• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* ChangeLog for this library:
30  *
31  * NDK r8d: Add android_setCpu().
32  *
33  * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
34  *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
35  *
36  *          Rewrite the code to parse /proc/self/auxv instead of
37  *          the "Features" field in /proc/cpuinfo.
38  *
39  *          Dynamically allocate the buffer that hold the content
40  *          of /proc/cpuinfo to deal with newer hardware.
41  *
42  * NDK r7c: Fix CPU count computation. The old method only reported the
43  *           number of _active_ CPUs when the library was initialized,
44  *           which could be less than the real total.
45  *
46  * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
47  *         for an ARMv6 CPU (see below).
48  *
49  *         Handle kernels that only report 'neon', and not 'vfpv3'
50  *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
51  *
52  *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
53  *
54  *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
55  *         android_getCpuFamily().
56  *
57  * NDK r4: Initial release
58  */
59 #include <sys/system_properties.h>
60 #ifdef __arm__
61 #include <machine/cpu-features.h>
62 #endif
63 #include <pthread.h>
64 #include "cpu-features.h"
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <fcntl.h>
68 #include <errno.h>
69 
70 static  pthread_once_t     g_once;
71 static  int                g_inited;
72 static  AndroidCpuFamily   g_cpuFamily;
73 static  uint64_t           g_cpuFeatures;
74 static  int                g_cpuCount;
75 
76 static const int  android_cpufeatures_debug = 0;
77 
78 #ifdef __arm__
79 #  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_ARM
80 #elif defined __i386__
81 #  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_X86
82 #else
83 #  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_UNKNOWN
84 #endif
85 
86 #define  D(...) \
87     do { \
88         if (android_cpufeatures_debug) { \
89             printf(__VA_ARGS__); fflush(stdout); \
90         } \
91     } while (0)
92 
93 #ifdef __i386__
x86_cpuid(int func,int values[4])94 static __inline__ void x86_cpuid(int func, int values[4])
95 {
96     int a, b, c, d;
97     /* We need to preserve ebx since we're compiling PIC code */
98     /* this means we can't use "=b" for the second output register */
99     __asm__ __volatile__ ( \
100       "push %%ebx\n"
101       "cpuid\n" \
102       "mov %%ebx, %1\n"
103       "pop %%ebx\n"
104       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
105       : "a" (func) \
106     );
107     values[0] = a;
108     values[1] = b;
109     values[2] = c;
110     values[3] = d;
111 }
112 #endif
113 
114 /* Get the size of a file by reading it until the end. This is needed
115  * because files under /proc do not always return a valid size when
116  * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
117  */
118 static int
get_file_size(const char * pathname)119 get_file_size(const char* pathname)
120 {
121     int fd, ret, result = 0;
122     char buffer[256];
123 
124     fd = open(pathname, O_RDONLY);
125     if (fd < 0) {
126         D("Can't open %s: %s\n", pathname, strerror(errno));
127         return -1;
128     }
129 
130     for (;;) {
131         int ret = read(fd, buffer, sizeof buffer);
132         if (ret < 0) {
133             if (errno == EINTR)
134                 continue;
135             D("Error while reading %s: %s\n", pathname, strerror(errno));
136             break;
137         }
138         if (ret == 0)
139             break;
140 
141         result += ret;
142     }
143     close(fd);
144     return result;
145 }
146 
147 /* Read the content of /proc/cpuinfo into a user-provided buffer.
148  * Return the length of the data, or -1 on error. Does *not*
149  * zero-terminate the content. Will not read more
150  * than 'buffsize' bytes.
