1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Sema/SemaDiagnostic.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cstring>
36 using namespace clang;
37
getBestDynamicClassType() const38 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
39 const Expr *E = ignoreParenBaseCasts();
40
41 QualType DerivedType = E->getType();
42 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
43 DerivedType = PTy->getPointeeType();
44
45 if (DerivedType->isDependentType())
46 return NULL;
47
48 const RecordType *Ty = DerivedType->castAs<RecordType>();
49 Decl *D = Ty->getDecl();
50 return cast<CXXRecordDecl>(D);
51 }
52
53 const Expr *
skipRValueSubobjectAdjustments(SmallVectorImpl<SubobjectAdjustment> & Adjustments) const54 Expr::skipRValueSubobjectAdjustments(
55 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
56 const Expr *E = this;
57 while (true) {
58 E = E->IgnoreParens();
59
60 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
61 if ((CE->getCastKind() == CK_DerivedToBase ||
62 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
63 E->getType()->isRecordType()) {
64 E = CE->getSubExpr();
65 CXXRecordDecl *Derived
66 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
67 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
68 continue;
69 }
70
71 if (CE->getCastKind() == CK_NoOp) {
72 E = CE->getSubExpr();
73 continue;
74 }
75 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
76 if (!ME->isArrow() && ME->getBase()->isRValue()) {
77 assert(ME->getBase()->getType()->isRecordType());
78 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
79 E = ME->getBase();
80 Adjustments.push_back(SubobjectAdjustment(Field));
81 continue;
82 }
83 }
84 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
85 if (BO->isPtrMemOp()) {
86 assert(BO->getRHS()->isRValue());
87 E = BO->getLHS();
88 const MemberPointerType *MPT =
89 BO->getRHS()->getType()->getAs<MemberPointerType>();
90 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
91 }
92 }
93
94 // Nothing changed.
95 break;
96 }
97 return E;
98 }
99
100 const Expr *
findMaterializedTemporary(const MaterializeTemporaryExpr * & MTE) const101 Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
102 const Expr *E = this;
103 // Look through single-element init lists that claim to be lvalues. They're
104 // just syntactic wrappers in this case.
105 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
106 if (ILE->getNumInits() == 1 && ILE->isGLValue())
107 E = ILE->getInit(0);
108 }
109
110 // Look through expressions for materialized temporaries (for now).
111 if (const MaterializeTemporaryExpr *M
112 = dyn_cast<MaterializeTemporaryExpr>(E)) {
113 MTE = M;
114 E = M->GetTemporaryExpr();
115 }
116
117 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
118 E = DAE->getExpr();
119 return E;
120 }
121
122 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
123 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
124 /// but also int expressions which are produced by things like comparisons in
125 /// C.
isKnownToHaveBooleanValue() const126 bool Expr::isKnownToHaveBooleanValue() const {
127 const Expr *E = IgnoreParens();
128
129 // If this value has _Bool type, it is obvious 0/1.
130 if (E->getType()->isBooleanType()) return true;
131 // If this is a non-scalar-integer type, we don't care enough to try.
132 if (!E->getType()->isIntegralOrEnumerationType()) return false;
133
134 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
135 switch (UO->getOpcode()) {
136 case UO_Plus:
137 return UO->getSubExpr()->isKnownToHaveBooleanValue();
138 default:
139 return false;
140 }
141 }
142
143 // Only look through implicit casts. If the user writes
144 // '(int) (a && b)' treat it as an arbitrary int.
145 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
146 return CE->getSubExpr()->isKnownToHaveBooleanValue();
147
148 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
149 switch (BO->getOpcode()) {
150 default: return false;
151 case BO_LT: // Relational operators.
152 case BO_GT:
153 case BO_LE:
154 case BO_GE:
155 case BO_EQ: // Equality operators.
156 case BO_NE:
157 case BO_LAnd: // AND operator.
158 case BO_LOr: // Logical OR operator.
159 return true;
160
161 case BO_And: // Bitwise AND operator.
162 case BO_Xor: // Bitwise XOR operator.
163 case BO_Or: // Bitwise OR operator.
164 // Handle things like (x==2)|(y==12).
165 return BO->getLHS()->isKnownToHaveBooleanValue() &&
166 BO->getRHS()->isKnownToHaveBooleanValue();
167
168 case BO_Comma:
169 case BO_Assign:
170 return BO->getRHS()->isKnownToHaveBooleanValue();
171 }
172 }
173
174 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
175 return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
176 CO->getFalseExpr()->isKnownToHaveBooleanValue();
177
178 return false;
179 }
180
181 // Amusing macro metaprogramming hack: check whether a class provides
182 // a more specific implementation of getExprLoc().
183 //
184 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
185 namespace {
186 /// This implementation is used when a class provides a custom
187 /// implementation of getExprLoc.
188 template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)189 SourceLocation getExprLocImpl(const Expr *expr,
190 SourceLocation (T::*v)() const) {
191 return static_cast<const E*>(expr)->getExprLoc();
192 }
193
194 /// This implementation is used when a class doesn't provide
195 /// a custom implementation of getExprLoc. Overload resolution
196 /// should pick it over the implementation above because it's
197 /// more specialized according to function template partial ordering.
198 template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)199 SourceLocation getExprLocImpl(const Expr *expr,
200 SourceLocation (Expr::*v)() const) {
201 return static_cast<const E*>(expr)->getLocStart();
202 }
203 }
204
getExprLoc() const205 SourceLocation Expr::getExprLoc() const {
206 switch (getStmtClass()) {
207 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
208 #define ABSTRACT_STMT(type)
209 #define STMT(type, base) \
210 case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
211 #define EXPR(type, base) \
212 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
213 #include "clang/AST/StmtNodes.inc"
214 }
215 llvm_unreachable("unknown statement kind");
216 }
217
218 //===----------------------------------------------------------------------===//
219 // Primary Expressions.
220 //===----------------------------------------------------------------------===//
221
222 /// \brief Compute the type-, value-, and instantiation-dependence of a
223 /// declaration reference
224 /// based on the declaration being referenced.
computeDeclRefDependence(ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)225 static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
226 bool &TypeDependent,
227 bool &ValueDependent,
228 bool &InstantiationDependent) {
229 TypeDependent = false;
230 ValueDependent = false;
231 InstantiationDependent = false;
232
233 // (TD) C++ [temp.dep.expr]p3:
234 // An id-expression is type-dependent if it contains:
235 //
236 // and
237 //
238 // (VD) C++ [temp.dep.constexpr]p2:
239 // An identifier is value-dependent if it is:
240
241 // (TD) - an identifier that was declared with dependent type
242 // (VD) - a name declared with a dependent type,
243 if (T->isDependentType()) {
244 TypeDependent = true;
245 ValueDependent = true;
246 InstantiationDependent = true;
247 return;
248 } else if (T->isInstantiationDependentType()) {
249 InstantiationDependent = true;
250 }
251
252 // (TD) - a conversion-function-id that specifies a dependent type
253 if (D->getDeclName().getNameKind()
254 == DeclarationName::CXXConversionFunctionName) {
255 QualType T = D->getDeclName().getCXXNameType();
256 if (T->isDependentType()) {
257 TypeDependent = true;
258 ValueDependent = true;
259 InstantiationDependent = true;
260 return;
261 }
262
263 if (T->isInstantiationDependentType())
264 InstantiationDependent = true;
265 }
266
267 // (VD) - the name of a non-type template parameter,
268 if (isa<NonTypeTemplateParmDecl>(D)) {
269 ValueDependent = true;
270 InstantiationDependent = true;
271 return;
272 }
273
274 // (VD) - a constant with integral or enumeration type and is
275 // initialized with an expression that is value-dependent.
276 // (VD) - a constant with literal type and is initialized with an
277 // expression that is value-dependent [C++11].
278 // (VD) - FIXME: Missing from the standard:
279 // - an entity with reference type and is initialized with an
280 // expression that is value-dependent [C++11]
281 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
282 if ((Ctx.getLangOpts().CPlusPlus11 ?
283 Var->getType()->isLiteralType() :
284 Var->getType()->isIntegralOrEnumerationType()) &&
285 (Var->getType().isConstQualified() ||
286 Var->getType()->isReferenceType())) {
287 if (const Expr *Init = Var->getAnyInitializer())
288 if (Init->isValueDependent()) {
289 ValueDependent = true;
290 InstantiationDependent = true;
291 }
292 }
293
294 // (VD) - FIXME: Missing from the standard:
295 // - a member function or a static data member of the current
296 // instantiation
297 if (Var->isStaticDataMember() &&
298 Var->getDeclContext()->isDependentContext()) {
299 ValueDependent = true;
300 InstantiationDependent = true;
301 }
302
303 return;
304 }
305
306 // (VD) - FIXME: Missing from the standard:
307 // - a member function or a static data member of the current
308 // instantiation
309 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
310 ValueDependent = true;
311 InstantiationDependent = true;
312 }
313 }
314
computeDependence(ASTContext & Ctx)315 void DeclRefExpr::computeDependence(ASTContext &Ctx) {
316 bool TypeDependent = false;
317 bool ValueDependent = false;
318 bool InstantiationDependent = false;
319 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
320 ValueDependent, InstantiationDependent);
321
322 // (TD) C++ [temp.dep.expr]p3:
323 // An id-expression is type-dependent if it contains:
324 //
325 // and
326 //
327 // (VD) C++ [temp.dep.constexpr]p2:
328 // An identifier is value-dependent if it is:
329 if (!TypeDependent && !ValueDependent &&
330 hasExplicitTemplateArgs() &&
331 TemplateSpecializationType::anyDependentTemplateArguments(
332 getTemplateArgs(),
333 getNumTemplateArgs(),
334 InstantiationDependent)) {
335 TypeDependent = true;
336 ValueDependent = true;
337 InstantiationDependent = true;
338 }
339
340 ExprBits.TypeDependent = TypeDependent;
341 ExprBits.ValueDependent = ValueDependent;
342 ExprBits.InstantiationDependent = InstantiationDependent;
343
344 // Is the declaration a parameter pack?
