1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines RangeConstraintManager, a class that tracks simple
11 // equality and inequality constraints on symbolic values of ProgramState.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SimpleConstraintManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
19 #include "llvm/ADT/FoldingSet.h"
20 #include "llvm/ADT/ImmutableSet.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23
24 using namespace clang;
25 using namespace ento;
26
27 /// A Range represents the closed range [from, to]. The caller must
28 /// guarantee that from <= to. Note that Range is immutable, so as not
29 /// to subvert RangeSet's immutability.
30 namespace {
31 class Range : public std::pair<const llvm::APSInt*,
32 const llvm::APSInt*> {
33 public:
Range(const llvm::APSInt & from,const llvm::APSInt & to)34 Range(const llvm::APSInt &from, const llvm::APSInt &to)
35 : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
36 assert(from <= to);
37 }
Includes(const llvm::APSInt & v) const38 bool Includes(const llvm::APSInt &v) const {
39 return *first <= v && v <= *second;
40 }
From() const41 const llvm::APSInt &From() const {
42 return *first;
43 }
To() const44 const llvm::APSInt &To() const {
45 return *second;
46 }
getConcreteValue() const47 const llvm::APSInt *getConcreteValue() const {
48 return &From() == &To() ? &From() : NULL;
49 }
50
Profile(llvm::FoldingSetNodeID & ID) const51 void Profile(llvm::FoldingSetNodeID &ID) const {
52 ID.AddPointer(&From());
53 ID.AddPointer(&To());
54 }
55 };
56
57
58 class RangeTrait : public llvm::ImutContainerInfo<Range> {
59 public:
60 // When comparing if one Range is less than another, we should compare
61 // the actual APSInt values instead of their pointers. This keeps the order
62 // consistent (instead of comparing by pointer values) and can potentially
63 // be used to speed up some of the operations in RangeSet.
isLess(key_type_ref lhs,key_type_ref rhs)64 static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
65 return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
66 *lhs.second < *rhs.second);
67 }
68 };
69
70 /// RangeSet contains a set of ranges. If the set is empty, then
71 /// there the value of a symbol is overly constrained and there are no
72 /// possible values for that symbol.
73 class RangeSet {
74 typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
75 PrimRangeSet ranges; // no need to make const, since it is an
76 // ImmutableSet - this allows default operator=
77 // to work.
78 public:
79 typedef PrimRangeSet::Factory Factory;
80 typedef PrimRangeSet::iterator iterator;
81
RangeSet(PrimRangeSet RS)82 RangeSet(PrimRangeSet RS) : ranges(RS) {}
83
begin() const84 iterator begin() const { return ranges.begin(); }
end() const85 iterator end() const { return ranges.end(); }
86
isEmpty() const87 bool isEmpty() const { return ranges.isEmpty(); }
88
89 /// Construct a new RangeSet representing '{ [from, to] }'.
RangeSet(Factory & F,const llvm::APSInt & from,const llvm::APSInt & to)90 RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
91 : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
92
93 /// Profile - Generates a hash profile of this RangeSet for use
94 /// by FoldingSet.
Profile(llvm::FoldingSetNodeID & ID) const95 void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
96
97 /// getConcreteValue - If a symbol is contrained to equal a specific integer
98 /// constant then this method returns that value. Otherwise, it returns
99 /// NULL.
getConcreteValue() const100 const llvm::APSInt* getConcreteValue() const {
101 return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
102 }
103
104 private:
IntersectInRange(BasicValueFactory & BV,Factory & F,const llvm::APSInt & Lower,const llvm::APSInt & Upper,PrimRangeSet & newRanges,PrimRangeSet::iterator & i,PrimRangeSet::iterator & e) const105 void IntersectInRange(BasicValueFactory &BV, Factory &F,
106 const llvm::APSInt &Lower,
107 const llvm::APSInt &Upper,
108 PrimRangeSet &newRanges,
109 PrimRangeSet::iterator &i,
110 PrimRangeSet::iterator &e) const {
111 // There are six cases for each range R in the set:
112 // 1. R is entirely before the intersection range.