151  */
152 static int
read_file(const char * pathname,char * buffer,size_t buffsize)153 read_file(const char*  pathname, char*  buffer, size_t  buffsize)
154 {
155     int  fd, count;
156 
157     fd = open(pathname, O_RDONLY);
158     if (fd < 0) {
159         D("Could not open %s: %s\n", pathname, strerror(errno));
160         return -1;
161     }
162     count = 0;
163     while (count < (int)buffsize) {
164         int ret = read(fd, buffer + count, buffsize - count);
165         if (ret < 0) {
166             if (errno == EINTR)
167                 continue;
168             D("Error while reading from %s: %s\n", pathname, strerror(errno));
169             if (count == 0)
170                 count = -1;
171             break;
172         }
173         if (ret == 0)
174             break;
175         count += ret;
176     }
177     close(fd);
178     return count;
179 }
180 
181 /* Extract the content of a the first occurence of a given field in
182  * the content of /proc/cpuinfo and return it as a heap-allocated
183  * string that must be freed by the caller.
184  *
185  * Return NULL if not found
186  */
187 static char*
extract_cpuinfo_field(const char * buffer,int buflen,const char * field)188 extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
189 {
190     int  fieldlen = strlen(field);
191     const char* bufend = buffer + buflen;
192     char* result = NULL;
193     int len, ignore;
194     const char *p, *q;
195 
196     /* Look for first field occurence, and ensures it starts the line. */
197     p = buffer;
198     for (;;) {
199         p = memmem(p, bufend-p, field, fieldlen);
200         if (p == NULL)
201             goto EXIT;
202 
203         if (p == buffer || p[-1] == '\n')
204             break;
205 
206         p += fieldlen;
207     }
208 
209     /* Skip to the first column followed by a space */
210     p += fieldlen;
211     p  = memchr(p, ':', bufend-p);
212     if (p == NULL || p[1] != ' ')
213         goto EXIT;
214 
215     /* Find the end of the line */
216     p += 2;
217     q = memchr(p, '\n', bufend-p);
218     if (q == NULL)
219         q = bufend;
220 
221     /* Copy the line into a heap-allocated buffer */
222     len = q-p;
223     result = malloc(len+1);
224     if (result == NULL)
225         goto EXIT;
226 
227     memcpy(result, p, len);
228     result[len] = '\0';
229 
230 EXIT:
231     return result;
232 }
233 
234 /* Like strlen(), but for constant string literals */
235 #define STRLEN_CONST(x)  ((sizeof(x)-1)
236 
237 
238 /* Checks that a space-separated list of items contains one given 'item'.
239  * Returns 1 if found, 0 otherwise.
240  */
241 static int
has_list_item(const char * list,const char * item)242 has_list_item(const char* list, const char* item)
243 {
244     const char*  p = list;
245     int itemlen = strlen(item);
246 
247     if (list == NULL)
248         return 0;
249 
250     while (*p) {
251         const char*  q;
252 
253         /* skip spaces */
254         while (*p == ' ' || *p == '\t')
255             p++;
256 
257         /* find end of current list item */
258         q = p;
259         while (*q && *q != ' ' && *q != '\t')
260             q++;
261 
262         if (itemlen == q-p && !memcmp(p, item, itemlen))
263             return 1;
264 
265         /* skip to next item */
266         p = q;
267     }
268     return 0;
269 }
270 
271 /* Parse an decimal integer starting from 'input', but not going further
272  * than 'limit'. Return the value into '*result'.
273  *
274  * NOTE: Does not skip over leading spaces, or deal with sign characters.
275  * NOTE: Ignores overflows.
276  *
277  * The function returns NULL in case of error (bad format), or the new
278  * position after the decimal number in case of success (which will always
279  * be <= 'limit').
280  */
281 static const char*
parse_decimal(const char * input,const char * limit,int * result)282 parse_decimal(const char* input, const char* limit, int* result)
283 {
284     const char* p = input;
285     int val = 0;
286     while (p < limit) {
287         int d = (*p - '0');
288         if ((unsigned)d >= 10U)
289             break;
290         val = val*10 + d;
291         p++;
292     }
293     if (p == input)
294         return NULL;
295 
296     *result = val;
297     return p;
298 }
299 
300 /* This small data type is used to represent a CPU list / mask, as read
301  * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
302  *
303  * For now, we don't expect more than 32 cores on mobile devices, so keep
304  * everything simple.