345 if (getDecl()->isParameterPack())
346 ExprBits.ContainsUnexpandedParameterPack = true;
347 }
348
DeclRefExpr(ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)349 DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
350 NestedNameSpecifierLoc QualifierLoc,
351 SourceLocation TemplateKWLoc,
352 ValueDecl *D, bool RefersToEnclosingLocal,
353 const DeclarationNameInfo &NameInfo,
354 NamedDecl *FoundD,
355 const TemplateArgumentListInfo *TemplateArgs,
356 QualType T, ExprValueKind VK)
357 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
358 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
359 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
360 if (QualifierLoc)
361 getInternalQualifierLoc() = QualifierLoc;
362 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
363 if (FoundD)
364 getInternalFoundDecl() = FoundD;
365 DeclRefExprBits.HasTemplateKWAndArgsInfo
366 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
367 DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
368 if (TemplateArgs) {
369 bool Dependent = false;
370 bool InstantiationDependent = false;
371 bool ContainsUnexpandedParameterPack = false;
372 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
373 Dependent,
374 InstantiationDependent,
375 ContainsUnexpandedParameterPack);
376 if (InstantiationDependent)
377 setInstantiationDependent(true);
378 } else if (TemplateKWLoc.isValid()) {
379 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
380 }
381 DeclRefExprBits.HadMultipleCandidates = 0;
382
383 computeDependence(Ctx);
384 }
385
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)386 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
387 NestedNameSpecifierLoc QualifierLoc,
388 SourceLocation TemplateKWLoc,
389 ValueDecl *D,
390 bool RefersToEnclosingLocal,
391 SourceLocation NameLoc,
392 QualType T,
393 ExprValueKind VK,
394 NamedDecl *FoundD,
395 const TemplateArgumentListInfo *TemplateArgs) {
396 return Create(Context, QualifierLoc, TemplateKWLoc, D,
397 RefersToEnclosingLocal,
398 DeclarationNameInfo(D->getDeclName(), NameLoc),
399 T, VK, FoundD, TemplateArgs);
400 }
401
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)402 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
403 NestedNameSpecifierLoc QualifierLoc,
404 SourceLocation TemplateKWLoc,
405 ValueDecl *D,
406 bool RefersToEnclosingLocal,
407 const DeclarationNameInfo &NameInfo,
408 QualType T,
409 ExprValueKind VK,
410 NamedDecl *FoundD,
411 const TemplateArgumentListInfo *TemplateArgs) {
412 // Filter out cases where the found Decl is the same as the value refenenced.
413 if (D == FoundD)
414 FoundD = 0;
415
416 std::size_t Size = sizeof(DeclRefExpr);
417 if (QualifierLoc != 0)
418 Size += sizeof(NestedNameSpecifierLoc);
419 if (FoundD)
420 Size += sizeof(NamedDecl *);
421 if (TemplateArgs)
422 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
423 else if (TemplateKWLoc.isValid())
424 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
425
426 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
427 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
428 RefersToEnclosingLocal,
429 NameInfo, FoundD, TemplateArgs, T, VK);
430 }
431
CreateEmpty(ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)432 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
433 bool HasQualifier,
434 bool HasFoundDecl,
435 bool HasTemplateKWAndArgsInfo,
436 unsigned NumTemplateArgs) {
437 std::size_t Size = sizeof(DeclRefExpr);
438 if (HasQualifier)
439 Size += sizeof(NestedNameSpecifierLoc);
440 if (HasFoundDecl)
441 Size += sizeof(NamedDecl *);
442 if (HasTemplateKWAndArgsInfo)
443 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
444
445 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
446 return new (Mem) DeclRefExpr(EmptyShell());
447 }
448
getLocStart() const449 SourceLocation DeclRefExpr::getLocStart() const {
450 if (hasQualifier())
451 return getQualifierLoc().getBeginLoc();
452 return getNameInfo().getLocStart();
453 }
getLocEnd() const454 SourceLocation DeclRefExpr::getLocEnd() const {
455 if (hasExplicitTemplateArgs())
456 return getRAngleLoc();
457 return getNameInfo().getLocEnd();
458 }
459
460 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
461 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)462 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
463 ASTContext &Context = CurrentDecl->getASTContext();
464
465 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
466 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
467 return FD->getNameAsString();
468
469 SmallString<256> Name;
470 llvm::raw_svector_ostream Out(Name);
471
472 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
473 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
474 Out << "virtual ";
475 if (MD->isStatic())
476 Out << "static ";
477 }
478
479 PrintingPolicy Policy(Context.getLangOpts());
480 std::string Proto;
481 llvm::raw_string_ostream POut(Proto);
482 FD->printQualifiedName(POut, Policy);
483
484 const FunctionDecl *Decl = FD;
485 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
486 Decl = Pattern;
487 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
488 const FunctionProtoType *FT = 0;
489 if (FD->hasWrittenPrototype())
490 FT = dyn_cast<FunctionProtoType>(AFT);
491
492 POut << "(";
493 if (FT) {
494 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
495 if (i) POut << ", ";
496 POut << Decl->getParamDecl(i)->getType().stream(Policy);
497 }
498
499 if (FT->isVariadic()) {
500 if (FD->getNumParams()) POut << ", ";
501 POut << "...";
502 }
503 }
504 POut << ")";
505
506 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
507 const FunctionType *FT = MD->getType()->castAs<FunctionType>();
508 if (FT->isConst())
509 POut << " const";
510 if (FT->isVolatile())
511 POut << " volatile";
512 RefQualifierKind Ref = MD->getRefQualifier();
513 if (Ref == RQ_LValue)
514 POut << " &";
515 else if (Ref == RQ_RValue)
516 POut << " &&";
517 }
518
519 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
520 SpecsTy Specs;
521 const DeclContext *Ctx = FD->getDeclContext();
522 while (Ctx && isa<NamedDecl>(Ctx)) {
523 const ClassTemplateSpecializationDecl *Spec
524 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
525 if (Spec && !Spec->isExplicitSpecialization())
526 Specs.push_back(Spec);
527 Ctx = Ctx->getParent();
528 }
529
530 std::string TemplateParams;
531 llvm::raw_string_ostream TOut(TemplateParams);
532 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
533 I != E; ++I) {
534 const TemplateParameterList *Params
535 = (*I)->getSpecializedTemplate()->getTemplateParameters();
536 const TemplateArgumentList &Args = (*I)->getTemplateArgs();
537 assert(Params->size() == Args.size());
538 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
539 StringRef Param = Params->getParam(i)->getName();
540 if (Param.empty()) continue;
541 TOut << Param << " = ";
542 Args.get(i).print(Policy, TOut);
543 TOut << ", ";
544 }
545 }
546
547 FunctionTemplateSpecializationInfo *FSI
548 = FD->getTemplateSpecializationInfo();
549 if (FSI && !FSI->isExplicitSpecialization()) {
550 const TemplateParameterList* Params
551 = FSI->getTemplate()->getTemplateParameters();
552 const TemplateArgumentList* Args = FSI->TemplateArguments;
553 assert(Params->size() == Args->size());
554 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
555 StringRef Param = Params->getParam(i)->getName();
556 if (Param.empty()) continue;
557 TOut << Param << " = ";
558 Args->get(i).print(Policy, TOut);
559 TOut << ", ";
560 }
561 }
562
563 TOut.flush();
564 if (!TemplateParams.empty()) {
565 // remove the trailing comma and space
566 TemplateParams.resize(TemplateParams.size() - 2);
567 POut << " [" << TemplateParams << "]";
568 }
569
570 POut.flush();
571
572 if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
573 AFT->getResultType().getAsStringInternal(Proto, Policy);
574
575 Out << Proto;
576
577 Out.flush();
578 return Name.str().str();
579 }
580 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
581 SmallString<256> Name;
582 llvm::raw_svector_ostream Out(Name);
583 Out << (MD->isInstanceMethod() ? '-' : '+');
584 Out << '[';
585
586 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
587 // a null check to avoid a crash.
