1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/InlineAsm.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/ValueSymbolTable.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Program.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <cctype>
32 #include <map>
33 using namespace llvm;
34
35 static cl::opt<bool>
36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
37 cl::desc("Turn on experimental support for "
38 "use-list order preservation."),
39 cl::init(false), cl::Hidden);
40
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44 // VALUE_SYMTAB_BLOCK abbrev id's.
45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46 VST_ENTRY_7_ABBREV,
47 VST_ENTRY_6_ABBREV,
48 VST_BBENTRY_6_ABBREV,
49
50 // CONSTANTS_BLOCK abbrev id's.
51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52 CONSTANTS_INTEGER_ABBREV,
53 CONSTANTS_CE_CAST_Abbrev,
54 CONSTANTS_NULL_Abbrev,
55
56 // FUNCTION_BLOCK abbrev id's.
57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58 FUNCTION_INST_BINOP_ABBREV,
59 FUNCTION_INST_BINOP_FLAGS_ABBREV,
60 FUNCTION_INST_CAST_ABBREV,
61 FUNCTION_INST_RET_VOID_ABBREV,
62 FUNCTION_INST_RET_VAL_ABBREV,
63 FUNCTION_INST_UNREACHABLE_ABBREV,
64
65 // SwitchInst Magic
66 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
67 };
68
GetEncodedCastOpcode(unsigned Opcode)69 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
70 switch (Opcode) {
71 default: llvm_unreachable("Unknown cast instruction!");
72 case Instruction::Trunc : return bitc::CAST_TRUNC;
73 case Instruction::ZExt : return bitc::CAST_ZEXT;
74 case Instruction::SExt : return bitc::CAST_SEXT;
75 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
76 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
77 case Instruction::UIToFP : return bitc::CAST_UITOFP;
78 case Instruction::SIToFP : return bitc::CAST_SITOFP;
79 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
80 case Instruction::FPExt : return bitc::CAST_FPEXT;
81 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
82 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
83 case Instruction::BitCast : return bitc::CAST_BITCAST;
84 }
85 }
86
GetEncodedBinaryOpcode(unsigned Opcode)87 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
88 switch (Opcode) {
89 default: llvm_unreachable("Unknown binary instruction!");
90 case Instruction::Add:
91 case Instruction::FAdd: return bitc::BINOP_ADD;
92 case Instruction::Sub:
93 case Instruction::FSub: return bitc::BINOP_SUB;
94 case Instruction::Mul:
95 case Instruction::FMul: return bitc::BINOP_MUL;
96 case Instruction::UDiv: return bitc::BINOP_UDIV;
97 case Instruction::FDiv:
98 case Instruction::SDiv: return bitc::BINOP_SDIV;
99 case Instruction::URem: return bitc::BINOP_UREM;
100 case Instruction::FRem:
101 case Instruction::SRem: return bitc::BINOP_SREM;
102 case Instruction::Shl: return bitc::BINOP_SHL;
103 case Instruction::LShr: return bitc::BINOP_LSHR;
104 case Instruction::AShr: return bitc::BINOP_ASHR;
105 case Instruction::And: return bitc::BINOP_AND;
106 case Instruction::Or: return bitc::BINOP_OR;
107 case Instruction::Xor: return bitc::BINOP_XOR;
108 }
109 }
110
GetEncodedRMWOperation(AtomicRMWInst::BinOp Op)111 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
112 switch (Op) {
113 default: llvm_unreachable("Unknown RMW operation!");
114 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
115 case AtomicRMWInst::Add: return bitc::RMW_ADD;
116 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
117 case AtomicRMWInst::And: return bitc::RMW_AND;
118 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
119 case AtomicRMWInst::Or: return bitc::RMW_OR;
120 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
121 case AtomicRMWInst::Max: return bitc::RMW_MAX;
122 case AtomicRMWInst::Min: return bitc::RMW_MIN;
123 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
124 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
125 }
126 }
127
GetEncodedOrdering(AtomicOrdering Ordering)128 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
129 switch (Ordering) {
130 case NotAtomic: return bitc::ORDERING_NOTATOMIC;
131 case Unordered: return bitc::ORDERING_UNORDERED;
132 case Monotonic: return bitc::ORDERING_MONOTONIC;
133 case Acquire: return bitc::ORDERING_ACQUIRE;
134 case Release: return bitc::ORDERING_RELEASE;
135 case AcquireRelease: return bitc::ORDERING_ACQREL;
136 case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
137 }
138 llvm_unreachable("Invalid ordering");
139 }
140
GetEncodedSynchScope(SynchronizationScope SynchScope)141 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
142 switch (SynchScope) {
143 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
144 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
145 }
146 llvm_unreachable("Invalid synch scope");
147 }
148
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)149 static void WriteStringRecord(unsigned Code, StringRef Str,
150 unsigned AbbrevToUse, BitstreamWriter &Stream) {
151 SmallVector<unsigned, 64> Vals;
152
153 // Code: [strchar x N]
154 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
155 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
156 AbbrevToUse = 0;
157 Vals.push_back(Str[i]);
158 }
159
160 // Emit the finished record.
161 Stream.EmitRecord(Code, Vals, AbbrevToUse);
162 }
163
WriteAttributeGroupTable(const ValueEnumerator & VE,BitstreamWriter & Stream)164 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
165 BitstreamWriter &Stream) {
166 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
167 if (AttrGrps.empty()) return;
168
169 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
170
171 SmallVector<uint64_t, 64> Record;
172 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
173 AttributeSet AS = AttrGrps[i];
174 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
175 AttributeSet A = AS.getSlotAttributes(i);
176
177 Record.push_back(VE.getAttributeGroupID(A));
178 Record.push_back(AS.getSlotIndex(i));
179
180 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
181 I != E; ++I) {
182 Attribute Attr = *I;
183 if (Attr.isEnumAttribute()) {
184 Record.push_back(0);
185 Record.push_back(Attr.getKindAsEnum());
186 } else if (Attr.isAlignAttribute()) {
187 Record.push_back(1);
188 Record.push_back(Attr.getKindAsEnum());
189 Record.push_back(Attr.getValueAsInt());
190 } else {
191 StringRef Kind = Attr.getKindAsString();
192 StringRef Val = Attr.getValueAsString();
193
194 Record.push_back(Val.empty() ? 3 : 4);
195 Record.append(Kind.begin(), Kind.end());
196 Record.push_back(0);
197 if (!Val.empty()) {
198 Record.append(Val.begin(), Val.end());
199 Record.push_back(0);
200 }
201 }
202 }
203
204 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
205 Record.clear();
206 }
207 }
208
209 Stream.ExitBlock();
210 }
211
WriteAttributeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)212 static void WriteAttributeTable(const ValueEnumerator &VE,
213 BitstreamWriter &Stream) {
214 const std::vector<AttributeSet> &Attrs = VE.getAttributes();
215 if (Attrs.empty()) return;
216
217 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
218
219 SmallVector<uint64_t, 64> Record;
220 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
221 const AttributeSet &A = Attrs[i];
222 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
223 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
224
225 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
226 Record.clear();
227 }
228
229 Stream.ExitBlock();
230 }
231
232 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)233 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
234 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
235
236 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
237 SmallVector<uint64_t, 64> TypeVals;
238
239 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
240
241 // Abbrev for TYPE_CODE_POINTER.
242 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
243 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
245 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
246 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
247
248 // Abbrev for TYPE_CODE_FUNCTION.
249 Abbv = new BitCodeAbbrev();
250 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
254
255 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
256
257 // Abbrev for TYPE_CODE_STRUCT_ANON.
258 Abbv = new BitCodeAbbrev();
259 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
263
264 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
265
266 // Abbrev for TYPE_CODE_STRUCT_NAME.
267 Abbv = new BitCodeAbbrev();
268 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
271 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
272
273 // Abbrev for TYPE_CODE_STRUCT_NAMED.
274 Abbv = new BitCodeAbbrev();
275 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
279
280 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
281
282 // Abbrev for TYPE_CODE_ARRAY.
283 Abbv = new BitCodeAbbrev();
284 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
287
288 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
289
290 // Emit an entry count so the reader can reserve space.
