1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "misched"
16
17 #include "llvm/CodeGen/MachineScheduler.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterClassInfo.h"
26 #include "llvm/CodeGen/ScheduleDFS.h"
27 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GraphWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <queue>
34
35 using namespace llvm;
36
37 namespace llvm {
38 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
39 cl::desc("Force top-down list scheduling"));
40 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
41 cl::desc("Force bottom-up list scheduling"));
42 }
43
44 #ifndef NDEBUG
45 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
46 cl::desc("Pop up a window to show MISched dags after they are processed"));
47
48 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
49 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
50 #else
51 static bool ViewMISchedDAGs = false;
52 #endif // NDEBUG
53
54 // Experimental heuristics
55 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
56 cl::desc("Enable load clustering."), cl::init(true));
57
58 // Experimental heuristics
59 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
60 cl::desc("Enable scheduling for macro fusion."), cl::init(true));
61
62 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
63 cl::desc("Verify machine instrs before and after machine scheduling"));
64
65 // DAG subtrees must have at least this many nodes.
66 static const unsigned MinSubtreeSize = 8;
67
68 //===----------------------------------------------------------------------===//
69 // Machine Instruction Scheduling Pass and Registry
70 //===----------------------------------------------------------------------===//
71
MachineSchedContext()72 MachineSchedContext::MachineSchedContext():
73 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
74 RegClassInfo = new RegisterClassInfo();
75 }
76
~MachineSchedContext()77 MachineSchedContext::~MachineSchedContext() {
78 delete RegClassInfo;
79 }
80
81 namespace {
82 /// MachineScheduler runs after coalescing and before register allocation.
83 class MachineScheduler : public MachineSchedContext,
84 public MachineFunctionPass {
85 public:
86 MachineScheduler();
87
88 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
89
releaseMemory()90 virtual void releaseMemory() {}
91
92 virtual bool runOnMachineFunction(MachineFunction&);
93
94 virtual void print(raw_ostream &O, const Module* = 0) const;
95
96 static char ID; // Class identification, replacement for typeinfo
97 };
98 } // namespace
99
100 char MachineScheduler::ID = 0;
101
102 char &llvm::MachineSchedulerID = MachineScheduler::ID;
103
104 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
105 "Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)106 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
107 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
108 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
109 INITIALIZE_PASS_END(MachineScheduler, "misched",
110 "Machine Instruction Scheduler", false, false)
111
112 MachineScheduler::MachineScheduler()
113 : MachineFunctionPass(ID) {
114 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
115 }
116
getAnalysisUsage(AnalysisUsage & AU) const117 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
118 AU.setPreservesCFG();
119 AU.addRequiredID(MachineDominatorsID);
120 AU.addRequired<MachineLoopInfo>();
121 AU.addRequired<AliasAnalysis>();
122 AU.addRequired<TargetPassConfig>();
123 AU.addRequired<SlotIndexes>();
124 AU.addPreserved<SlotIndexes>();
125 AU.addRequired<LiveIntervals>();
126 AU.addPreserved<LiveIntervals>();
127 MachineFunctionPass::getAnalysisUsage(AU);
128 }
129
130 MachinePassRegistry MachineSchedRegistry::Registry;
131
132 /// A dummy default scheduler factory indicates whether the scheduler
133 /// is overridden on the command line.
useDefaultMachineSched(MachineSchedContext * C)134 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
135 return 0;
136 }
137
138 /// MachineSchedOpt allows command line selection of the scheduler.
139 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
140 RegisterPassParser<MachineSchedRegistry> >
141 MachineSchedOpt("misched",
142 cl::init(&useDefaultMachineSched), cl::Hidden,
143 cl::desc("Machine instruction scheduler to use"));
144
145 static MachineSchedRegistry
146 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
147 useDefaultMachineSched);
148
149 /// Forward declare the standard machine scheduler. This will be used as the
150 /// default scheduler if the target does not set a default.
151 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
152
153
154 /// Decrement this iterator until reaching the top or a non-debug instr.
155 static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I,MachineBasicBlock::iterator Beg)156 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
157 assert(I != Beg && "reached the top of the region, cannot decrement");
158 while (--I != Beg) {
159 if (!I->isDebugValue())
160 break;
161 }
162 return I;
163 }
164
165 /// If this iterator is a debug value, increment until reaching the End or a
166 /// non-debug instruction.
167 static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,MachineBasicBlock::iterator End)168 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
169 for(; I != End; ++I) {
170 if (!I->isDebugValue())
171 break;
172 }
173 return I;
174 }
175
176 /// Top-level MachineScheduler pass driver.
177 ///
178 /// Visit blocks in function order. Divide each block into scheduling regions
179 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
180 /// consistent with the DAG builder, which traverses the interior of the
181 /// scheduling regions bottom-up.
182 ///
183 /// This design avoids exposing scheduling boundaries to the DAG builder,
184 /// simplifying the DAG builder's support for "special" target instructions.
185 /// At the same time the design allows target schedulers to operate across
186 /// scheduling boundaries, for example to bundle the boudary instructions
187 /// without reordering them. This creates complexity, because the target
188 /// scheduler must update the RegionBegin and RegionEnd positions cached by
189 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
190 /// design would be to split blocks at scheduling boundaries, but LLVM has a
191 /// general bias against block splitting purely for implementation simplicity.
runOnMachineFunction(MachineFunction & mf)192 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
193 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
194
195 // Initialize the context of the pass.
196 MF = &mf;
197 MLI = &getAnalysis<MachineLoopInfo>();
198 MDT = &getAnalysis<MachineDominatorTree>();
199 PassConfig = &getAnalysis<TargetPassConfig>();
200 AA = &getAnalysis<AliasAnalysis>();
201
202 LIS = &getAnalysis<LiveIntervals>();
203 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
204
205 if (VerifyScheduling) {
206 DEBUG(LIS->print(dbgs()));
207 MF->verify(this, "Before machine scheduling.");
208 }
209 RegClassInfo->runOnMachineFunction(*MF);
210
211 // Select the scheduler, or set the default.
212 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
213 if (Ctor == useDefaultMachineSched) {
214 // Get the default scheduler set by the target.
215 Ctor = MachineSchedRegistry::getDefault();
216 if (!Ctor) {
217 Ctor = createConvergingSched;
218 MachineSchedRegistry::setDefault(Ctor);
219 }
220 }
221 // Instantiate the selected scheduler.
222 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
223
224 // Visit all machine basic blocks.
225 //
226 // TODO: Visit blocks in global postorder or postorder within the bottom-up
227 // loop tree. Then we can optionally compute global RegPressure.
228 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
229 MBB != MBBEnd; ++MBB) {
230
231 Scheduler->startBlock(MBB);
232
233 // Break the block into scheduling regions [I, RegionEnd), and schedule each
234 // region as soon as it is discovered. RegionEnd points the scheduling
235 // boundary at the bottom of the region. The DAG does not include RegionEnd,
236 // but the region does (i.e. the next RegionEnd is above the previous
237 // RegionBegin). If the current block has no terminator then RegionEnd ==
238 // MBB->end() for the bottom region.
239 //
240 // The Scheduler may insert instructions during either schedule() or
241 // exitRegion(), even for empty regions. So the local iterators 'I' and
242 // 'RegionEnd' are invalid across these calls.
243 unsigned RemainingInstrs = MBB->size();
244 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
245 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
246
247 // Avoid decrementing RegionEnd for blocks with no terminator.
248 if (RegionEnd != MBB->end()
249 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
250 --RegionEnd;
251 // Count the boundary instruction.
252 --RemainingInstrs;
253 }
254
255 // The next region starts above the previous region. Look backward in the
256 // instruction stream until we find the nearest boundary.
257 MachineBasicBlock::iterator I = RegionEnd;
258 for(;I != MBB->begin(); --I, --RemainingInstrs) {
259 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
260 break;
261 }
262 // Notify the scheduler of the region, even if we may skip scheduling
263 // it. Perhaps it still needs to be bundled.
264 Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
265
266 // Skip empty scheduling regions (0 or 1 schedulable instructions).
267 if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
268 // Close the current region. Bundle the terminator if needed.
269 // This invalidates 'RegionEnd' and 'I'.
270 Scheduler->exitRegion();
271 continue;
272 }
273 DEBUG(dbgs() << "********** MI Scheduling **********\n");
274 DEBUG(dbgs() << MF->getName()
275 << ":BB#" << MBB->getNumber() << " " << MBB->getName()
276 << "\n From: " << *I << " To: ";
277 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
278 else dbgs() << "End";
279 dbgs() << " Remaining: " << RemainingInstrs << "\n");
280
281 // Schedule a region: possibly reorder instructions.
282 // This invalidates 'RegionEnd' and 'I'.
283 Scheduler->schedule();
284
285 // Close the current region.
286 Scheduler->exitRegion();
287
288 // Scheduling has invalidated the current iterator 'I'. Ask the
289 // scheduler for the top of it's scheduled region.
290 RegionEnd = Scheduler->begin();
291 }
292 assert(RemainingInstrs == 0 && "Instruction count mismatch!");
293 Scheduler->finishBlock();
294 }
295 Scheduler->finalizeSchedule();
296 DEBUG(LIS->print(dbgs()));
297 if (VerifyScheduling)
298 MF->verify(this, "After machine scheduling.");
299 return true;
300 }
301
print(raw_ostream & O,const Module * m) const302 void MachineScheduler::print(raw_ostream &O, const Module* m) const {
303 // unimplemented
304 }
305
306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump()307 void ReadyQueue::dump() {
308 dbgs() << Name << ": ";
309 for (unsigned i = 0, e = Queue.size(); i < e; ++i)
310 dbgs() << Queue[i]->NodeNum << " ";
311 dbgs() << "\n";
312 }
313 #endif
314
315 //===----------------------------------------------------------------------===//
316 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
317 // preservation.
318 //===----------------------------------------------------------------------===//
319
~ScheduleDAGMI()320 ScheduleDAGMI::~ScheduleDAGMI() {
321 delete DFSResult;
322 DeleteContainerPointers(Mutations);
323 delete SchedImpl;
324 }
325
addEdge(SUnit * SuccSU,const SDep & PredDep)326 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
327 if (SuccSU != &ExitSU) {
328 // Do not use WillCreateCycle, it assumes SD scheduling.
329 // If Pred is reachable from Succ, then the edge creates a cycle.
330 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
331 return false;
332 Topo.AddPred(SuccSU, PredDep.getSUnit());
333 }
334 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
335 // Return true regardless of whether a new edge needed to be inserted.
336 return true;
337 }
338
339 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
340 /// NumPredsLeft reaches zero, release the successor node.
