1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 // Software License Agreement: http://www.webmproject.org/license/software/
5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // main entry for the decoder
9 //
10 // Authors: Vikas Arora (vikaas.arora@gmail.com)
11 // Jyrki Alakuijala (jyrki@google.com)
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include "./vp8li.h"
16 #include "../dsp/lossless.h"
17 #include "../dsp/yuv.h"
18 #include "../utils/huffman.h"
19 #include "../utils/utils.h"
20
21 #if defined(__cplusplus) || defined(c_plusplus)
22 extern "C" {
23 #endif
24
25 #define NUM_ARGB_CACHE_ROWS 16
26
27 static const int kCodeLengthLiterals = 16;
28 static const int kCodeLengthRepeatCode = 16;
29 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
30 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
31
32 // -----------------------------------------------------------------------------
33 // Five Huffman codes are used at each meta code:
34 // 1. green + length prefix codes + color cache codes,
35 // 2. alpha,
36 // 3. red,
37 // 4. blue, and,
38 // 5. distance prefix codes.
39 typedef enum {
40 GREEN = 0,
41 RED = 1,
42 BLUE = 2,
43 ALPHA = 3,
44 DIST = 4
45 } HuffIndex;
46
47 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
48 NUM_LITERAL_CODES + NUM_LENGTH_CODES,
49 NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
50 NUM_DISTANCE_CODES
51 };
52
53
54 #define NUM_CODE_LENGTH_CODES 19
55 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
56 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
57 };
58
59 #define CODE_TO_PLANE_CODES 120
60 static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
61 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
62 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
63 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
64 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
65 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
66 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
67 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
68 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
69 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
70 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
71 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
72 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
73 };
74
75 static int DecodeImageStream(int xsize, int ysize,
76 int is_level0,
77 VP8LDecoder* const dec,
78 uint32_t** const decoded_data);
79
80 //------------------------------------------------------------------------------
81
VP8LCheckSignature(const uint8_t * const data,size_t size)82 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
83 return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
84 }
85
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)86 static int ReadImageInfo(VP8LBitReader* const br,
87 int* const width, int* const height,
88 int* const has_alpha) {
89 const uint8_t signature = VP8LReadBits(br, 8);
90 if (!VP8LCheckSignature(&signature, 1)) {
91 return 0;
92 }
93 *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
94 *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
95 *has_alpha = VP8LReadBits(br, 1);
96 VP8LReadBits(br, VP8L_VERSION_BITS); // Read/ignore the version number.
97 return 1;
98 }
99
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)100 int VP8LGetInfo(const uint8_t* data, size_t data_size,
101 int* const width, int* const height, int* const has_alpha) {
102 if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
103 return 0; // not enough data
104 } else {
105 int w, h, a;
106 VP8LBitReader br;
107 VP8LInitBitReader(&br, data, data_size);
108 if (!ReadImageInfo(&br, &w, &h, &a)) {
109 return 0;
110 }
111 if (width != NULL) *width = w;
112 if (height != NULL) *height = h;
113 if (has_alpha != NULL) *has_alpha = a;
114 return 1;
115 }
116 }
117
118 //------------------------------------------------------------------------------
119
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)120 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
121 VP8LBitReader* const br) {
122 int extra_bits, offset;
123 if (distance_symbol < 4) {
124 return distance_symbol + 1;
125 }
126 extra_bits = (distance_symbol - 2) >> 1;
127 offset = (2 + (distance_symbol & 1)) << extra_bits;
128 return offset + VP8LReadBits(br, extra_bits) + 1;
129 }
130
GetCopyLength(int length_symbol,VP8LBitReader * const br)131 static WEBP_INLINE int GetCopyLength(int length_symbol,
132 VP8LBitReader* const br) {
133 // Length and distance prefixes are encoded the same way.
134 return GetCopyDistance(length_symbol, br);
135 }
136
PlaneCodeToDistance(int xsize,int plane_code)137 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
138 if (plane_code > CODE_TO_PLANE_CODES) {
139 return plane_code - CODE_TO_PLANE_CODES;
140 } else {
141 const int dist_code = code_to_plane_lut[plane_code - 1];
142 const int yoffset = dist_code >> 4;
143 const int xoffset = 8 - (dist_code & 0xf);
144 const int dist = yoffset * xsize + xoffset;
145 return (dist >= 1) ? dist : 1;
146 }
147 }
148
149 //------------------------------------------------------------------------------
150 // Decodes the next Huffman code from bit-stream.