588 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
589 Out << *ID;
590
591 if (const ObjCCategoryImplDecl *CID =
592 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
593 Out << '(' << *CID << ')';
594
595 Out << ' ';
596 Out << MD->getSelector().getAsString();
597 Out << ']';
598
599 Out.flush();
600 return Name.str().str();
601 }
602 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
603 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
604 return "top level";
605 }
606 return "";
607 }
608
setIntValue(ASTContext & C,const llvm::APInt & Val)609 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
610 if (hasAllocation())
611 C.Deallocate(pVal);
612
613 BitWidth = Val.getBitWidth();
614 unsigned NumWords = Val.getNumWords();
615 const uint64_t* Words = Val.getRawData();
616 if (NumWords > 1) {
617 pVal = new (C) uint64_t[NumWords];
618 std::copy(Words, Words + NumWords, pVal);
619 } else if (NumWords == 1)
620 VAL = Words[0];
621 else
622 VAL = 0;
623 }
624
IntegerLiteral(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)625 IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
626 QualType type, SourceLocation l)
627 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
628 false, false),
629 Loc(l) {
630 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
631 assert(V.getBitWidth() == C.getIntWidth(type) &&
632 "Integer type is not the correct size for constant.");
633 setValue(C, V);
634 }
635
636 IntegerLiteral *
Create(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)637 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
638 QualType type, SourceLocation l) {
639 return new (C) IntegerLiteral(C, V, type, l);
640 }
641
642 IntegerLiteral *
Create(ASTContext & C,EmptyShell Empty)643 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
644 return new (C) IntegerLiteral(Empty);
645 }
646
FloatingLiteral(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)647 FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
648 bool isexact, QualType Type, SourceLocation L)
649 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
650 false, false), Loc(L) {
651 setSemantics(V.getSemantics());
652 FloatingLiteralBits.IsExact = isexact;
653 setValue(C, V);
654 }
655
FloatingLiteral(ASTContext & C,EmptyShell Empty)656 FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
657 : Expr(FloatingLiteralClass, Empty) {
658 setRawSemantics(IEEEhalf);
659 FloatingLiteralBits.IsExact = false;
660 }
661
662 FloatingLiteral *
Create(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)663 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
664 bool isexact, QualType Type, SourceLocation L) {
665 return new (C) FloatingLiteral(C, V, isexact, Type, L);
666 }
667
668 FloatingLiteral *
Create(ASTContext & C,EmptyShell Empty)669 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
670 return new (C) FloatingLiteral(C, Empty);
671 }
672
getSemantics() const673 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
674 switch(FloatingLiteralBits.Semantics) {
675 case IEEEhalf:
676 return llvm::APFloat::IEEEhalf;
677 case IEEEsingle:
678 return llvm::APFloat::IEEEsingle;
679 case IEEEdouble:
680 return llvm::APFloat::IEEEdouble;
681 case x87DoubleExtended:
682 return llvm::APFloat::x87DoubleExtended;
683 case IEEEquad:
684 return llvm::APFloat::IEEEquad;
685 case PPCDoubleDouble:
686 return llvm::APFloat::PPCDoubleDouble;
687 }
688 llvm_unreachable("Unrecognised floating semantics");
689 }
690
setSemantics(const llvm::fltSemantics & Sem)691 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
692 if (&Sem == &llvm::APFloat::IEEEhalf)
693 FloatingLiteralBits.Semantics = IEEEhalf;
694 else if (&Sem == &llvm::APFloat::IEEEsingle)
695 FloatingLiteralBits.Semantics = IEEEsingle;
696 else if (&Sem == &llvm::APFloat::IEEEdouble)
697 FloatingLiteralBits.Semantics = IEEEdouble;
698 else if (&Sem == &llvm::APFloat::x87DoubleExtended)
699 FloatingLiteralBits.Semantics = x87DoubleExtended;
700 else if (&Sem == &llvm::APFloat::IEEEquad)
701 FloatingLiteralBits.Semantics = IEEEquad;
702 else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
703 FloatingLiteralBits.Semantics = PPCDoubleDouble;
704 else
705 llvm_unreachable("Unknown floating semantics");
706 }
707
708 /// getValueAsApproximateDouble - This returns the value as an inaccurate
709 /// double. Note that this may cause loss of precision, but is useful for
710 /// debugging dumps, etc.
getValueAsApproximateDouble() const711 double FloatingLiteral::getValueAsApproximateDouble() const {
712 llvm::APFloat V = getValue();
713 bool ignored;
714 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
715 &ignored);
716 return V.convertToDouble();
717 }
718
mapCharByteWidth(TargetInfo const & target,StringKind k)719 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
720 int CharByteWidth = 0;
721 switch(k) {
722 case Ascii:
723 case UTF8:
724 CharByteWidth = target.getCharWidth();
725 break;
726 case Wide:
727 CharByteWidth = target.getWCharWidth();
728 break;
729 case UTF16:
730 CharByteWidth = target.getChar16Width();
731 break;
732 case UTF32:
733 CharByteWidth = target.getChar32Width();
734 break;
735 }
736 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
737 CharByteWidth /= 8;
738 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
739 && "character byte widths supported are 1, 2, and 4 only");
740 return CharByteWidth;
741 }
742
Create(ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)743 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
744 StringKind Kind, bool Pascal, QualType Ty,
745 const SourceLocation *Loc,
746 unsigned NumStrs) {
747 // Allocate enough space for the StringLiteral plus an array of locations for
748 // any concatenated string tokens.
749 void *Mem = C.Allocate(sizeof(StringLiteral)+
750 sizeof(SourceLocation)*(NumStrs-1),
751 llvm::alignOf<StringLiteral>());
752 StringLiteral *SL = new (Mem) StringLiteral(Ty);
753
754 // OPTIMIZE: could allocate this appended to the StringLiteral.
755 SL->setString(C,Str,Kind,Pascal);
756
757 SL->TokLocs[0] = Loc[0];
758 SL->NumConcatenated = NumStrs;
759
760 if (NumStrs != 1)
761 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
762 return SL;
763 }
764
CreateEmpty(ASTContext & C,unsigned NumStrs)765 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
766 void *Mem = C.Allocate(sizeof(StringLiteral)+
767 sizeof(SourceLocation)*(NumStrs-1),
768 llvm::alignOf<StringLiteral>());
769 StringLiteral *SL = new (Mem) StringLiteral(QualType());
770 SL->CharByteWidth = 0;
771 SL->Length = 0;
772 SL->NumConcatenated = NumStrs;
773 return SL;
774 }
775
outputString(raw_ostream & OS) const776 void StringLiteral::outputString(raw_ostream &OS) const {
777 switch (getKind()) {
778 case Ascii: break; // no prefix.
779 case Wide: OS << 'L'; break;
780 case UTF8: OS << "u8"; break;
781 case UTF16: OS << 'u'; break;
782 case UTF32: OS << 'U'; break;
783 }
784 OS << '"';
785 static const char Hex[] = "0123456789ABCDEF";
786
787 unsigned LastSlashX = getLength();
788 for (unsigned I = 0, N = getLength(); I != N; ++I) {
789 switch (uint32_t Char = getCodeUnit(I)) {
790 default:
791 // FIXME: Convert UTF-8 back to codepoints before rendering.
792
793 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
794 // Leave invalid surrogates alone; we'll use \x for those.
795 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
796 Char <= 0xdbff) {
797 uint32_t Trail = getCodeUnit(I + 1);
798 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
799 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
800 ++I;
801 }
802 }
803
804 if (Char > 0xff) {
805 // If this is a wide string, output characters over 0xff using \x
806 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
807 // codepoint: use \x escapes for invalid codepoints.
808 if (getKind() == Wide ||
809 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
810 // FIXME: Is this the best way to print wchar_t?
811 OS << "\\x";
812 int Shift = 28;
813 while ((Char >> Shift) == 0)
814 Shift -= 4;
815 for (/**/; Shift >= 0; Shift -= 4)
816 OS << Hex[(Char >> Shift) & 15];
817 LastSlashX = I;
818 break;
819 }
820
821 if (Char > 0xffff)
822 OS << "\\U00"
823 << Hex[(Char >> 20) & 15]
824 << Hex[(Char >> 16) & 15];
825 else
826 OS << "\\u";
827 OS << Hex[(Char >> 12) & 15]
828 << Hex[(Char >> 8) & 15]
829 << Hex[(Char >> 4) & 15]
830 << Hex[(Char >> 0) & 15];
831 break;
832 }
833
834 // If we used \x... for the previous character, and this character is a
835 // hexadecimal digit, prevent it being slurped as part of the \x.
836 if (LastSlashX + 1 == I) {
837 switch (Char) {
838 case '0': case '1': case '2': case '3': case '4':
839 case '5': case '6': case '7': case '8': case '9':
840 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
841 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
842 OS << "\"\"";
843 }
844 }
845
846 assert(Char <= 0xff &&
847 "Characters above 0xff should already have been handled.");
848
849 if (isPrintable(Char))
850 OS << (char)Char;
851 else // Output anything hard as an octal escape.
852 OS << '\\'
853 << (char)('0' + ((Char >> 6) & 7))
854 << (char)('0' + ((Char >> 3) & 7))
855 << (char)('0' + ((Char >> 0) & 7));
856 break;
857 // Handle some common non-printable cases to make dumps prettier.
858 case '\\': OS << "\\\\"; break;
859 case '"': OS << "\\\""; break;
860 case '\n': OS << "\\n"; break;
861 case '\t': OS << "\\t"; break;
862 case '\a': OS << "\\a"; break;
863 case '\b': OS << "\\b"; break;
864 }
865 }
866 OS << '"';
867 }
868
setString(ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)869 void StringLiteral::setString(ASTContext &C, StringRef Str,
870 StringKind Kind, bool IsPascal) {
871 //FIXME: we assume that the string data comes from a target that uses the same
872 // code unit size and endianess for the type of string.