113 // 2. R is entirely after the intersection range.
114 // 3. R contains the entire intersection range.
115 // 4. R starts before the intersection range and ends in the middle.
116 // 5. R starts in the middle of the intersection range and ends after it.
117 // 6. R is entirely contained in the intersection range.
118 // These correspond to each of the conditions below.
119 for (/* i = begin(), e = end() */; i != e; ++i) {
120 if (i->To() < Lower) {
121 continue;
122 }
123 if (i->From() > Upper) {
124 break;
125 }
126
127 if (i->Includes(Lower)) {
128 if (i->Includes(Upper)) {
129 newRanges = F.add(newRanges, Range(BV.getValue(Lower),
130 BV.getValue(Upper)));
131 break;
132 } else
133 newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
134 } else {
135 if (i->Includes(Upper)) {
136 newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
137 break;
138 } else
139 newRanges = F.add(newRanges, *i);
140 }
141 }
142 }
143
getMinValue() const144 const llvm::APSInt &getMinValue() const {
145 assert(!isEmpty());
146 return ranges.begin()->From();
147 }
148
pin(llvm::APSInt & Lower,llvm::APSInt & Upper) const149 bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
150 // This function has nine cases, the cartesian product of range-testing
151 // both the upper and lower bounds against the symbol's type.
152 // Each case requires a different pinning operation.
153 // The function returns false if the described range is entirely outside
154 // the range of values for the associated symbol.
155 APSIntType Type(getMinValue());
156 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower);
157 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper);
158
159 switch (LowerTest) {
160 case APSIntType::RTR_Below:
161 switch (UpperTest) {
162 case APSIntType::RTR_Below:
163 // The entire range is outside the symbol's set of possible values.
164 // If this is a conventionally-ordered range, the state is infeasible.
165 if (Lower < Upper)
166 return false;
167
168 // However, if the range wraps around, it spans all possible values.
169 Lower = Type.getMinValue();
170 Upper = Type.getMaxValue();
171 break;
172 case APSIntType::RTR_Within:
173 // The range starts below what's possible but ends within it. Pin.
174 Lower = Type.getMinValue();
175 Type.apply(Upper);
176 break;
177 case APSIntType::RTR_Above:
178 // The range spans all possible values for the symbol. Pin.
179 Lower = Type.getMinValue();
180 Upper = Type.getMaxValue();
181 break;
182 }
183 break;
184 case APSIntType::RTR_Within:
185 switch (UpperTest) {
186 case APSIntType::RTR_Below:
187 // The range wraps around, but all lower values are not possible.
188 Type.apply(Lower);
189 Upper = Type.getMaxValue();
190 break;
191 case APSIntType::RTR_Within:
192 // The range may or may not wrap around, but both limits are valid.
193 Type.apply(Lower);
194 Type.apply(Upper);
195 break;
196 case APSIntType::RTR_Above:
197 // The range starts within what's possible but ends above it. Pin.
198 Type.apply(Lower);
199 Upper = Type.getMaxValue();
200 break;
201 }
202 break;
203 case APSIntType::RTR_Above:
204 switch (UpperTest) {
205 case APSIntType::RTR_Below:
206 // The range wraps but is outside the symbol's set of possible values.
207 return false;
208 case APSIntType::RTR_Within:
209 // The range starts above what's possible but ends within it (wrap).
210 Lower = Type.getMinValue();
211 Type.apply(Upper);
212 break;
213 case APSIntType::RTR_Above:
214 // The entire range is outside the symbol's set of possible values.
215 // If this is a conventionally-ordered range, the state is infeasible.
216 if (Lower < Upper)
217 return false;
218
219 // However, if the range wraps around, it spans all possible values.
