
375   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
376   const uint64_t memory_size = sizeof(*dec->rescaler) +
377                                work_size * sizeof(*work) +
378                                scaled_data_size * sizeof(*scaled_data);
379   uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
380   if (memory == NULL) {
381     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
382     return 0;
383   }
384   assert(dec->rescaler_memory == NULL);
385   dec->rescaler_memory = memory;
386 
387   dec->rescaler = (WebPRescaler*)memory;
388   memory += sizeof(*dec->rescaler);
389   work = (int32_t*)memory;
390   memory += work_size * sizeof(*work);
391   scaled_data = (uint32_t*)memory;
392 
393   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
394                    out_width, out_height, 0, num_channels,
395                    in_width, out_width, in_height, out_height, work);
396   return 1;
397 }
398 
399 //------------------------------------------------------------------------------
400 // Export to ARGB
401 
402 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)403 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
404                   int rgba_stride, uint8_t* const rgba) {
405   const uint32_t* const src = (const uint32_t*)rescaler->dst;
406   const int dst_width = rescaler->dst_width;
407   int num_lines_out = 0;
408   while (WebPRescalerHasPendingOutput(rescaler)) {
409     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
410     WebPRescalerExportRow(rescaler);
411     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
412     ++num_lines_out;
413   }
414   return num_lines_out;
415 }
416 
417 // Emit scaled rows.
EmitRescaledRows(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h,uint8_t * const out,int out_stride)418 static int EmitRescaledRows(const VP8LDecoder* const dec,
419                             const uint32_t* const data, int in_stride, int mb_h,
420                             uint8_t* const out, int out_stride) {
421   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
422   const uint8_t* const in = (const uint8_t*)data;
423   int num_lines_in = 0;
424   int num_lines_out = 0;
425   while (num_lines_in < mb_h) {
426     const uint8_t* const row_in = in + num_lines_in * in_stride;
427     uint8_t* const row_out = out + num_lines_out * out_stride;
428     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
429                                        row_in, in_stride);
430     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
431   }
432   return num_lines_out;
433 }
434 
435 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint32_t * const data,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)436 static int EmitRows(WEBP_CSP_MODE colorspace,
437                     const uint32_t* const data, int in_stride,
438                     int mb_w, int mb_h,
439                     uint8_t* const out, int out_stride) {
440   int lines = mb_h;
441   const uint8_t* row_in = (const uint8_t*)data;
442   uint8_t* row_out = out;
443   while (lines-- > 0) {
444     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
445     row_in += in_stride;
446     row_out += out_stride;
447   }
448   return mb_h;  // Num rows out == num rows in.
449 }
450 
451 //------------------------------------------------------------------------------
452 // Export to YUVA
453 
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)454 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
455                           const WebPDecBuffer* const output) {
456   const WebPYUVABuffer* const buf = &output->u.YUVA;
457   // first, the luma plane
458   {
459     int i;
460     uint8_t* const y = buf->y + y_pos * buf->y_stride;
461     for (i = 0; i < width; ++i) {
462       const uint32_t p = src[i];
463       y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
464     }
465   }
466 
467   // then U/V planes
468   {
469     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
470     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
471     const int uv_width = width >> 1;
472     int i;
473     for (i = 0; i < uv_width; ++i) {
474       const uint32_t v0 = src[2 * i + 0];
475       const uint32_t v1 = src[2 * i + 1];
476       // VP8RGBToU/V expects four accumulated pixels. Hence we need to
477       // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
478       const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
479       const int g = ((v0 >>  7) & 0x1fe) + ((v1 >>  7) & 0x1fe);
480       const int b = ((v0 <<  1) & 0x1fe) + ((v1 <<  1) & 0x1fe);
481       if (!(y_pos & 1)) {  // even lines: store values
482         u[i] = VP8RGBToU(r, g, b);
483         v[i] = VP8RGBToV(r, g, b);
484       } else {             // odd lines: average with previous values
485         const int tmp_u = VP8RGBToU(r, g, b);
486         const int tmp_v = VP8RGBToV(r, g, b);
487         // Approximated average-of-four. But it's an acceptable diff.