873 this->Kind = Kind;
874 this->IsPascal = IsPascal;
875
876 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
877 assert((Str.size()%CharByteWidth == 0)
878 && "size of data must be multiple of CharByteWidth");
879 Length = Str.size()/CharByteWidth;
880
881 switch(CharByteWidth) {
882 case 1: {
883 char *AStrData = new (C) char[Length];
884 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
885 StrData.asChar = AStrData;
886 break;
887 }
888 case 2: {
889 uint16_t *AStrData = new (C) uint16_t[Length];
890 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
891 StrData.asUInt16 = AStrData;
892 break;
893 }
894 case 4: {
895 uint32_t *AStrData = new (C) uint32_t[Length];
896 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
897 StrData.asUInt32 = AStrData;
898 break;
899 }
900 default:
901 assert(false && "unsupported CharByteWidth");
902 }
903 }
904
905 /// getLocationOfByte - Return a source location that points to the specified
906 /// byte of this string literal.
907 ///
908 /// Strings are amazingly complex. They can be formed from multiple tokens and
909 /// can have escape sequences in them in addition to the usual trigraph and
910 /// escaped newline business. This routine handles this complexity.
911 ///
912 SourceLocation StringLiteral::
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target) const913 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
914 const LangOptions &Features, const TargetInfo &Target) const {
915 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
916 "Only narrow string literals are currently supported");
917
918 // Loop over all of the tokens in this string until we find the one that
919 // contains the byte we're looking for.
920 unsigned TokNo = 0;
921 while (1) {
922 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
923 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
924
925 // Get the spelling of the string so that we can get the data that makes up
926 // the string literal, not the identifier for the macro it is potentially
927 // expanded through.
928 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
929
930 // Re-lex the token to get its length and original spelling.
931 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
932 bool Invalid = false;
933 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
934 if (Invalid)
935 return StrTokSpellingLoc;
936
937 const char *StrData = Buffer.data()+LocInfo.second;
938
939 // Create a lexer starting at the beginning of this token.
940 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
941 Buffer.begin(), StrData, Buffer.end());
942 Token TheTok;
943 TheLexer.LexFromRawLexer(TheTok);
944
945 // Use the StringLiteralParser to compute the length of the string in bytes.
946 StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
947 unsigned TokNumBytes = SLP.GetStringLength();
948
949 // If the byte is in this token, return the location of the byte.
950 if (ByteNo < TokNumBytes ||
951 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
952 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
953
954 // Now that we know the offset of the token in the spelling, use the
955 // preprocessor to get the offset in the original source.
956 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
957 }
958
959 // Move to the next string token.
960 ++TokNo;
961 ByteNo -= TokNumBytes;
962 }
963 }
964
965
966
967 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
968 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)969 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
970 switch (Op) {
971 case UO_PostInc: return "++";
972 case UO_PostDec: return "--";
973 case UO_PreInc: return "++";
974 case UO_PreDec: return "--";
975 case UO_AddrOf: return "&";
976 case UO_Deref: return "*";
977 case UO_Plus: return "+";
978 case UO_Minus: return "-";
979 case UO_Not: return "~";
980 case UO_LNot: return "!";
981 case UO_Real: return "__real";
982 case UO_Imag: return "__imag";
983 case UO_Extension: return "__extension__";
984 }
985 llvm_unreachable("Unknown unary operator");
986 }
987
988 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)989 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
990 switch (OO) {
991 default: llvm_unreachable("No unary operator for overloaded function");
992 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
993 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
994 case OO_Amp: return UO_AddrOf;
995 case OO_Star: return UO_Deref;
996 case OO_Plus: return UO_Plus;
997 case OO_Minus: return UO_Minus;
998 case OO_Tilde: return UO_Not;
999 case OO_Exclaim: return UO_LNot;
1000 }
1001 }
1002
getOverloadedOperator(Opcode Opc)1003 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1004 switch (Opc) {
1005 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1006 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1007 case UO_AddrOf: return OO_Amp;
1008 case UO_Deref: return OO_Star;
1009 case UO_Plus: return OO_Plus;
1010 case UO_Minus: return OO_Minus;
1011 case UO_Not: return OO_Tilde;
1012 case UO_LNot: return OO_Exclaim;
1013 default: return OO_None;
1014 }
1015 }
1016
1017
1018 //===----------------------------------------------------------------------===//
1019 // Postfix Operators.
1020 //===----------------------------------------------------------------------===//
1021
CallExpr(ASTContext & C,StmtClass SC,Expr * fn,unsigned NumPreArgs,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1022 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1023 ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
1024 SourceLocation rparenloc)
1025 : Expr(SC, t, VK, OK_Ordinary,
1026 fn->isTypeDependent(),
1027 fn->isValueDependent(),
1028 fn->isInstantiationDependent(),
1029 fn->containsUnexpandedParameterPack()),
1030 NumArgs(args.size()) {
1031
1032 SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1033 SubExprs[FN] = fn;
1034 for (unsigned i = 0; i != args.size(); ++i) {
1035 if (args[i]->isTypeDependent())
1036 ExprBits.TypeDependent = true;
1037 if (args[i]->isValueDependent())
1038 ExprBits.ValueDependent = true;
1039 if (args[i]->isInstantiationDependent())
1040 ExprBits.InstantiationDependent = true;
1041 if (args[i]->containsUnexpandedParameterPack())
1042 ExprBits.ContainsUnexpandedParameterPack = true;
1043
1044 SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1045 }
1046
1047 CallExprBits.NumPreArgs = NumPreArgs;
1048 RParenLoc = rparenloc;
1049 }
1050
CallExpr(ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1051 CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1052 QualType t, ExprValueKind VK, SourceLocation rparenloc)
1053 : Expr(CallExprClass, t, VK, OK_Ordinary,
1054 fn->isTypeDependent(),
1055 fn->isValueDependent(),
1056 fn->isInstantiationDependent(),
1057 fn->containsUnexpandedParameterPack()),
1058 NumArgs(args.size()) {
1059
1060 SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1061 SubExprs[FN] = fn;
1062 for (unsigned i = 0; i != args.size(); ++i) {
1063 if (args[i]->isTypeDependent())
1064 ExprBits.TypeDependent = true;
1065 if (args[i]->isValueDependent())
1066 ExprBits.ValueDependent = true;
1067 if (args[i]->isInstantiationDependent())
1068 ExprBits.InstantiationDependent = true;
1069 if (args[i]->containsUnexpandedParameterPack())
1070 ExprBits.ContainsUnexpandedParameterPack = true;
1071
1072 SubExprs[i+PREARGS_START] = args[i];
1073 }
1074
1075 CallExprBits.NumPreArgs = 0;
1076 RParenLoc = rparenloc;
1077 }
1078
CallExpr(ASTContext & C,StmtClass SC,EmptyShell Empty)1079 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
1080 : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1081 // FIXME: Why do we allocate this?
1082 SubExprs = new (C) Stmt*[PREARGS_START];
1083 CallExprBits.NumPreArgs = 0;
1084 }
1085
CallExpr(ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)1086 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1087 EmptyShell Empty)
1088 : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1089 // FIXME: Why do we allocate this?
1090 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1091 CallExprBits.NumPreArgs = NumPreArgs;
1092 }
1093
getCalleeDecl()1094 Decl *CallExpr::getCalleeDecl() {
1095 Expr *CEE = getCallee()->IgnoreParenImpCasts();
1096
1097 while (SubstNonTypeTemplateParmExpr *NTTP
1098 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1099 CEE = NTTP->getReplacement()->IgnoreParenCasts();
1100 }
1101
1102 // If we're calling a dereference, look at the pointer instead.
1103 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1104 if (BO->isPtrMemOp())
1105 CEE = BO->getRHS()->IgnoreParenCasts();
1106 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1107 if (UO->getOpcode() == UO_Deref)
1108 CEE = UO->getSubExpr()->IgnoreParenCasts();
1109 }
1110 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1111 return DRE->getDecl();
1112 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1113 return ME->getMemberDecl();
1114
1115 return 0;
1116 }
1117
getDirectCallee()1118 FunctionDecl *CallExpr::getDirectCallee() {
1119 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1120 }
1121
1122 /// setNumArgs - This changes the number of arguments present in this call.
1123 /// Any orphaned expressions are deleted by this, and any new operands are set
1124 /// to null.
setNumArgs(ASTContext & C,unsigned NumArgs)1125 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1126 // No change, just return.
1127 if (NumArgs == getNumArgs()) return;
1128
1129 // If shrinking # arguments, just delete the extras and forgot them.
1130 if (NumArgs < getNumArgs()) {
1131 this->NumArgs = NumArgs;
1132 return;
1133 }
1134
1135 // Otherwise, we are growing the # arguments. New an bigger argument array.
1136 unsigned NumPreArgs = getNumPreArgs();
1137 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1138 // Copy over args.
1139 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1140 NewSubExprs[i] = SubExprs[i];
1141 // Null out new args.
1142 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1143 i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1144 NewSubExprs[i] = 0;
1145
1146 if (SubExprs) C.Deallocate(SubExprs);
1147 SubExprs = NewSubExprs;
1148 this->NumArgs = NumArgs;
1149 }
1150
1151 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
1152 /// not, return 0.
isBuiltinCall() const1153 unsigned CallExpr::isBuiltinCall() const {
1154 // All simple function calls (e.g. func()) are implicitly cast to pointer to
1155 // function. As a result, we try and obtain the DeclRefExpr from the
1156 // ImplicitCastExpr.