220 Lower = Type.getMinValue();
221 Upper = Type.getMaxValue();
222 break;
223 }
224 break;
225 }
226
227 return true;
228 }
229
230 public:
231 // Returns a set containing the values in the receiving set, intersected with
232 // the closed range [Lower, Upper]. Unlike the Range type, this range uses
233 // modular arithmetic, corresponding to the common treatment of C integer
234 // overflow. Thus, if the Lower bound is greater than the Upper bound, the
235 // range is taken to wrap around. This is equivalent to taking the
236 // intersection with the two ranges [Min, Upper] and [Lower, Max],
237 // or, alternatively, /removing/ all integers between Upper and Lower.
Intersect(BasicValueFactory & BV,Factory & F,llvm::APSInt Lower,llvm::APSInt Upper) const238 RangeSet Intersect(BasicValueFactory &BV, Factory &F,
239 llvm::APSInt Lower, llvm::APSInt Upper) const {
240 if (!pin(Lower, Upper))
241 return F.getEmptySet();
242
243 PrimRangeSet newRanges = F.getEmptySet();
244
245 PrimRangeSet::iterator i = begin(), e = end();
246 if (Lower <= Upper)
247 IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
248 else {
249 // The order of the next two statements is important!
250 // IntersectInRange() does not reset the iteration state for i and e.
251 // Therefore, the lower range most be handled first.
252 IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
253 IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
254 }
255
256 return newRanges;
257 }
258
print(raw_ostream & os) const259 void print(raw_ostream &os) const {
260 bool isFirst = true;
261 os << "{ ";
262 for (iterator i = begin(), e = end(); i != e; ++i) {
263 if (isFirst)
264 isFirst = false;
265 else
266 os << ", ";
267
268 os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
269 << ']';
270 }
271 os << " }";
272 }
273
operator ==(const RangeSet & other) const274 bool operator==(const RangeSet &other) const {
275 return ranges == other.ranges;
276 }
277 };
278 } // end anonymous namespace
279
280 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
281 CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
282 RangeSet))
283
284 namespace {
285 class RangeConstraintManager : public SimpleConstraintManager{
286 RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
287 public:
RangeConstraintManager(SubEngine * subengine,BasicValueFactory & BVF)288 RangeConstraintManager(SubEngine *subengine, BasicValueFactory &BVF)
289 : SimpleConstraintManager(subengine, BVF) {}
290
291 ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
292 const llvm::APSInt& Int,
293 const llvm::APSInt& Adjustment);
294
295 ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
296 const llvm::APSInt& Int,
297 const llvm::APSInt& Adjustment);
298
299 ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
300 const llvm::APSInt& Int,
301 const llvm::APSInt& Adjustment);
302
303 ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
304 const llvm::APSInt& Int,
305 const llvm::APSInt& Adjustment);
306
307 ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
308 const llvm::APSInt& Int,
309 const llvm::APSInt& Adjustment);
310
311 ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
312 const llvm::APSInt& Int,
313 const llvm::APSInt& Adjustment);
314
315 const llvm::APSInt* getSymVal(ProgramStateRef St, SymbolRef sym) const;
316 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym);
317
318 ProgramStateRef removeDeadBindings(ProgramStateRef St, SymbolReaper& SymReaper);
319
320 void print(ProgramStateRef St, raw_ostream &Out,
321 const char* nl, const char *sep);
322
323 private:
324 RangeSet::Factory F;
325 };
326
327 } // end anonymous namespace
328
329 ConstraintManager *
CreateRangeConstraintManager(ProgramStateManager & StMgr,SubEngine * Eng)330 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
331 return new RangeConstraintManager(Eng, StMgr.getBasicVals());
332 }
333
getSymVal(ProgramStateRef St,SymbolRef sym) const334 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
335 SymbolRef sym) const {
336 const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
337 return T ? T->getConcreteValue() : NULL;
338 }
339
checkNull(ProgramStateRef State,SymbolRef Sym)340 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
341 SymbolRef Sym) {
342 const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
343
344 // If we don't have any information about this symbol, it's underconstrained.