151 // FillBitWindow(br) needs to be called at minimum every second call
152 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanTree * tree,VP8LBitReader * const br)153 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
154 VP8LBitReader* const br) {
155 const HuffmanTreeNode* node = tree->root_;
156 int num_bits = 0;
157 uint32_t bits = VP8LPrefetchBits(br);
158 assert(node != NULL);
159 while (!HuffmanTreeNodeIsLeaf(node)) {
160 node = HuffmanTreeNextNode(node, bits & 1);
161 bits >>= 1;
162 ++num_bits;
163 }
164 VP8LDiscardBits(br, num_bits);
165 return node->symbol_;
166 }
167
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)168 static int ReadHuffmanCodeLengths(
169 VP8LDecoder* const dec, const int* const code_length_code_lengths,
170 int num_symbols, int* const code_lengths) {
171 int ok = 0;
172 VP8LBitReader* const br = &dec->br_;
173 int symbol;
174 int max_symbol;
175 int prev_code_len = DEFAULT_CODE_LENGTH;
176 HuffmanTree tree;
177
178 if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
179 NUM_CODE_LENGTH_CODES)) {
180 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
181 return 0;
182 }
183
184 if (VP8LReadBits(br, 1)) { // use length
185 const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
186 max_symbol = 2 + VP8LReadBits(br, length_nbits);
187 if (max_symbol > num_symbols) {
188 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
189 goto End;
190 }
191 } else {
192 max_symbol = num_symbols;
193 }
194
195 symbol = 0;
196 while (symbol < num_symbols) {
197 int code_len;
198 if (max_symbol-- == 0) break;
199 VP8LFillBitWindow(br);
200 code_len = ReadSymbol(&tree, br);
201 if (code_len < kCodeLengthLiterals) {
202 code_lengths[symbol++] = code_len;
203 if (code_len != 0) prev_code_len = code_len;
204 } else {
205 const int use_prev = (code_len == kCodeLengthRepeatCode);
206 const int slot = code_len - kCodeLengthLiterals;
207 const int extra_bits = kCodeLengthExtraBits[slot];
208 const int repeat_offset = kCodeLengthRepeatOffsets[slot];
209 int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
210 if (symbol + repeat > num_symbols) {
211 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
212 goto End;
213 } else {
214 const int length = use_prev ? prev_code_len : 0;
215 while (repeat-- > 0) code_lengths[symbol++] = length;
216 }
217 }
218 }
219 ok = 1;
220
221 End:
222 HuffmanTreeRelease(&tree);
223 return ok;
224 }
225
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,HuffmanTree * const tree)226 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
227 HuffmanTree* const tree) {
228 int ok = 0;
229 VP8LBitReader* const br = &dec->br_;
230 const int simple_code = VP8LReadBits(br, 1);
231
232 if (simple_code) { // Read symbols, codes & code lengths directly.
233 int symbols[2];
234 int codes[2];
235 int code_lengths[2];
236 const int num_symbols = VP8LReadBits(br, 1) + 1;
237 const int first_symbol_len_code = VP8LReadBits(br, 1);
238 // The first code is either 1 bit or 8 bit code.
239 symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
240 codes[0] = 0;
241 code_lengths[0] = num_symbols - 1;
242 // The second code (if present), is always 8 bit long.
243 if (num_symbols == 2) {
244 symbols[1] = VP8LReadBits(br, 8);
245 codes[1] = 1;
246 code_lengths[1] = num_symbols - 1;
247 }
248 ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
249 alphabet_size, num_symbols);
250 } else { // Decode Huffman-coded code lengths.
251 int* code_lengths = NULL;
252 int i;
253 int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
254 const int num_codes = VP8LReadBits(br, 4) + 4;
255 if (num_codes > NUM_CODE_LENGTH_CODES) {
256 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
257 return 0;
258 }
259
260 code_lengths =
261 (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
262 if (code_lengths == NULL) {
263 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
264 return 0;
265 }
266
267 for (i = 0; i < num_codes; ++i) {
268 code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
269 }
270 ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
271 code_lengths);
272 if (ok) {
273 ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
274 }
275 free(code_lengths);
276 }
277 ok = ok && !br->error_;
278 if (!ok) {
279 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
280 return 0;
281 }
282 return 1;
283 }
284
DeleteHtreeGroups(HTreeGroup * htree_groups,int num_htree_groups)285 static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
286 if (htree_groups != NULL) {
287 int i, j;
288 for (i = 0; i < num_htree_groups; ++i) {
289 HuffmanTree* const htrees = htree_groups[i].htrees_;
290 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
291 HuffmanTreeRelease(&htrees[j]);
292 }
293 }
294 free(htree_groups);
295 }
296 }
297
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)298 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
299 int color_cache_bits, int allow_recursion) {
300 int i, j;
301 VP8LBitReader* const br = &dec->br_;
302 VP8LMetadata* const hdr = &dec->hdr_;
303 uint32_t* huffman_image = NULL;
304 HTreeGroup* htree_groups = NULL;
305 int num_htree_groups = 1;
306
307 if (allow_recursion && VP8LReadBits(br, 1)) {
308 // use meta Huffman codes.
309 const int huffman_precision = VP8LReadBits(br, 3) + 2;
310 const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
311 const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
312 const int huffman_pixs = huffman_xsize * huffman_ysize;
313 if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
314 &huffman_image)) {
315 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
316 goto Error;
317 }
318 hdr->huffman_subsample_bits_ = huffman_precision;
319 for (i = 0; i < huffman_pixs; ++i) {
320 // The huffman data is stored in red and green bytes.