1157 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1158 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1159 return 0;
1160
1161 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1162 if (!DRE)
1163 return 0;
1164
1165 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1166 if (!FDecl)
1167 return 0;
1168
1169 if (!FDecl->getIdentifier())
1170 return 0;
1171
1172 return FDecl->getBuiltinID();
1173 }
1174
isUnevaluatedBuiltinCall(ASTContext & Ctx) const1175 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1176 if (unsigned BI = isBuiltinCall())
1177 return Ctx.BuiltinInfo.isUnevaluated(BI);
1178 return false;
1179 }
1180
getCallReturnType() const1181 QualType CallExpr::getCallReturnType() const {
1182 QualType CalleeType = getCallee()->getType();
1183 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1184 CalleeType = FnTypePtr->getPointeeType();
1185 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1186 CalleeType = BPT->getPointeeType();
1187 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1188 // This should never be overloaded and so should never return null.
1189 CalleeType = Expr::findBoundMemberType(getCallee());
1190
1191 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1192 return FnType->getResultType();
1193 }
1194
getLocStart() const1195 SourceLocation CallExpr::getLocStart() const {
1196 if (isa<CXXOperatorCallExpr>(this))
1197 return cast<CXXOperatorCallExpr>(this)->getLocStart();
1198
1199 SourceLocation begin = getCallee()->getLocStart();
1200 if (begin.isInvalid() && getNumArgs() > 0)
1201 begin = getArg(0)->getLocStart();
1202 return begin;
1203 }
getLocEnd() const1204 SourceLocation CallExpr::getLocEnd() const {
1205 if (isa<CXXOperatorCallExpr>(this))
1206 return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1207
1208 SourceLocation end = getRParenLoc();
1209 if (end.isInvalid() && getNumArgs() > 0)
1210 end = getArg(getNumArgs() - 1)->getLocEnd();
1211 return end;
1212 }
1213
Create(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1214 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1215 SourceLocation OperatorLoc,
1216 TypeSourceInfo *tsi,
1217 ArrayRef<OffsetOfNode> comps,
1218 ArrayRef<Expr*> exprs,
1219 SourceLocation RParenLoc) {
1220 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1221 sizeof(OffsetOfNode) * comps.size() +
1222 sizeof(Expr*) * exprs.size());
1223
1224 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1225 RParenLoc);
1226 }
1227
CreateEmpty(ASTContext & C,unsigned numComps,unsigned numExprs)1228 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1229 unsigned numComps, unsigned numExprs) {
1230 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1231 sizeof(OffsetOfNode) * numComps +
1232 sizeof(Expr*) * numExprs);
1233 return new (Mem) OffsetOfExpr(numComps, numExprs);
1234 }
1235
OffsetOfExpr(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1236 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1237 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1238 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1239 SourceLocation RParenLoc)
1240 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1241 /*TypeDependent=*/false,
1242 /*ValueDependent=*/tsi->getType()->isDependentType(),
1243 tsi->getType()->isInstantiationDependentType(),
1244 tsi->getType()->containsUnexpandedParameterPack()),
1245 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1246 NumComps(comps.size()), NumExprs(exprs.size())
1247 {
1248 for (unsigned i = 0; i != comps.size(); ++i) {
1249 setComponent(i, comps[i]);
1250 }
1251
1252 for (unsigned i = 0; i != exprs.size(); ++i) {
1253 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1254 ExprBits.ValueDependent = true;
1255 if (exprs[i]->containsUnexpandedParameterPack())
1256 ExprBits.ContainsUnexpandedParameterPack = true;
1257
1258 setIndexExpr(i, exprs[i]);
1259 }
1260 }
1261
getFieldName() const1262 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1263 assert(getKind() == Field || getKind() == Identifier);
1264 if (getKind() == Field)
1265 return getField()->getIdentifier();
1266
1267 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1268 }
1269
Create(ASTContext & C,Expr * base,bool isarrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1270 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1271 NestedNameSpecifierLoc QualifierLoc,
1272 SourceLocation TemplateKWLoc,
1273 ValueDecl *memberdecl,
1274 DeclAccessPair founddecl,
1275 DeclarationNameInfo nameinfo,
1276 const TemplateArgumentListInfo *targs,
1277 QualType ty,
1278 ExprValueKind vk,
1279 ExprObjectKind ok) {
1280 std::size_t Size = sizeof(MemberExpr);
1281
1282 bool hasQualOrFound = (QualifierLoc ||
1283 founddecl.getDecl() != memberdecl ||
1284 founddecl.getAccess() != memberdecl->getAccess());
1285 if (hasQualOrFound)
1286 Size += sizeof(MemberNameQualifier);
1287
1288 if (targs)
1289 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1290 else if (TemplateKWLoc.isValid())
1291 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1292
1293 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1294 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1295 ty, vk, ok);
1296
1297 if (hasQualOrFound) {
1298 // FIXME: Wrong. We should be looking at the member declaration we found.
1299 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1300 E->setValueDependent(true);
1301 E->setTypeDependent(true);
1302 E->setInstantiationDependent(true);
1303 }
1304 else if (QualifierLoc &&
1305 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1306 E->setInstantiationDependent(true);
1307
1308 E->HasQualifierOrFoundDecl = true;
1309
1310 MemberNameQualifier *NQ = E->getMemberQualifier();
1311 NQ->QualifierLoc = QualifierLoc;
1312 NQ->FoundDecl = founddecl;
1313 }
1314
1315 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1316
1317 if (targs) {
1318 bool Dependent = false;
1319 bool InstantiationDependent = false;
1320 bool ContainsUnexpandedParameterPack = false;
1321 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1322 Dependent,
1323 InstantiationDependent,
1324 ContainsUnexpandedParameterPack);
1325 if (InstantiationDependent)
1326 E->setInstantiationDependent(true);
1327 } else if (TemplateKWLoc.isValid()) {
1328 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1329 }
1330
1331 return E;
1332 }
1333
getLocStart() const1334 SourceLocation MemberExpr::getLocStart() const {
1335 if (isImplicitAccess()) {
1336 if (hasQualifier())
1337 return getQualifierLoc().getBeginLoc();
1338 return MemberLoc;
1339 }
1340
1341 // FIXME: We don't want this to happen. Rather, we should be able to
1342 // detect all kinds of implicit accesses more cleanly.
1343 SourceLocation BaseStartLoc = getBase()->getLocStart();
1344 if (BaseStartLoc.isValid())
1345 return BaseStartLoc;
1346 return MemberLoc;
1347 }
getLocEnd() const1348 SourceLocation MemberExpr::getLocEnd() const {
1349 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1350 if (hasExplicitTemplateArgs())
1351 EndLoc = getRAngleLoc();
1352 else if (EndLoc.isInvalid())
1353 EndLoc = getBase()->getLocEnd();
1354 return EndLoc;
1355 }
1356
CheckCastConsistency() const1357 void CastExpr::CheckCastConsistency() const {
1358 switch (getCastKind()) {
1359 case CK_DerivedToBase:
1360 case CK_UncheckedDerivedToBase:
1361 case CK_DerivedToBaseMemberPointer:
1362 case CK_BaseToDerived:
1363 case CK_BaseToDerivedMemberPointer:
1364 assert(!path_empty() && "Cast kind should have a base path!");
1365 break;
1366
1367 case CK_CPointerToObjCPointerCast:
1368 assert(getType()->isObjCObjectPointerType());
1369 assert(getSubExpr()->getType()->isPointerType());
1370 goto CheckNoBasePath;
1371
1372 case CK_BlockPointerToObjCPointerCast:
1373 assert(getType()->isObjCObjectPointerType());
1374 assert(getSubExpr()->getType()->isBlockPointerType());
1375 goto CheckNoBasePath;
1376
1377 case CK_ReinterpretMemberPointer:
1378 assert(getType()->isMemberPointerType());
1379 assert(getSubExpr()->getType()->isMemberPointerType());
1380 goto CheckNoBasePath;
1381
1382 case CK_BitCast:
1383 // Arbitrary casts to C pointer types count as bitcasts.
1384 // Otherwise, we should only have block and ObjC pointer casts
1385 // here if they stay within the type kind.
1386 if (!getType()->isPointerType()) {
1387 assert(getType()->isObjCObjectPointerType() ==
1388 getSubExpr()->getType()->isObjCObjectPointerType());
1389 assert(getType()->isBlockPointerType() ==
1390 getSubExpr()->getType()->isBlockPointerType());
1391 }
1392 goto CheckNoBasePath;
1393
1394 case CK_AnyPointerToBlockPointerCast:
1395 assert(getType()->isBlockPointerType());
1396 assert(getSubExpr()->getType()->isAnyPointerType() &&
1397 !getSubExpr()->getType()->isBlockPointerType());
1398 goto CheckNoBasePath;
1399
1400 case CK_CopyAndAutoreleaseBlockObject:
1401 assert(getType()->isBlockPointerType());
1402 assert(getSubExpr()->getType()->isBlockPointerType());
1403 goto CheckNoBasePath;
1404
1405 case CK_FunctionToPointerDecay:
1406 assert(getType()->isPointerType());
1407 assert(getSubExpr()->getType()->isFunctionType());
1408 goto CheckNoBasePath;
1409
1410 // These should not have an inheritance path.