291 TypeVals.push_back(TypeList.size());
292 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
293 TypeVals.clear();
294
295 // Loop over all of the types, emitting each in turn.
296 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
297 Type *T = TypeList[i];
298 int AbbrevToUse = 0;
299 unsigned Code = 0;
300
301 switch (T->getTypeID()) {
302 default: llvm_unreachable("Unknown type!");
303 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
304 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
305 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
306 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
307 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
308 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
309 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
310 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
311 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
312 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
313 case Type::IntegerTyID:
314 // INTEGER: [width]
315 Code = bitc::TYPE_CODE_INTEGER;
316 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
317 break;
318 case Type::PointerTyID: {
319 PointerType *PTy = cast<PointerType>(T);
320 // POINTER: [pointee type, address space]
321 Code = bitc::TYPE_CODE_POINTER;
322 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
323 unsigned AddressSpace = PTy->getAddressSpace();
324 TypeVals.push_back(AddressSpace);
325 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
326 break;
327 }
328 case Type::FunctionTyID: {
329 FunctionType *FT = cast<FunctionType>(T);
330 // FUNCTION: [isvararg, retty, paramty x N]
331 Code = bitc::TYPE_CODE_FUNCTION;
332 TypeVals.push_back(FT->isVarArg());
333 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
334 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
335 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
336 AbbrevToUse = FunctionAbbrev;
337 break;
338 }
339 case Type::StructTyID: {
340 StructType *ST = cast<StructType>(T);
341 // STRUCT: [ispacked, eltty x N]
342 TypeVals.push_back(ST->isPacked());
343 // Output all of the element types.
344 for (StructType::element_iterator I = ST->element_begin(),
345 E = ST->element_end(); I != E; ++I)
346 TypeVals.push_back(VE.getTypeID(*I));
347
348 if (ST->isLiteral()) {
349 Code = bitc::TYPE_CODE_STRUCT_ANON;
350 AbbrevToUse = StructAnonAbbrev;
351 } else {
352 if (ST->isOpaque()) {
353 Code = bitc::TYPE_CODE_OPAQUE;
354 } else {
355 Code = bitc::TYPE_CODE_STRUCT_NAMED;
356 AbbrevToUse = StructNamedAbbrev;
357 }
358
359 // Emit the name if it is present.
360 if (!ST->getName().empty())
361 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
362 StructNameAbbrev, Stream);
363 }
364 break;
365 }
366 case Type::ArrayTyID: {
367 ArrayType *AT = cast<ArrayType>(T);
368 // ARRAY: [numelts, eltty]
369 Code = bitc::TYPE_CODE_ARRAY;
370 TypeVals.push_back(AT->getNumElements());
371 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
372 AbbrevToUse = ArrayAbbrev;
373 break;
374 }
375 case Type::VectorTyID: {
376 VectorType *VT = cast<VectorType>(T);
377 // VECTOR [numelts, eltty]
378 Code = bitc::TYPE_CODE_VECTOR;
379 TypeVals.push_back(VT->getNumElements());
380 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
381 break;
382 }
383 }
384
385 // Emit the finished record.
386 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
387 TypeVals.clear();
388 }
389
390 Stream.ExitBlock();
391 }
392
getEncodedLinkage(const GlobalValue * GV)393 static unsigned getEncodedLinkage(const GlobalValue *GV) {
394 switch (GV->getLinkage()) {
395 case GlobalValue::ExternalLinkage: return 0;
396 case GlobalValue::WeakAnyLinkage: return 1;
397 case GlobalValue::AppendingLinkage: return 2;
398 case GlobalValue::InternalLinkage: return 3;
399 case GlobalValue::LinkOnceAnyLinkage: return 4;
400 case GlobalValue::DLLImportLinkage: return 5;
401 case GlobalValue::DLLExportLinkage: return 6;
402 case GlobalValue::ExternalWeakLinkage: return 7;
403 case GlobalValue::CommonLinkage: return 8;
404 case GlobalValue::PrivateLinkage: return 9;
405 case GlobalValue::WeakODRLinkage: return 10;
406 case GlobalValue::LinkOnceODRLinkage: return 11;
407 case GlobalValue::AvailableExternallyLinkage: return 12;
408 case GlobalValue::LinkerPrivateLinkage: return 13;
409 case GlobalValue::LinkerPrivateWeakLinkage: return 14;
410 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15;
411 }
412 llvm_unreachable("Invalid linkage");
413 }
414
getEncodedVisibility(const GlobalValue * GV)415 static unsigned getEncodedVisibility(const GlobalValue *GV) {
416 switch (GV->getVisibility()) {
417 case GlobalValue::DefaultVisibility: return 0;
418 case GlobalValue::HiddenVisibility: return 1;
419 case GlobalValue::ProtectedVisibility: return 2;
420 }
421 llvm_unreachable("Invalid visibility");
422 }
423
getEncodedThreadLocalMode(const GlobalVariable * GV)424 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
425 switch (GV->getThreadLocalMode()) {
426 case GlobalVariable::NotThreadLocal: return 0;
427 case GlobalVariable::GeneralDynamicTLSModel: return 1;
428 case GlobalVariable::LocalDynamicTLSModel: return 2;
429 case GlobalVariable::InitialExecTLSModel: return 3;
430 case GlobalVariable::LocalExecTLSModel: return 4;
431 }
432 llvm_unreachable("Invalid TLS model");
433 }
434
435 // Emit top-level description of module, including target triple, inline asm,
436 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)437 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
438 BitstreamWriter &Stream) {
439 // Emit various pieces of data attached to a module.
440 if (!M->getTargetTriple().empty())
441 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
442 0/*TODO*/, Stream);
443 if (!M->getDataLayout().empty())
444 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
445 0/*TODO*/, Stream);
446 if (!M->getModuleInlineAsm().empty())
447 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
448 0/*TODO*/, Stream);
449
450 // Emit information about sections and GC, computing how many there are. Also
451 // compute the maximum alignment value.
452 std::map<std::string, unsigned> SectionMap;
453 std::map<std::string, unsigned> GCMap;
454 unsigned MaxAlignment = 0;
455 unsigned MaxGlobalType = 0;
456 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
457 GV != E; ++GV) {
458 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
459 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
460 if (GV->hasSection()) {
461 // Give section names unique ID's.
462 unsigned &Entry = SectionMap[GV->getSection()];
463 if (!Entry) {
464 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
465 0/*TODO*/, Stream);
466 Entry = SectionMap.size();
467 }
468 }
469 }
470 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
471 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
472 if (F->hasSection()) {
473 // Give section names unique ID's.
474 unsigned &Entry = SectionMap[F->getSection()];
475 if (!Entry) {
476 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
477 0/*TODO*/, Stream);
478 Entry = SectionMap.size();
479 }
480 }
481 if (F->hasGC()) {
482 // Same for GC names.
483 unsigned &Entry = GCMap[F->getGC()];
484 if (!Entry) {
485 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
486 0/*TODO*/, Stream);
487 Entry = GCMap.size();
488 }
489 }
490 }
491
492 // Emit abbrev for globals, now that we know # sections and max alignment.
493 unsigned SimpleGVarAbbrev = 0;
494 if (!M->global_empty()) {
495 // Add an abbrev for common globals with no visibility or thread localness.
496 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
497 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
499 Log2_32_Ceil(MaxGlobalType+1)));
500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
503 if (MaxAlignment == 0) // Alignment.
504 Abbv->Add(BitCodeAbbrevOp(0));
505 else {
506 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
508 Log2_32_Ceil(MaxEncAlignment+1)));
509 }
510 if (SectionMap.empty()) // Section.
511 Abbv->Add(BitCodeAbbrevOp(0));
512 else
513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
514 Log2_32_Ceil(SectionMap.size()+1)));
515 // Don't bother emitting vis + thread local.
516 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
517 }
518
519 // Emit the global variable information.