321 const int group = (huffman_image[i] >> 8) & 0xffff;
322 huffman_image[i] = group;
323 if (group >= num_htree_groups) {
324 num_htree_groups = group + 1;
325 }
326 }
327 }
328
329 if (br->error_) goto Error;
330
331 assert(num_htree_groups <= 0x10000);
332 htree_groups =
333 (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
334 sizeof(*htree_groups));
335 if (htree_groups == NULL) {
336 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
337 goto Error;
338 }
339
340 for (i = 0; i < num_htree_groups; ++i) {
341 HuffmanTree* const htrees = htree_groups[i].htrees_;
342 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
343 int alphabet_size = kAlphabetSize[j];
344 if (j == 0 && color_cache_bits > 0) {
345 alphabet_size += 1 << color_cache_bits;
346 }
347 if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
348 }
349 }
350
351 // All OK. Finalize pointers and return.
352 hdr->huffman_image_ = huffman_image;
353 hdr->num_htree_groups_ = num_htree_groups;
354 hdr->htree_groups_ = htree_groups;
355 return 1;
356
357 Error:
358 free(huffman_image);
359 DeleteHtreeGroups(htree_groups, num_htree_groups);
360 return 0;
361 }
362
363 //------------------------------------------------------------------------------
364 // Scaling.
365
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)366 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
367 const int num_channels = 4;
368 const int in_width = io->mb_w;
369 const int out_width = io->scaled_width;
370 const int in_height = io->mb_h;
371 const int out_height = io->scaled_height;
372 const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
373 int32_t* work; // Rescaler work area.
374 const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
375 uint32_t* scaled_data; // Temporary storage for scaled BGRA data.
376 const uint64_t memory_size = sizeof(*dec->rescaler) +
377 work_size * sizeof(*work) +
378 scaled_data_size * sizeof(*scaled_data);
379 uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
380 if (memory == NULL) {
381 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
382 return 0;
383 }
384 assert(dec->rescaler_memory == NULL);
385 dec->rescaler_memory = memory;
386
387 dec->rescaler = (WebPRescaler*)memory;
388 memory += sizeof(*dec->rescaler);
389 work = (int32_t*)memory;
390 memory += work_size * sizeof(*work);
391 scaled_data = (uint32_t*)memory;
392
393 WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
394 out_width, out_height, 0, num_channels,
395 in_width, out_width, in_height, out_height, work);
396 return 1;
397 }
398
399 //------------------------------------------------------------------------------
400 // Export to ARGB
401
402 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)403 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
404 int rgba_stride, uint8_t* const rgba) {
405 const uint32_t* const src = (const uint32_t*)rescaler->dst;
406 const int dst_width = rescaler->dst_width;
407 int num_lines_out = 0;
408 while (WebPRescalerHasPendingOutput(rescaler)) {
409 uint8_t* const dst = rgba + num_lines_out * rgba_stride;
410 WebPRescalerExportRow(rescaler);
411 VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
412 ++num_lines_out;
413 }
414 return num_lines_out;
415 }
416
417 // Emit scaled rows.
EmitRescaledRows(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h,uint8_t * const out,int out_stride)418 static int EmitRescaledRows(const VP8LDecoder* const dec,
419 const uint32_t* const data, int in_stride, int mb_h,
420 uint8_t* const out, int out_stride) {
421 const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
422 const uint8_t* const in = (const uint8_t*)data;
423 int num_lines_in = 0;
424 int num_lines_out = 0;
425 while (num_lines_in < mb_h) {
426 const uint8_t* const row_in = in + num_lines_in * in_stride;
427 uint8_t* const row_out = out + num_lines_out * out_stride;
428 num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
429 row_in, in_stride);
430 num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
431 }
432 return num_lines_out;
433 }
434
435 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint32_t * const data,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)436 static int EmitRows(WEBP_CSP_MODE colorspace,
437 const uint32_t* const data, int in_stride,
438 int mb_w, int mb_h,
439 uint8_t* const out, int out_stride) {
440 int lines = mb_h;
441 const uint8_t* row_in = (const uint8_t*)data;
442 uint8_t* row_out = out;
443 while (lines-- > 0) {
444 VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
445 row_in += in_stride;
446 row_out += out_stride;
447 }
448 return mb_h; // Num rows out == num rows in.
