• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // An iterative solver for solving the Schur complement/reduced camera
32 // linear system that arise in SfM problems.
33 
34 #ifndef CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_
35 #define CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_
36 
37 #include "ceres/linear_operator.h"
38 #include "ceres/partitioned_matrix_view.h"
39 #include "ceres/internal/eigen.h"
40 #include "ceres/internal/scoped_ptr.h"
41 #include "ceres/types.h"
42 
43 namespace ceres {
44 namespace internal {
45 
46 class BlockSparseMatrix;
47 class BlockSparseMatrixBase;
48 
49 // This class implements various linear algebraic operations related
50 // to the Schur complement without explicitly forming it.
51 //
52 //
53 // Given a reactangular linear system Ax = b, where
54 //
55 //   A = [E F]
56 //
57 // The normal equations are given by
58 //
59 //   A'Ax = A'b
60 //
61 //  |E'E E'F||y| = |E'b|
62 //  |F'E F'F||z|   |F'b|
63 //
64 // and the Schur complement system is given by
65 //
66 //  [F'F - F'E (E'E)^-1 E'F] z = F'b - F'E (E'E)^-1 E'b
67 //
68 // Now if we wish to solve Ax = b in the least squares sense, one way
69 // is to form this Schur complement system and solve it using
70 // Preconditioned Conjugate Gradients.
71 //
72 // The key operation in a conjugate gradient solver is the evaluation of the
73 // matrix vector product with the Schur complement
74 //
75 //   S = F'F - F'E (E'E)^-1 E'F
76 //
77 // It is straightforward to see that matrix vector products with S can
78 // be evaluated without storing S in memory. Instead, given (E'E)^-1
79 // (which for our purposes is an easily inverted block diagonal
80 // matrix), it can be done in terms of matrix vector products with E,
81 // F and (E'E)^-1. This class implements this functionality and other
82 // auxilliary bits needed to implement a CG solver on the Schur
83 // complement using the PartitionedMatrixView object.
84 //
85 // THREAD SAFETY: This class is nqot thread safe. In particular, the
86 // RightMultiply (and the LeftMultiply) methods are not thread safe as
87 // they depend on mutable arrays used for the temporaries needed to
88 // compute the product y += Sx;
89 class ImplicitSchurComplement : public LinearOperator {
90  public:
91   // num_eliminate_blocks is the number of E blocks in the matrix
92   // A.
93   //
94   // preconditioner indicates whether the inverse of the matrix F'F
95   // should be computed or not as a preconditioner for the Schur
96   // Complement.
97   //
98   // TODO(sameeragarwal): Get rid of the two bools below and replace
99   // them with enums.
100   ImplicitSchurComplement(int num_eliminate_blocks, bool preconditioner);
101   virtual ~ImplicitSchurComplement();
102 
103   // Initialize the Schur complement for a linear least squares
104   // problem of the form
105   //
106   //   |A      | x = |b|
107   //   |diag(D)|     |0|
108   //
109   // If D is null, then it is treated as a zero dimensional matrix. It
110   // is important that the matrix A have a BlockStructure object
111   // associated with it and has a block structure that is compatible
112   // with the SchurComplement solver.
113   void Init(const BlockSparseMatrixBase& A, const double* D, const double* b);
114 
115   // y += Sx, where S is the Schur complement.
116   virtual void RightMultiply(const double* x, double* y) const;
117 
118   // The Schur complement is a symmetric positive definite matrix,
119   // thus the left and right multiply operators are the same.
LeftMultiply(const double * x,double * y)120   virtual void LeftMultiply(const double* x, double* y) const {
121     RightMultiply(x, y);
122   }
123 
124   // y = (E'E)^-1 (E'b - E'F x). Given an estimate of the solution to
125   // the Schur complement system, this method computes the value of
126   // the e_block variables that were eliminated to form the Schur
127   // complement.
128   void BackSubstitute(const double* x, double* y);
129 
num_rows()130   virtual int num_rows() const { return A_->num_cols_f(); }
num_cols()131   virtual int num_cols() const { return A_->num_cols_f(); }
rhs()132   const Vector& rhs()    const { return rhs_;             }
133 
block_diagonal_EtE_inverse()134   const BlockSparseMatrix* block_diagonal_EtE_inverse() const {
135     return block_diagonal_EtE_inverse_.get();
136   }
137 
block_diagonal_FtF_inverse()138   const BlockSparseMatrix* block_diagonal_FtF_inverse() const {
139     return block_diagonal_FtF_inverse_.get();
140   }
141 
142  private:
143   void AddDiagonalAndInvert(const double* D, BlockSparseMatrix* matrix);
144   void UpdateRhs();
145 
146   int num_eliminate_blocks_;
147   bool preconditioner_;
148 
149   scoped_ptr<PartitionedMatrixView> A_;
150   const double* D_;
151   const double* b_;
152 
153   scoped_ptr<BlockSparseMatrix> block_diagonal_EtE_inverse_;
154   scoped_ptr<BlockSparseMatrix> block_diagonal_FtF_inverse_;
155 
156   Vector rhs_;
157 
158   // Temporary storage vectors used to implement RightMultiply.
159   mutable Vector tmp_rows_;
160   mutable Vector tmp_e_cols_;
161   mutable Vector tmp_e_cols_2_;
162   mutable Vector tmp_f_cols_;
163 };
164 
165 }  // namespace internal
166 }  // namespace ceres
167 
168 #endif  // CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_
169