1411 case CK_Dynamic:
1412 case CK_ToUnion:
1413 case CK_ArrayToPointerDecay:
1414 case CK_NullToMemberPointer:
1415 case CK_NullToPointer:
1416 case CK_ConstructorConversion:
1417 case CK_IntegralToPointer:
1418 case CK_PointerToIntegral:
1419 case CK_ToVoid:
1420 case CK_VectorSplat:
1421 case CK_IntegralCast:
1422 case CK_IntegralToFloating:
1423 case CK_FloatingToIntegral:
1424 case CK_FloatingCast:
1425 case CK_ObjCObjectLValueCast:
1426 case CK_FloatingRealToComplex:
1427 case CK_FloatingComplexToReal:
1428 case CK_FloatingComplexCast:
1429 case CK_FloatingComplexToIntegralComplex:
1430 case CK_IntegralRealToComplex:
1431 case CK_IntegralComplexToReal:
1432 case CK_IntegralComplexCast:
1433 case CK_IntegralComplexToFloatingComplex:
1434 case CK_ARCProduceObject:
1435 case CK_ARCConsumeObject:
1436 case CK_ARCReclaimReturnedObject:
1437 case CK_ARCExtendBlockObject:
1438 case CK_ZeroToOCLEvent:
1439 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1440 goto CheckNoBasePath;
1441
1442 case CK_Dependent:
1443 case CK_LValueToRValue:
1444 case CK_NoOp:
1445 case CK_AtomicToNonAtomic:
1446 case CK_NonAtomicToAtomic:
1447 case CK_PointerToBoolean:
1448 case CK_IntegralToBoolean:
1449 case CK_FloatingToBoolean:
1450 case CK_MemberPointerToBoolean:
1451 case CK_FloatingComplexToBoolean:
1452 case CK_IntegralComplexToBoolean:
1453 case CK_LValueBitCast: // -> bool&
1454 case CK_UserDefinedConversion: // operator bool()
1455 case CK_BuiltinFnToFnPtr:
1456 CheckNoBasePath:
1457 assert(path_empty() && "Cast kind should not have a base path!");
1458 break;
1459 }
1460 }
1461
getCastKindName() const1462 const char *CastExpr::getCastKindName() const {
1463 switch (getCastKind()) {
1464 case CK_Dependent:
1465 return "Dependent";
1466 case CK_BitCast:
1467 return "BitCast";
1468 case CK_LValueBitCast:
1469 return "LValueBitCast";
1470 case CK_LValueToRValue:
1471 return "LValueToRValue";
1472 case CK_NoOp:
1473 return "NoOp";
1474 case CK_BaseToDerived:
1475 return "BaseToDerived";
1476 case CK_DerivedToBase:
1477 return "DerivedToBase";
1478 case CK_UncheckedDerivedToBase:
1479 return "UncheckedDerivedToBase";
1480 case CK_Dynamic:
1481 return "Dynamic";
1482 case CK_ToUnion:
1483 return "ToUnion";
1484 case CK_ArrayToPointerDecay:
1485 return "ArrayToPointerDecay";
1486 case CK_FunctionToPointerDecay:
1487 return "FunctionToPointerDecay";
1488 case CK_NullToMemberPointer:
1489 return "NullToMemberPointer";
1490 case CK_NullToPointer:
1491 return "NullToPointer";
1492 case CK_BaseToDerivedMemberPointer:
1493 return "BaseToDerivedMemberPointer";
1494 case CK_DerivedToBaseMemberPointer:
1495 return "DerivedToBaseMemberPointer";
1496 case CK_ReinterpretMemberPointer:
1497 return "ReinterpretMemberPointer";
1498 case CK_UserDefinedConversion:
1499 return "UserDefinedConversion";
1500 case CK_ConstructorConversion:
1501 return "ConstructorConversion";
1502 case CK_IntegralToPointer:
1503 return "IntegralToPointer";
1504 case CK_PointerToIntegral:
1505 return "PointerToIntegral";
1506 case CK_PointerToBoolean:
1507 return "PointerToBoolean";
1508 case CK_ToVoid:
1509 return "ToVoid";
1510 case CK_VectorSplat:
1511 return "VectorSplat";
1512 case CK_IntegralCast:
1513 return "IntegralCast";
1514 case CK_IntegralToBoolean:
1515 return "IntegralToBoolean";
1516 case CK_IntegralToFloating:
1517 return "IntegralToFloating";
1518 case CK_FloatingToIntegral:
1519 return "FloatingToIntegral";
1520 case CK_FloatingCast:
1521 return "FloatingCast";
1522 case CK_FloatingToBoolean:
1523 return "FloatingToBoolean";
1524 case CK_MemberPointerToBoolean:
1525 return "MemberPointerToBoolean";
1526 case CK_CPointerToObjCPointerCast:
1527 return "CPointerToObjCPointerCast";
1528 case CK_BlockPointerToObjCPointerCast:
1529 return "BlockPointerToObjCPointerCast";
1530 case CK_AnyPointerToBlockPointerCast:
1531 return "AnyPointerToBlockPointerCast";
1532 case CK_ObjCObjectLValueCast:
1533 return "ObjCObjectLValueCast";
1534 case CK_FloatingRealToComplex:
1535 return "FloatingRealToComplex";
1536 case CK_FloatingComplexToReal:
1537 return "FloatingComplexToReal";
1538 case CK_FloatingComplexToBoolean:
1539 return "FloatingComplexToBoolean";
1540 case CK_FloatingComplexCast:
1541 return "FloatingComplexCast";
1542 case CK_FloatingComplexToIntegralComplex:
1543 return "FloatingComplexToIntegralComplex";
1544 case CK_IntegralRealToComplex:
1545 return "IntegralRealToComplex";
1546 case CK_IntegralComplexToReal:
1547 return "IntegralComplexToReal";
1548 case CK_IntegralComplexToBoolean:
1549 return "IntegralComplexToBoolean";
1550 case CK_IntegralComplexCast:
1551 return "IntegralComplexCast";
1552 case CK_IntegralComplexToFloatingComplex:
1553 return "IntegralComplexToFloatingComplex";
1554 case CK_ARCConsumeObject:
1555 return "ARCConsumeObject";
1556 case CK_ARCProduceObject:
1557 return "ARCProduceObject";
1558 case CK_ARCReclaimReturnedObject:
1559 return "ARCReclaimReturnedObject";
1560 case CK_ARCExtendBlockObject:
1561 return "ARCCExtendBlockObject";
1562 case CK_AtomicToNonAtomic:
1563 return "AtomicToNonAtomic";
1564 case CK_NonAtomicToAtomic:
1565 return "NonAtomicToAtomic";
1566 case CK_CopyAndAutoreleaseBlockObject:
1567 return "CopyAndAutoreleaseBlockObject";
1568 case CK_BuiltinFnToFnPtr:
1569 return "BuiltinFnToFnPtr";
1570 case CK_ZeroToOCLEvent:
1571 return "ZeroToOCLEvent";
1572 }
1573
1574 llvm_unreachable("Unhandled cast kind!");
1575 }
1576
getSubExprAsWritten()1577 Expr *CastExpr::getSubExprAsWritten() {
1578 Expr *SubExpr = 0;
1579 CastExpr *E = this;
1580 do {
1581 SubExpr = E->getSubExpr();
1582
1583 // Skip through reference binding to temporary.
1584 if (MaterializeTemporaryExpr *Materialize
1585 = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1586 SubExpr = Materialize->GetTemporaryExpr();
1587
1588 // Skip any temporary bindings; they're implicit.
1589 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1590 SubExpr = Binder->getSubExpr();
1591
1592 // Conversions by constructor and conversion functions have a
1593 // subexpression describing the call; strip it off.
1594 if (E->getCastKind() == CK_ConstructorConversion)
1595 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1596 else if (E->getCastKind() == CK_UserDefinedConversion)
1597 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1598
1599 // If the subexpression we're left with is an implicit cast, look
1600 // through that, too.