305  */
306 typedef struct {
307     uint32_t mask;
308 } CpuList;
309 
310 static __inline__ void
cpulist_init(CpuList * list)311 cpulist_init(CpuList* list) {
312     list->mask = 0;
313 }
314 
315 static __inline__ void
cpulist_and(CpuList * list1,CpuList * list2)316 cpulist_and(CpuList* list1, CpuList* list2) {
317     list1->mask &= list2->mask;
318 }
319 
320 static __inline__ void
cpulist_set(CpuList * list,int index)321 cpulist_set(CpuList* list, int index) {
322     if ((unsigned)index < 32) {
323         list->mask |= (uint32_t)(1U << index);
324     }
325 }
326 
327 static __inline__ int
cpulist_count(CpuList * list)328 cpulist_count(CpuList* list) {
329     return __builtin_popcount(list->mask);
330 }
331 
332 /* Parse a textual list of cpus and store the result inside a CpuList object.
333  * Input format is the following:
334  * - comma-separated list of items (no spaces)
335  * - each item is either a single decimal number (cpu index), or a range made
336  *   of two numbers separated by a single dash (-). Ranges are inclusive.
337  *
338  * Examples:   0
339  *             2,4-127,128-143
340  *             0-1
341  */
342 static void
cpulist_parse(CpuList * list,const char * line,int line_len)343 cpulist_parse(CpuList* list, const char* line, int line_len)
344 {
345     const char* p = line;
346     const char* end = p + line_len;
347     const char* q;
348 
349     /* NOTE: the input line coming from sysfs typically contains a
350      * trailing newline, so take care of it in the code below
351      */
352     while (p < end && *p != '\n')
353     {
354         int val, start_value, end_value;
355 
356         /* Find the end of current item, and put it into 'q' */
357         q = memchr(p, ',', end-p);
358         if (q == NULL) {
359             q = end;
360         }
361 
362         /* Get first value */
363         p = parse_decimal(p, q, &start_value);
364         if (p == NULL)
365             goto BAD_FORMAT;
366 
367         end_value = start_value;
368 
369         /* If we're not at the end of the item, expect a dash and
370          * and integer; extract end value.
371          */
372         if (p < q && *p == '-') {
373             p = parse_decimal(p+1, q, &end_value);
374             if (p == NULL)
375                 goto BAD_FORMAT;
376         }
377 
378         /* Set bits CPU list bits */
379         for (val = start_value; val <= end_value; val++) {
380             cpulist_set(list, val);
381         }
382 
383         /* Jump to next item */
384         p = q;
385         if (p < end)
386             p++;
387     }
388 
389 BAD_FORMAT:
390     ;
391 }
392 
393 /* Read a CPU list from one sysfs file */
394 static void
cpulist_read_from(CpuList * list,const char * filename)395 cpulist_read_from(CpuList* list, const char* filename)
396 {
397     char   file[64];
398     int    filelen;
399 
400     cpulist_init(list);
401 
402     filelen = read_file(filename, file, sizeof file);
403     if (filelen < 0) {
404         D("Could not read %s: %s\n", filename, strerror(errno));
405         return;
406     }
407 
408     cpulist_parse(list, file, filelen);
409 }
410 
411 // See <asm/hwcap.h> kernel header.
412 #define HWCAP_VFP       (1 << 6)
413 #define HWCAP_IWMMXT    (1 << 9)
414 #define HWCAP_NEON      (1 << 12)
415 #define HWCAP_VFPv3     (1 << 13)
416 #define HWCAP_VFPv3D16  (1 << 14)
417 #define HWCAP_VFPv4     (1 << 16)
418 #define HWCAP_IDIVA     (1 << 17)
419 #define HWCAP_IDIVT     (1 << 18)
420 
421 #define AT_HWCAP 16
422 
423 #if defined(__arm__)
424 /* Compute the ELF HWCAP flags.