341 ///
342 /// FIXME: Adjust SuccSU height based on MinLatency.
releaseSucc(SUnit * SU,SDep * SuccEdge)343 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
344 SUnit *SuccSU = SuccEdge->getSUnit();
345
346 if (SuccEdge->isWeak()) {
347 --SuccSU->WeakPredsLeft;
348 if (SuccEdge->isCluster())
349 NextClusterSucc = SuccSU;
350 return;
351 }
352 #ifndef NDEBUG
353 if (SuccSU->NumPredsLeft == 0) {
354 dbgs() << "*** Scheduling failed! ***\n";
355 SuccSU->dump(this);
356 dbgs() << " has been released too many times!\n";
357 llvm_unreachable(0);
358 }
359 #endif
360 --SuccSU->NumPredsLeft;
361 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
362 SchedImpl->releaseTopNode(SuccSU);
363 }
364
365 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
releaseSuccessors(SUnit * SU)366 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
367 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
368 I != E; ++I) {
369 releaseSucc(SU, &*I);
370 }
371 }
372
373 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
374 /// NumSuccsLeft reaches zero, release the predecessor node.
375 ///
376 /// FIXME: Adjust PredSU height based on MinLatency.
releasePred(SUnit * SU,SDep * PredEdge)377 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
378 SUnit *PredSU = PredEdge->getSUnit();
379
380 if (PredEdge->isWeak()) {
381 --PredSU->WeakSuccsLeft;
382 if (PredEdge->isCluster())
383 NextClusterPred = PredSU;
384 return;
385 }
386 #ifndef NDEBUG
387 if (PredSU->NumSuccsLeft == 0) {
388 dbgs() << "*** Scheduling failed! ***\n";
389 PredSU->dump(this);
390 dbgs() << " has been released too many times!\n";
391 llvm_unreachable(0);
392 }
393 #endif
394 --PredSU->NumSuccsLeft;
395 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
396 SchedImpl->releaseBottomNode(PredSU);
397 }
398
399 /// releasePredecessors - Call releasePred on each of SU's predecessors.
releasePredecessors(SUnit * SU)400 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
401 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
402 I != E; ++I) {
403 releasePred(SU, &*I);
404 }
405 }
406
moveInstruction(MachineInstr * MI,MachineBasicBlock::iterator InsertPos)407 void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
408 MachineBasicBlock::iterator InsertPos) {
409 // Advance RegionBegin if the first instruction moves down.
410 if (&*RegionBegin == MI)
411 ++RegionBegin;
412
413 // Update the instruction stream.
414 BB->splice(InsertPos, BB, MI);
415
416 // Update LiveIntervals
417 LIS->handleMove(MI, /*UpdateFlags=*/true);
418
419 // Recede RegionBegin if an instruction moves above the first.
420 if (RegionBegin == InsertPos)
421 RegionBegin = MI;
422 }
423
checkSchedLimit()424 bool ScheduleDAGMI::checkSchedLimit() {
425 #ifndef NDEBUG
426 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
427 CurrentTop = CurrentBottom;
428 return false;
429 }
430 ++NumInstrsScheduled;
431 #endif
432 return true;
433 }
434
435 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
436 /// crossing a scheduling boundary. [begin, end) includes all instructions in
437 /// the region, including the boundary itself and single-instruction regions
438 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned endcount)439 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
440 MachineBasicBlock::iterator begin,
441 MachineBasicBlock::iterator end,
442 unsigned endcount)
443 {
444 ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
445
446 // For convenience remember the end of the liveness region.
447 LiveRegionEnd =
448 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
449 }
450
451 // Setup the register pressure trackers for the top scheduled top and bottom
452 // scheduled regions.
initRegPressure()453 void ScheduleDAGMI::initRegPressure() {
454 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
455 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
456
457 // Close the RPTracker to finalize live ins.
458 RPTracker.closeRegion();
459
460 DEBUG(RPTracker.getPressure().dump(TRI));
461
462 // Initialize the live ins and live outs.
463 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
464 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
465
466 // Close one end of the tracker so we can call
467 // getMaxUpward/DownwardPressureDelta before advancing across any
468 // instructions. This converts currently live regs into live ins/outs.
469 TopRPTracker.closeTop();
470 BotRPTracker.closeBottom();
471
472 // Account for liveness generated by the region boundary.
473 if (LiveRegionEnd != RegionEnd)
474 BotRPTracker.recede();
475
476 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
477
478 // Cache the list of excess pressure sets in this region. This will also track
479 // the max pressure in the scheduled code for these sets.
480 RegionCriticalPSets.clear();
481 const std::vector<unsigned> &RegionPressure =
482 RPTracker.getPressure().MaxSetPressure;
483 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
484 unsigned Limit = TRI->getRegPressureSetLimit(i);
485 DEBUG(dbgs() << TRI->getRegPressureSetName(i)
486 << "Limit " << Limit
487 << " Actual " << RegionPressure[i] << "\n");
488 if (RegionPressure[i] > Limit)
489 RegionCriticalPSets.push_back(PressureElement(i, 0));
490 }
491 DEBUG(dbgs() << "Excess PSets: ";
492 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
493 dbgs() << TRI->getRegPressureSetName(
494 RegionCriticalPSets[i].PSetID) << " ";
495 dbgs() << "\n");
496 }
497
498 // FIXME: When the pressure tracker deals in pressure differences then we won't
499 // iterate over all RegionCriticalPSets[i].
500 void ScheduleDAGMI::
updateScheduledPressure(const std::vector<unsigned> & NewMaxPressure)501 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
502 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
503 unsigned ID = RegionCriticalPSets[i].PSetID;
504 int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
505 if ((int)NewMaxPressure[ID] > MaxUnits)
506 MaxUnits = NewMaxPressure[ID];
507 }
508 }
509
510 /// schedule - Called back from MachineScheduler::runOnMachineFunction
511 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
512 /// only includes instructions that have DAG nodes, not scheduling boundaries.
513 ///
514 /// This is a skeletal driver, with all the functionality pushed into helpers,
515 /// so that it can be easilly extended by experimental schedulers. Generally,
516 /// implementing MachineSchedStrategy should be sufficient to implement a new
517 /// scheduling algorithm. However, if a scheduler further subclasses
518 /// ScheduleDAGMI then it will want to override this virtual method in order to
519 /// update any specialized state.
schedule()520 void ScheduleDAGMI::schedule() {
521 buildDAGWithRegPressure();
522
523 Topo.InitDAGTopologicalSorting();
524
525 postprocessDAG();
526
527 SmallVector<SUnit*, 8> TopRoots, BotRoots;
528 findRootsAndBiasEdges(TopRoots, BotRoots);
529
530 // Initialize the strategy before modifying the DAG.
531 // This may initialize a DFSResult to be used for queue priority.
532 SchedImpl->initialize(this);
533
534 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
535 SUnits[su].dumpAll(this));
536 if (ViewMISchedDAGs) viewGraph();
537
538 // Initialize ready queues now that the DAG and priority data are finalized.
539 initQueues(TopRoots, BotRoots);
540
541 bool IsTopNode = false;
542 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
543 assert(!SU->isScheduled && "Node already scheduled");
544 if (!checkSchedLimit())
545 break;
546
547 scheduleMI(SU, IsTopNode);
548
549 updateQueues(SU, IsTopNode);
550 }
551 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
552
553 placeDebugValues();
554
555 DEBUG({
556 unsigned BBNum = begin()->getParent()->getNumber();
557 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
558 dumpSchedule();
559 dbgs() << '\n';
560 });
561 }
562
563 /// Build the DAG and setup three register pressure trackers.
buildDAGWithRegPressure()564 void ScheduleDAGMI::buildDAGWithRegPressure() {
565 // Initialize the register pressure tracker used by buildSchedGraph.
566 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
567
568 // Account for liveness generate by the region boundary.
569 if (LiveRegionEnd != RegionEnd)
570 RPTracker.recede();
571
572 // Build the DAG, and compute current register pressure.
573 buildSchedGraph(AA, &RPTracker);
574
575 // Initialize top/bottom trackers after computing region pressure.
576 initRegPressure();
577 }
578
579 /// Apply each ScheduleDAGMutation step in order.
postprocessDAG()580 void ScheduleDAGMI::postprocessDAG() {
581 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
582 Mutations[i]->apply(this);
583 }
584 }
585
computeDFSResult()586 void ScheduleDAGMI::computeDFSResult() {
587 if (!DFSResult)
588 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
589 DFSResult->clear();
590 ScheduledTrees.clear();
591 DFSResult->resize(SUnits.size());
592 DFSResult->compute(SUnits);
593 ScheduledTrees.resize(DFSResult->getNumSubtrees());
594 }
595
findRootsAndBiasEdges(SmallVectorImpl<SUnit * > & TopRoots,SmallVectorImpl<SUnit * > & BotRoots)596 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
597 SmallVectorImpl<SUnit*> &BotRoots) {
598 for (std::vector<SUnit>::iterator
599 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
600 SUnit *SU = &(*I);
601 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
602
603 // Order predecessors so DFSResult follows the critical path.
604 SU->biasCriticalPath();
605
606 // A SUnit is ready to top schedule if it has no predecessors.
607 if (!I->NumPredsLeft)
608 TopRoots.push_back(SU);
609 // A SUnit is ready to bottom schedule if it has no successors.
610 if (!I->NumSuccsLeft)
611 BotRoots.push_back(SU);
612 }
613 ExitSU.biasCriticalPath();
614 }
615
616 /// Identify DAG roots and setup scheduler queues.
initQueues(ArrayRef<SUnit * > TopRoots,ArrayRef<SUnit * > BotRoots)617 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
618 ArrayRef<SUnit*> BotRoots) {
619 NextClusterSucc = NULL;
620 NextClusterPred = NULL;
621
622 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
623 //
624 // Nodes with unreleased weak edges can still be roots.
625 // Release top roots in forward order.
626 for (SmallVectorImpl<SUnit*>::const_iterator
627 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
628 SchedImpl->releaseTopNode(*I);
629 }
630 // Release bottom roots in reverse order so the higher priority nodes appear
631 // first. This is more natural and slightly more efficient.
632 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
633 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
634 SchedImpl->releaseBottomNode(*I);
635 }
636
637 releaseSuccessors(&EntrySU);
638 releasePredecessors(&ExitSU);
639
640 SchedImpl->registerRoots();
641
642 // Advance past initial DebugValues.
643 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
644 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
645 TopRPTracker.setPos(CurrentTop);
646
647 CurrentBottom = RegionEnd;
648 }
649
650 /// Move an instruction and update register pressure.
scheduleMI(SUnit * SU,bool IsTopNode)651 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
652 // Move the instruction to its new location in the instruction stream.