488         u[i] = (u[i] + tmp_u + 1) >> 1;
489         v[i] = (v[i] + tmp_v + 1) >> 1;
490       }
491     }
492     if (width & 1) {       // last pixel
493       const uint32_t v0 = src[2 * i + 0];
494       const int r = (v0 >> 14) & 0x3fc;
495       const int g = (v0 >>  6) & 0x3fc;
496       const int b = (v0 <<  2) & 0x3fc;
497       if (!(y_pos & 1)) {  // even lines
498         u[i] = VP8RGBToU(r, g, b);
499         v[i] = VP8RGBToV(r, g, b);
500       } else {             // odd lines (note: we could just skip this)
501         const int tmp_u = VP8RGBToU(r, g, b);
502         const int tmp_v = VP8RGBToV(r, g, b);
503         u[i] = (u[i] + tmp_u + 1) >> 1;
504         v[i] = (v[i] + tmp_v + 1) >> 1;
505       }
506     }
507   }
508   // Lastly, store alpha if needed.
509   if (buf->a != NULL) {
510     int i;
511     uint8_t* const a = buf->a + y_pos * buf->a_stride;
512     for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
513   }
514 }
515 
ExportYUVA(const VP8LDecoder * const dec,int y_pos)516 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
517   WebPRescaler* const rescaler = dec->rescaler;
518   const uint32_t* const src = (const uint32_t*)rescaler->dst;
519   const int dst_width = rescaler->dst_width;
520   int num_lines_out = 0;
521   while (WebPRescalerHasPendingOutput(rescaler)) {
522     WebPRescalerExportRow(rescaler);
523     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
524     ++y_pos;
525     ++num_lines_out;
526   }
527   return num_lines_out;
528 }
529 
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h)530 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
531                                 const uint32_t* const data,
532                                 int in_stride, int mb_h) {
533   const uint8_t* const in = (const uint8_t*)data;
534   int num_lines_in = 0;
535   int y_pos = dec->last_out_row_;
536   while (num_lines_in < mb_h) {
537     const uint8_t* const row_in = in + num_lines_in * in_stride;
538     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
539                                        row_in, in_stride);
540     y_pos += ExportYUVA(dec, y_pos);
541   }
542   return y_pos;
543 }
544 
EmitRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_w,int num_rows)545 static int EmitRowsYUVA(const VP8LDecoder* const dec,
546                         const uint32_t* const data, int in_stride,
547                         int mb_w, int num_rows) {
548   int y_pos = dec->last_out_row_;
549   const uint8_t* row_in = (const uint8_t*)data;
550   while (num_rows-- > 0) {
551     ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
552     row_in += in_stride;
553     ++y_pos;
554   }
555   return y_pos;
556 }
557 
558 //------------------------------------------------------------------------------
559 // Cropping.
560 
561 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
562 // crop options. Also updates the input data pointer, so that it points to the
563 // start of the cropped window.
564 // Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
565 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,const uint32_t ** const in_data,int pixel_stride)566 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
567                          const uint32_t** const in_data, int pixel_stride) {
568   assert(y_start < y_end);
569   assert(io->crop_left < io->crop_right);
570   if (y_end > io->crop_bottom) {
571     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
572   }
573   if (y_start < io->crop_top) {
574     const int delta = io->crop_top - y_start;
575     y_start = io->crop_top;
576     *in_data += pixel_stride * delta;
577   }
578   if (y_start >= y_end) return 0;  // Crop window is empty.
579 
580   *in_data += io->crop_left;
581 
582   io->mb_y = y_start - io->crop_top;
583   io->mb_w = io->crop_right - io->crop_left;
584   io->mb_h = y_end - y_start;
585   return 1;  // Non-empty crop window.