520 SmallVector<unsigned, 64> Vals;
521 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
522 GV != E; ++GV) {
523 unsigned AbbrevToUse = 0;
524
525 // GLOBALVAR: [type, isconst, initid,
526 // linkage, alignment, section, visibility, threadlocal,
527 // unnamed_addr]
528 Vals.push_back(VE.getTypeID(GV->getType()));
529 Vals.push_back(GV->isConstant());
530 Vals.push_back(GV->isDeclaration() ? 0 :
531 (VE.getValueID(GV->getInitializer()) + 1));
532 Vals.push_back(getEncodedLinkage(GV));
533 Vals.push_back(Log2_32(GV->getAlignment())+1);
534 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
535 if (GV->isThreadLocal() ||
536 GV->getVisibility() != GlobalValue::DefaultVisibility ||
537 GV->hasUnnamedAddr() || GV->isExternallyInitialized()) {
538 Vals.push_back(getEncodedVisibility(GV));
539 Vals.push_back(getEncodedThreadLocalMode(GV));
540 Vals.push_back(GV->hasUnnamedAddr());
541 Vals.push_back(GV->isExternallyInitialized());
542 } else {
543 AbbrevToUse = SimpleGVarAbbrev;
544 }
545
546 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
547 Vals.clear();
548 }
549
550 // Emit the function proto information.
551 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
552 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
553 // section, visibility, gc, unnamed_addr]
554 Vals.push_back(VE.getTypeID(F->getType()));
555 Vals.push_back(F->getCallingConv());
556 Vals.push_back(F->isDeclaration());
557 Vals.push_back(getEncodedLinkage(F));
558 Vals.push_back(VE.getAttributeID(F->getAttributes()));
559 Vals.push_back(Log2_32(F->getAlignment())+1);
560 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
561 Vals.push_back(getEncodedVisibility(F));
562 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
563 Vals.push_back(F->hasUnnamedAddr());
564
565 unsigned AbbrevToUse = 0;
566 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
567 Vals.clear();
568 }
569
570 // Emit the alias information.
571 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
572 AI != E; ++AI) {
573 // ALIAS: [alias type, aliasee val#, linkage, visibility]
574 Vals.push_back(VE.getTypeID(AI->getType()));
575 Vals.push_back(VE.getValueID(AI->getAliasee()));
576 Vals.push_back(getEncodedLinkage(AI));
577 Vals.push_back(getEncodedVisibility(AI));
578 unsigned AbbrevToUse = 0;
579 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
580 Vals.clear();
581 }
582 }
583
GetOptimizationFlags(const Value * V)584 static uint64_t GetOptimizationFlags(const Value *V) {
585 uint64_t Flags = 0;
586
587 if (const OverflowingBinaryOperator *OBO =
588 dyn_cast<OverflowingBinaryOperator>(V)) {
589 if (OBO->hasNoSignedWrap())
590 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
591 if (OBO->hasNoUnsignedWrap())
592 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
593 } else if (const PossiblyExactOperator *PEO =
594 dyn_cast<PossiblyExactOperator>(V)) {
595 if (PEO->isExact())
596 Flags |= 1 << bitc::PEO_EXACT;
597 } else if (const FPMathOperator *FPMO =
598 dyn_cast<const FPMathOperator>(V)) {
599 if (FPMO->hasUnsafeAlgebra())
600 Flags |= FastMathFlags::UnsafeAlgebra;
601 if (FPMO->hasNoNaNs())
602 Flags |= FastMathFlags::NoNaNs;
603 if (FPMO->hasNoInfs())
604 Flags |= FastMathFlags::NoInfs;
605 if (FPMO->hasNoSignedZeros())
606 Flags |= FastMathFlags::NoSignedZeros;
607 if (FPMO->hasAllowReciprocal())
608 Flags |= FastMathFlags::AllowReciprocal;
609 }
610
611 return Flags;
612 }
613
WriteMDNode(const MDNode * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<uint64_t,64> & Record)614 static void WriteMDNode(const MDNode *N,
615 const ValueEnumerator &VE,
616 BitstreamWriter &Stream,
617 SmallVector<uint64_t, 64> &Record) {
618 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
619 if (N->getOperand(i)) {
620 Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
621 Record.push_back(VE.getValueID(N->getOperand(i)));
622 } else {
623 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
624 Record.push_back(0);
625 }
626 }
627 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
628 bitc::METADATA_NODE;
629 Stream.EmitRecord(MDCode, Record, 0);
630 Record.clear();
631 }
632
WriteModuleMetadata(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)633 static void WriteModuleMetadata(const Module *M,
634 const ValueEnumerator &VE,
635 BitstreamWriter &Stream) {
636 const ValueEnumerator::ValueList &Vals = VE.getMDValues();
637 bool StartedMetadataBlock = false;
638 unsigned MDSAbbrev = 0;
639 SmallVector<uint64_t, 64> Record;
640 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
641
642 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
643 if (!N->isFunctionLocal() || !N->getFunction()) {
644 if (!StartedMetadataBlock) {
645 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
646 StartedMetadataBlock = true;
647 }
648 WriteMDNode(N, VE, Stream, Record);
649 }
650 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
651 if (!StartedMetadataBlock) {
652 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
653
654 // Abbrev for METADATA_STRING.
655 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
656 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
659 MDSAbbrev = Stream.EmitAbbrev(Abbv);
660 StartedMetadataBlock = true;
661 }
662
663 // Code: [strchar x N]
664 Record.append(MDS->begin(), MDS->end());
665
666 // Emit the finished record.
667 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
668 Record.clear();
669 }
670 }
671
672 // Write named metadata.
673 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
674 E = M->named_metadata_end(); I != E; ++I) {
675 const NamedMDNode *NMD = I;
676 if (!StartedMetadataBlock) {
677 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
678 StartedMetadataBlock = true;
679 }
680
681 // Write name.
682 StringRef Str = NMD->getName();
683 for (unsigned i = 0, e = Str.size(); i != e; ++i)
684 Record.push_back(Str[i]);
685 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
686 Record.clear();
687
688 // Write named metadata operands.
689 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
690 Record.push_back(VE.getValueID(NMD->getOperand(i)));
691 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
692 Record.clear();
693 }
694
695 if (StartedMetadataBlock)
696 Stream.ExitBlock();
697 }
698
WriteFunctionLocalMetadata(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)699 static void WriteFunctionLocalMetadata(const Function &F,
700 const ValueEnumerator &VE,
701 BitstreamWriter &Stream) {
702 bool StartedMetadataBlock = false;
703 SmallVector<uint64_t, 64> Record;
704 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
705 for (unsigned i = 0, e = Vals.size(); i != e; ++i)
706 if (const MDNode *N = Vals[i])
707 if (N->isFunctionLocal() && N->getFunction() == &F) {
708 if (!StartedMetadataBlock) {
709 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
710 StartedMetadataBlock = true;
711 }
712 WriteMDNode(N, VE, Stream, Record);
713 }
714
715 if (StartedMetadataBlock)
716 Stream.ExitBlock();
717 }
718
WriteMetadataAttachment(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)719 static void WriteMetadataAttachment(const Function &F,
720 const ValueEnumerator &VE,
721 BitstreamWriter &Stream) {
722 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
723
724 SmallVector<uint64_t, 64> Record;
725
726 // Write metadata attachments
727 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
728 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
729
730 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
731 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
732 I != E; ++I) {
733 MDs.clear();
734 I->getAllMetadataOtherThanDebugLoc(MDs);
735
736 // If no metadata, ignore instruction.
737 if (MDs.empty()) continue;
738
739 Record.push_back(VE.getInstructionID(I));
740
741 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
742 Record.push_back(MDs[i].first);
743 Record.push_back(VE.getValueID(MDs[i].second));
744 }
745 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
746 Record.clear();
747 }
748
749 Stream.ExitBlock();
750 }
751
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)752 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
753 SmallVector<uint64_t, 64> Record;
754
755 // Write metadata kinds
756 // METADATA_KIND - [n x [id, name]]
757 SmallVector<StringRef, 8> Names;
758 M->getMDKindNames(Names);
759
760 if (Names.empty()) return;
761
762 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
763
764 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
765 Record.push_back(MDKindID);
766 StringRef KName = Names[MDKindID];
767 Record.append(KName.begin(), KName.end());
768
769 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
770 Record.clear();
771 }
772
773 Stream.ExitBlock();
774 }
775
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)776 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
777 if ((int64_t)V >= 0)
778 Vals.push_back(V << 1);
779 else
780 Vals.push_back((-V << 1) | 1);
781 }
782
EmitAPInt(SmallVectorImpl<uint64_t> & Vals,unsigned & Code,unsigned & AbbrevToUse,const APInt & Val,bool EmitSizeForWideNumbers=false)783 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
784 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val,
785 bool EmitSizeForWideNumbers = false
786 ) {
787 if (Val.getBitWidth() <= 64) {
788 uint64_t V = Val.getSExtValue();
789 emitSignedInt64(Vals, V);
790 Code = bitc::CST_CODE_INTEGER;
791 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
792 } else {
793 // Wide integers, > 64 bits in size.