449 }
450
451 //------------------------------------------------------------------------------
452 // Export to YUVA
453
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)454 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
455 const WebPDecBuffer* const output) {
456 const WebPYUVABuffer* const buf = &output->u.YUVA;
457 // first, the luma plane
458 {
459 int i;
460 uint8_t* const y = buf->y + y_pos * buf->y_stride;
461 for (i = 0; i < width; ++i) {
462 const uint32_t p = src[i];
463 y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
464 }
465 }
466
467 // then U/V planes
468 {
469 uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
470 uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
471 const int uv_width = width >> 1;
472 int i;
473 for (i = 0; i < uv_width; ++i) {
474 const uint32_t v0 = src[2 * i + 0];
475 const uint32_t v1 = src[2 * i + 1];
476 // VP8RGBToU/V expects four accumulated pixels. Hence we need to
477 // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
478 const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
479 const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe);
480 const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe);
481 if (!(y_pos & 1)) { // even lines: store values
482 u[i] = VP8RGBToU(r, g, b);
483 v[i] = VP8RGBToV(r, g, b);
484 } else { // odd lines: average with previous values
485 const int tmp_u = VP8RGBToU(r, g, b);
486 const int tmp_v = VP8RGBToV(r, g, b);
487 // Approximated average-of-four. But it's an acceptable diff.
488 u[i] = (u[i] + tmp_u + 1) >> 1;
489 v[i] = (v[i] + tmp_v + 1) >> 1;
490 }
491 }
492 if (width & 1) { // last pixel
493 const uint32_t v0 = src[2 * i + 0];
494 const int r = (v0 >> 14) & 0x3fc;
495 const int g = (v0 >> 6) & 0x3fc;
496 const int b = (v0 << 2) & 0x3fc;
497 if (!(y_pos & 1)) { // even lines
498 u[i] = VP8RGBToU(r, g, b);
499 v[i] = VP8RGBToV(r, g, b);
500 } else { // odd lines (note: we could just skip this)
501 const int tmp_u = VP8RGBToU(r, g, b);
502 const int tmp_v = VP8RGBToV(r, g, b);
503 u[i] = (u[i] + tmp_u + 1) >> 1;
504 v[i] = (v[i] + tmp_v + 1) >> 1;
505 }
506 }
507 }
508 // Lastly, store alpha if needed.
509 if (buf->a != NULL) {
510 int i;
511 uint8_t* const a = buf->a + y_pos * buf->a_stride;
512 for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
513 }
514 }
515
ExportYUVA(const VP8LDecoder * const dec,int y_pos)516 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
517 WebPRescaler* const rescaler = dec->rescaler;
518 const uint32_t* const src = (const uint32_t*)rescaler->dst;
519 const int dst_width = rescaler->dst_width;
520 int num_lines_out = 0;
521 while (WebPRescalerHasPendingOutput(rescaler)) {
522 WebPRescalerExportRow(rescaler);
523 ConvertToYUVA(src, dst_width, y_pos, dec->output_);
524 ++y_pos;
525 ++num_lines_out;
526 }
527 return num_lines_out;
528 }
529
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h)530 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
531 const uint32_t* const data,
532 int in_stride, int mb_h) {
533 const uint8_t* const in = (const uint8_t*)data;
534 int num_lines_in = 0;
535 int y_pos = dec->last_out_row_;
536 while (num_lines_in < mb_h) {
537 const uint8_t* const row_in = in + num_lines_in * in_stride;
538 num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
539 row_in, in_stride);
540 y_pos += ExportYUVA(dec, y_pos);
541 }
542 return y_pos;
543 }
544
EmitRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_w,int num_rows)545 static int EmitRowsYUVA(const VP8LDecoder* const dec,
546 const uint32_t* const data, int in_stride,
547 int mb_w, int num_rows) {
548 int y_pos = dec->last_out_row_;
549 const uint8_t* row_in = (const uint8_t*)data;
550 while (num_rows-- > 0) {
551 ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
552 row_in += in_stride;
553 ++y_pos;
554 }
555 return y_pos;
556 }
557
558 //------------------------------------------------------------------------------
559 // Cropping.
560
561 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
562 // crop options. Also updates the input data pointer, so that it points to the
563 // start of the cropped window.
564 // Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
565 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,const uint32_t ** const in_data,int pixel_stride)566 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
567 const uint32_t** const in_data, int pixel_stride) {
568 assert(y_start < y_end);
569 assert(io->crop_left < io->crop_right);
570 if (y_end > io->crop_bottom) {
571 y_end = io->crop_bottom; // make sure we don't overflow on last row.
572 }
573 if (y_start < io->crop_top) {
574 const int delta = io->crop_top - y_start;
575 y_start = io->crop_top;
576 *in_data += pixel_stride * delta;
577 }
578 if (y_start >= y_end) return 0; // Crop window is empty.
579
580 *in_data += io->crop_left;
581
582 io->mb_y = y_start - io->crop_top;
583 io->mb_w = io->crop_right - io->crop_left;
584 io->mb_h = y_end - y_start;
585 return 1; // Non-empty crop window.