586 }
587 
588 //------------------------------------------------------------------------------
589 
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)590 static WEBP_INLINE int GetMetaIndex(
591     const uint32_t* const image, int xsize, int bits, int x, int y) {
592   if (bits == 0) return 0;
593   return image[xsize * (y >> bits) + (x >> bits)];
594 }
595 
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)596 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
597                                                    int x, int y) {
598   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
599                                       hdr->huffman_subsample_bits_, x, y);
600   assert(meta_index < hdr->num_htree_groups_);
601   return hdr->htree_groups_ + meta_index;
602 }
603 
604 //------------------------------------------------------------------------------
605 // Main loop, with custom row-processing function
606 
607 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
608 
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)609 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
610                                    const uint32_t* const rows) {
611   int n = dec->next_transform_;
612   const int cache_pixs = dec->width_ * num_rows;
613   const int start_row = dec->last_row_;
614   const int end_row = start_row + num_rows;
615   const uint32_t* rows_in = rows;
616   uint32_t* const rows_out = dec->argb_cache_;
617 
618   // Inverse transforms.
619   // TODO: most transforms only need to operate on the cropped region only.
620   memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
621   while (n-- > 0) {
622     VP8LTransform* const transform = &dec->transforms_[n];
623     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
624     rows_in = rows_out;
625   }
626 }
627 
628 // Processes (transforms, scales & color-converts) the rows decoded after the
629 // last call.
ProcessRows(VP8LDecoder * const dec,int row)630 static void ProcessRows(VP8LDecoder* const dec, int row) {
631   const uint32_t* const rows = dec->argb_ + dec->width_ * dec->last_row_;
632   const int num_rows = row - dec->last_row_;
633 
634   if (num_rows <= 0) return;  // Nothing to be done.
635   ApplyInverseTransforms(dec, num_rows, rows);
636 
637   // Emit output.
638   {
639     VP8Io* const io = dec->io_;
640     const uint32_t* rows_data = dec->argb_cache_;
641     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
642       // Nothing to output (this time).
643     } else {
644       const WebPDecBuffer* const output = dec->output_;
645       const int in_stride = io->width * sizeof(*rows_data);
646       if (output->colorspace < MODE_YUV) {  // convert to RGBA
647         const WebPRGBABuffer* const buf = &output->u.RGBA;
648         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
649         const int num_rows_out = io->use_scaling ?
650             EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
651                              rgba, buf->stride) :
652             EmitRows(output->colorspace, rows_data, in_stride,
653                      io->mb_w, io->mb_h, rgba, buf->stride);
654         // Update 'last_out_row_'.
655         dec->last_out_row_ += num_rows_out;
656       } else {                              // convert to YUVA
657         dec->last_out_row_ = io->use_scaling ?
658             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
659             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
660       }
661       assert(dec->last_out_row_ <= output->height);
662     }
663   }
664 
665   // Update 'last_row_'.
666   dec->last_row_ = row;
667   assert(dec->last_row_ <= dec->height_);
668 }
669 
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,ProcessRowsFunc process_func)670 static int DecodeImageData(VP8LDecoder* const dec,
671                            uint32_t* const data, int width, int height,
672                            ProcessRowsFunc process_func) {
673   int ok = 1;
674   int col = 0, row = 0;
675   VP8LBitReader* const br = &dec->br_;
676   VP8LMetadata* const hdr = &dec->hdr_;
677   HTreeGroup* htree_group = hdr->htree_groups_;
678   uint32_t* src = data;
679   uint32_t* last_cached = data;
680   uint32_t* const src_end = data + width * height;
681   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
682   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
683   VP8LColorCache* const color_cache =
684       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
685   const int mask = hdr->huffman_mask_;
686 
687   assert(htree_group != NULL);
688 
689   while (!br->eos_ && src < src_end) {
690     int code;
691     // Only update when changing tile. Note we could use the following test:
692     //   if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
693     // but that's actually slower and requires storing the previous col/row
694     if ((col & mask) == 0) {
695       htree_group = GetHtreeGroupForPos(hdr, col, row);
696     }
697     VP8LFillBitWindow(br);
698     code = ReadSymbol(&htree_group->htrees_[GREEN], br);
699     if (code < NUM_LITERAL_CODES) {   // Literal.