1601 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1602
1603 return SubExpr;
1604 }
1605
path_buffer()1606 CXXBaseSpecifier **CastExpr::path_buffer() {
1607 switch (getStmtClass()) {
1608 #define ABSTRACT_STMT(x)
1609 #define CASTEXPR(Type, Base) \
1610 case Stmt::Type##Class: \
1611 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1612 #define STMT(Type, Base)
1613 #include "clang/AST/StmtNodes.inc"
1614 default:
1615 llvm_unreachable("non-cast expressions not possible here");
1616 }
1617 }
1618
setCastPath(const CXXCastPath & Path)1619 void CastExpr::setCastPath(const CXXCastPath &Path) {
1620 assert(Path.size() == path_size());
1621 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1622 }
1623
Create(ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1624 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1625 CastKind Kind, Expr *Operand,
1626 const CXXCastPath *BasePath,
1627 ExprValueKind VK) {
1628 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1629 void *Buffer =
1630 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1631 ImplicitCastExpr *E =
1632 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1633 if (PathSize) E->setCastPath(*BasePath);
1634 return E;
1635 }
1636
CreateEmpty(ASTContext & C,unsigned PathSize)1637 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1638 unsigned PathSize) {
1639 void *Buffer =
1640 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1641 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1642 }
1643
1644
Create(ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1645 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1646 ExprValueKind VK, CastKind K, Expr *Op,
1647 const CXXCastPath *BasePath,
1648 TypeSourceInfo *WrittenTy,
1649 SourceLocation L, SourceLocation R) {
1650 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1651 void *Buffer =
1652 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1653 CStyleCastExpr *E =
1654 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1655 if (PathSize) E->setCastPath(*BasePath);
1656 return E;
1657 }
1658
CreateEmpty(ASTContext & C,unsigned PathSize)1659 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1660 void *Buffer =
1661 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1662 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1663 }
1664
1665 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1666 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1667 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1668 switch (Op) {
1669 case BO_PtrMemD: return ".*";
1670 case BO_PtrMemI: return "->*";
1671 case BO_Mul: return "*";
1672 case BO_Div: return "/";
1673 case BO_Rem: return "%";
1674 case BO_Add: return "+";
1675 case BO_Sub: return "-";
1676 case BO_Shl: return "<<";
1677 case BO_Shr: return ">>";
1678 case BO_LT: return "<";
1679 case BO_GT: return ">";
1680 case BO_LE: return "<=";
1681 case BO_GE: return ">=";
1682 case BO_EQ: return "==";
1683 case BO_NE: return "!=";
1684 case BO_And: return "&";
1685 case BO_Xor: return "^";
1686 case BO_Or: return "|";
1687 case BO_LAnd: return "&&";
1688 case BO_LOr: return "||";
1689 case BO_Assign: return "=";
1690 case BO_MulAssign: return "*=";
1691 case BO_DivAssign: return "/=";
1692 case BO_RemAssign: return "%=";
1693 case BO_AddAssign: return "+=";
1694 case BO_SubAssign: return "-=";
1695 case BO_ShlAssign: return "<<=";
1696 case BO_ShrAssign: return ">>=";
1697 case BO_AndAssign: return "&=";
1698 case BO_XorAssign: return "^=";
1699 case BO_OrAssign: return "|=";
1700 case BO_Comma: return ",";
1701 }
1702
1703 llvm_unreachable("Invalid OpCode!");
1704 }
1705
1706 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1707 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1708 switch (OO) {
1709 default: llvm_unreachable("Not an overloadable binary operator");
1710 case OO_Plus: return BO_Add;
1711 case OO_Minus: return BO_Sub;
1712 case OO_Star: return BO_Mul;
1713 case OO_Slash: return BO_Div;
1714 case OO_Percent: return BO_Rem;
1715 case OO_Caret: return BO_Xor;
1716 case OO_Amp: return BO_And;
1717 case OO_Pipe: return BO_Or;
1718 case OO_Equal: return BO_Assign;
1719 case OO_Less: return BO_LT;
1720 case OO_Greater: return BO_GT;
1721 case OO_PlusEqual: return BO_AddAssign;
1722 case OO_MinusEqual: return BO_SubAssign;
1723 case OO_StarEqual: return BO_MulAssign;
1724 case OO_SlashEqual: return BO_DivAssign;
1725 case OO_PercentEqual: return BO_RemAssign;
1726 case OO_CaretEqual: return BO_XorAssign;
1727 case OO_AmpEqual: return BO_AndAssign;
1728 case OO_PipeEqual: return BO_OrAssign;
1729 case OO_LessLess: return BO_Shl;
1730 case OO_GreaterGreater: return BO_Shr;
1731 case OO_LessLessEqual: return BO_ShlAssign;
1732 case OO_GreaterGreaterEqual: return BO_ShrAssign;
1733 case OO_EqualEqual: return BO_EQ;
1734 case OO_ExclaimEqual: return BO_NE;
1735 case OO_LessEqual: return BO_LE;
1736 case OO_GreaterEqual: return BO_GE;
1737 case OO_AmpAmp: return BO_LAnd;
1738 case OO_PipePipe: return BO_LOr;
1739 case OO_Comma: return BO_Comma;
1740 case OO_ArrowStar: return BO_PtrMemI;
1741 }
1742 }
1743
getOverloadedOperator(Opcode Opc)1744 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1745 static const OverloadedOperatorKind OverOps[] = {
1746 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1747 OO_Star, OO_Slash, OO_Percent,
1748 OO_Plus, OO_Minus,
1749 OO_LessLess, OO_GreaterGreater,
1750 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1751 OO_EqualEqual, OO_ExclaimEqual,
1752 OO_Amp,
1753 OO_Caret,
1754 OO_Pipe,
1755 OO_AmpAmp,
1756 OO_PipePipe,
1757 OO_Equal, OO_StarEqual,
1758 OO_SlashEqual, OO_PercentEqual,
1759 OO_PlusEqual, OO_MinusEqual,
1760 OO_LessLessEqual, OO_GreaterGreaterEqual,
1761 OO_AmpEqual, OO_CaretEqual,
1762 OO_PipeEqual,
1763 OO_Comma
1764 };
1765 return OverOps[Opc];
1766 }
1767
InitListExpr(ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)1768 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1769 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1770 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1771 false, false),
1772 InitExprs(C, initExprs.size()),
1773 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
1774 {
1775 sawArrayRangeDesignator(false);
1776 setInitializesStdInitializerList(false);
1777 for (unsigned I = 0; I != initExprs.size(); ++I) {
1778 if (initExprs[I]->isTypeDependent())
1779 ExprBits.TypeDependent = true;
1780 if (initExprs[I]->isValueDependent())
1781 ExprBits.ValueDependent = true;
1782 if (initExprs[I]->isInstantiationDependent())
1783 ExprBits.InstantiationDependent = true;
1784 if (initExprs[I]->containsUnexpandedParameterPack())
1785 ExprBits.ContainsUnexpandedParameterPack = true;
1786 }
1787
1788 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1789 }
1790
reserveInits(ASTContext & C,unsigned NumInits)1791 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1792 if (NumInits > InitExprs.size())
1793 InitExprs.reserve(C, NumInits);
1794 }
1795
resizeInits(ASTContext & C,unsigned NumInits)1796 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1797 InitExprs.resize(C, NumInits, 0);
1798 }
1799
updateInit(ASTContext & C,unsigned Init,Expr * expr)1800 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1801 if (Init >= InitExprs.size()) {
1802 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1803 InitExprs.back() = expr;
1804 return 0;
1805 }
1806
1807 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1808 InitExprs[Init] = expr;
1809 return Result;
1810 }
1811
setArrayFiller(Expr * filler)1812 void InitListExpr::setArrayFiller(Expr *filler) {
1813 assert(!hasArrayFiller() && "Filler already set!");
1814 ArrayFillerOrUnionFieldInit = filler;
1815 // Fill out any "holes" in the array due to designated initializers.
1816 Expr **inits = getInits();
1817 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1818 if (inits[i] == 0)
1819 inits[i] = filler;
1820 }
1821
isStringLiteralInit() const1822 bool InitListExpr::isStringLiteralInit() const {
1823 if (getNumInits() != 1)
1824 return false;
1825 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1826 if (!AT || !AT->getElementType()->isIntegerType())
1827 return false;
1828 const Expr *Init = getInit(0)->IgnoreParens();
1829 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1830 }
1831
getLocStart() const1832 SourceLocation InitListExpr::getLocStart() const {
1833 if (InitListExpr *SyntacticForm = getSyntacticForm())
1834 return SyntacticForm->getLocStart();
1835 SourceLocation Beg = LBraceLoc;
1836 if (Beg.isInvalid()) {
1837 // Find the first non-null initializer.
1838 for (InitExprsTy::const_iterator I = InitExprs.begin(),
1839 E = InitExprs.end();
1840 I != E; ++I) {
1841 if (Stmt *S = *I) {
1842 Beg = S->getLocStart();
1843 break;
1844 }
1845 }
1846 }
1847 return Beg;
1848 }
1849
getLocEnd() const1850 SourceLocation InitListExpr::getLocEnd() const {
1851 if (InitListExpr *SyntacticForm = getSyntacticForm())
1852 return SyntacticForm->getLocEnd();
1853 SourceLocation End = RBraceLoc;
1854 if (End.isInvalid()) {
1855 // Find the first non-null initializer from the end.
1856 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1857 E = InitExprs.rend();
1858 I != E; ++I) {
1859 if (Stmt *S = *I) {
1860 End = S->getLocEnd();
1861 break;
1862 }
1863 }
1864 }
1865 return End;
1866 }
1867
1868 /// getFunctionType - Return the underlying function type for this block.
1869 ///
getFunctionType() const1870 const FunctionProtoType *BlockExpr::getFunctionType() const {
1871 // The block pointer is never sugared, but the function type might be.
1872 return cast<BlockPointerType>(getType())
1873 ->getPointeeType()->castAs<FunctionProtoType>();
1874 }
1875
getCaretLocation() const1876 SourceLocation BlockExpr::getCaretLocation() const {
1877 return TheBlock->getCaretLocation();
1878 }
getBody() const1879 const Stmt *BlockExpr::getBody() const {
1880 return TheBlock->getBody();
1881 }
getBody()1882 Stmt *BlockExpr::getBody() {
1883 return TheBlock->getBody();
1884 }
1885
1886
1887 //===----------------------------------------------------------------------===//
1888 // Generic Expression Routines
1889 //===----------------------------------------------------------------------===//
1890
1891 /// isUnusedResultAWarning - Return true if this immediate expression should
1892 /// be warned about if the result is unused. If so, fill in Loc and Ranges
1893 /// with location to warn on and the source range[s] to report with the
1894 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const1895 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1896 SourceRange &R1, SourceRange &R2,
1897 ASTContext &Ctx) const {
1898 // Don't warn if the expr is type dependent. The type could end up
1899 // instantiating to void.