794 // We have an arbitrary precision integer value to write whose
795 // bit width is > 64. However, in canonical unsigned integer
796 // format it is likely that the high bits are going to be zero.
797 // So, we only write the number of active words.
798 unsigned NWords = Val.getActiveWords();
799
800 if (EmitSizeForWideNumbers)
801 Vals.push_back(NWords);
802
803 const uint64_t *RawWords = Val.getRawData();
804 for (unsigned i = 0; i != NWords; ++i) {
805 emitSignedInt64(Vals, RawWords[i]);
806 }
807 Code = bitc::CST_CODE_WIDE_INTEGER;
808 }
809 }
810
WriteConstants(unsigned FirstVal,unsigned LastVal,const ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)811 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
812 const ValueEnumerator &VE,
813 BitstreamWriter &Stream, bool isGlobal) {
814 if (FirstVal == LastVal) return;
815
816 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
817
818 unsigned AggregateAbbrev = 0;
819 unsigned String8Abbrev = 0;
820 unsigned CString7Abbrev = 0;
821 unsigned CString6Abbrev = 0;
822 // If this is a constant pool for the module, emit module-specific abbrevs.
823 if (isGlobal) {
824 // Abbrev for CST_CODE_AGGREGATE.
825 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
826 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
829 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
830
831 // Abbrev for CST_CODE_STRING.
832 Abbv = new BitCodeAbbrev();
833 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
836 String8Abbrev = Stream.EmitAbbrev(Abbv);
837 // Abbrev for CST_CODE_CSTRING.
838 Abbv = new BitCodeAbbrev();
839 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
842 CString7Abbrev = Stream.EmitAbbrev(Abbv);
843 // Abbrev for CST_CODE_CSTRING.
844 Abbv = new BitCodeAbbrev();
845 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
848 CString6Abbrev = Stream.EmitAbbrev(Abbv);
849 }
850
851 SmallVector<uint64_t, 64> Record;
852
853 const ValueEnumerator::ValueList &Vals = VE.getValues();
854 Type *LastTy = 0;
855 for (unsigned i = FirstVal; i != LastVal; ++i) {
856 const Value *V = Vals[i].first;
857 // If we need to switch types, do so now.
858 if (V->getType() != LastTy) {
859 LastTy = V->getType();
860 Record.push_back(VE.getTypeID(LastTy));
861 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
862 CONSTANTS_SETTYPE_ABBREV);
863 Record.clear();
864 }
865
866 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
867 Record.push_back(unsigned(IA->hasSideEffects()) |
868 unsigned(IA->isAlignStack()) << 1 |
869 unsigned(IA->getDialect()&1) << 2);
870
871 // Add the asm string.
872 const std::string &AsmStr = IA->getAsmString();
873 Record.push_back(AsmStr.size());
874 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
875 Record.push_back(AsmStr[i]);
876
877 // Add the constraint string.
878 const std::string &ConstraintStr = IA->getConstraintString();
879 Record.push_back(ConstraintStr.size());
880 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
881 Record.push_back(ConstraintStr[i]);
882 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
883 Record.clear();
884 continue;
885 }
886 const Constant *C = cast<Constant>(V);
887 unsigned Code = -1U;
888 unsigned AbbrevToUse = 0;
889 if (C->isNullValue()) {
890 Code = bitc::CST_CODE_NULL;
891 } else if (isa<UndefValue>(C)) {
892 Code = bitc::CST_CODE_UNDEF;
893 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
894 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
895 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
896 Code = bitc::CST_CODE_FLOAT;
897 Type *Ty = CFP->getType();
898 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
899 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
900 } else if (Ty->isX86_FP80Ty()) {
901 // api needed to prevent premature destruction
902 // bits are not in the same order as a normal i80 APInt, compensate.
903 APInt api = CFP->getValueAPF().bitcastToAPInt();
904 const uint64_t *p = api.getRawData();
905 Record.push_back((p[1] << 48) | (p[0] >> 16));
906 Record.push_back(p[0] & 0xffffLL);
907 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
908 APInt api = CFP->getValueAPF().bitcastToAPInt();
909 const uint64_t *p = api.getRawData();
910 Record.push_back(p[0]);
911 Record.push_back(p[1]);
912 } else {
913 assert (0 && "Unknown FP type!");
914 }
915 } else if (isa<ConstantDataSequential>(C) &&
916 cast<ConstantDataSequential>(C)->isString()) {
917 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
918 // Emit constant strings specially.
919 unsigned NumElts = Str->getNumElements();
920 // If this is a null-terminated string, use the denser CSTRING encoding.
921 if (Str->isCString()) {
922 Code = bitc::CST_CODE_CSTRING;
923 --NumElts; // Don't encode the null, which isn't allowed by char6.
924 } else {
925 Code = bitc::CST_CODE_STRING;
926 AbbrevToUse = String8Abbrev;
927 }
928 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
929 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
930 for (unsigned i = 0; i != NumElts; ++i) {
931 unsigned char V = Str->getElementAsInteger(i);
932 Record.push_back(V);
933 isCStr7 &= (V & 128) == 0;
934 if (isCStrChar6)
935 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
936 }
937
938 if (isCStrChar6)
939 AbbrevToUse = CString6Abbrev;
940 else if (isCStr7)
941 AbbrevToUse = CString7Abbrev;
942 } else if (const ConstantDataSequential *CDS =
943 dyn_cast<ConstantDataSequential>(C)) {
944 Code = bitc::CST_CODE_DATA;
945 Type *EltTy = CDS->getType()->getElementType();
946 if (isa<IntegerType>(EltTy)) {
947 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
948 Record.push_back(CDS->getElementAsInteger(i));
949 } else if (EltTy->isFloatTy()) {
950 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
951 union { float F; uint32_t I; };
952 F = CDS->getElementAsFloat(i);
953 Record.push_back(I);
954 }
955 } else {
956 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
957 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
958 union { double F; uint64_t I; };
959 F = CDS->getElementAsDouble(i);
960 Record.push_back(I);
961 }
962 }
963 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
964 isa<ConstantVector>(C)) {
965 Code = bitc::CST_CODE_AGGREGATE;
966 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
967 Record.push_back(VE.getValueID(C->getOperand(i)));
968 AbbrevToUse = AggregateAbbrev;
969 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
970 switch (CE->getOpcode()) {
971 default:
972 if (Instruction::isCast(CE->getOpcode())) {
973 Code = bitc::CST_CODE_CE_CAST;
974 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
975 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
976 Record.push_back(VE.getValueID(C->getOperand(0)));
977 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
978 } else {
979 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
980 Code = bitc::CST_CODE_CE_BINOP;
981 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
982 Record.push_back(VE.getValueID(C->getOperand(0)));
983 Record.push_back(VE.getValueID(C->getOperand(1)));
984 uint64_t Flags = GetOptimizationFlags(CE);
985 if (Flags != 0)
986 Record.push_back(Flags);
987 }
988 break;
989 case Instruction::GetElementPtr:
990 Code = bitc::CST_CODE_CE_GEP;
991 if (cast<GEPOperator>(C)->isInBounds())
992 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
993 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
994 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
995 Record.push_back(VE.getValueID(C->getOperand(i)));
996 }
997 break;
998 case Instruction::Select:
999 Code = bitc::CST_CODE_CE_SELECT;
1000 Record.push_back(VE.getValueID(C->getOperand(0)));
1001 Record.push_back(VE.getValueID(C->getOperand(1)));
1002 Record.push_back(VE.getValueID(C->getOperand(2)));
1003 break;
1004 case Instruction::ExtractElement:
1005 Code = bitc::CST_CODE_CE_EXTRACTELT;
1006 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1007 Record.push_back(VE.getValueID(C->getOperand(0)));
1008 Record.push_back(VE.getValueID(C->getOperand(1)));
1009 break;
1010 case Instruction::InsertElement:
1011 Code = bitc::CST_CODE_CE_INSERTELT;
1012 Record.push_back(VE.getValueID(C->getOperand(0)));
1013 Record.push_back(VE.getValueID(C->getOperand(1)));
1014 Record.push_back(VE.getValueID(C->getOperand(2)));
1015 break;
1016 case Instruction::ShuffleVector:
1017 // If the return type and argument types are the same, this is a
1018 // standard shufflevector instruction. If the types are different,
1019 // then the shuffle is widening or truncating the input vectors, and
1020 // the argument type must also be encoded.