425  */
426 static uint32_t
get_elf_hwcap(const char * cpuinfo,int cpuinfo_len)427 get_elf_hwcap(const char* cpuinfo, int cpuinfo_len)
428 {
429   /* IMPORTANT:
430    *   Accessing /proc/self/auxv doesn't work anymore on all
431    *   platform versions. More specifically, when running inside
432    *   a regular application process, most of /proc/self/ will be
433    *   non-readable, including /proc/self/auxv. This doesn't
434    *   happen however if the application is debuggable, or when
435    *   running under the "shell" UID, which is why this was not
436    *   detected appropriately.
437    */
438 #if 0
439     uint32_t result = 0;
440     const char filepath[] = "/proc/self/auxv";
441     int fd = open(filepath, O_RDONLY);
442     if (fd < 0) {
443         D("Could not open %s: %s\n", filepath, strerror(errno));
444         return 0;
445     }
446 
447     struct { uint32_t tag; uint32_t value; } entry;
448 
449     for (;;) {
450         int ret = read(fd, (char*)&entry, sizeof entry);
451         if (ret < 0) {
452             if (errno == EINTR)
453                 continue;
454             D("Error while reading %s: %s\n", filepath, strerror(errno));
455             break;
456         }
457         // Detect end of list.
458         if (ret == 0 || (entry.tag == 0 && entry.value == 0))
459           break;
460         if (entry.tag == AT_HWCAP) {
461           result = entry.value;
462           break;
463         }
464     }
465     close(fd);
466     return result;
467 #else
468     // Recreate ELF hwcaps by parsing /proc/cpuinfo Features tag.
469     uint32_t hwcaps = 0;
470 
471     char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
472 
473     if (cpuFeatures != NULL) {
474         D("Found cpuFeatures = '%s'\n", cpuFeatures);
475 
476         if (has_list_item(cpuFeatures, "vfp"))
477             hwcaps |= HWCAP_VFP;
478         if (has_list_item(cpuFeatures, "vfpv3"))
479             hwcaps |= HWCAP_VFPv3;
480         if (has_list_item(cpuFeatures, "vfpv3d16"))
481             hwcaps |= HWCAP_VFPv3D16;
482         if (has_list_item(cpuFeatures, "vfpv4"))
483             hwcaps |= HWCAP_VFPv4;
484         if (has_list_item(cpuFeatures, "neon"))
485             hwcaps |= HWCAP_NEON;
486         if (has_list_item(cpuFeatures, "idiva"))
487             hwcaps |= HWCAP_IDIVA;
488         if (has_list_item(cpuFeatures, "idivt"))
489             hwcaps |= HWCAP_IDIVT;
490         if (has_list_item(cpuFeatures, "idiv"))
491             hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
492         if (has_list_item(cpuFeatures, "iwmmxt"))
493             hwcaps |= HWCAP_IWMMXT;
494 
495         free(cpuFeatures);
496     }
497     return hwcaps;
498 #endif
499 }
500 #endif  /* __arm__ */
501 
502 /* Return the number of cpus present on a given device.
503  *
504  * To handle all weird kernel configurations, we need to compute the
505  * intersection of the 'present' and 'possible' CPU lists and count
506  * the result.
507  */
508 static int
get_cpu_count(void)509 get_cpu_count(void)
510 {
511     CpuList cpus_present[1];
512     CpuList cpus_possible[1];
513 
514     cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
515     cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
516 
517     /* Compute the intersection of both sets to get the actual number of
518      * CPU cores that can be used on this device by the kernel.