653 MachineInstr *MI = SU->getInstr();
654
655 if (IsTopNode) {
656 assert(SU->isTopReady() && "node still has unscheduled dependencies");
657 if (&*CurrentTop == MI)
658 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
659 else {
660 moveInstruction(MI, CurrentTop);
661 TopRPTracker.setPos(MI);
662 }
663
664 // Update top scheduled pressure.
665 TopRPTracker.advance();
666 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
667 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
668 }
669 else {
670 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
671 MachineBasicBlock::iterator priorII =
672 priorNonDebug(CurrentBottom, CurrentTop);
673 if (&*priorII == MI)
674 CurrentBottom = priorII;
675 else {
676 if (&*CurrentTop == MI) {
677 CurrentTop = nextIfDebug(++CurrentTop, priorII);
678 TopRPTracker.setPos(CurrentTop);
679 }
680 moveInstruction(MI, CurrentBottom);
681 CurrentBottom = MI;
682 }
683 // Update bottom scheduled pressure.
684 BotRPTracker.recede();
685 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
686 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
687 }
688 }
689
690 /// Update scheduler queues after scheduling an instruction.
updateQueues(SUnit * SU,bool IsTopNode)691 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
692 // Release dependent instructions for scheduling.
693 if (IsTopNode)
694 releaseSuccessors(SU);
695 else
696 releasePredecessors(SU);
697
698 SU->isScheduled = true;
699
700 if (DFSResult) {
701 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
702 if (!ScheduledTrees.test(SubtreeID)) {
703 ScheduledTrees.set(SubtreeID);
704 DFSResult->scheduleTree(SubtreeID);
705 SchedImpl->scheduleTree(SubtreeID);
706 }
707 }
708
709 // Notify the scheduling strategy after updating the DAG.
710 SchedImpl->schedNode(SU, IsTopNode);
711 }
712
713 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
placeDebugValues()714 void ScheduleDAGMI::placeDebugValues() {
715 // If first instruction was a DBG_VALUE then put it back.
716 if (FirstDbgValue) {
717 BB->splice(RegionBegin, BB, FirstDbgValue);
718 RegionBegin = FirstDbgValue;
719 }
720
721 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
722 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
723 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
724 MachineInstr *DbgValue = P.first;
725 MachineBasicBlock::iterator OrigPrevMI = P.second;
726 if (&*RegionBegin == DbgValue)
727 ++RegionBegin;
728 BB->splice(++OrigPrevMI, BB, DbgValue);
729 if (OrigPrevMI == llvm::prior(RegionEnd))
730 RegionEnd = DbgValue;
731 }
732 DbgValues.clear();
733 FirstDbgValue = NULL;
734 }
735
736 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpSchedule() const737 void ScheduleDAGMI::dumpSchedule() const {
738 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
739 if (SUnit *SU = getSUnit(&(*MI)))
740 SU->dump(this);
741 else
742 dbgs() << "Missing SUnit\n";
743 }
744 }
745 #endif
746
747 //===----------------------------------------------------------------------===//
748 // LoadClusterMutation - DAG post-processing to cluster loads.
749 //===----------------------------------------------------------------------===//
750
751 namespace {
752 /// \brief Post-process the DAG to create cluster edges between neighboring
753 /// loads.
754 class LoadClusterMutation : public ScheduleDAGMutation {
755 struct LoadInfo {
756 SUnit *SU;
757 unsigned BaseReg;
758 unsigned Offset;
LoadInfo__anon029210900211::LoadClusterMutation::LoadInfo759 LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
760 : SU(su), BaseReg(reg), Offset(ofs) {}
761 };
762 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
763 const LoadClusterMutation::LoadInfo &RHS);
764
765 const TargetInstrInfo *TII;
766 const TargetRegisterInfo *TRI;
767 public:
LoadClusterMutation(const TargetInstrInfo * tii,const TargetRegisterInfo * tri)768 LoadClusterMutation(const TargetInstrInfo *tii,
769 const TargetRegisterInfo *tri)
770 : TII(tii), TRI(tri) {}
771
772 virtual void apply(ScheduleDAGMI *DAG);
773 protected:
774 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
775 };
776 } // anonymous
777
LoadInfoLess(const LoadClusterMutation::LoadInfo & LHS,const LoadClusterMutation::LoadInfo & RHS)778 bool LoadClusterMutation::LoadInfoLess(
779 const LoadClusterMutation::LoadInfo &LHS,
780 const LoadClusterMutation::LoadInfo &RHS) {
781 if (LHS.BaseReg != RHS.BaseReg)
782 return LHS.BaseReg < RHS.BaseReg;
783 return LHS.Offset < RHS.Offset;
784 }
785
clusterNeighboringLoads(ArrayRef<SUnit * > Loads,ScheduleDAGMI * DAG)786 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
787 ScheduleDAGMI *DAG) {
788 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
789 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
790 SUnit *SU = Loads[Idx];
791 unsigned BaseReg;
792 unsigned Offset;
793 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
794 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
795 }
796 if (LoadRecords.size() < 2)
797 return;
798 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
799 unsigned ClusterLength = 1;
800 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
801 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
802 ClusterLength = 1;
803 continue;
804 }
805
806 SUnit *SUa = LoadRecords[Idx].SU;
807 SUnit *SUb = LoadRecords[Idx+1].SU;
808 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
809 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
810
811 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
812 << SUb->NodeNum << ")\n");
813 // Copy successor edges from SUa to SUb. Interleaving computation
814 // dependent on SUa can prevent load combining due to register reuse.
815 // Predecessor edges do not need to be copied from SUb to SUa since nearby
816 // loads should have effectively the same inputs.
817 for (SUnit::const_succ_iterator
818 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
819 if (SI->getSUnit() == SUb)
820 continue;
821 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
822 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
823 }
824 ++ClusterLength;
825 }
826 else
827 ClusterLength = 1;
828 }
829 }
830
831 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
apply(ScheduleDAGMI * DAG)832 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
833 // Map DAG NodeNum to store chain ID.
834 DenseMap<unsigned, unsigned> StoreChainIDs;
835 // Map each store chain to a set of dependent loads.
836 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
837 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
838 SUnit *SU = &DAG->SUnits[Idx];
839 if (!SU->getInstr()->mayLoad())
840 continue;
841 unsigned ChainPredID = DAG->SUnits.size();
842 for (SUnit::const_pred_iterator
843 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
844 if (PI->isCtrl()) {
845 ChainPredID = PI->getSUnit()->NodeNum;
846 break;
847 }
848 }
849 // Check if this chain-like pred has been seen
850 // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
851 unsigned NumChains = StoreChainDependents.size();
852 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
853 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
854 if (Result.second)
855 StoreChainDependents.resize(NumChains + 1);
856 StoreChainDependents[Result.first->second].push_back(SU);
857 }
858 // Iterate over the store chains.
859 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
860 clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
861 }
862
863 //===----------------------------------------------------------------------===//
864 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
865 //===----------------------------------------------------------------------===//
866
867 namespace {
868 /// \brief Post-process the DAG to create cluster edges between instructions
869 /// that may be fused by the processor into a single operation.
870 class MacroFusion : public ScheduleDAGMutation {
871 const TargetInstrInfo *TII;
872 public:
MacroFusion(const TargetInstrInfo * tii)873 MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
874
875 virtual void apply(ScheduleDAGMI *DAG);
876 };
877 } // anonymous
878
879 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
880 /// fused operations.
apply(ScheduleDAGMI * DAG)881 void MacroFusion::apply(ScheduleDAGMI *DAG) {
882 // For now, assume targets can only fuse with the branch.
883 MachineInstr *Branch = DAG->ExitSU.getInstr();
884 if (!Branch)
885 return;
886
887 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
888 SUnit *SU = &DAG->SUnits[--Idx];
889 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
890 continue;
891
892 // Create a single weak edge from SU to ExitSU. The only effect is to cause
893 // bottom-up scheduling to heavily prioritize the clustered SU. There is no
894 // need to copy predecessor edges from ExitSU to SU, since top-down
895 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
896 // of SU, we could create an artificial edge from the deepest root, but it
897 // hasn't been needed yet.
898 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
899 (void)Success;
900 assert(Success && "No DAG nodes should be reachable from ExitSU");
901
902 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
903 break;
904 }
905 }
906
907 //===----------------------------------------------------------------------===//
908 // ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
909 //===----------------------------------------------------------------------===//
910
911 namespace {
912 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
913 /// the schedule.
914 class ConvergingScheduler : public MachineSchedStrategy {
915 public:
916 /// Represent the type of SchedCandidate found within a single queue.
917 /// pickNodeBidirectional depends on these listed by decreasing priority.
918 enum CandReason {
919 NoCand, SingleExcess, SingleCritical, Cluster,
920 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
921 TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse,
922 NodeOrder};
923
924 #ifndef NDEBUG
925 static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
926 #endif
927
928 /// Policy for scheduling the next instruction in the candidate's zone.
929 struct CandPolicy {
930 bool ReduceLatency;
931 unsigned ReduceResIdx;
932 unsigned DemandResIdx;
933
CandPolicy__anon029210900411::ConvergingScheduler::CandPolicy934 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
935 };
936
937 /// Status of an instruction's critical resource consumption.
938 struct SchedResourceDelta {
939 // Count critical resources in the scheduled region required by SU.
940 unsigned CritResources;
941
942 // Count critical resources from another region consumed by SU.
943 unsigned DemandedResources;
944
SchedResourceDelta__anon029210900411::ConvergingScheduler::SchedResourceDelta945 SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
946
operator ==__anon029210900411::ConvergingScheduler::SchedResourceDelta947 bool operator==(const SchedResourceDelta &RHS) const {
948 return CritResources == RHS.CritResources
949 && DemandedResources == RHS.DemandedResources;
950 }
operator !=__anon029210900411::ConvergingScheduler::SchedResourceDelta951 bool operator!=(const SchedResourceDelta &RHS) const {
952 return !operator==(RHS);
953 }
954 };
955
956 /// Store the state used by ConvergingScheduler heuristics, required for the
957 /// lifetime of one invocation of pickNode().
958 struct SchedCandidate {
959 CandPolicy Policy;
960
961 // The best SUnit candidate.
962 SUnit *SU;
963
964 // The reason for this candidate.
965 CandReason Reason;
966
967 // Register pressure values for the best candidate.
968 RegPressureDelta RPDelta;
969
970 // Critical resource consumption of the best candidate.