586 }
587
588 //------------------------------------------------------------------------------
589
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)590 static WEBP_INLINE int GetMetaIndex(
591 const uint32_t* const image, int xsize, int bits, int x, int y) {
592 if (bits == 0) return 0;
593 return image[xsize * (y >> bits) + (x >> bits)];
594 }
595
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)596 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
597 int x, int y) {
598 const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
599 hdr->huffman_subsample_bits_, x, y);
600 assert(meta_index < hdr->num_htree_groups_);
601 return hdr->htree_groups_ + meta_index;
602 }
603
604 //------------------------------------------------------------------------------
605 // Main loop, with custom row-processing function
606
607 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
608
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)609 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
610 const uint32_t* const rows) {
611 int n = dec->next_transform_;
612 const int cache_pixs = dec->width_ * num_rows;
613 const int start_row = dec->last_row_;
614 const int end_row = start_row + num_rows;
615 const uint32_t* rows_in = rows;
616 uint32_t* const rows_out = dec->argb_cache_;
617
618 // Inverse transforms.
619 // TODO: most transforms only need to operate on the cropped region only.
620 memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
621 while (n-- > 0) {
622 VP8LTransform* const transform = &dec->transforms_[n];
623 VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
624 rows_in = rows_out;
625 }
626 }
627
628 // Processes (transforms, scales & color-converts) the rows decoded after the
629 // last call.
ProcessRows(VP8LDecoder * const dec,int row)630 static void ProcessRows(VP8LDecoder* const dec, int row) {
631 const uint32_t* const rows = dec->argb_ + dec->width_ * dec->last_row_;
632 const int num_rows = row - dec->last_row_;
633
634 if (num_rows <= 0) return; // Nothing to be done.
635 ApplyInverseTransforms(dec, num_rows, rows);
636
637 // Emit output.
638 {
639 VP8Io* const io = dec->io_;
640 const uint32_t* rows_data = dec->argb_cache_;
641 if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
642 // Nothing to output (this time).
643 } else {
644 const WebPDecBuffer* const output = dec->output_;
645 const int in_stride = io->width * sizeof(*rows_data);
646 if (output->colorspace < MODE_YUV) { // convert to RGBA
647 const WebPRGBABuffer* const buf = &output->u.RGBA;
648 uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
649 const int num_rows_out = io->use_scaling ?
650 EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
651 rgba, buf->stride) :
652 EmitRows(output->colorspace, rows_data, in_stride,
653 io->mb_w, io->mb_h, rgba, buf->stride);
654 // Update 'last_out_row_'.
655 dec->last_out_row_ += num_rows_out;
656 } else { // convert to YUVA
657 dec->last_out_row_ = io->use_scaling ?
658 EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
659 EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
660 }
661 assert(dec->last_out_row_ <= output->height);
662 }
663 }
664
665 // Update 'last_row_'.
666 dec->last_row_ = row;
667 assert(dec->last_row_ <= dec->height_);
668 }
669
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,ProcessRowsFunc process_func)670 static int DecodeImageData(VP8LDecoder* const dec,
671 uint32_t* const data, int width, int height,
672 ProcessRowsFunc process_func) {
673 int ok = 1;
674 int col = 0, row = 0;
675 VP8LBitReader* const br = &dec->br_;
676 VP8LMetadata* const hdr = &dec->hdr_;
677 HTreeGroup* htree_group = hdr->htree_groups_;
678 uint32_t* src = data;
679 uint32_t* last_cached = data;
680 uint32_t* const src_end = data + width * height;
681 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
682 const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
683 VP8LColorCache* const color_cache =
684 (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
685 const int mask = hdr->huffman_mask_;
686
687 assert(htree_group != NULL);
688
689 while (!br->eos_ && src < src_end) {
690 int code;
691 // Only update when changing tile. Note we could use the following test:
692 // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
693 // but that's actually slower and requires storing the previous col/row
694 if ((col & mask) == 0) {
695 htree_group = GetHtreeGroupForPos(hdr, col, row);
696 }
697 VP8LFillBitWindow(br);
698 code = ReadSymbol(&htree_group->htrees_[GREEN], br);
699 if (code < NUM_LITERAL_CODES) { // Literal.
700 int red, green, blue, alpha;
701 red = ReadSymbol(&htree_group->htrees_[RED], br);
702 green = code;
703 VP8LFillBitWindow(br);
704 blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
705 alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
706 *src = (alpha << 24) + (red << 16) + (green << 8) + blue;
707 AdvanceByOne:
708 ++src;
709 ++col;
710 if (col >= width) {
711 col = 0;
712 ++row;
713 if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
714 process_func(dec, row);
715 }
716 if (color_cache != NULL) {
717 while (last_cached < src) {
718 VP8LColorCacheInsert(color_cache, *last_cached++);
719 }
720 }
721 }
722 } else if (code < len_code_limit) { // Backward reference
723 int dist_code, dist;
724 const int length_sym = code - NUM_LITERAL_CODES;
725 const int length = GetCopyLength(length_sym, br);
726 const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
727 VP8LFillBitWindow(br);
728 dist_code = GetCopyDistance(dist_symbol, br);
729 dist = PlaneCodeToDistance(width, dist_code);
730 if (src - data < dist || src_end - src < length) {
731 ok = 0;
732 goto End;
733 }
734 {
735 int i;
736 for (i = 0; i < length; ++i) src[i] = src[i - dist];
737 src += length;
738 }
739 col += length;
740 while (col >= width) {
741 col -= width;
742 ++row;
743 if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
744 process_func(dec, row);
745 }
746 }
747 if (src < src_end) {
748 htree_group = GetHtreeGroupForPos(hdr, col, row);
749 if (color_cache != NULL) {
750 while (last_cached < src) {
751 VP8LColorCacheInsert(color_cache, *last_cached++);
752 }
753 }
754 }
755 } else if (code < color_cache_limit) { // Color cache.