700       int red, green, blue, alpha;
701       red = ReadSymbol(&htree_group->htrees_[RED], br);
702       green = code;
703       VP8LFillBitWindow(br);
704       blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
705       alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
706       *src = (alpha << 24) + (red << 16) + (green << 8) + blue;
707  AdvanceByOne:
708       ++src;
709       ++col;
710       if (col >= width) {
711         col = 0;
712         ++row;
713         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
714           process_func(dec, row);
715         }
716         if (color_cache != NULL) {
717           while (last_cached < src) {
718             VP8LColorCacheInsert(color_cache, *last_cached++);
719           }
720         }
721       }
722     } else if (code < len_code_limit) {           // Backward reference
723       int dist_code, dist;
724       const int length_sym = code - NUM_LITERAL_CODES;
725       const int length = GetCopyLength(length_sym, br);
726       const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
727       VP8LFillBitWindow(br);
728       dist_code = GetCopyDistance(dist_symbol, br);
729       dist = PlaneCodeToDistance(width, dist_code);
730       if (src - data < dist || src_end - src < length) {
731         ok = 0;
732         goto End;
733       }
734       {
735         int i;
736         for (i = 0; i < length; ++i) src[i] = src[i - dist];
737         src += length;
738       }
739       col += length;
740       while (col >= width) {
741         col -= width;
742         ++row;
743         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
744           process_func(dec, row);
745         }
746       }
747       if (src < src_end) {
748         htree_group = GetHtreeGroupForPos(hdr, col, row);
749         if (color_cache != NULL) {
750           while (last_cached < src) {
751             VP8LColorCacheInsert(color_cache, *last_cached++);
752           }
753         }
754       }
755     } else if (code < color_cache_limit) {    // Color cache.
756       const int key = code - len_code_limit;
757       assert(color_cache != NULL);
758       while (last_cached < src) {
759         VP8LColorCacheInsert(color_cache, *last_cached++);
760       }
761       *src = VP8LColorCacheLookup(color_cache, key);
762       goto AdvanceByOne;
763     } else {    // Not reached.
764       ok = 0;
765       goto End;
766     }
767     ok = !br->error_;
768     if (!ok) goto End;
769   }
770   // Process the remaining rows corresponding to last row-block.
771   if (process_func != NULL) process_func(dec, row);
772 
773  End:
774   if (br->error_ || !ok || (br->eos_ && src < src_end)) {
775     ok = 0;
776     dec->status_ = (!br->eos_) ?
777         VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED;
778   } else if (src == src_end) {
779     dec->state_ = READ_DATA;
780   }
781 
782   return ok;
783 }
784 
785 // -----------------------------------------------------------------------------
786 // VP8LTransform
787 
ClearTransform(VP8LTransform * const transform)788 static void ClearTransform(VP8LTransform* const transform) {
789   free(transform->data_);
790   transform->data_ = NULL;
791 }
792 
793 // For security reason, we need to remap the color map to span
794 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)795 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
796   int i;
797   const int final_num_colors = 1 << (8 >> transform->bits_);
798   uint32_t* const new_color_map =
799       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
800                                 sizeof(*new_color_map));
801   if (new_color_map == NULL) {
802     return 0;
803   } else {
804     uint8_t* const data = (uint8_t*)transform->data_;
805     uint8_t* const new_data = (uint8_t*)new_color_map;
806     new_color_map[0] = transform->data_[0];
807     for (i = 4; i < 4 * num_colors; ++i) {
808       // Equivalent to AddPixelEq(), on a byte-basis.
809       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
810     }
811     for (; i < 4 * final_num_colors; ++i)
812       new_data[i] = 0;  // black tail.
813     free(transform->data_);
814     transform->data_ = new_color_map;
815   }
816   return 1;
817 }
818 
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)819 static int ReadTransform(int* const xsize, int const* ysize,
820                          VP8LDecoder* const dec) {
821   int ok = 1;
822   VP8LBitReader* const br = &dec->br_;
823   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
824   const VP8LImageTransformType type =
825       (VP8LImageTransformType)VP8LReadBits(br, 2);
826 
827   // Each transform type can only be present once in the stream.