519      */
520     cpulist_and(cpus_present, cpus_possible);
521 
522     return cpulist_count(cpus_present);
523 }
524 
525 static void
android_cpuInitFamily(void)526 android_cpuInitFamily(void)
527 {
528 #if defined(__ARM_ARCH__)
529     g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
530 #elif defined(__i386__)
531     g_cpuFamily = ANDROID_CPU_FAMILY_X86;
532 #elif defined(_MIPS_ARCH)
533     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
534 #else
535     g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
536 #endif
537 }
538 
539 static void
android_cpuInit(void)540 android_cpuInit(void)
541 {
542     char* cpuinfo = NULL;
543     int   cpuinfo_len;
544 
545     android_cpuInitFamily();
546 
547     g_cpuFeatures = 0;
548     g_cpuCount    = 1;
549     g_inited      = 1;
550 
551     cpuinfo_len = get_file_size("/proc/cpuinfo");
552     if (cpuinfo_len < 0) {
553       D("cpuinfo_len cannot be computed!");
554       return;
555     }
556     cpuinfo = malloc(cpuinfo_len);
557     if (cpuinfo == NULL) {
558       D("cpuinfo buffer could not be allocated");
559       return;
560     }
561     cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
562     D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
563       cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
564 
565     if (cpuinfo_len < 0)  /* should not happen */ {
566         free(cpuinfo);
567         return;
568     }
569 
570     /* Count the CPU cores, the value may be 0 for single-core CPUs */
571     g_cpuCount = get_cpu_count();
572     if (g_cpuCount == 0) {
573         g_cpuCount = 1;
574     }
575 
576     D("found cpuCount = %d\n", g_cpuCount);
577 
578 #ifdef __ARM_ARCH__
579     {
580         char*  features = NULL;
581         char*  architecture = NULL;
582 
583         /* Extract architecture from the "CPU Architecture" field.
584          * The list is well-known, unlike the the output of
585          * the 'Processor' field which can vary greatly.
586          *
587          * See the definition of the 'proc_arch' array in
588          * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
589          * same file.
590          */
591         char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
592 
593         if (cpuArch != NULL) {
594             char*  end;
595             long   archNumber;
596             int    hasARMv7 = 0;
597 
598             D("found cpuArch = '%s'\n", cpuArch);
599 
600             /* read the initial decimal number, ignore the rest */
601             archNumber = strtol(cpuArch, &end, 10);
602 
603             /* Here we assume that ARMv8 will be upwards compatible with v7
604              * in the future. Unfortunately, there is no 'Features' field to
605              * indicate that Thumb-2 is supported.
606              */
607             if (end > cpuArch && archNumber >= 7) {
608                 hasARMv7 = 1;
609             }
610 
611             /* Unfortunately, it seems that certain ARMv6-based CPUs
612              * report an incorrect architecture number of 7!
613              *
614              * See http://code.google.com/p/android/issues/detail?id=10812
615              *
616              * We try to correct this by looking at the 'elf_format'
617              * field reported by the 'Processor' field, which is of the
618              * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
619              * an ARMv6-one.
620              */
621             if (hasARMv7) {
622                 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
623                                                       "Processor");
624                 if (cpuProc != NULL) {
625                     D("found cpuProc = '%s'\n", cpuProc);
626                     if (has_list_item(cpuProc, "(v6l)")) {
627                         D("CPU processor and architecture mismatch!!\n");
628                         hasARMv7 = 0;
629                     }
630                     free(cpuProc);
631                 }
632             }
633 
634             if (hasARMv7) {
635                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
636             }
637 
638             /* The LDREX / STREX instructions are available from ARMv6 */
639             if (archNumber >= 6) {
640                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
641             }
642 
643             free(cpuArch);
644         }
645 
646         /* Extract the list of CPU features from ELF hwcaps */
647         uint32_t hwcaps = get_elf_hwcap(cpuinfo, cpuinfo_len);
648 
649         if (hwcaps != 0) {
650             int has_vfp = (hwcaps & HWCAP_VFP);
651             int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
652             int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
653             int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
654             int has_neon = (hwcaps & HWCAP_NEON);
655             int has_idiva = (hwcaps & HWCAP_IDIVA);
656             int has_idivt = (hwcaps & HWCAP_IDIVT);
657             int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
658 
659             // The kernel does a poor job at ensuring consistency when
660             // describing CPU features. So lots of guessing is needed.
661 
662             // 'vfpv4' implies VFPv3|VFP_FMA|FP16
663             if (has_vfpv4)
664                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
665                                  ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
666                                  ANDROID_CPU_ARM_FEATURE_VFP_FMA;
667 
668             // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
669             // a value of 'vfpv3' doesn't necessarily mean that the D32
670             // feature is present, so be conservative. All CPUs in the
671             // field that support D32 also support NEON, so this should
672             // not be a problem in practice.