756 const int key = code - len_code_limit;
757 assert(color_cache != NULL);
758 while (last_cached < src) {
759 VP8LColorCacheInsert(color_cache, *last_cached++);
760 }
761 *src = VP8LColorCacheLookup(color_cache, key);
762 goto AdvanceByOne;
763 } else { // Not reached.
764 ok = 0;
765 goto End;
766 }
767 ok = !br->error_;
768 if (!ok) goto End;
769 }
770 // Process the remaining rows corresponding to last row-block.
771 if (process_func != NULL) process_func(dec, row);
772
773 End:
774 if (br->error_ || !ok || (br->eos_ && src < src_end)) {
775 ok = 0;
776 dec->status_ = (!br->eos_) ?
777 VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED;
778 } else if (src == src_end) {
779 dec->state_ = READ_DATA;
780 }
781
782 return ok;
783 }
784
785 // -----------------------------------------------------------------------------
786 // VP8LTransform
787
ClearTransform(VP8LTransform * const transform)788 static void ClearTransform(VP8LTransform* const transform) {
789 free(transform->data_);
790 transform->data_ = NULL;
791 }
792
793 // For security reason, we need to remap the color map to span
794 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)795 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
796 int i;
797 const int final_num_colors = 1 << (8 >> transform->bits_);
798 uint32_t* const new_color_map =
799 (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
800 sizeof(*new_color_map));
801 if (new_color_map == NULL) {
802 return 0;
803 } else {
804 uint8_t* const data = (uint8_t*)transform->data_;
805 uint8_t* const new_data = (uint8_t*)new_color_map;
806 new_color_map[0] = transform->data_[0];
807 for (i = 4; i < 4 * num_colors; ++i) {
808 // Equivalent to AddPixelEq(), on a byte-basis.
809 new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
810 }
811 for (; i < 4 * final_num_colors; ++i)
812 new_data[i] = 0; // black tail.
813 free(transform->data_);
814 transform->data_ = new_color_map;
815 }
816 return 1;
817 }
818
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)819 static int ReadTransform(int* const xsize, int const* ysize,
820 VP8LDecoder* const dec) {
821 int ok = 1;
822 VP8LBitReader* const br = &dec->br_;
823 VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
824 const VP8LImageTransformType type =
825 (VP8LImageTransformType)VP8LReadBits(br, 2);
826
827 // Each transform type can only be present once in the stream.
828 if (dec->transforms_seen_ & (1U << type)) {
829 return 0; // Already there, let's not accept the second same transform.
830 }
831 dec->transforms_seen_ |= (1U << type);
832
833 transform->type_ = type;
834 transform->xsize_ = *xsize;
835 transform->ysize_ = *ysize;
836 transform->data_ = NULL;
837 ++dec->next_transform_;
838 assert(dec->next_transform_ <= NUM_TRANSFORMS);
839
840 switch (type) {
841 case PREDICTOR_TRANSFORM:
842 case CROSS_COLOR_TRANSFORM:
843 transform->bits_ = VP8LReadBits(br, 3) + 2;
844 ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
845 transform->bits_),
846 VP8LSubSampleSize(transform->ysize_,
847 transform->bits_),
848 0, dec, &transform->data_);
849 break;
850 case COLOR_INDEXING_TRANSFORM: {
851 const int num_colors = VP8LReadBits(br, 8) + 1;
852 const int bits = (num_colors > 16) ? 0
853 : (num_colors > 4) ? 1
854 : (num_colors > 2) ? 2
855 : 3;
856 *xsize = VP8LSubSampleSize(transform->xsize_, bits);
857 transform->bits_ = bits;
858 ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
859 ok = ok && ExpandColorMap(num_colors, transform);
860 break;
861 }
862 case SUBTRACT_GREEN:
863 break;
864 default:
865 assert(0); // can't happen
866 break;
867 }
868
869 return ok;
870 }
871
872 // -----------------------------------------------------------------------------
873 // VP8LMetadata
874
InitMetadata(VP8LMetadata * const hdr)875 static void InitMetadata(VP8LMetadata* const hdr) {
876 assert(hdr);
877 memset(hdr, 0, sizeof(*hdr));
878 }
879
ClearMetadata(VP8LMetadata * const hdr)880 static void ClearMetadata(VP8LMetadata* const hdr) {
881 assert(hdr);
882
883 free(hdr->huffman_image_);
884 DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
885 VP8LColorCacheClear(&hdr->color_cache_);
886 InitMetadata(hdr);
887 }
888
889 // -----------------------------------------------------------------------------
890 // VP8LDecoder
891
VP8LNew(void)892 VP8LDecoder* VP8LNew(void) {
893 VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
894 if (dec == NULL) return NULL;