971 SchedResourceDelta ResDelta;
972
SchedCandidate__anon029210900411::ConvergingScheduler::SchedCandidate973 SchedCandidate(const CandPolicy &policy)
974 : Policy(policy), SU(NULL), Reason(NoCand) {}
975
isValid__anon029210900411::ConvergingScheduler::SchedCandidate976 bool isValid() const { return SU; }
977
978 // Copy the status of another candidate without changing policy.
setBest__anon029210900411::ConvergingScheduler::SchedCandidate979 void setBest(SchedCandidate &Best) {
980 assert(Best.Reason != NoCand && "uninitialized Sched candidate");
981 SU = Best.SU;
982 Reason = Best.Reason;
983 RPDelta = Best.RPDelta;
984 ResDelta = Best.ResDelta;
985 }
986
987 void initResourceDelta(const ScheduleDAGMI *DAG,
988 const TargetSchedModel *SchedModel);
989 };
990
991 /// Summarize the unscheduled region.
992 struct SchedRemainder {
993 // Critical path through the DAG in expected latency.
994 unsigned CriticalPath;
995
996 // Unscheduled resources
997 SmallVector<unsigned, 16> RemainingCounts;
998 // Critical resource for the unscheduled zone.
999 unsigned CritResIdx;
1000 // Number of micro-ops left to schedule.
1001 unsigned RemainingMicroOps;
1002
reset__anon029210900411::ConvergingScheduler::SchedRemainder1003 void reset() {
1004 CriticalPath = 0;
1005 RemainingCounts.clear();
1006 CritResIdx = 0;
1007 RemainingMicroOps = 0;
1008 }
1009
SchedRemainder__anon029210900411::ConvergingScheduler::SchedRemainder1010 SchedRemainder() { reset(); }
1011
1012 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
1013
getMaxRemainingCount__anon029210900411::ConvergingScheduler::SchedRemainder1014 unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const {
1015 if (!SchedModel->hasInstrSchedModel())
1016 return 0;
1017
1018 return std::max(
1019 RemainingMicroOps * SchedModel->getMicroOpFactor(),
1020 RemainingCounts[CritResIdx]);
1021 }
1022 };
1023
1024 /// Each Scheduling boundary is associated with ready queues. It tracks the
1025 /// current cycle in the direction of movement, and maintains the state
1026 /// of "hazards" and other interlocks at the current cycle.
1027 struct SchedBoundary {
1028 ScheduleDAGMI *DAG;
1029 const TargetSchedModel *SchedModel;
1030 SchedRemainder *Rem;
1031
1032 ReadyQueue Available;
1033 ReadyQueue Pending;
1034 bool CheckPending;
1035
1036 // For heuristics, keep a list of the nodes that immediately depend on the
1037 // most recently scheduled node.
1038 SmallPtrSet<const SUnit*, 8> NextSUs;
1039
1040 ScheduleHazardRecognizer *HazardRec;
1041
1042 unsigned CurrCycle;
1043 unsigned IssueCount;
1044
1045 /// MinReadyCycle - Cycle of the soonest available instruction.
1046 unsigned MinReadyCycle;
1047
1048 // The expected latency of the critical path in this scheduled zone.
1049 unsigned ExpectedLatency;
1050
1051 // Resources used in the scheduled zone beyond this boundary.
1052 SmallVector<unsigned, 16> ResourceCounts;
1053
1054 // Cache the critical resources ID in this scheduled zone.
1055 unsigned CritResIdx;
1056
1057 // Is the scheduled region resource limited vs. latency limited.
1058 bool IsResourceLimited;
1059
1060 unsigned ExpectedCount;
1061
1062 #ifndef NDEBUG
1063 // Remember the greatest min operand latency.
1064 unsigned MaxMinLatency;
1065 #endif
1066
reset__anon029210900411::ConvergingScheduler::SchedBoundary1067 void reset() {
1068 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1069 delete HazardRec;
1070
1071 Available.clear();
1072 Pending.clear();
1073 CheckPending = false;
1074 NextSUs.clear();
1075 HazardRec = 0;
1076 CurrCycle = 0;
1077 IssueCount = 0;
1078 MinReadyCycle = UINT_MAX;
1079 ExpectedLatency = 0;
1080 ResourceCounts.resize(1);
1081 assert(!ResourceCounts[0] && "nonzero count for bad resource");
1082 CritResIdx = 0;
1083 IsResourceLimited = false;
1084 ExpectedCount = 0;
1085 #ifndef NDEBUG
1086 MaxMinLatency = 0;
1087 #endif
1088 // Reserve a zero-count for invalid CritResIdx.
1089 ResourceCounts.resize(1);
1090 }
1091
1092 /// Pending queues extend the ready queues with the same ID and the
1093 /// PendingFlag set.
SchedBoundary__anon029210900411::ConvergingScheduler::SchedBoundary1094 SchedBoundary(unsigned ID, const Twine &Name):
1095 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
1096 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
1097 HazardRec(0) {
1098 reset();
1099 }
1100
~SchedBoundary__anon029210900411::ConvergingScheduler::SchedBoundary1101 ~SchedBoundary() { delete HazardRec; }
1102
1103 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
1104 SchedRemainder *rem);
1105
isTop__anon029210900411::ConvergingScheduler::SchedBoundary1106 bool isTop() const {
1107 return Available.getID() == ConvergingScheduler::TopQID;
1108 }
1109
getUnscheduledLatency__anon029210900411::ConvergingScheduler::SchedBoundary1110 unsigned getUnscheduledLatency(SUnit *SU) const {
1111 if (isTop())
1112 return SU->getHeight();
1113 return SU->getDepth() + SU->Latency;
1114 }
1115
getCriticalCount__anon029210900411::ConvergingScheduler::SchedBoundary1116 unsigned getCriticalCount() const {
1117 return ResourceCounts[CritResIdx];
1118 }
1119
1120 bool checkHazard(SUnit *SU);
1121
1122 void setLatencyPolicy(CandPolicy &Policy);
1123
1124 void releaseNode(SUnit *SU, unsigned ReadyCycle);
1125
1126 void bumpCycle();
1127
1128 void countResource(unsigned PIdx, unsigned Cycles);
1129
1130 void bumpNode(SUnit *SU);
1131
1132 void releasePending();
1133
1134 void removeReady(SUnit *SU);
1135
1136 SUnit *pickOnlyChoice();
1137 };
1138
1139 private:
1140 ScheduleDAGMI *DAG;
1141 const TargetSchedModel *SchedModel;
1142 const TargetRegisterInfo *TRI;
1143
1144 // State of the top and bottom scheduled instruction boundaries.
1145 SchedRemainder Rem;
1146 SchedBoundary Top;
1147 SchedBoundary Bot;
1148
1149 public:
1150 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
1151 enum {
1152 TopQID = 1,
1153 BotQID = 2,
1154 LogMaxQID = 2
1155 };
1156
ConvergingScheduler()1157 ConvergingScheduler():
1158 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
1159
1160 virtual void initialize(ScheduleDAGMI *dag);
1161
1162 virtual SUnit *pickNode(bool &IsTopNode);
1163
1164 virtual void schedNode(SUnit *SU, bool IsTopNode);
1165
1166 virtual void releaseTopNode(SUnit *SU);
1167
1168 virtual void releaseBottomNode(SUnit *SU);
1169
1170 virtual void registerRoots();
1171
1172 protected:
1173 void balanceZones(
1174 ConvergingScheduler::SchedBoundary &CriticalZone,
1175 ConvergingScheduler::SchedCandidate &CriticalCand,
1176 ConvergingScheduler::SchedBoundary &OppositeZone,
1177 ConvergingScheduler::SchedCandidate &OppositeCand);
1178
1179 void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand,
1180 ConvergingScheduler::SchedCandidate &BotCand);
1181
1182 void tryCandidate(SchedCandidate &Cand,
1183 SchedCandidate &TryCand,
1184 SchedBoundary &Zone,
1185 const RegPressureTracker &RPTracker,
1186 RegPressureTracker &TempTracker);
1187
1188 SUnit *pickNodeBidirectional(bool &IsTopNode);
1189
1190 void pickNodeFromQueue(SchedBoundary &Zone,
1191 const RegPressureTracker &RPTracker,
1192 SchedCandidate &Candidate);
1193
1194 #ifndef NDEBUG
1195 void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone);
1196 #endif
1197 };
1198 } // namespace
1199
1200 void ConvergingScheduler::SchedRemainder::
init(ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)1201 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1202 reset();
1203 if (!SchedModel->hasInstrSchedModel())
1204 return;
1205 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1206 for (std::vector<SUnit>::iterator
1207 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1208 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1209 RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC);
1210 for (TargetSchedModel::ProcResIter
1211 PI = SchedModel->getWriteProcResBegin(SC),
1212 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1213 unsigned PIdx = PI->ProcResourceIdx;
1214 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1215 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1216 }
1217 }
1218 for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds();
1219 PIdx != PEnd; ++PIdx) {
1220 if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx])
1221 >= (int)SchedModel->getLatencyFactor()) {
1222 CritResIdx = PIdx;
1223 }
1224 }
1225 }
1226
1227 void ConvergingScheduler::SchedBoundary::
init(ScheduleDAGMI * dag,const TargetSchedModel * smodel,SchedRemainder * rem)1228 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1229 reset();
1230 DAG = dag;
1231 SchedModel = smodel;
1232 Rem = rem;
1233 if (SchedModel->hasInstrSchedModel())
1234 ResourceCounts.resize(SchedModel->getNumProcResourceKinds());
1235 }
1236
initialize(ScheduleDAGMI * dag)1237 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
1238 DAG = dag;
1239 SchedModel = DAG->getSchedModel();
1240 TRI = DAG->TRI;
1241
1242 Rem.init(DAG, SchedModel);
1243 Top.init(DAG, SchedModel, &Rem);
1244 Bot.init(DAG, SchedModel, &Rem);
1245
1246 DAG->computeDFSResult();
1247
1248 // Initialize resource counts.
1249
1250 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
1251 // are disabled, then these HazardRecs will be disabled.
1252 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
1253 const TargetMachine &TM = DAG->MF.getTarget();
1254 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1255 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1256
1257 assert((!ForceTopDown || !ForceBottomUp) &&
1258 "-misched-topdown incompatible with -misched-bottomup");
1259 }
1260
releaseTopNode(SUnit * SU)1261 void ConvergingScheduler::releaseTopNode(SUnit *SU) {
1262 if (SU->isScheduled)
1263 return;
1264
1265 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1266 I != E; ++I) {
1267 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1268 unsigned MinLatency = I->getMinLatency();
1269 #ifndef NDEBUG
1270 Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
1271 #endif
1272 if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
1273 SU->TopReadyCycle = PredReadyCycle + MinLatency;
1274 }
1275 Top.releaseNode(SU, SU->TopReadyCycle);
1276 }
1277
releaseBottomNode(SUnit * SU)1278 void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
1279 if (SU->isScheduled)
1280 return;
1281
1282 assert(SU->getInstr() && "Scheduled SUnit must have instr");
1283
1284 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1285 I != E; ++I) {
1286 if (I->isWeak())
1287 continue;
1288 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1289 unsigned MinLatency = I->getMinLatency();
1290 #ifndef NDEBUG
1291 Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
1292 #endif
1293 if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
1294 SU->BotReadyCycle = SuccReadyCycle + MinLatency;
1295 }
1296 Bot.releaseNode(SU, SU->BotReadyCycle);
1297 }
1298
registerRoots()1299 void ConvergingScheduler::registerRoots() {
1300 Rem.CriticalPath = DAG->ExitSU.getDepth();
1301 // Some roots may not feed into ExitSU. Check all of them in case.