673             if (has_vfpv3 || has_vfpv3d16)
674                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
675 
676             // 'vfp' is super ambiguous. Depending on the kernel, it can
677             // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
678             if (has_vfp) {
679               if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
680                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
681               else
682                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
683             }
684 
685             // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
686             if (has_neon) {
687                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
688                                  ANDROID_CPU_ARM_FEATURE_NEON |
689                                  ANDROID_CPU_ARM_FEATURE_VFP_D32;
690               if (has_vfpv4)
691                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
692             }
693 
694             // VFPv3 implies VFPv2 and ARMv7
695             if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
696                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
697                                  ANDROID_CPU_ARM_FEATURE_ARMv7;
698 
699             // Note that some buggy kernels do not report these even when
700             // the CPU actually support the division instructions. However,
701             // assume that if 'vfpv4' is detected, then the CPU supports
702             // sdiv/udiv properly.
703             if (has_idiva || has_vfpv4)
704                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
705             if (has_idivt || has_vfpv4)
706                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
707 
708             if (has_iwmmxt)
709                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
710         }
711     }
712 #endif /* __ARM_ARCH__ */
713 
714 #ifdef __i386__
715     int regs[4];
716 
717 /* According to http://en.wikipedia.org/wiki/CPUID */
718 #define VENDOR_INTEL_b  0x756e6547
719 #define VENDOR_INTEL_c  0x6c65746e
720 #define VENDOR_INTEL_d  0x49656e69
721 
722     x86_cpuid(0, regs);
723     int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
724                          regs[2] == VENDOR_INTEL_c &&
725                          regs[3] == VENDOR_INTEL_d);
726 
727     x86_cpuid(1, regs);
728     if ((regs[2] & (1 << 9)) != 0) {
729         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
730     }
731     if ((regs[2] & (1 << 23)) != 0) {
732         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
733     }
734     if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
735         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
736     }
737 #endif
738 
739     free(cpuinfo);
740 }
741 
742 
743 AndroidCpuFamily
android_getCpuFamily(void)744 android_getCpuFamily(void)
745 {
746     pthread_once(&g_once, android_cpuInit);
747     return g_cpuFamily;
748 }
749 
750 
751 uint64_t
android_getCpuFeatures(void)752 android_getCpuFeatures(void)
753 {
754     pthread_once(&g_once, android_cpuInit);
755     return g_cpuFeatures;
756 }
757 
758 
759 int
android_getCpuCount(void)760 android_getCpuCount(void)
761 {
762     pthread_once(&g_once, android_cpuInit);
763     return g_cpuCount;
764 }
765 
766 static void
android_cpuInitDummy(void)767 android_cpuInitDummy(void)
768 {
769     g_inited = 1;
770 }
771 
772 int
android_setCpu(int cpu_count,uint64_t cpu_features)773 android_setCpu(int cpu_count, uint64_t cpu_features)
774 {
775     /* Fail if the library was already initialized. */
776     if (g_inited)
777         return 0;
778 
779     android_cpuInitFamily();
780     g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
781     g_cpuFeatures = cpu_features;
782     pthread_once(&g_once, android_cpuInitDummy);
783 
784     return 1;
785 }
786 
787 /*
788  * Technical note: Making sense of ARM's FPU architecture versions.
789  *
790  * FPA was ARM's first attempt at an FPU architecture. There is no Android
791  * device that actually uses it since this technology was already obsolete
792  * when the project started. If you see references to FPA instructions
793  * somewhere, you can be sure that this doesn't apply to Android at all.
794  *
795  * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
796  * new versions / additions to it. ARM considers this obsolete right now,
797  * and no known Android device implements it either.
798  *
799  * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
800  * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
801  * supporting the 'armeabi' ABI doesn't necessarily support these.
802  *
803  * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
804  * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
805  * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
806  * that it provides 16 double-precision FPU registers (d0-d15) and 32
807  * single-precision ones (s0-s31) which happen to be mapped to the same
808  * register banks.
809  *
810  * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
811  * additional double precision registers (d16-d31). Note that there are
812  * still only 32 single precision registers.