1021 if (C->getType() == C->getOperand(0)->getType()) {
1022 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1023 } else {
1024 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1025 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1026 }
1027 Record.push_back(VE.getValueID(C->getOperand(0)));
1028 Record.push_back(VE.getValueID(C->getOperand(1)));
1029 Record.push_back(VE.getValueID(C->getOperand(2)));
1030 break;
1031 case Instruction::ICmp:
1032 case Instruction::FCmp:
1033 Code = bitc::CST_CODE_CE_CMP;
1034 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1035 Record.push_back(VE.getValueID(C->getOperand(0)));
1036 Record.push_back(VE.getValueID(C->getOperand(1)));
1037 Record.push_back(CE->getPredicate());
1038 break;
1039 }
1040 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1041 Code = bitc::CST_CODE_BLOCKADDRESS;
1042 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1043 Record.push_back(VE.getValueID(BA->getFunction()));
1044 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1045 } else {
1046 #ifndef NDEBUG
1047 C->dump();
1048 #endif
1049 llvm_unreachable("Unknown constant!");
1050 }
1051 Stream.EmitRecord(Code, Record, AbbrevToUse);
1052 Record.clear();
1053 }
1054
1055 Stream.ExitBlock();
1056 }
1057
WriteModuleConstants(const ValueEnumerator & VE,BitstreamWriter & Stream)1058 static void WriteModuleConstants(const ValueEnumerator &VE,
1059 BitstreamWriter &Stream) {
1060 const ValueEnumerator::ValueList &Vals = VE.getValues();
1061
1062 // Find the first constant to emit, which is the first non-globalvalue value.
1063 // We know globalvalues have been emitted by WriteModuleInfo.
1064 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1065 if (!isa<GlobalValue>(Vals[i].first)) {
1066 WriteConstants(i, Vals.size(), VE, Stream, true);
1067 return;
1068 }
1069 }
1070 }
1071
1072 /// PushValueAndType - The file has to encode both the value and type id for
1073 /// many values, because we need to know what type to create for forward
1074 /// references. However, most operands are not forward references, so this type
1075 /// field is not needed.
1076 ///
1077 /// This function adds V's value ID to Vals. If the value ID is higher than the
1078 /// instruction ID, then it is a forward reference, and it also includes the
1079 /// type ID. The value ID that is written is encoded relative to the InstID.
PushValueAndType(const Value * V,unsigned InstID,SmallVector<unsigned,64> & Vals,ValueEnumerator & VE)1080 static bool PushValueAndType(const Value *V, unsigned InstID,
1081 SmallVector<unsigned, 64> &Vals,
1082 ValueEnumerator &VE) {
1083 unsigned ValID = VE.getValueID(V);
1084 // Make encoding relative to the InstID.
1085 Vals.push_back(InstID - ValID);
1086 if (ValID >= InstID) {
1087 Vals.push_back(VE.getTypeID(V->getType()));
1088 return true;
1089 }
1090 return false;
1091 }
1092
1093 /// pushValue - Like PushValueAndType, but where the type of the value is
1094 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVector<unsigned,64> & Vals,ValueEnumerator & VE)1095 static void pushValue(const Value *V, unsigned InstID,
1096 SmallVector<unsigned, 64> &Vals,
1097 ValueEnumerator &VE) {
1098 unsigned ValID = VE.getValueID(V);
1099 Vals.push_back(InstID - ValID);
1100 }
1101
pushValue64(const Value * V,unsigned InstID,SmallVector<uint64_t,128> & Vals,ValueEnumerator & VE)1102 static void pushValue64(const Value *V, unsigned InstID,
1103 SmallVector<uint64_t, 128> &Vals,
1104 ValueEnumerator &VE) {
1105 uint64_t ValID = VE.getValueID(V);
1106 Vals.push_back(InstID - ValID);
1107 }
1108
pushValueSigned(const Value * V,unsigned InstID,SmallVector<uint64_t,128> & Vals,ValueEnumerator & VE)1109 static void pushValueSigned(const Value *V, unsigned InstID,
1110 SmallVector<uint64_t, 128> &Vals,
1111 ValueEnumerator &VE) {
1112 unsigned ValID = VE.getValueID(V);
1113 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1114 emitSignedInt64(Vals, diff);
1115 }
1116
1117 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<unsigned,64> & Vals)1118 static void WriteInstruction(const Instruction &I, unsigned InstID,
1119 ValueEnumerator &VE, BitstreamWriter &Stream,
1120 SmallVector<unsigned, 64> &Vals) {
1121 unsigned Code = 0;
1122 unsigned AbbrevToUse = 0;
1123 VE.setInstructionID(&I);
1124 switch (I.getOpcode()) {
1125 default:
1126 if (Instruction::isCast(I.getOpcode())) {
1127 Code = bitc::FUNC_CODE_INST_CAST;
1128 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1129 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1130 Vals.push_back(VE.getTypeID(I.getType()));
1131 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1132 } else {
1133 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1134 Code = bitc::FUNC_CODE_INST_BINOP;
1135 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1136 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1137 pushValue(I.getOperand(1), InstID, Vals, VE);
1138 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1139 uint64_t Flags = GetOptimizationFlags(&I);
1140 if (Flags != 0) {
1141 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1142 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1143 Vals.push_back(Flags);
1144 }
1145 }
1146 break;
1147
1148 case Instruction::GetElementPtr:
1149 Code = bitc::FUNC_CODE_INST_GEP;
1150 if (cast<GEPOperator>(&I)->isInBounds())
1151 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1152 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1153 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1154 break;
1155 case Instruction::ExtractValue: {
1156 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1157 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1158 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1159 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1160 Vals.push_back(*i);
1161 break;
1162 }
1163 case Instruction::InsertValue: {
1164 Code = bitc::FUNC_CODE_INST_INSERTVAL;
1165 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1166 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1167 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1168 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1169 Vals.push_back(*i);
1170 break;
1171 }
1172 case Instruction::Select:
1173 Code = bitc::FUNC_CODE_INST_VSELECT;
1174 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1175 pushValue(I.getOperand(2), InstID, Vals, VE);
1176 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1177 break;
1178 case Instruction::ExtractElement:
1179 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1180 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1181 pushValue(I.getOperand(1), InstID, Vals, VE);
1182 break;
1183 case Instruction::InsertElement:
1184 Code = bitc::FUNC_CODE_INST_INSERTELT;
1185 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1186 pushValue(I.getOperand(1), InstID, Vals, VE);
1187 pushValue(I.getOperand(2), InstID, Vals, VE);
1188 break;
1189 case Instruction::ShuffleVector:
1190 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1191 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1192 pushValue(I.getOperand(1), InstID, Vals, VE);
1193 pushValue(I.getOperand(2), InstID, Vals, VE);
1194 break;
1195 case Instruction::ICmp:
1196 case Instruction::FCmp:
1197 // compare returning Int1Ty or vector of Int1Ty
1198 Code = bitc::FUNC_CODE_INST_CMP2;
1199 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1200 pushValue(I.getOperand(1), InstID, Vals, VE);
1201 Vals.push_back(cast<CmpInst>(I).getPredicate());
1202 break;
1203
1204 case Instruction::Ret:
1205 {
1206 Code = bitc::FUNC_CODE_INST_RET;
1207 unsigned NumOperands = I.getNumOperands();
1208 if (NumOperands == 0)
1209 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1210 else if (NumOperands == 1) {
1211 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1212 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1213 } else {
1214 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1215 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1216 }
1217 }
1218 break;
1219 case Instruction::Br:
1220 {
1221 Code = bitc::FUNC_CODE_INST_BR;
1222 const BranchInst &II = cast<BranchInst>(I);
1223 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1224 if (II.isConditional()) {
1225 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1226 pushValue(II.getCondition(), InstID, Vals, VE);
1227 }
1228 }
1229 break;
1230 case Instruction::Switch:
1231 {
1232 // Redefine Vals, since here we need to use 64 bit values
1233 // explicitly to store large APInt numbers.