895 dec->status_ = VP8_STATUS_OK;
896 dec->action_ = READ_DIM;
897 dec->state_ = READ_DIM;
898 return dec;
899 }
900
VP8LClear(VP8LDecoder * const dec)901 void VP8LClear(VP8LDecoder* const dec) {
902 int i;
903 if (dec == NULL) return;
904 ClearMetadata(&dec->hdr_);
905
906 free(dec->argb_);
907 dec->argb_ = NULL;
908 for (i = 0; i < dec->next_transform_; ++i) {
909 ClearTransform(&dec->transforms_[i]);
910 }
911 dec->next_transform_ = 0;
912 dec->transforms_seen_ = 0;
913
914 free(dec->rescaler_memory);
915 dec->rescaler_memory = NULL;
916
917 dec->output_ = NULL; // leave no trace behind
918 }
919
VP8LDelete(VP8LDecoder * const dec)920 void VP8LDelete(VP8LDecoder* const dec) {
921 if (dec != NULL) {
922 VP8LClear(dec);
923 free(dec);
924 }
925 }
926
UpdateDecoder(VP8LDecoder * const dec,int width,int height)927 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
928 VP8LMetadata* const hdr = &dec->hdr_;
929 const int num_bits = hdr->huffman_subsample_bits_;
930 dec->width_ = width;
931 dec->height_ = height;
932
933 hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
934 hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
935 }
936
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)937 static int DecodeImageStream(int xsize, int ysize,
938 int is_level0,
939 VP8LDecoder* const dec,
940 uint32_t** const decoded_data) {
941 int ok = 1;
942 int transform_xsize = xsize;
943 int transform_ysize = ysize;
944 VP8LBitReader* const br = &dec->br_;
945 VP8LMetadata* const hdr = &dec->hdr_;
946 uint32_t* data = NULL;
947 int color_cache_bits = 0;
948
949 // Read the transforms (may recurse).
950 if (is_level0) {
951 while (ok && VP8LReadBits(br, 1)) {
952 ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
953 }
954 }
955
956 // Color cache
957 if (ok && VP8LReadBits(br, 1)) {
958 color_cache_bits = VP8LReadBits(br, 4);
959 ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
960 if (!ok) {
961 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
962 goto End;
963 }
964 }
965
966 // Read the Huffman codes (may recurse).
967 ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
968 color_cache_bits, is_level0);
969 if (!ok) {
970 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
971 goto End;
972 }
973
974 // Finish setting up the color-cache
975 if (color_cache_bits > 0) {
976 hdr->color_cache_size_ = 1 << color_cache_bits;
977 if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
978 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
979 ok = 0;
980 goto End;
981 }
982 } else {
983 hdr->color_cache_size_ = 0;
984 }
985 UpdateDecoder(dec, transform_xsize, transform_ysize);
986
987 if (is_level0) { // level 0 complete
988 dec->state_ = READ_HDR;
989 goto End;
990 }
991
992 {
993 const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
994 data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
995 if (data == NULL) {
996 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
997 ok = 0;
998 goto End;
999 }
1000 }
1001
1002 // Use the Huffman trees to decode the LZ77 encoded data.
1003 ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
1004 ok = ok && !br->error_;
1005
1006 End:
1007
1008 if (!ok) {
1009 free(data);
1010 ClearMetadata(hdr);
1011 // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
1012 // status appropriately.
1013 if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
1014 dec->status_ = VP8_STATUS_SUSPENDED;
1015 }
1016 } else {
1017 if (decoded_data != NULL) {
1018 *decoded_data = data;
1019 } else {
1020 // We allocate image data in this function only for transforms. At level 0
1021 // (that is: not the transforms), we shouldn't have allocated anything.
1022 assert(data == NULL);
1023 assert(is_level0);
1024 }
1025 if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind.
1026 }
1027 return ok;
1028 }
1029
1030 //------------------------------------------------------------------------------
1031 // Allocate dec->argb_ and dec->argb_cache_ using dec->width_ and dec->height_
1032
AllocateARGBBuffers(VP8LDecoder * const dec,int final_width)1033 static int AllocateARGBBuffers(VP8LDecoder* const dec, int final_width) {
1034 const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1035 // Scratch buffer corresponding to top-prediction row for transforming the
1036 // first row in the row-blocks.
1037 const uint64_t cache_top_pixels = final_width;
1038 // Scratch buffer for temporary BGRA storage.