1302 for (std::vector<SUnit*>::const_iterator
1303 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
1304 if ((*I)->getDepth() > Rem.CriticalPath)
1305 Rem.CriticalPath = (*I)->getDepth();
1306 }
1307 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
1308 }
1309
1310 /// Does this SU have a hazard within the current instruction group.
1311 ///
1312 /// The scheduler supports two modes of hazard recognition. The first is the
1313 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1314 /// supports highly complicated in-order reservation tables
1315 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1316 ///
1317 /// The second is a streamlined mechanism that checks for hazards based on
1318 /// simple counters that the scheduler itself maintains. It explicitly checks
1319 /// for instruction dispatch limitations, including the number of micro-ops that
1320 /// can dispatch per cycle.
1321 ///
1322 /// TODO: Also check whether the SU must start a new group.
checkHazard(SUnit * SU)1323 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
1324 if (HazardRec->isEnabled())
1325 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
1326
1327 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1328 if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) {
1329 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1330 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1331 return true;
1332 }
1333 return false;
1334 }
1335
1336 /// Compute the remaining latency to determine whether ILP should be increased.
setLatencyPolicy(CandPolicy & Policy)1337 void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) {
1338 // FIXME: compile time. In all, we visit four queues here one we should only
1339 // need to visit the one that was last popped if we cache the result.
1340 unsigned RemLatency = 0;
1341 for (ReadyQueue::iterator I = Available.begin(), E = Available.end();
1342 I != E; ++I) {
1343 unsigned L = getUnscheduledLatency(*I);
1344 if (L > RemLatency)
1345 RemLatency = L;
1346 }
1347 for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end();
1348 I != E; ++I) {
1349 unsigned L = getUnscheduledLatency(*I);
1350 if (L > RemLatency)
1351 RemLatency = L;
1352 }
1353 unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow();
1354 if (RemLatency + ExpectedLatency >= CriticalPathLimit
1355 && RemLatency > Rem->getMaxRemainingCount(SchedModel)) {
1356 Policy.ReduceLatency = true;
1357 DEBUG(dbgs() << "Increase ILP: " << Available.getName() << '\n');
1358 }
1359 }
1360
releaseNode(SUnit * SU,unsigned ReadyCycle)1361 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
1362 unsigned ReadyCycle) {
1363
1364 if (ReadyCycle < MinReadyCycle)
1365 MinReadyCycle = ReadyCycle;
1366
1367 // Check for interlocks first. For the purpose of other heuristics, an
1368 // instruction that cannot issue appears as if it's not in the ReadyQueue.
1369 if (ReadyCycle > CurrCycle || checkHazard(SU))
1370 Pending.push(SU);
1371 else
1372 Available.push(SU);
1373
1374 // Record this node as an immediate dependent of the scheduled node.
1375 NextSUs.insert(SU);
1376 }
1377
1378 /// Move the boundary of scheduled code by one cycle.
bumpCycle()1379 void ConvergingScheduler::SchedBoundary::bumpCycle() {
1380 unsigned Width = SchedModel->getIssueWidth();
1381 IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
1382
1383 unsigned NextCycle = CurrCycle + 1;
1384 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1385 if (MinReadyCycle > NextCycle) {
1386 IssueCount = 0;
1387 NextCycle = MinReadyCycle;
1388 }
1389
1390 if (!HazardRec->isEnabled()) {
1391 // Bypass HazardRec virtual calls.
1392 CurrCycle = NextCycle;
1393 }
1394 else {
1395 // Bypass getHazardType calls in case of long latency.
1396 for (; CurrCycle != NextCycle; ++CurrCycle) {
1397 if (isTop())
1398 HazardRec->AdvanceCycle();
1399 else
1400 HazardRec->RecedeCycle();
1401 }
1402 }
1403 CheckPending = true;
1404 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
1405
1406 DEBUG(dbgs() << " *** " << Available.getName() << " cycle "
1407 << CurrCycle << '\n');
1408 }
1409
1410 /// Add the given processor resource to this scheduled zone.
countResource(unsigned PIdx,unsigned Cycles)1411 void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx,
1412 unsigned Cycles) {
1413 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1414 DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name
1415 << " +(" << Cycles << "x" << Factor
1416 << ") / " << SchedModel->getLatencyFactor() << '\n');
1417
1418 unsigned Count = Factor * Cycles;
1419 ResourceCounts[PIdx] += Count;
1420 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1421 Rem->RemainingCounts[PIdx] -= Count;
1422
1423 // Check if this resource exceeds the current critical resource by a full
1424 // cycle. If so, it becomes the critical resource.
1425 if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx])
1426 >= (int)SchedModel->getLatencyFactor()) {
1427 CritResIdx = PIdx;
1428 DEBUG(dbgs() << " *** Critical resource "
1429 << SchedModel->getProcResource(PIdx)->Name << " x"
1430 << ResourceCounts[PIdx] << '\n');
1431 }
1432 }
1433
1434 /// Move the boundary of scheduled code by one SUnit.
bumpNode(SUnit * SU)1435 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
1436 // Update the reservation table.
1437 if (HazardRec->isEnabled()) {
1438 if (!isTop() && SU->isCall) {
1439 // Calls are scheduled with their preceding instructions. For bottom-up
1440 // scheduling, clear the pipeline state before emitting.
1441 HazardRec->Reset();
1442 }
1443 HazardRec->EmitInstruction(SU);
1444 }
1445 // Update resource counts and critical resource.
1446 if (SchedModel->hasInstrSchedModel()) {
1447 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1448 Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC);
1449 for (TargetSchedModel::ProcResIter
1450 PI = SchedModel->getWriteProcResBegin(SC),
1451 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1452 countResource(PI->ProcResourceIdx, PI->Cycles);
1453 }
1454 }
1455 if (isTop()) {
1456 if (SU->getDepth() > ExpectedLatency)
1457 ExpectedLatency = SU->getDepth();
1458 }
1459 else {
1460 if (SU->getHeight() > ExpectedLatency)
1461 ExpectedLatency = SU->getHeight();
1462 }
1463
1464 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
1465
1466 // Check the instruction group dispatch limit.
1467 // TODO: Check if this SU must end a dispatch group.
1468 IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
1469
1470 // checkHazard prevents scheduling multiple instructions per cycle that exceed
1471 // issue width. However, we commonly reach the maximum. In this case
1472 // opportunistically bump the cycle to avoid uselessly checking everything in
1473 // the readyQ. Furthermore, a single instruction may produce more than one
1474 // cycle's worth of micro-ops.
1475 if (IssueCount >= SchedModel->getIssueWidth()) {
1476 DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n');
1477 bumpCycle();
1478 }
1479 }
1480
1481 /// Release pending ready nodes in to the available queue. This makes them
1482 /// visible to heuristics.
releasePending()1483 void ConvergingScheduler::SchedBoundary::releasePending() {
1484 // If the available queue is empty, it is safe to reset MinReadyCycle.
1485 if (Available.empty())
1486 MinReadyCycle = UINT_MAX;
1487
1488 // Check to see if any of the pending instructions are ready to issue. If
1489 // so, add them to the available queue.
1490 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
1491 SUnit *SU = *(Pending.begin()+i);
1492 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
1493
1494 if (ReadyCycle < MinReadyCycle)
1495 MinReadyCycle = ReadyCycle;
1496
1497 if (ReadyCycle > CurrCycle)
1498 continue;
1499
1500 if (checkHazard(SU))
1501 continue;
1502
1503 Available.push(SU);
1504 Pending.remove(Pending.begin()+i);
1505 --i; --e;
1506 }
1507 DEBUG(if (!Pending.empty()) Pending.dump());
1508 CheckPending = false;
1509 }
1510
1511 /// Remove SU from the ready set for this boundary.
removeReady(SUnit * SU)1512 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
1513 if (Available.isInQueue(SU))
1514 Available.remove(Available.find(SU));
1515 else {
1516 assert(Pending.isInQueue(SU) && "bad ready count");
1517 Pending.remove(Pending.find(SU));
1518 }
1519 }
1520
1521 /// If this queue only has one ready candidate, return it. As a side effect,
1522 /// defer any nodes that now hit a hazard, and advance the cycle until at least
1523 /// one node is ready. If multiple instructions are ready, return NULL.
pickOnlyChoice()1524 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
1525 if (CheckPending)
1526 releasePending();
1527
1528 if (IssueCount > 0) {
1529 // Defer any ready instrs that now have a hazard.
1530 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
1531 if (checkHazard(*I)) {
1532 Pending.push(*I);
1533 I = Available.remove(I);
1534 continue;
1535 }
1536 ++I;
1537 }
1538 }
1539 for (unsigned i = 0; Available.empty(); ++i) {
1540 assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
1541 "permanent hazard"); (void)i;
1542 bumpCycle();
1543 releasePending();
1544 }
1545 if (Available.size() == 1)
1546 return *Available.begin();
1547 return NULL;
1548 }
1549
1550 /// Record the candidate policy for opposite zones with different critical
1551 /// resources.
1552 ///
1553 /// If the CriticalZone is latency limited, don't force a policy for the
1554 /// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed.
balanceZones(ConvergingScheduler::SchedBoundary & CriticalZone,ConvergingScheduler::SchedCandidate & CriticalCand,ConvergingScheduler::SchedBoundary & OppositeZone,ConvergingScheduler::SchedCandidate & OppositeCand)1555 void ConvergingScheduler::balanceZones(
1556 ConvergingScheduler::SchedBoundary &CriticalZone,
1557 ConvergingScheduler::SchedCandidate &CriticalCand,
1558 ConvergingScheduler::SchedBoundary &OppositeZone,
1559 ConvergingScheduler::SchedCandidate &OppositeCand) {
1560
1561 if (!CriticalZone.IsResourceLimited)
1562 return;
1563 assert(SchedModel->hasInstrSchedModel() && "required schedmodel");
1564
1565 SchedRemainder *Rem = CriticalZone.Rem;
1566
1567 // If the critical zone is overconsuming a resource relative to the
1568 // remainder, try to reduce it.