828   if (dec->transforms_seen_ & (1U << type)) {
829     return 0;  // Already there, let's not accept the second same transform.
830   }
831   dec->transforms_seen_ |= (1U << type);
832 
833   transform->type_ = type;
834   transform->xsize_ = *xsize;
835   transform->ysize_ = *ysize;
836   transform->data_ = NULL;
837   ++dec->next_transform_;
838   assert(dec->next_transform_ <= NUM_TRANSFORMS);
839 
840   switch (type) {
841     case PREDICTOR_TRANSFORM:
842     case CROSS_COLOR_TRANSFORM:
843       transform->bits_ = VP8LReadBits(br, 3) + 2;
844       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
845                                                transform->bits_),
846                              VP8LSubSampleSize(transform->ysize_,
847                                                transform->bits_),
848                              0, dec, &transform->data_);
849       break;
850     case COLOR_INDEXING_TRANSFORM: {
851        const int num_colors = VP8LReadBits(br, 8) + 1;
852        const int bits = (num_colors > 16) ? 0
853                       : (num_colors > 4) ? 1
854                       : (num_colors > 2) ? 2
855                       : 3;
856        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
857        transform->bits_ = bits;
858        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
859        ok = ok && ExpandColorMap(num_colors, transform);
860       break;
861     }
862     case SUBTRACT_GREEN:
863       break;
864     default:
865       assert(0);    // can't happen
866       break;
867   }
868 
869   return ok;
870 }
871 
872 // -----------------------------------------------------------------------------
873 // VP8LMetadata
874 
InitMetadata(VP8LMetadata * const hdr)875 static void InitMetadata(VP8LMetadata* const hdr) {
876   assert(hdr);
877   memset(hdr, 0, sizeof(*hdr));
878 }
879 
ClearMetadata(VP8LMetadata * const hdr)880 static void ClearMetadata(VP8LMetadata* const hdr) {
881   assert(hdr);
882 
883   free(hdr->huffman_image_);
884   DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
885   VP8LColorCacheClear(&hdr->color_cache_);
886   InitMetadata(hdr);
887 }
888 
889 // -----------------------------------------------------------------------------
890 // VP8LDecoder
891 
VP8LNew(void)892 VP8LDecoder* VP8LNew(void) {
893   VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
894   if (dec == NULL) return NULL;
895   dec->status_ = VP8_STATUS_OK;
896   dec->action_ = READ_DIM;
897   dec->state_ = READ_DIM;
898   return dec;
899 }
900 
VP8LClear(VP8LDecoder * const dec)901 void VP8LClear(VP8LDecoder* const dec) {
902   int i;
903   if (dec == NULL) return;
904   ClearMetadata(&dec->hdr_);
905 
906   free(dec->argb_);
907   dec->argb_ = NULL;
908   for (i = 0; i < dec->next_transform_; ++i) {
909     ClearTransform(&dec->transforms_[i]);
910   }
911   dec->next_transform_ = 0;
912   dec->transforms_seen_ = 0;
913 
914   free(dec->rescaler_memory);
915   dec->rescaler_memory = NULL;
916 
917   dec->output_ = NULL;   // leave no trace behind
918 }
919 
VP8LDelete(VP8LDecoder * const dec)920 void VP8LDelete(VP8LDecoder* const dec) {
921   if (dec != NULL) {
922     VP8LClear(dec);
923     free(dec);
924   }
925 }
926 
UpdateDecoder(VP8LDecoder * const dec,int width,int height)927 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
928   VP8LMetadata* const hdr = &dec->hdr_;
929   const int num_bits = hdr->huffman_subsample_bits_;
930   dec->width_ = width;
931   dec->height_ = height;
932 
933   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
934   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
935 }
936 
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)937 static int DecodeImageStream(int xsize, int ysize,
938                              int is_level0,
939                              VP8LDecoder* const dec,
940                              uint32_t** const decoded_data) {
941   int ok = 1;
942   int transform_xsize = xsize;
943   int transform_ysize = ysize;
944   VP8LBitReader* const br = &dec->br_;
945   VP8LMetadata* const hdr = &dec->hdr_;
946   uint32_t* data = NULL;
947   int color_cache_bits = 0;
948 
949   // Read the transforms (may recurse).