345 if (!Ranges)
346 return ConditionTruthVal();
347
348 // If we have a concrete value, see if it's zero.
349 if (const llvm::APSInt *Value = Ranges->getConcreteValue())
350 return *Value == 0;
351
352 BasicValueFactory &BV = getBasicVals();
353 APSIntType IntType = BV.getAPSIntType(Sym->getType());
354 llvm::APSInt Zero = IntType.getZeroValue();
355
356 // Check if zero is in the set of possible values.
357 if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
358 return false;
359
360 // Zero is a possible value, but it is not the /only/ possible value.
361 return ConditionTruthVal();
362 }
363
364 /// Scan all symbols referenced by the constraints. If the symbol is not alive
365 /// as marked in LSymbols, mark it as dead in DSymbols.
366 ProgramStateRef
removeDeadBindings(ProgramStateRef state,SymbolReaper & SymReaper)367 RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
368 SymbolReaper& SymReaper) {
369
370 ConstraintRangeTy CR = state->get<ConstraintRange>();
371 ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
372
373 for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
374 SymbolRef sym = I.getKey();
375 if (SymReaper.maybeDead(sym))
376 CR = CRFactory.remove(CR, sym);
377 }
378
379 return state->set<ConstraintRange>(CR);
380 }
381
382 RangeSet
GetRange(ProgramStateRef state,SymbolRef sym)383 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
384 if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
385 return *V;
386
387 // Lazily generate a new RangeSet representing all possible values for the
388 // given symbol type.
389 BasicValueFactory &BV = getBasicVals();
390 QualType T = sym->getType();
391
392 RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
393
394 // Special case: references are known to be non-zero.
395 if (T->isReferenceType()) {
396 APSIntType IntType = BV.getAPSIntType(T);
397 Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
398 --IntType.getZeroValue());
399 }
400
401 return Result;
402 }
403
404 //===------------------------------------------------------------------------===
405 // assumeSymX methods: public interface for RangeConstraintManager.
406 //===------------------------------------------------------------------------===/
407
408 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
409 // and (x, y) for open ranges. These ranges are modular, corresponding with
410 // a common treatment of C integer overflow. This means that these methods
411 // do not have to worry about overflow; RangeSet::Intersect can handle such a
412 // "wraparound" range.
413 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
414 // UINT_MAX, 0, 1, and 2.
415
416 ProgramStateRef
assumeSymNE(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)417 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
418 const llvm::APSInt &Int,
419 const llvm::APSInt &Adjustment) {
420 // Before we do any real work, see if the value can even show up.
421 APSIntType AdjustmentType(Adjustment);
422 if (AdjustmentType.testInRange(Int) != APSIntType::RTR_Within)
423 return St;
424
425 llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
426 llvm::APSInt Upper = Lower;
427 --Lower;
428 ++Upper;
429
430 // [Int-Adjustment+1, Int-Adjustment-1]
431 // Notice that the lower bound is greater than the upper bound.
432 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
433 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
434 }
435
436 ProgramStateRef
assumeSymEQ(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)437 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
438 const llvm::APSInt &Int,
439 const llvm::APSInt &Adjustment) {
440 // Before we do any real work, see if the value can even show up.
441 APSIntType AdjustmentType(Adjustment);
442 if (AdjustmentType.testInRange(Int) != APSIntType::RTR_Within)
443 return NULL;
444
445 // [Int-Adjustment, Int-Adjustment]
446 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
447 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
448 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
449 }
450
451 ProgramStateRef
assumeSymLT(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)452 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
453 const llvm::APSInt &Int,
454 const llvm::APSInt &Adjustment) {
455 // Before we do any real work, see if the value can even show up.
456 APSIntType AdjustmentType(Adjustment);
457 switch (AdjustmentType.testInRange(Int)) {
458 case APSIntType::RTR_Below:
459 return NULL;
460 case APSIntType::RTR_Within:
461 break;
462 case APSIntType::RTR_Above:
463 return St;
464 }
465
466 // Special case for Int == Min. This is always false.