1039 const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1040 const uint64_t total_num_pixels =
1041 num_pixels + cache_top_pixels + cache_pixels;
1042
1043 assert(dec->width_ <= final_width);
1044 dec->argb_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(*dec->argb_));
1045 if (dec->argb_ == NULL) {
1046 dec->argb_cache_ = NULL; // for sanity check
1047 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1048 return 0;
1049 }
1050 dec->argb_cache_ = dec->argb_ + num_pixels + cache_top_pixels;
1051 return 1;
1052 }
1053
1054 //------------------------------------------------------------------------------
1055 // Special row-processing that only stores the alpha data.
1056
ExtractAlphaRows(VP8LDecoder * const dec,int row)1057 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
1058 const int num_rows = row - dec->last_row_;
1059 const uint32_t* const in = dec->argb_ + dec->width_ * dec->last_row_;
1060
1061 if (num_rows <= 0) return; // Nothing to be done.
1062 ApplyInverseTransforms(dec, num_rows, in);
1063
1064 // Extract alpha (which is stored in the green plane).
1065 {
1066 const int width = dec->io_->width; // the final width (!= dec->width_)
1067 const int cache_pixs = width * num_rows;
1068 uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
1069 const uint32_t* const src = dec->argb_cache_;
1070 int i;
1071 for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
1072 }
1073
1074 dec->last_row_ = dec->last_out_row_ = row;
1075 }
1076
VP8LDecodeAlphaImageStream(int width,int height,const uint8_t * const data,size_t data_size,uint8_t * const output)1077 int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
1078 size_t data_size, uint8_t* const output) {
1079 VP8Io io;
1080 int ok = 0;
1081 VP8LDecoder* const dec = VP8LNew();
1082 if (dec == NULL) return 0;
1083
1084 dec->width_ = width;
1085 dec->height_ = height;
1086 dec->io_ = &io;
1087
1088 VP8InitIo(&io);
1089 WebPInitCustomIo(NULL, &io); // Just a sanity Init. io won't be used.
1090 io.opaque = output;
1091 io.width = width;
1092 io.height = height;
1093
1094 dec->status_ = VP8_STATUS_OK;
1095 VP8LInitBitReader(&dec->br_, data, data_size);
1096
1097 dec->action_ = READ_HDR;
1098 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;
1099
1100 // Allocate output (note that dec->width_ may have changed here).
1101 if (!AllocateARGBBuffers(dec, width)) goto Err;
1102
1103 // Decode (with special row processing).
1104 dec->action_ = READ_DATA;
1105 ok = DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
1106 ExtractAlphaRows);
1107
1108 Err:
1109 VP8LDelete(dec);
1110 return ok;
1111 }
1112
1113 //------------------------------------------------------------------------------
1114
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1115 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1116 int width, height, has_alpha;
1117
1118 if (dec == NULL) return 0;
1119 if (io == NULL) {
1120 dec->status_ = VP8_STATUS_INVALID_PARAM;
1121 return 0;
1122 }
1123
1124 dec->io_ = io;
1125 dec->status_ = VP8_STATUS_OK;
1126 VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1127 if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1128 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1129 goto Error;
1130 }
1131 dec->state_ = READ_DIM;
1132 io->width = width;
1133 io->height = height;
1134
1135 dec->action_ = READ_HDR;
1136 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1137 return 1;
1138
1139 Error:
1140 VP8LClear(dec);
1141 assert(dec->status_ != VP8_STATUS_OK);
1142 return 0;
1143 }
1144
VP8LDecodeImage(VP8LDecoder * const dec)1145 int VP8LDecodeImage(VP8LDecoder* const dec) {
1146 VP8Io* io = NULL;
1147 WebPDecParams* params = NULL;
1148
1149 // Sanity checks.
1150 if (dec == NULL) return 0;
1151
1152 io = dec->io_;
1153 assert(io != NULL);
1154 params = (WebPDecParams*)io->opaque;
1155 assert(params != NULL);
1156 dec->output_ = params->output;
1157 assert(dec->output_ != NULL);
1158
1159 // Initialization.
1160 if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1161 dec->status_ = VP8_STATUS_INVALID_PARAM;
1162 goto Err;
1163 }
1164
1165 if (!AllocateARGBBuffers(dec, io->width)) goto Err;
1166
1167 if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1168
1169 // Decode.
1170 dec->action_ = READ_DATA;
1171 if (!DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
1172 ProcessRows)) {
1173 goto Err;
1174 }
1175
1176 // Cleanup.
1177 params->last_y = dec->last_out_row_;
1178 VP8LClear(dec);
1179 return 1;
1180
1181 Err:
1182 VP8LClear(dec);
1183 assert(dec->status_ != VP8_STATUS_OK);
1184 return 0;
1185 }
1186
1187 //------------------------------------------------------------------------------
1188
1189 #if defined(__cplusplus) || defined(c_plusplus)
1190 } // extern "C"
1191 #endif
1192