950   if (is_level0) {
951     while (ok && VP8LReadBits(br, 1)) {
952       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
953     }
954   }
955 
956   // Color cache
957   if (ok && VP8LReadBits(br, 1)) {
958     color_cache_bits = VP8LReadBits(br, 4);
959     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
960     if (!ok) {
961       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
962       goto End;
963     }
964   }
965 
966   // Read the Huffman codes (may recurse).
967   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
968                               color_cache_bits, is_level0);
969   if (!ok) {
970     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
971     goto End;
972   }
973 
974   // Finish setting up the color-cache
975   if (color_cache_bits > 0) {
976     hdr->color_cache_size_ = 1 << color_cache_bits;
977     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
978       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
979       ok = 0;
980       goto End;
981     }
982   } else {
983     hdr->color_cache_size_ = 0;
984   }
985   UpdateDecoder(dec, transform_xsize, transform_ysize);
986 
987   if (is_level0) {   // level 0 complete
988     dec->state_ = READ_HDR;
989     goto End;
990   }
991 
992   {
993     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
994     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
995     if (data == NULL) {
996       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
997       ok = 0;
998       goto End;
999     }
1000   }
1001 
1002   // Use the Huffman trees to decode the LZ77 encoded data.
1003   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
1004   ok = ok && !br->error_;
1005 
1006  End:
1007 
1008   if (!ok) {
1009     free(data);
1010     ClearMetadata(hdr);
1011     // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
1012     // status appropriately.
1013     if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
1014       dec->status_ = VP8_STATUS_SUSPENDED;
1015     }
1016   } else {
1017     if (decoded_data != NULL) {
1018       *decoded_data = data;
1019     } else {
1020       // We allocate image data in this function only for transforms. At level 0
1021       // (that is: not the transforms), we shouldn't have allocated anything.
1022       assert(data == NULL);
1023       assert(is_level0);
1024     }
1025     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
1026   }
1027   return ok;
1028 }
1029 
1030 //------------------------------------------------------------------------------
1031 // Allocate dec->argb_ and dec->argb_cache_ using dec->width_ and dec->height_
1032 
AllocateARGBBuffers(VP8LDecoder * const dec,int final_width)1033 static int AllocateARGBBuffers(VP8LDecoder* const dec, int final_width) {
1034   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1035   // Scratch buffer corresponding to top-prediction row for transforming the
1036   // first row in the row-blocks.
1037   const uint64_t cache_top_pixels = final_width;
1038   // Scratch buffer for temporary BGRA storage.
1039   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1040   const uint64_t total_num_pixels =
1041       num_pixels + cache_top_pixels + cache_pixels;
1042 
1043   assert(dec->width_ <= final_width);
1044   dec->argb_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(*dec->argb_));
1045   if (dec->argb_ == NULL) {
1046     dec->argb_cache_ = NULL;    // for sanity check
1047     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1048     return 0;
1049   }
1050   dec->argb_cache_ = dec->argb_ + num_pixels + cache_top_pixels;
1051   return 1;
1052 }
1053 
1054 //------------------------------------------------------------------------------
1055 // Special row-processing that only stores the alpha data.
1056 
ExtractAlphaRows(VP8LDecoder * const dec,int row)1057 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
1058   const int num_rows = row - dec->last_row_;
1059   const uint32_t* const in = dec->argb_ + dec->width_ * dec->last_row_;
1060 
1061   if (num_rows <= 0) return;  // Nothing to be done.
1062   ApplyInverseTransforms(dec, num_rows, in);
1063 
1064   // Extract alpha (which is stored in the green plane).