1234 SmallVector<uint64_t, 128> Vals64;
1235
1236 Code = bitc::FUNC_CODE_INST_SWITCH;
1237 const SwitchInst &SI = cast<SwitchInst>(I);
1238
1239 uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16);
1240 Vals64.push_back(SwitchRecordHeader);
1241
1242 Vals64.push_back(VE.getTypeID(SI.getCondition()->getType()));
1243 pushValue64(SI.getCondition(), InstID, Vals64, VE);
1244 Vals64.push_back(VE.getValueID(SI.getDefaultDest()));
1245 Vals64.push_back(SI.getNumCases());
1246 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1247 i != e; ++i) {
1248 const IntegersSubset& CaseRanges = i.getCaseValueEx();
1249 unsigned Code, Abbrev; // will unused.
1250
1251 if (CaseRanges.isSingleNumber()) {
1252 Vals64.push_back(1/*NumItems = 1*/);
1253 Vals64.push_back(true/*IsSingleNumber = true*/);
1254 EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true);
1255 } else {
1256
1257 Vals64.push_back(CaseRanges.getNumItems());
1258
1259 if (CaseRanges.isSingleNumbersOnly()) {
1260 for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1261 ri != rn; ++ri) {
1262
1263 Vals64.push_back(true/*IsSingleNumber = true*/);
1264
1265 EmitAPInt(Vals64, Code, Abbrev,
1266 CaseRanges.getSingleNumber(ri), true);
1267 }
1268 } else
1269 for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1270 ri != rn; ++ri) {
1271 IntegersSubset::Range r = CaseRanges.getItem(ri);
1272 bool IsSingleNumber = CaseRanges.isSingleNumber(ri);
1273
1274 Vals64.push_back(IsSingleNumber);
1275
1276 EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true);
1277 if (!IsSingleNumber)
1278 EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true);
1279 }
1280 }
1281 Vals64.push_back(VE.getValueID(i.getCaseSuccessor()));
1282 }
1283
1284 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1285
1286 // Also do expected action - clear external Vals collection:
1287 Vals.clear();
1288 return;
1289 }
1290 break;
1291 case Instruction::IndirectBr:
1292 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1293 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1294 // Encode the address operand as relative, but not the basic blocks.
1295 pushValue(I.getOperand(0), InstID, Vals, VE);
1296 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1297 Vals.push_back(VE.getValueID(I.getOperand(i)));
1298 break;
1299
1300 case Instruction::Invoke: {
1301 const InvokeInst *II = cast<InvokeInst>(&I);
1302 const Value *Callee(II->getCalledValue());
1303 PointerType *PTy = cast<PointerType>(Callee->getType());
1304 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1305 Code = bitc::FUNC_CODE_INST_INVOKE;
1306
1307 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1308 Vals.push_back(II->getCallingConv());
1309 Vals.push_back(VE.getValueID(II->getNormalDest()));
1310 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1311 PushValueAndType(Callee, InstID, Vals, VE);
1312
1313 // Emit value #'s for the fixed parameters.
1314 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1315 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
1316
1317 // Emit type/value pairs for varargs params.
1318 if (FTy->isVarArg()) {
1319 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1320 i != e; ++i)
1321 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1322 }
1323 break;
1324 }
1325 case Instruction::Resume:
1326 Code = bitc::FUNC_CODE_INST_RESUME;
1327 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1328 break;
1329 case Instruction::Unreachable:
1330 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1331 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1332 break;
1333
1334 case Instruction::PHI: {
1335 const PHINode &PN = cast<PHINode>(I);
1336 Code = bitc::FUNC_CODE_INST_PHI;
1337 // With the newer instruction encoding, forward references could give
1338 // negative valued IDs. This is most common for PHIs, so we use
1339 // signed VBRs.
1340 SmallVector<uint64_t, 128> Vals64;
1341 Vals64.push_back(VE.getTypeID(PN.getType()));
1342 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1343 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1344 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1345 }
1346 // Emit a Vals64 vector and exit.
1347 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1348 Vals64.clear();
1349 return;
1350 }
1351
1352 case Instruction::LandingPad: {
1353 const LandingPadInst &LP = cast<LandingPadInst>(I);
1354 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1355 Vals.push_back(VE.getTypeID(LP.getType()));
1356 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1357 Vals.push_back(LP.isCleanup());
1358 Vals.push_back(LP.getNumClauses());
1359 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1360 if (LP.isCatch(I))
1361 Vals.push_back(LandingPadInst::Catch);
1362 else
1363 Vals.push_back(LandingPadInst::Filter);
1364 PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1365 }
1366 break;
1367 }
1368
1369 case Instruction::Alloca:
1370 Code = bitc::FUNC_CODE_INST_ALLOCA;
1371 Vals.push_back(VE.getTypeID(I.getType()));
1372 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1373 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1374 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1375 break;
1376
1377 case Instruction::Load:
1378 if (cast<LoadInst>(I).isAtomic()) {
1379 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1380 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1381 } else {
1382 Code = bitc::FUNC_CODE_INST_LOAD;
1383 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1384 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1385 }
1386 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1387 Vals.push_back(cast<LoadInst>(I).isVolatile());
1388 if (cast<LoadInst>(I).isAtomic()) {
1389 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1390 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1391 }
1392 break;
1393 case Instruction::Store:
1394 if (cast<StoreInst>(I).isAtomic())
1395 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1396 else
1397 Code = bitc::FUNC_CODE_INST_STORE;
1398 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1399 pushValue(I.getOperand(0), InstID, Vals, VE); // val.
1400 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1401 Vals.push_back(cast<StoreInst>(I).isVolatile());
1402 if (cast<StoreInst>(I).isAtomic()) {
1403 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1404 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1405 }
1406 break;
1407 case Instruction::AtomicCmpXchg:
1408 Code = bitc::FUNC_CODE_INST_CMPXCHG;
1409 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1410 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
1411 pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
1412 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1413 Vals.push_back(GetEncodedOrdering(
1414 cast<AtomicCmpXchgInst>(I).getOrdering()));
1415 Vals.push_back(GetEncodedSynchScope(
1416 cast<AtomicCmpXchgInst>(I).getSynchScope()));
1417 break;
1418 case Instruction::AtomicRMW:
1419 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1420 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1421 pushValue(I.getOperand(1), InstID, Vals, VE); // val.
1422 Vals.push_back(GetEncodedRMWOperation(
1423 cast<AtomicRMWInst>(I).getOperation()));
1424 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1425 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1426 Vals.push_back(GetEncodedSynchScope(
1427 cast<AtomicRMWInst>(I).getSynchScope()));
1428 break;
1429 case Instruction::Fence:
1430 Code = bitc::FUNC_CODE_INST_FENCE;
1431 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1432 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1433 break;
1434 case Instruction::Call: {
1435 const CallInst &CI = cast<CallInst>(I);
1436 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1437 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1438
1439 Code = bitc::FUNC_CODE_INST_CALL;
1440
1441 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1442 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1443 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
1444
1445 // Emit value #'s for the fixed parameters.
1446 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1447 // Check for labels (can happen with asm labels).
1448 if (FTy->getParamType(i)->isLabelTy())
1449 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1450 else
1451 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
1452 }
1453
1454 // Emit type/value pairs for varargs params.
1455 if (FTy->isVarArg()) {
1456 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1457 i != e; ++i)
1458 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
1459 }
1460 break;
1461 }
1462 case Instruction::VAArg:
1463 Code = bitc::FUNC_CODE_INST_VAARG;
1464 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1465 pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1466 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1467 break;
1468 }
1469
1470 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1471 Vals.clear();
1472 }
1473
1474 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const ValueEnumerator & VE,BitstreamWriter & Stream)1475 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1476 const ValueEnumerator &VE,
1477 BitstreamWriter &Stream) {
1478 if (VST.empty()) return;
1479 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1480
1481 // FIXME: Set up the abbrev, we know how many values there are!