1569 unsigned RemainingCritCount =
1570 Rem->RemainingCounts[CriticalZone.CritResIdx];
1571 if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount)
1572 > (int)SchedModel->getLatencyFactor()) {
1573 CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx;
1574 DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce "
1575 << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name
1576 << '\n');
1577 }
1578 // If the other zone is underconsuming a resource relative to the full zone,
1579 // try to increase it.
1580 unsigned OppositeCount =
1581 OppositeZone.ResourceCounts[CriticalZone.CritResIdx];
1582 if ((int)(OppositeZone.ExpectedCount - OppositeCount)
1583 > (int)SchedModel->getLatencyFactor()) {
1584 OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx;
1585 DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand "
1586 << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name
1587 << '\n');
1588 }
1589 }
1590
1591 /// Determine if the scheduled zones exceed resource limits or critical path and
1592 /// set each candidate's ReduceHeight policy accordingly.
checkResourceLimits(ConvergingScheduler::SchedCandidate & TopCand,ConvergingScheduler::SchedCandidate & BotCand)1593 void ConvergingScheduler::checkResourceLimits(
1594 ConvergingScheduler::SchedCandidate &TopCand,
1595 ConvergingScheduler::SchedCandidate &BotCand) {
1596
1597 // Set ReduceLatency to true if needed.
1598 Bot.setLatencyPolicy(BotCand.Policy);
1599 Top.setLatencyPolicy(TopCand.Policy);
1600
1601 // Handle resource-limited regions.
1602 if (Top.IsResourceLimited && Bot.IsResourceLimited
1603 && Top.CritResIdx == Bot.CritResIdx) {
1604 // If the scheduled critical resource in both zones is no longer the
1605 // critical remaining resource, attempt to reduce resource height both ways.
1606 if (Top.CritResIdx != Rem.CritResIdx) {
1607 TopCand.Policy.ReduceResIdx = Top.CritResIdx;
1608 BotCand.Policy.ReduceResIdx = Bot.CritResIdx;
1609 DEBUG(dbgs() << "Reduce scheduled "
1610 << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n');
1611 }
1612 return;
1613 }
1614 // Handle latency-limited regions.
1615 if (!Top.IsResourceLimited && !Bot.IsResourceLimited) {
1616 // If the total scheduled expected latency exceeds the region's critical
1617 // path then reduce latency both ways.
1618 //
1619 // Just because a zone is not resource limited does not mean it is latency
1620 // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle
1621 // to exceed expected latency.
1622 if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath)
1623 && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) {
1624 TopCand.Policy.ReduceLatency = true;
1625 BotCand.Policy.ReduceLatency = true;
1626 DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency
1627 << " + " << Bot.ExpectedLatency << '\n');
1628 }
1629 return;
1630 }
1631 // The critical resource is different in each zone, so request balancing.
1632
1633 // Compute the cost of each zone.
1634 Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle);
1635 Top.ExpectedCount = std::max(
1636 Top.getCriticalCount(),
1637 Top.ExpectedCount * SchedModel->getLatencyFactor());
1638 Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle);
1639 Bot.ExpectedCount = std::max(
1640 Bot.getCriticalCount(),
1641 Bot.ExpectedCount * SchedModel->getLatencyFactor());
1642
1643 balanceZones(Top, TopCand, Bot, BotCand);
1644 balanceZones(Bot, BotCand, Top, TopCand);
1645 }
1646
1647 void ConvergingScheduler::SchedCandidate::
initResourceDelta(const ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)1648 initResourceDelta(const ScheduleDAGMI *DAG,
1649 const TargetSchedModel *SchedModel) {
1650 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
1651 return;
1652
1653 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1654 for (TargetSchedModel::ProcResIter
1655 PI = SchedModel->getWriteProcResBegin(SC),
1656 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1657 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
1658 ResDelta.CritResources += PI->Cycles;
1659 if (PI->ProcResourceIdx == Policy.DemandResIdx)
1660 ResDelta.DemandedResources += PI->Cycles;
1661 }
1662 }
1663
1664 /// Return true if this heuristic determines order.
tryLess(unsigned TryVal,unsigned CandVal,ConvergingScheduler::SchedCandidate & TryCand,ConvergingScheduler::SchedCandidate & Cand,ConvergingScheduler::CandReason Reason)1665 static bool tryLess(unsigned TryVal, unsigned CandVal,
1666 ConvergingScheduler::SchedCandidate &TryCand,
1667 ConvergingScheduler::SchedCandidate &Cand,
1668 ConvergingScheduler::CandReason Reason) {
1669 if (TryVal < CandVal) {
1670 TryCand.Reason = Reason;
1671 return true;
1672 }
1673 if (TryVal > CandVal) {
1674 if (Cand.Reason > Reason)
1675 Cand.Reason = Reason;
1676 return true;
1677 }
1678 return false;
1679 }
1680
tryGreater(unsigned TryVal,unsigned CandVal,ConvergingScheduler::SchedCandidate & TryCand,ConvergingScheduler::SchedCandidate & Cand,ConvergingScheduler::CandReason Reason)1681 static bool tryGreater(unsigned TryVal, unsigned CandVal,
1682 ConvergingScheduler::SchedCandidate &TryCand,
1683 ConvergingScheduler::SchedCandidate &Cand,
1684 ConvergingScheduler::CandReason Reason) {
1685 if (TryVal > CandVal) {
1686 TryCand.Reason = Reason;
1687 return true;
1688 }
1689 if (TryVal < CandVal) {
1690 if (Cand.Reason > Reason)
1691 Cand.Reason = Reason;
1692 return true;
1693 }
1694 return false;
1695 }
1696
getWeakLeft(const SUnit * SU,bool isTop)1697 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
1698 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
1699 }
1700
1701 /// Apply a set of heursitics to a new candidate. Heuristics are currently
1702 /// hierarchical. This may be more efficient than a graduated cost model because
1703 /// we don't need to evaluate all aspects of the model for each node in the
1704 /// queue. But it's really done to make the heuristics easier to debug and
1705 /// statistically analyze.
1706 ///
1707 /// \param Cand provides the policy and current best candidate.
1708 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
1709 /// \param Zone describes the scheduled zone that we are extending.
1710 /// \param RPTracker describes reg pressure within the scheduled zone.
1711 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand,SchedBoundary & Zone,const RegPressureTracker & RPTracker,RegPressureTracker & TempTracker)1712 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
1713 SchedCandidate &TryCand,
1714 SchedBoundary &Zone,
1715 const RegPressureTracker &RPTracker,
1716 RegPressureTracker &TempTracker) {
1717
1718 // Always initialize TryCand's RPDelta.
1719 TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
1720 DAG->getRegionCriticalPSets(),
1721 DAG->getRegPressure().MaxSetPressure);
1722
1723 // Initialize the candidate if needed.
1724 if (!Cand.isValid()) {
1725 TryCand.Reason = NodeOrder;
1726 return;
1727 }
1728 // Avoid exceeding the target's limit.
1729 if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
1730 Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
1731 return;
1732 if (Cand.Reason == SingleExcess)
1733 Cand.Reason = MultiPressure;
1734
1735 // Avoid increasing the max critical pressure in the scheduled region.
1736 if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
1737 Cand.RPDelta.CriticalMax.UnitIncrease,
1738 TryCand, Cand, SingleCritical))
1739 return;
1740 if (Cand.Reason == SingleCritical)
1741 Cand.Reason = MultiPressure;
1742
1743 // Keep clustered nodes together to encourage downstream peephole
1744 // optimizations which may reduce resource requirements.
1745 //
1746 // This is a best effort to set things up for a post-RA pass. Optimizations
1747 // like generating loads of multiple registers should ideally be done within
1748 // the scheduler pass by combining the loads during DAG postprocessing.
1749 const SUnit *NextClusterSU =
1750 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
1751 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
1752 TryCand, Cand, Cluster))
1753 return;
1754 // Currently, weak edges are for clustering, so we hard-code that reason.
1755 // However, deferring the current TryCand will not change Cand's reason.
1756 CandReason OrigReason = Cand.Reason;
1757 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
1758 getWeakLeft(Cand.SU, Zone.isTop()),
1759 TryCand, Cand, Cluster)) {
1760 Cand.Reason = OrigReason;
1761 return;
1762 }
1763 // Avoid critical resource consumption and balance the schedule.
1764 TryCand.initResourceDelta(DAG, SchedModel);
1765 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
1766 TryCand, Cand, ResourceReduce))
1767 return;
1768 if (tryGreater(TryCand.ResDelta.DemandedResources,
1769 Cand.ResDelta.DemandedResources,
1770 TryCand, Cand, ResourceDemand))
1771 return;
1772
1773 // Avoid serializing long latency dependence chains.
1774 if (Cand.Policy.ReduceLatency) {
1775 if (Zone.isTop()) {
1776 if (Cand.SU->getDepth() * SchedModel->getLatencyFactor()
1777 > Zone.ExpectedCount) {
1778 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
1779 TryCand, Cand, TopDepthReduce))
1780 return;
1781 }
1782 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
1783 TryCand, Cand, TopPathReduce))
1784 return;
1785 }
1786 else {
1787 if (Cand.SU->getHeight() * SchedModel->getLatencyFactor()
1788 > Zone.ExpectedCount) {
1789 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
1790 TryCand, Cand, BotHeightReduce))
1791 return;
1792 }
1793 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
1794 TryCand, Cand, BotPathReduce))
1795 return;
1796 }
1797 }
1798
1799 // Avoid increasing the max pressure of the entire region.
1800 if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
1801 Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
1802 return;
1803 if (Cand.Reason == SingleMax)
1804 Cand.Reason = MultiPressure;
1805
1806 // Prefer immediate defs/users of the last scheduled instruction. This is a
1807 // nice pressure avoidance strategy that also conserves the processor's
1808 // register renaming resources and keeps the machine code readable.
1809 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
1810 TryCand, Cand, NextDefUse))
1811 return;
1812
1813 // Fall through to original instruction order.
1814 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
1815 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
1816 TryCand.Reason = NodeOrder;
1817 }
1818 }
1819
1820 /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
1821 /// more desirable than RHS from scheduling standpoint.
compareRPDelta(const RegPressureDelta & LHS,const RegPressureDelta & RHS)1822 static bool compareRPDelta(const RegPressureDelta &LHS,
1823 const RegPressureDelta &RHS) {
1824 // Compare each component of pressure in decreasing order of importance
1825 // without checking if any are valid. Invalid PressureElements are assumed to
1826 // have UnitIncrease==0, so are neutral.
1827
1828 // Avoid increasing the max critical pressure in the scheduled region.