813  *
814  * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
815  * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
816  * are not supported by Android. Note that it is not compatible with VFPv2.
817  *
818  * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
819  *       depending on context. For example GCC uses it for VFPv3-D32, but
820  *       the Linux kernel code uses it for VFPv3-D16 (especially in
821  *       /proc/cpuinfo). Always try to use the full designation when
822  *       possible.
823  *
824  * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
825  * instructions to perform parallel computations on vectors of 8, 16,
826  * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
827  * NEON registers are also mapped to the same register banks.
828  *
829  * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
830  * perform fused multiply-accumulate on VFP registers, as well as
831  * half-precision (16-bit) conversion operations.
832  *
833  * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
834  * registers.
835  *
836  * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
837  * multiply-accumulate instructions that work on the NEON registers.
838  *
839  * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
840  *       depending on context.
841  *
842  * The following information was determined by scanning the binutils-2.22
843  * sources:
844  *
845  * Basic VFP instruction subsets:
846  *
847  * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
848  * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
849  * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
850  * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
851  * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
852  * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
853  * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
854  * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
855  * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
856  * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
857  *
858  * FPU types (excluding NEON)
859  *
860  * FPU_VFP_V1xD (EXT_V1xD)
861  *    |
862  *    +--------------------------+
863  *    |                          |
864  * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
865  *    |                          |
866  *    |                          |
867  * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
868  *    |
869  * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
870  *    |
871  *    +--------------------------+
872  *    |                          |
873  * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
874  *    |                          |
875  *    |                      FPU_VFP_V4 (+EXT_D32)
876  *    |
877  * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
878  *
879  * VFP architectures:
880  *
881  * ARCH_VFP_V1xD  (EXT_V1xD)
882  *   |
883  *   +------------------+
884  *   |                  |
885  *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
886  *   |                  |
887  *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
888  *   |                  |
889  *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
890  *   |
891  * ARCH_VFP_V1 (+EXT_V1)
892  *   |
893  * ARCH_VFP_V2 (+EXT_V2)
894  *   |
895  * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
896  *   |
897  *   +-------------------+
898  *   |                   |
899  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
900  *   |
901  *   +-------------------+
902  *   |                   |
903  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
904  *   |                   |
905  *   |         ARCH_VFP_V4 (+EXT_D32)
906  *   |                   |
907  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
908  *   |
909  * ARCH_VFP_V3 (+EXT_D32)
910  *   |
911  *   +-------------------+
912  *   |                   |
913  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
914  *   |
915  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
916  *   |
917  * ARCH_NEON_FP16 (+EXT_FP16)
918  *
919  * -fpu=<name> values and their correspondance with FPU architectures above:
920  *
921  *   {"vfp",               FPU_ARCH_VFP_V2},
922  *   {"vfp9",              FPU_ARCH_VFP_V2},
923  *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
924  *   {"vfp10",             FPU_ARCH_VFP_V2},
925  *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
926  *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
927  *   {"vfpv2",             FPU_ARCH_VFP_V2},
928  *   {"vfpv3",             FPU_ARCH_VFP_V3},
929  *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
930  *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
931  *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
932  *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
933  *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
934  *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
935  *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
936  *   {"vfpv4",             FPU_ARCH_VFP_V4},
937  *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
938  *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
939  *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
940  *
941  *
942  * Simplified diagram that only includes FPUs supported by Android:
943  * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
944  * all others are optional and must be probed at runtime.
945  *
946  * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
947  *   |
948  *   +-------------------+
949  *   |                   |
950  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
951  *   |
952  *   +-------------------+
953  *   |                   |
954  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
955  *   |                   |
956  *   |         ARCH_VFP_V4 (+EXT_D32)
957  *   |                   |
958  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
959  *   |
960  * ARCH_VFP_V3 (+EXT_D32)
961  *   |
962  *   +-------------------+
963  *   |                   |
964  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
965  *   |
966  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
967  *   |
968  * ARCH_NEON_FP16 (+EXT_FP16)
969  *
970  */
971