1482 // FIXME: We know if the type names can use 7-bit ascii.
1483 SmallVector<unsigned, 64> NameVals;
1484
1485 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1486 SI != SE; ++SI) {
1487
1488 const ValueName &Name = *SI;
1489
1490 // Figure out the encoding to use for the name.
1491 bool is7Bit = true;
1492 bool isChar6 = true;
1493 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1494 C != E; ++C) {
1495 if (isChar6)
1496 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1497 if ((unsigned char)*C & 128) {
1498 is7Bit = false;
1499 break; // don't bother scanning the rest.
1500 }
1501 }
1502
1503 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1504
1505 // VST_ENTRY: [valueid, namechar x N]
1506 // VST_BBENTRY: [bbid, namechar x N]
1507 unsigned Code;
1508 if (isa<BasicBlock>(SI->getValue())) {
1509 Code = bitc::VST_CODE_BBENTRY;
1510 if (isChar6)
1511 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1512 } else {
1513 Code = bitc::VST_CODE_ENTRY;
1514 if (isChar6)
1515 AbbrevToUse = VST_ENTRY_6_ABBREV;
1516 else if (is7Bit)
1517 AbbrevToUse = VST_ENTRY_7_ABBREV;
1518 }
1519
1520 NameVals.push_back(VE.getValueID(SI->getValue()));
1521 for (const char *P = Name.getKeyData(),
1522 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1523 NameVals.push_back((unsigned char)*P);
1524
1525 // Emit the finished record.
1526 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1527 NameVals.clear();
1528 }
1529 Stream.ExitBlock();
1530 }
1531
1532 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,ValueEnumerator & VE,BitstreamWriter & Stream)1533 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1534 BitstreamWriter &Stream) {
1535 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1536 VE.incorporateFunction(F);
1537
1538 SmallVector<unsigned, 64> Vals;
1539
1540 // Emit the number of basic blocks, so the reader can create them ahead of
1541 // time.
1542 Vals.push_back(VE.getBasicBlocks().size());
1543 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1544 Vals.clear();
1545
1546 // If there are function-local constants, emit them now.
1547 unsigned CstStart, CstEnd;
1548 VE.getFunctionConstantRange(CstStart, CstEnd);
1549 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1550
1551 // If there is function-local metadata, emit it now.
1552 WriteFunctionLocalMetadata(F, VE, Stream);
1553
1554 // Keep a running idea of what the instruction ID is.
1555 unsigned InstID = CstEnd;
1556
1557 bool NeedsMetadataAttachment = false;
1558
1559 DebugLoc LastDL;
1560
1561 // Finally, emit all the instructions, in order.
1562 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1563 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1564 I != E; ++I) {
1565 WriteInstruction(*I, InstID, VE, Stream, Vals);
1566
1567 if (!I->getType()->isVoidTy())
1568 ++InstID;
1569
1570 // If the instruction has metadata, write a metadata attachment later.
1571 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1572
1573 // If the instruction has a debug location, emit it.
1574 DebugLoc DL = I->getDebugLoc();
1575 if (DL.isUnknown()) {
1576 // nothing todo.
1577 } else if (DL == LastDL) {
1578 // Just repeat the same debug loc as last time.
1579 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1580 } else {
1581 MDNode *Scope, *IA;
1582 DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1583
1584 Vals.push_back(DL.getLine());
1585 Vals.push_back(DL.getCol());
1586 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1587 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1588 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1589 Vals.clear();
1590
1591 LastDL = DL;
1592 }
1593 }
1594
1595 // Emit names for all the instructions etc.
1596 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1597
1598 if (NeedsMetadataAttachment)
1599 WriteMetadataAttachment(F, VE, Stream);
1600 VE.purgeFunction();
1601 Stream.ExitBlock();
1602 }
1603
1604 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const ValueEnumerator & VE,BitstreamWriter & Stream)1605 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1606 // We only want to emit block info records for blocks that have multiple
1607 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1608 // Other blocks can define their abbrevs inline.
1609 Stream.EnterBlockInfoBlock(2);
1610
1611 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1612 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1617 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1618 Abbv) != VST_ENTRY_8_ABBREV)
1619 llvm_unreachable("Unexpected abbrev ordering!");
1620 }
1621
1622 { // 7-bit fixed width VST_ENTRY strings.
1623 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1624 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1628 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1629 Abbv) != VST_ENTRY_7_ABBREV)
1630 llvm_unreachable("Unexpected abbrev ordering!");
1631 }
1632 { // 6-bit char6 VST_ENTRY strings.
1633 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1634 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1638 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1639 Abbv) != VST_ENTRY_6_ABBREV)
1640 llvm_unreachable("Unexpected abbrev ordering!");
1641 }
1642 { // 6-bit char6 VST_BBENTRY strings.
1643 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1644 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1648 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1649 Abbv) != VST_BBENTRY_6_ABBREV)
1650 llvm_unreachable("Unexpected abbrev ordering!");
1651 }
1652
1653
1654
1655 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1656 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1657 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1659 Log2_32_Ceil(VE.getTypes().size()+1)));
1660 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1661 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1662 llvm_unreachable("Unexpected abbrev ordering!");
1663 }
1664
1665 { // INTEGER abbrev for CONSTANTS_BLOCK.
1666 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1667 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1669 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1670 Abbv) != CONSTANTS_INTEGER_ABBREV)
1671 llvm_unreachable("Unexpected abbrev ordering!");
1672 }
1673
1674 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1675 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1676 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1679 Log2_32_Ceil(VE.getTypes().size()+1)));
1680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1681
1682 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1683 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1684 llvm_unreachable("Unexpected abbrev ordering!");
1685 }
1686 { // NULL abbrev for CONSTANTS_BLOCK.
1687 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1688 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1689 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1690 Abbv) != CONSTANTS_NULL_Abbrev)
1691 llvm_unreachable("Unexpected abbrev ordering!");
1692 }
1693
1694 // FIXME: This should only use space for first class types!
1695
1696 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1697 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1698 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1702 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1703 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1704 llvm_unreachable("Unexpected abbrev ordering!");
1705 }
1706 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1707 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1708 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1712 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1713 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1714 llvm_unreachable("Unexpected abbrev ordering!");
1715 }
1716 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1717 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1718 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1723 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1724 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1725 llvm_unreachable("Unexpected abbrev ordering!");
1726 }
1727 { // INST_CAST abbrev for FUNCTION_BLOCK.
1728 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1729 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1732 Log2_32_Ceil(VE.getTypes().size()+1)));
1733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1734 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1735 Abbv) != FUNCTION_INST_CAST_ABBREV)
1736 llvm_unreachable("Unexpected abbrev ordering!");
1737 }
1738
1739 { // INST_RET abbrev for FUNCTION_BLOCK.
1740 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1741 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1742 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1743 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1744 llvm_unreachable("Unexpected abbrev ordering!");
1745 }
1746 { // INST_RET abbrev for FUNCTION_BLOCK.
1747 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1748 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1750 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1751 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1752 llvm_unreachable("Unexpected abbrev ordering!");
1753 }
1754 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1755 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1756 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1757 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1758 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1759 llvm_unreachable("Unexpected abbrev ordering!");
1760 }
1761
1762 Stream.ExitBlock();
1763 }
1764
1765 // Sort the Users based on the order in which the reader parses the bitcode
1766 // file.
bitcodereader_order(const User * lhs,const User * rhs)1767 static bool bitcodereader_order(const User *lhs, const User *rhs) {
1768 // TODO: Implement.
1769 return true;
1770 }
1771
WriteUseList(const Value * V,const ValueEnumerator & VE,BitstreamWriter & Stream)1772 static void WriteUseList(const Value *V, const ValueEnumerator &VE,
1773 BitstreamWriter &Stream) {
1774
1775 // One or zero uses can't get out of order.
1776 if (V->use_empty() || V->hasNUses(1))
1777 return;
1778
1779 // Make a copy of the in-memory use-list for sorting.