1829 if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
1830 DEBUG(dbgs() << "RP excess top - bot: "
1831 << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
1832 return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
1833 }
1834 // Avoid increasing the max critical pressure in the scheduled region.
1835 if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
1836 DEBUG(dbgs() << "RP critical top - bot: "
1837 << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
1838 << '\n');
1839 return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
1840 }
1841 // Avoid increasing the max pressure of the entire region.
1842 if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
1843 DEBUG(dbgs() << "RP current top - bot: "
1844 << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
1845 << '\n');
1846 return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
1847 }
1848 return false;
1849 }
1850
1851 #ifndef NDEBUG
getReasonStr(ConvergingScheduler::CandReason Reason)1852 const char *ConvergingScheduler::getReasonStr(
1853 ConvergingScheduler::CandReason Reason) {
1854 switch (Reason) {
1855 case NoCand: return "NOCAND ";
1856 case SingleExcess: return "REG-EXCESS";
1857 case SingleCritical: return "REG-CRIT ";
1858 case Cluster: return "CLUSTER ";
1859 case SingleMax: return "REG-MAX ";
1860 case MultiPressure: return "REG-MULTI ";
1861 case ResourceReduce: return "RES-REDUCE";
1862 case ResourceDemand: return "RES-DEMAND";
1863 case TopDepthReduce: return "TOP-DEPTH ";
1864 case TopPathReduce: return "TOP-PATH ";
1865 case BotHeightReduce:return "BOT-HEIGHT";
1866 case BotPathReduce: return "BOT-PATH ";
1867 case NextDefUse: return "DEF-USE ";
1868 case NodeOrder: return "ORDER ";
1869 };
1870 llvm_unreachable("Unknown reason!");
1871 }
1872
traceCandidate(const SchedCandidate & Cand,const SchedBoundary & Zone)1873 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand,
1874 const SchedBoundary &Zone) {
1875 const char *Label = getReasonStr(Cand.Reason);
1876 PressureElement P;
1877 unsigned ResIdx = 0;
1878 unsigned Latency = 0;
1879 switch (Cand.Reason) {
1880 default:
1881 break;
1882 case SingleExcess:
1883 P = Cand.RPDelta.Excess;
1884 break;
1885 case SingleCritical:
1886 P = Cand.RPDelta.CriticalMax;
1887 break;
1888 case SingleMax:
1889 P = Cand.RPDelta.CurrentMax;
1890 break;
1891 case ResourceReduce:
1892 ResIdx = Cand.Policy.ReduceResIdx;
1893 break;
1894 case ResourceDemand:
1895 ResIdx = Cand.Policy.DemandResIdx;
1896 break;
1897 case TopDepthReduce:
1898 Latency = Cand.SU->getDepth();
1899 break;
1900 case TopPathReduce:
1901 Latency = Cand.SU->getHeight();
1902 break;
1903 case BotHeightReduce:
1904 Latency = Cand.SU->getHeight();
1905 break;
1906 case BotPathReduce:
1907 Latency = Cand.SU->getDepth();
1908 break;
1909 }
1910 dbgs() << Label << " " << Zone.Available.getName() << " ";
1911 if (P.isValid())
1912 dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
1913 << " ";
1914 else
1915 dbgs() << " ";
1916 if (ResIdx)
1917 dbgs() << SchedModel->getProcResource(ResIdx)->Name << " ";
1918 else
1919 dbgs() << " ";
1920 if (Latency)
1921 dbgs() << Latency << " cycles ";
1922 else
1923 dbgs() << " ";
1924 Cand.SU->dump(DAG);
1925 }
1926 #endif
1927
1928 /// Pick the best candidate from the top queue.
1929 ///
1930 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
1931 /// DAG building. To adjust for the current scheduling location we need to
1932 /// maintain the number of vreg uses remaining to be top-scheduled.
pickNodeFromQueue(SchedBoundary & Zone,const RegPressureTracker & RPTracker,SchedCandidate & Cand)1933 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
1934 const RegPressureTracker &RPTracker,
1935 SchedCandidate &Cand) {
1936 ReadyQueue &Q = Zone.Available;
1937
1938 DEBUG(Q.dump());
1939
1940 // getMaxPressureDelta temporarily modifies the tracker.
1941 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
1942
1943 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
1944
1945 SchedCandidate TryCand(Cand.Policy);
1946 TryCand.SU = *I;
1947 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
1948 if (TryCand.Reason != NoCand) {
1949 // Initialize resource delta if needed in case future heuristics query it.
1950 if (TryCand.ResDelta == SchedResourceDelta())
1951 TryCand.initResourceDelta(DAG, SchedModel);
1952 Cand.setBest(TryCand);
1953 DEBUG(traceCandidate(Cand, Zone));
1954 }
1955 }
1956 }
1957
tracePick(const ConvergingScheduler::SchedCandidate & Cand,bool IsTop)1958 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
1959 bool IsTop) {
1960 DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot")
1961 << " SU(" << Cand.SU->NodeNum << ") "
1962 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
1963 }
1964
1965 /// Pick the best candidate node from either the top or bottom queue.
pickNodeBidirectional(bool & IsTopNode)1966 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
1967 // Schedule as far as possible in the direction of no choice. This is most
1968 // efficient, but also provides the best heuristics for CriticalPSets.
1969 if (SUnit *SU = Bot.pickOnlyChoice()) {
1970 IsTopNode = false;
1971 return SU;
1972 }
1973 if (SUnit *SU = Top.pickOnlyChoice()) {
1974 IsTopNode = true;
1975 return SU;
1976 }
1977 CandPolicy NoPolicy;
1978 SchedCandidate BotCand(NoPolicy);
1979 SchedCandidate TopCand(NoPolicy);
1980 checkResourceLimits(TopCand, BotCand);
1981
1982 // Prefer bottom scheduling when heuristics are silent.
1983 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
1984 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
1985
1986 // If either Q has a single candidate that provides the least increase in
1987 // Excess pressure, we can immediately schedule from that Q.
1988 //
1989 // RegionCriticalPSets summarizes the pressure within the scheduled region and
1990 // affects picking from either Q. If scheduling in one direction must
1991 // increase pressure for one of the excess PSets, then schedule in that
1992 // direction first to provide more freedom in the other direction.
1993 if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
1994 IsTopNode = false;
1995 tracePick(BotCand, IsTopNode);
1996 return BotCand.SU;
1997 }
1998 // Check if the top Q has a better candidate.
1999 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2000 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2001
2002 // If either Q has a single candidate that minimizes pressure above the
2003 // original region's pressure pick it.
2004 if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
2005 if (TopCand.Reason < BotCand.Reason) {
2006 IsTopNode = true;
2007 tracePick(TopCand, IsTopNode);
2008 return TopCand.SU;
2009 }
2010 IsTopNode = false;
2011 tracePick(BotCand, IsTopNode);
2012 return BotCand.SU;
2013 }
2014 // Check for a salient pressure difference and pick the best from either side.
2015 if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
2016 IsTopNode = true;
2017 tracePick(TopCand, IsTopNode);
2018 return TopCand.SU;
2019 }
2020 // Otherwise prefer the bottom candidate, in node order if all else failed.
2021 if (TopCand.Reason < BotCand.Reason) {
2022 IsTopNode = true;
2023 tracePick(TopCand, IsTopNode);
2024 return TopCand.SU;
2025 }
2026 IsTopNode = false;
2027 tracePick(BotCand, IsTopNode);
2028 return BotCand.SU;
2029 }
2030
2031 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
pickNode(bool & IsTopNode)2032 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
2033 if (DAG->top() == DAG->bottom()) {
2034 assert(Top.Available.empty() && Top.Pending.empty() &&
2035 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2036 return NULL;
2037 }
2038 SUnit *SU;
2039 do {
2040 if (ForceTopDown) {
2041 SU = Top.pickOnlyChoice();
2042 if (!SU) {
2043 CandPolicy NoPolicy;
2044 SchedCandidate TopCand(NoPolicy);
2045 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2046 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2047 SU = TopCand.SU;
2048 }
2049 IsTopNode = true;
2050 }
2051 else if (ForceBottomUp) {
2052 SU = Bot.pickOnlyChoice();
2053 if (!SU) {
2054 CandPolicy NoPolicy;
2055 SchedCandidate BotCand(NoPolicy);
2056 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2057 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2058 SU = BotCand.SU;
2059 }
2060 IsTopNode = false;
2061 }
2062 else {
2063 SU = pickNodeBidirectional(IsTopNode);
2064 }
2065 } while (SU->isScheduled);
2066
2067 if (SU->isTopReady())
2068 Top.removeReady(SU);
2069 if (SU->isBottomReady())
2070 Bot.removeReady(SU);
2071
2072 DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
2073 << " Scheduling Instruction in cycle "
2074 << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
2075 SU->dump(DAG));
2076 return SU;
2077 }
2078
2079 /// Update the scheduler's state after scheduling a node. This is the same node
2080 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
2081 /// it's state based on the current cycle before MachineSchedStrategy does.
schedNode(SUnit * SU,bool IsTopNode)2082 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2083 if (IsTopNode) {
2084 SU->TopReadyCycle = Top.CurrCycle;
2085 Top.bumpNode(SU);
2086 }
2087 else {
2088 SU->BotReadyCycle = Bot.CurrCycle;
2089 Bot.bumpNode(SU);
2090 }
2091 }
2092
2093 /// Create the standard converging machine scheduler. This will be used as the
2094 /// default scheduler if the target does not set a default.
createConvergingSched(MachineSchedContext * C)2095 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
2096 assert((!ForceTopDown || !ForceBottomUp) &&
2097 "-misched-topdown incompatible with -misched-bottomup");
2098 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
2099 // Register DAG post-processors.
2100 if (EnableLoadCluster)
2101 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
2102 if (EnableMacroFusion)
2103 DAG->addMutation(new MacroFusion(DAG->TII));
2104 return DAG;
2105 }
2106 static MachineSchedRegistry
2107 ConvergingSchedRegistry("converge", "Standard converging scheduler.",
2108 createConvergingSched);
2109
2110 //===----------------------------------------------------------------------===//
2111 // ILP Scheduler. Currently for experimental analysis of heuristics.
2112 //===----------------------------------------------------------------------===//
2113
2114 namespace {
2115 /// \brief Order nodes by the ILP metric.
2116 struct ILPOrder {
2117 const SchedDFSResult *DFSResult;
2118 const BitVector *ScheduledTrees;
2119 bool MaximizeILP;
2120
ILPOrder__anon029210900611::ILPOrder2121 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
2122
2123 /// \brief Apply a less-than relation on node priority.