467 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
468 llvm::APSInt Min = AdjustmentType.getMinValue();
469 if (ComparisonVal == Min)
470 return NULL;
471
472 llvm::APSInt Lower = Min-Adjustment;
473 llvm::APSInt Upper = ComparisonVal-Adjustment;
474 --Upper;
475
476 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
477 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
478 }
479
480 ProgramStateRef
assumeSymGT(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)481 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
482 const llvm::APSInt &Int,
483 const llvm::APSInt &Adjustment) {
484 // Before we do any real work, see if the value can even show up.
485 APSIntType AdjustmentType(Adjustment);
486 switch (AdjustmentType.testInRange(Int)) {
487 case APSIntType::RTR_Below:
488 return St;
489 case APSIntType::RTR_Within:
490 break;
491 case APSIntType::RTR_Above:
492 return NULL;
493 }
494
495 // Special case for Int == Max. This is always false.
496 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
497 llvm::APSInt Max = AdjustmentType.getMaxValue();
498 if (ComparisonVal == Max)
499 return NULL;
500
501 llvm::APSInt Lower = ComparisonVal-Adjustment;
502 llvm::APSInt Upper = Max-Adjustment;
503 ++Lower;
504
505 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
506 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
507 }
508
509 ProgramStateRef
assumeSymGE(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)510 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
511 const llvm::APSInt &Int,
512 const llvm::APSInt &Adjustment) {
513 // Before we do any real work, see if the value can even show up.
514 APSIntType AdjustmentType(Adjustment);
515 switch (AdjustmentType.testInRange(Int)) {
516 case APSIntType::RTR_Below:
517 return St;
518 case APSIntType::RTR_Within:
519 break;
520 case APSIntType::RTR_Above:
521 return NULL;
522 }
523
524 // Special case for Int == Min. This is always feasible.
525 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
526 llvm::APSInt Min = AdjustmentType.getMinValue();
527 if (ComparisonVal == Min)
528 return St;
529
530 llvm::APSInt Max = AdjustmentType.getMaxValue();
531 llvm::APSInt Lower = ComparisonVal-Adjustment;
532 llvm::APSInt Upper = Max-Adjustment;
533
534 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
535 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
536 }
537
538 ProgramStateRef
assumeSymLE(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)539 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
540 const llvm::APSInt &Int,
541 const llvm::APSInt &Adjustment) {
542 // Before we do any real work, see if the value can even show up.
543 APSIntType AdjustmentType(Adjustment);
544 switch (AdjustmentType.testInRange(Int)) {
545 case APSIntType::RTR_Below:
546 return NULL;
547 case APSIntType::RTR_Within:
548 break;
549 case APSIntType::RTR_Above:
550 return St;
551 }
552
553 // Special case for Int == Max. This is always feasible.
554 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
555 llvm::APSInt Max = AdjustmentType.getMaxValue();
556 if (ComparisonVal == Max)
557 return St;
558
559 llvm::APSInt Min = AdjustmentType.getMinValue();
560 llvm::APSInt Lower = Min-Adjustment;
561 llvm::APSInt Upper = ComparisonVal-Adjustment;
562
563 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
564 return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
565 }
566
567 //===------------------------------------------------------------------------===
568 // Pretty-printing.
569 //===------------------------------------------------------------------------===/
570
print(ProgramStateRef St,raw_ostream & Out,const char * nl,const char * sep)571 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
572 const char* nl, const char *sep) {
573
574 ConstraintRangeTy Ranges = St->get<ConstraintRange>();
575
576 if (Ranges.isEmpty()) {
577 Out << nl << sep << "Ranges are empty." << nl;
578 return;
579 }
580
581 Out << nl << sep << "Ranges of symbol values:";
582 for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
583 Out << nl << ' ' << I.getKey() << " : ";
584 I.getData().print(Out);
585 }
586 Out << nl;
587 }
588