1065   {
1066     const int width = dec->io_->width;      // the final width (!= dec->width_)
1067     const int cache_pixs = width * num_rows;
1068     uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
1069     const uint32_t* const src = dec->argb_cache_;
1070     int i;
1071     for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
1072   }
1073 
1074   dec->last_row_ = dec->last_out_row_ = row;
1075 }
1076 
VP8LDecodeAlphaImageStream(int width,int height,const uint8_t * const data,size_t data_size,uint8_t * const output)1077 int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
1078                                size_t data_size, uint8_t* const output) {
1079   VP8Io io;
1080   int ok = 0;
1081   VP8LDecoder* const dec = VP8LNew();
1082   if (dec == NULL) return 0;
1083 
1084   dec->width_ = width;
1085   dec->height_ = height;
1086   dec->io_ = &io;
1087 
1088   VP8InitIo(&io);
1089   WebPInitCustomIo(NULL, &io);    // Just a sanity Init. io won't be used.
1090   io.opaque = output;
1091   io.width = width;
1092   io.height = height;
1093 
1094   dec->status_ = VP8_STATUS_OK;
1095   VP8LInitBitReader(&dec->br_, data, data_size);
1096 
1097   dec->action_ = READ_HDR;
1098   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;
1099 
1100   // Allocate output (note that dec->width_ may have changed here).
1101   if (!AllocateARGBBuffers(dec, width)) goto Err;
1102 
1103   // Decode (with special row processing).
1104   dec->action_ = READ_DATA;
1105   ok = DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
1106                        ExtractAlphaRows);
1107 
1108  Err:
1109   VP8LDelete(dec);
1110   return ok;
1111 }
1112 
1113 //------------------------------------------------------------------------------
1114 
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1115 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1116   int width, height, has_alpha;
1117 
1118   if (dec == NULL) return 0;
1119   if (io == NULL) {
1120     dec->status_ = VP8_STATUS_INVALID_PARAM;
1121     return 0;
1122   }
1123 
1124   dec->io_ = io;
1125   dec->status_ = VP8_STATUS_OK;
1126   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1127   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1128     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1129     goto Error;
1130   }
1131   dec->state_ = READ_DIM;
1132   io->width = width;
1133   io->height = height;
1134 
1135   dec->action_ = READ_HDR;
1136   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1137   return 1;
1138 
1139  Error:
1140    VP8LClear(dec);
1141    assert(dec->status_ != VP8_STATUS_OK);
1142    return 0;
1143 }
1144 
VP8LDecodeImage(VP8LDecoder * const dec)1145 int VP8LDecodeImage(VP8LDecoder* const dec) {
1146   VP8Io* io = NULL;
1147   WebPDecParams* params = NULL;
1148 
1149   // Sanity checks.
1150   if (dec == NULL) return 0;
1151 
1152   io = dec->io_;
1153   assert(io != NULL);
1154   params = (WebPDecParams*)io->opaque;
1155   assert(params != NULL);
1156   dec->output_ = params->output;
1157   assert(dec->output_ != NULL);
1158 
1159   // Initialization.
1160   if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1161     dec->status_ = VP8_STATUS_INVALID_PARAM;
1162     goto Err;
1163   }
1164 
1165   if (!AllocateARGBBuffers(dec, io->width)) goto Err;
1166 
1167   if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1168 
1169   // Decode.
1170   dec->action_ = READ_DATA;
1171   if (!DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
1172                        ProcessRows)) {
1173     goto Err;
1174   }
1175 
1176   // Cleanup.
1177   params->last_y = dec->last_out_row_;
1178   VP8LClear(dec);
1179   return 1;
1180 
1181  Err:
1182   VP8LClear(dec);
1183   assert(dec->status_ != VP8_STATUS_OK);
1184   return 0;
1185 }
1186 
1187 //------------------------------------------------------------------------------
1188 
1189 #if defined(__cplusplus) || defined(c_plusplus)
1190 }    // extern "C"
1191 #endif
1192