1780 unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
1781 SmallVector<const User*, 8> UseList;
1782 UseList.reserve(UseListSize);
1783 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
1784 I != E; ++I) {
1785 const User *U = *I;
1786 UseList.push_back(U);
1787 }
1788
1789 // Sort the copy based on the order read by the BitcodeReader.
1790 std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
1791
1792 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
1793 // sorted list (i.e., the expected BitcodeReader in-memory use-list).
1794
1795 // TODO: Emit the USELIST_CODE_ENTRYs.
1796 }
1797
WriteFunctionUseList(const Function * F,ValueEnumerator & VE,BitstreamWriter & Stream)1798 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
1799 BitstreamWriter &Stream) {
1800 VE.incorporateFunction(*F);
1801
1802 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1803 AI != AE; ++AI)
1804 WriteUseList(AI, VE, Stream);
1805 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
1806 ++BB) {
1807 WriteUseList(BB, VE, Stream);
1808 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
1809 ++II) {
1810 WriteUseList(II, VE, Stream);
1811 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
1812 OI != E; ++OI) {
1813 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
1814 isa<InlineAsm>(*OI))
1815 WriteUseList(*OI, VE, Stream);
1816 }
1817 }
1818 }
1819 VE.purgeFunction();
1820 }
1821
1822 // Emit use-lists.
WriteModuleUseLists(const Module * M,ValueEnumerator & VE,BitstreamWriter & Stream)1823 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
1824 BitstreamWriter &Stream) {
1825 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1826
1827 // XXX: this modifies the module, but in a way that should never change the
1828 // behavior of any pass or codegen in LLVM. The problem is that GVs may
1829 // contain entries in the use_list that do not exist in the Module and are
1830 // not stored in the .bc file.
1831 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1832 I != E; ++I)
1833 I->removeDeadConstantUsers();
1834
1835 // Write the global variables.
1836 for (Module::const_global_iterator GI = M->global_begin(),
1837 GE = M->global_end(); GI != GE; ++GI) {
1838 WriteUseList(GI, VE, Stream);
1839
1840 // Write the global variable initializers.
1841 if (GI->hasInitializer())
1842 WriteUseList(GI->getInitializer(), VE, Stream);
1843 }
1844
1845 // Write the functions.
1846 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
1847 WriteUseList(FI, VE, Stream);
1848 if (!FI->isDeclaration())
1849 WriteFunctionUseList(FI, VE, Stream);
1850 }
1851
1852 // Write the aliases.
1853 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
1854 AI != AE; ++AI) {
1855 WriteUseList(AI, VE, Stream);
1856 WriteUseList(AI->getAliasee(), VE, Stream);
1857 }
1858
1859 Stream.ExitBlock();
1860 }
1861
1862 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream)1863 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1864 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1865
1866 SmallVector<unsigned, 1> Vals;
1867 unsigned CurVersion = 1;
1868 Vals.push_back(CurVersion);
1869 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1870
1871 // Analyze the module, enumerating globals, functions, etc.
1872 ValueEnumerator VE(M);
1873
1874 // Emit blockinfo, which defines the standard abbreviations etc.
1875 WriteBlockInfo(VE, Stream);
1876
1877 // Emit information about attribute groups.
1878 WriteAttributeGroupTable(VE, Stream);
1879
1880 // Emit information about parameter attributes.
1881 WriteAttributeTable(VE, Stream);
1882
1883 // Emit information describing all of the types in the module.
1884 WriteTypeTable(VE, Stream);
1885
1886 // Emit top-level description of module, including target triple, inline asm,
1887 // descriptors for global variables, and function prototype info.
1888 WriteModuleInfo(M, VE, Stream);
1889
1890 // Emit constants.
1891 WriteModuleConstants(VE, Stream);
1892
1893 // Emit metadata.
1894 WriteModuleMetadata(M, VE, Stream);
1895
1896 // Emit metadata.
1897 WriteModuleMetadataStore(M, Stream);
1898
1899 // Emit names for globals/functions etc.
1900 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1901
1902 // Emit use-lists.
1903 if (EnablePreserveUseListOrdering)
1904 WriteModuleUseLists(M, VE, Stream);
1905
1906 // Emit function bodies.
1907 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1908 if (!F->isDeclaration())
1909 WriteFunction(*F, VE, Stream);
1910
1911 Stream.ExitBlock();
1912 }
1913
1914 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1915 /// header and trailer to make it compatible with the system archiver. To do
1916 /// this we emit the following header, and then emit a trailer that pads the
1917 /// file out to be a multiple of 16 bytes.
1918 ///
1919 /// struct bc_header {
1920 /// uint32_t Magic; // 0x0B17C0DE
1921 /// uint32_t Version; // Version, currently always 0.
1922 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1923 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1924 /// uint32_t CPUType; // CPU specifier.
1925 /// ... potentially more later ...
1926 /// };
1927 enum {
1928 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1929 DarwinBCHeaderSize = 5*4
1930 };
1931
WriteInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)1932 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1933 uint32_t &Position) {
1934 Buffer[Position + 0] = (unsigned char) (Value >> 0);
1935 Buffer[Position + 1] = (unsigned char) (Value >> 8);
1936 Buffer[Position + 2] = (unsigned char) (Value >> 16);
1937 Buffer[Position + 3] = (unsigned char) (Value >> 24);
1938 Position += 4;
1939 }
1940
EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)1941 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1942 const Triple &TT) {
1943 unsigned CPUType = ~0U;
1944
1945 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1946 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1947 // number from /usr/include/mach/machine.h. It is ok to reproduce the
1948 // specific constants here because they are implicitly part of the Darwin ABI.
1949 enum {
1950 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1951 DARWIN_CPU_TYPE_X86 = 7,
1952 DARWIN_CPU_TYPE_ARM = 12,
1953 DARWIN_CPU_TYPE_POWERPC = 18
1954 };
1955
1956 Triple::ArchType Arch = TT.getArch();
1957 if (Arch == Triple::x86_64)
1958 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1959 else if (Arch == Triple::x86)
1960 CPUType = DARWIN_CPU_TYPE_X86;
1961 else if (Arch == Triple::ppc)
1962 CPUType = DARWIN_CPU_TYPE_POWERPC;
1963 else if (Arch == Triple::ppc64)
1964 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1965 else if (Arch == Triple::arm || Arch == Triple::thumb)
1966 CPUType = DARWIN_CPU_TYPE_ARM;
1967
1968 // Traditional Bitcode starts after header.
1969 assert(Buffer.size() >= DarwinBCHeaderSize &&
1970 "Expected header size to be reserved");
1971 unsigned BCOffset = DarwinBCHeaderSize;
1972 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1973
1974 // Write the magic and version.
1975 unsigned Position = 0;
1976 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1977 WriteInt32ToBuffer(0 , Buffer, Position); // Version.
1978 WriteInt32ToBuffer(BCOffset , Buffer, Position);
1979 WriteInt32ToBuffer(BCSize , Buffer, Position);
1980 WriteInt32ToBuffer(CPUType , Buffer, Position);
1981
1982 // If the file is not a multiple of 16 bytes, insert dummy padding.
1983 while (Buffer.size() & 15)
1984 Buffer.push_back(0);
1985 }
1986
1987 /// WriteBitcodeToFile - Write the specified module to the specified output
1988 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out)1989 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1990 SmallVector<char, 0> Buffer;
1991 Buffer.reserve(256*1024);
1992
1993 // If this is darwin or another generic macho target, reserve space for the
1994 // header.
1995 Triple TT(M->getTargetTriple());
1996 if (TT.isOSDarwin())
1997 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1998
1999 // Emit the module into the buffer.
2000 {
2001 BitstreamWriter Stream(Buffer);
2002
2003 // Emit the file header.
2004 Stream.Emit((unsigned)'B', 8);
2005 Stream.Emit((unsigned)'C', 8);
2006 Stream.Emit(0x0, 4);
2007 Stream.Emit(0xC, 4);
2008 Stream.Emit(0xE, 4);
2009 Stream.Emit(0xD, 4);
2010
2011 // Emit the module.
2012 WriteModule(M, Stream);
2013 }
2014
2015 if (TT.isOSDarwin())
2016 EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2017
2018 // Write the generated bitstream to "Out".
2019 Out.write((char*)&Buffer.front(), Buffer.size());
2020 }
2021