2124 ///
2125 /// (Return true if A comes after B in the Q.)
operator ()__anon029210900611::ILPOrder2126 bool operator()(const SUnit *A, const SUnit *B) const {
2127 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
2128 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
2129 if (SchedTreeA != SchedTreeB) {
2130 // Unscheduled trees have lower priority.
2131 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
2132 return ScheduledTrees->test(SchedTreeB);
2133
2134 // Trees with shallower connections have have lower priority.
2135 if (DFSResult->getSubtreeLevel(SchedTreeA)
2136 != DFSResult->getSubtreeLevel(SchedTreeB)) {
2137 return DFSResult->getSubtreeLevel(SchedTreeA)
2138 < DFSResult->getSubtreeLevel(SchedTreeB);
2139 }
2140 }
2141 if (MaximizeILP)
2142 return DFSResult->getILP(A) < DFSResult->getILP(B);
2143 else
2144 return DFSResult->getILP(A) > DFSResult->getILP(B);
2145 }
2146 };
2147
2148 /// \brief Schedule based on the ILP metric.
2149 class ILPScheduler : public MachineSchedStrategy {
2150 /// In case all subtrees are eventually connected to a common root through
2151 /// data dependence (e.g. reduction), place an upper limit on their size.
2152 ///
2153 /// FIXME: A subtree limit is generally good, but in the situation commented
2154 /// above, where multiple similar subtrees feed a common root, we should
2155 /// only split at a point where the resulting subtrees will be balanced.
2156 /// (a motivating test case must be found).
2157 static const unsigned SubtreeLimit = 16;
2158
2159 ScheduleDAGMI *DAG;
2160 ILPOrder Cmp;
2161
2162 std::vector<SUnit*> ReadyQ;
2163 public:
ILPScheduler(bool MaximizeILP)2164 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
2165
initialize(ScheduleDAGMI * dag)2166 virtual void initialize(ScheduleDAGMI *dag) {
2167 DAG = dag;
2168 DAG->computeDFSResult();
2169 Cmp.DFSResult = DAG->getDFSResult();
2170 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
2171 ReadyQ.clear();
2172 }
2173
registerRoots()2174 virtual void registerRoots() {
2175 // Restore the heap in ReadyQ with the updated DFS results.
2176 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2177 }
2178
2179 /// Implement MachineSchedStrategy interface.
2180 /// -----------------------------------------
2181
2182 /// Callback to select the highest priority node from the ready Q.
pickNode(bool & IsTopNode)2183 virtual SUnit *pickNode(bool &IsTopNode) {
2184 if (ReadyQ.empty()) return NULL;
2185 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2186 SUnit *SU = ReadyQ.back();
2187 ReadyQ.pop_back();
2188 IsTopNode = false;
2189 DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): "
2190 << *SU->getInstr()
2191 << " ILP: " << DAG->getDFSResult()->getILP(SU)
2192 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
2193 << DAG->getDFSResult()->getSubtreeLevel(
2194 DAG->getDFSResult()->getSubtreeID(SU)) << '\n');
2195 return SU;
2196 }
2197
2198 /// \brief Scheduler callback to notify that a new subtree is scheduled.
scheduleTree(unsigned SubtreeID)2199 virtual void scheduleTree(unsigned SubtreeID) {
2200 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2201 }
2202
2203 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
2204 /// DFSResults, and resort the priority Q.
schedNode(SUnit * SU,bool IsTopNode)2205 virtual void schedNode(SUnit *SU, bool IsTopNode) {
2206 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
2207 }
2208
releaseTopNode(SUnit *)2209 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
2210
releaseBottomNode(SUnit * SU)2211 virtual void releaseBottomNode(SUnit *SU) {
2212 ReadyQ.push_back(SU);
2213 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2214 }
2215 };
2216 } // namespace
2217
createILPMaxScheduler(MachineSchedContext * C)2218 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
2219 return new ScheduleDAGMI(C, new ILPScheduler(true));
2220 }
createILPMinScheduler(MachineSchedContext * C)2221 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
2222 return new ScheduleDAGMI(C, new ILPScheduler(false));
2223 }
2224 static MachineSchedRegistry ILPMaxRegistry(
2225 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
2226 static MachineSchedRegistry ILPMinRegistry(
2227 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
2228
2229 //===----------------------------------------------------------------------===//
2230 // Machine Instruction Shuffler for Correctness Testing
2231 //===----------------------------------------------------------------------===//
2232
2233 #ifndef NDEBUG
2234 namespace {
2235 /// Apply a less-than relation on the node order, which corresponds to the
2236 /// instruction order prior to scheduling. IsReverse implements greater-than.
2237 template<bool IsReverse>
2238 struct SUnitOrder {
operator ()__anon029210900711::SUnitOrder2239 bool operator()(SUnit *A, SUnit *B) const {
2240 if (IsReverse)
2241 return A->NodeNum > B->NodeNum;
2242 else
2243 return A->NodeNum < B->NodeNum;
2244 }
2245 };
2246
2247 /// Reorder instructions as much as possible.
2248 class InstructionShuffler : public MachineSchedStrategy {
2249 bool IsAlternating;
2250 bool IsTopDown;
2251
2252 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
2253 // gives nodes with a higher number higher priority causing the latest
2254 // instructions to be scheduled first.
2255 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
2256 TopQ;
2257 // When scheduling bottom-up, use greater-than as the queue priority.
2258 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
2259 BottomQ;
2260 public:
InstructionShuffler(bool alternate,bool topdown)2261 InstructionShuffler(bool alternate, bool topdown)
2262 : IsAlternating(alternate), IsTopDown(topdown) {}
2263
initialize(ScheduleDAGMI *)2264 virtual void initialize(ScheduleDAGMI *) {
2265 TopQ.clear();
2266 BottomQ.clear();
2267 }
2268
2269 /// Implement MachineSchedStrategy interface.
2270 /// -----------------------------------------
2271
pickNode(bool & IsTopNode)2272 virtual SUnit *pickNode(bool &IsTopNode) {
2273 SUnit *SU;
2274 if (IsTopDown) {
2275 do {
2276 if (TopQ.empty()) return NULL;
2277 SU = TopQ.top();
2278 TopQ.pop();
2279 } while (SU->isScheduled);
2280 IsTopNode = true;
2281 }
2282 else {
2283 do {
2284 if (BottomQ.empty()) return NULL;
2285 SU = BottomQ.top();
2286 BottomQ.pop();
2287 } while (SU->isScheduled);
2288 IsTopNode = false;
2289 }
2290 if (IsAlternating)
2291 IsTopDown = !IsTopDown;
2292 return SU;
2293 }
2294
schedNode(SUnit * SU,bool IsTopNode)2295 virtual void schedNode(SUnit *SU, bool IsTopNode) {}
2296
releaseTopNode(SUnit * SU)2297 virtual void releaseTopNode(SUnit *SU) {
2298 TopQ.push(SU);
2299 }
releaseBottomNode(SUnit * SU)2300 virtual void releaseBottomNode(SUnit *SU) {
2301 BottomQ.push(SU);
2302 }
2303 };
2304 } // namespace
2305
createInstructionShuffler(MachineSchedContext * C)2306 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
2307 bool Alternate = !ForceTopDown && !ForceBottomUp;
2308 bool TopDown = !ForceBottomUp;
2309 assert((TopDown || !ForceTopDown) &&
2310 "-misched-topdown incompatible with -misched-bottomup");
2311 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
2312 }
2313 static MachineSchedRegistry ShufflerRegistry(
2314 "shuffle", "Shuffle machine instructions alternating directions",
2315 createInstructionShuffler);
2316 #endif // !NDEBUG
2317
2318 //===----------------------------------------------------------------------===//
2319 // GraphWriter support for ScheduleDAGMI.
2320 //===----------------------------------------------------------------------===//
2321
2322 #ifndef NDEBUG
2323 namespace llvm {
2324
2325 template<> struct GraphTraits<
2326 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
2327
2328 template<>
2329 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
2330
DOTGraphTraitsllvm::DOTGraphTraits2331 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2332
getGraphNamellvm::DOTGraphTraits2333 static std::string getGraphName(const ScheduleDAG *G) {
2334 return G->MF.getName();
2335 }
2336
renderGraphFromBottomUpllvm::DOTGraphTraits2337 static bool renderGraphFromBottomUp() {
2338 return true;
2339 }
2340
isNodeHiddenllvm::DOTGraphTraits2341 static bool isNodeHidden(const SUnit *Node) {
2342 return (Node->NumPreds > 10 || Node->NumSuccs > 10);
2343 }
2344
hasNodeAddressLabelllvm::DOTGraphTraits2345 static bool hasNodeAddressLabel(const SUnit *Node,
2346 const ScheduleDAG *Graph) {
2347 return false;
2348 }
2349
2350 /// If you want to override the dot attributes printed for a particular
2351 /// edge, override this method.
getEdgeAttributesllvm::DOTGraphTraits2352 static std::string getEdgeAttributes(const SUnit *Node,
2353 SUnitIterator EI,
2354 const ScheduleDAG *Graph) {
2355 if (EI.isArtificialDep())
2356 return "color=cyan,style=dashed";
2357 if (EI.isCtrlDep())
2358 return "color=blue,style=dashed";
2359 return "";
2360 }
2361
getNodeLabelllvm::DOTGraphTraits2362 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
2363 std::string Str;
2364 raw_string_ostream SS(Str);
2365 SS << "SU(" << SU->NodeNum << ')';
2366 return SS.str();
2367 }
getNodeDescriptionllvm::DOTGraphTraits2368 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
2369 return G->getGraphNodeLabel(SU);
2370 }
2371
getNodeAttributesllvm::DOTGraphTraits2372 static std::string getNodeAttributes(const SUnit *N,
2373 const ScheduleDAG *Graph) {
2374 std::string Str("shape=Mrecord");
2375 const SchedDFSResult *DFS =
2376 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
2377 if (DFS) {
2378 Str += ",style=filled,fillcolor=\"#";
2379 Str += DOT::getColorString(DFS->getSubtreeID(N));
2380 Str += '"';
2381 }
2382 return Str;
2383 }
2384 };
2385 } // namespace llvm
2386 #endif // NDEBUG
2387
2388 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
2389 /// rendered using 'dot'.
2390 ///
viewGraph(const Twine & Name,const Twine & Title)2391 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
2392 #ifndef NDEBUG
2393 ViewGraph(this, Name, false, Title);
2394 #else
2395 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
2396 << "systems with Graphviz or gv!\n";
2397 #endif // NDEBUG
2398 }
2399
2400 /// Out-of-line implementation with no arguments is handy for gdb.
viewGraph()2401 void ScheduleDAGMI::viewGraph() {
2402 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
2403 }
2404