1900 if (isTypeDependent())
1901 return false;
1902
1903 switch (getStmtClass()) {
1904 default:
1905 if (getType()->isVoidType())
1906 return false;
1907 WarnE = this;
1908 Loc = getExprLoc();
1909 R1 = getSourceRange();
1910 return true;
1911 case ParenExprClass:
1912 return cast<ParenExpr>(this)->getSubExpr()->
1913 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1914 case GenericSelectionExprClass:
1915 return cast<GenericSelectionExpr>(this)->getResultExpr()->
1916 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1917 case UnaryOperatorClass: {
1918 const UnaryOperator *UO = cast<UnaryOperator>(this);
1919
1920 switch (UO->getOpcode()) {
1921 case UO_Plus:
1922 case UO_Minus:
1923 case UO_AddrOf:
1924 case UO_Not:
1925 case UO_LNot:
1926 case UO_Deref:
1927 break;
1928 case UO_PostInc:
1929 case UO_PostDec:
1930 case UO_PreInc:
1931 case UO_PreDec: // ++/--
1932 return false; // Not a warning.
1933 case UO_Real:
1934 case UO_Imag:
1935 // accessing a piece of a volatile complex is a side-effect.
1936 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1937 .isVolatileQualified())
1938 return false;
1939 break;
1940 case UO_Extension:
1941 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1942 }
1943 WarnE = this;
1944 Loc = UO->getOperatorLoc();
1945 R1 = UO->getSubExpr()->getSourceRange();
1946 return true;
1947 }
1948 case BinaryOperatorClass: {
1949 const BinaryOperator *BO = cast<BinaryOperator>(this);
1950 switch (BO->getOpcode()) {
1951 default:
1952 break;
1953 // Consider the RHS of comma for side effects. LHS was checked by
1954 // Sema::CheckCommaOperands.
1955 case BO_Comma:
1956 // ((foo = <blah>), 0) is an idiom for hiding the result (and
1957 // lvalue-ness) of an assignment written in a macro.
1958 if (IntegerLiteral *IE =
1959 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1960 if (IE->getValue() == 0)
1961 return false;
1962 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1963 // Consider '||', '&&' to have side effects if the LHS or RHS does.
1964 case BO_LAnd:
1965 case BO_LOr:
1966 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1967 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1968 return false;
1969 break;
1970 }
1971 if (BO->isAssignmentOp())
1972 return false;
1973 WarnE = this;
1974 Loc = BO->getOperatorLoc();
1975 R1 = BO->getLHS()->getSourceRange();
1976 R2 = BO->getRHS()->getSourceRange();
1977 return true;
1978 }
1979 case CompoundAssignOperatorClass:
1980 case VAArgExprClass:
1981 case AtomicExprClass:
1982 return false;
1983
1984 case ConditionalOperatorClass: {
1985 // If only one of the LHS or RHS is a warning, the operator might
1986 // be being used for control flow. Only warn if both the LHS and
1987 // RHS are warnings.
1988 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1989 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1990 return false;
1991 if (!Exp->getLHS())
1992 return true;
1993 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1994 }
1995
1996 case MemberExprClass:
1997 WarnE = this;
1998 Loc = cast<MemberExpr>(this)->getMemberLoc();
1999 R1 = SourceRange(Loc, Loc);
2000 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2001 return true;
2002
2003 case ArraySubscriptExprClass:
2004 WarnE = this;
2005 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2006 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2007 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2008 return true;
2009
2010 case CXXOperatorCallExprClass: {
2011 // We warn about operator== and operator!= even when user-defined operator
2012 // overloads as there is no reasonable way to define these such that they
2013 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2014 // warning: these operators are commonly typo'ed, and so warning on them
2015 // provides additional value as well. If this list is updated,
2016 // DiagnoseUnusedComparison should be as well.
2017 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2018 if (Op->getOperator() == OO_EqualEqual ||
2019 Op->getOperator() == OO_ExclaimEqual) {
2020 WarnE = this;
2021 Loc = Op->getOperatorLoc();
2022 R1 = Op->getSourceRange();
2023 return true;
2024 }
2025
2026 // Fallthrough for generic call handling.
2027 }
2028 case CallExprClass:
2029 case CXXMemberCallExprClass:
2030 case UserDefinedLiteralClass: {
2031 // If this is a direct call, get the callee.
2032 const CallExpr *CE = cast<CallExpr>(this);
2033 if (const Decl *FD = CE->getCalleeDecl()) {
2034 // If the callee has attribute pure, const, or warn_unused_result, warn
2035 // about it. void foo() { strlen("bar"); } should warn.
2036 //
2037 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2038 // updated to match for QoI.
2039 if (FD->getAttr<WarnUnusedResultAttr>() ||
2040 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
2041 WarnE = this;
2042 Loc = CE->getCallee()->getLocStart();
2043 R1 = CE->getCallee()->getSourceRange();
2044
2045 if (unsigned NumArgs = CE->getNumArgs())
2046 R2 = SourceRange(CE->getArg(0)->getLocStart(),
2047 CE->getArg(NumArgs-1)->getLocEnd());
2048 return true;
2049 }
2050 }
2051 return false;
2052 }
2053
2054 // If we don't know precisely what we're looking at, let's not warn.
2055 case UnresolvedLookupExprClass:
2056 case CXXUnresolvedConstructExprClass:
2057 return false;
2058
2059 case CXXTemporaryObjectExprClass:
2060 case CXXConstructExprClass:
2061 return false;
2062
2063 case ObjCMessageExprClass: {
2064 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2065 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2066 ME->isInstanceMessage() &&
2067 !ME->getType()->isVoidType() &&
2068 ME->getSelector().getIdentifierInfoForSlot(0) &&
2069 ME->getSelector().getIdentifierInfoForSlot(0)
2070 ->getName().startswith("init")) {
2071 WarnE = this;
2072 Loc = getExprLoc();
2073 R1 = ME->getSourceRange();
2074 return true;
2075 }
2076
2077 const ObjCMethodDecl *MD = ME->getMethodDecl();
2078 if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
2079 WarnE = this;
2080 Loc = getExprLoc();
2081 return true;
2082 }
2083 return false;
2084 }
2085
2086 case ObjCPropertyRefExprClass:
2087 WarnE = this;
2088 Loc = getExprLoc();
2089 R1 = getSourceRange();
2090 return true;
2091
2092 case PseudoObjectExprClass: {
2093 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2094
2095 // Only complain about things that have the form of a getter.
2096 if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2097 isa<BinaryOperator>(PO->getSyntacticForm()))
2098 return false;
2099
2100 WarnE = this;
2101 Loc = getExprLoc();
2102 R1 = getSourceRange();
2103 return true;
2104 }
2105
2106 case StmtExprClass: {
2107 // Statement exprs don't logically have side effects themselves, but are
2108 // sometimes used in macros in ways that give them a type that is unused.
2109 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2110 // however, if the result of the stmt expr is dead, we don't want to emit a
2111 // warning.
2112 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2113 if (!CS->body_empty()) {
2114 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2115 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2116 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2117 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2118 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2119 }
2120
2121 if (getType()->isVoidType())
2122 return false;
2123 WarnE = this;
2124 Loc = cast<StmtExpr>(this)->getLParenLoc();
2125 R1 = getSourceRange();
2126 return true;
2127 }
2128 case CXXFunctionalCastExprClass:
2129 case CStyleCastExprClass: {
2130 // Ignore an explicit cast to void unless the operand is a non-trivial
2131 // volatile lvalue.
2132 const CastExpr *CE = cast<CastExpr>(this);
2133 if (CE->getCastKind() == CK_ToVoid) {
2134 if (CE->getSubExpr()->isGLValue() &&
2135 CE->getSubExpr()->getType().isVolatileQualified()) {
2136 const DeclRefExpr *DRE =
2137 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2138 if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2139 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2140 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2141 R1, R2, Ctx);
2142 }
2143 }
2144 return false;
2145 }
2146
2147 // If this is a cast to a constructor conversion, check the operand.
2148 // Otherwise, the result of the cast is unused.
2149 if (CE->getCastKind() == CK_ConstructorConversion)
2150 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2151
2152 WarnE = this;
2153 if (const CXXFunctionalCastExpr *CXXCE =
2154 dyn_cast<CXXFunctionalCastExpr>(this)) {
2155 Loc = CXXCE->getTypeBeginLoc();
2156 R1 = CXXCE->getSubExpr()->getSourceRange();
2157 } else {
2158 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2159 Loc = CStyleCE->getLParenLoc();
2160 R1 = CStyleCE->getSubExpr()->getSourceRange();
2161 }
2162 return true;
2163 }
2164 case ImplicitCastExprClass: {
2165 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2166
2167 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2168 if (ICE->getCastKind() == CK_LValueToRValue &&
2169 ICE->getSubExpr()->getType().isVolatileQualified())
2170 return false;
2171
2172 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2173 }
2174 case CXXDefaultArgExprClass:
2175 return (cast<CXXDefaultArgExpr>(this)
2176 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2177
2178 case CXXNewExprClass:
2179 // FIXME: In theory, there might be new expressions that don't have side
2180 // effects (e.g. a placement new with an uninitialized POD).
2181 case CXXDeleteExprClass:
2182 return false;
2183 case CXXBindTemporaryExprClass:
2184 return (cast<CXXBindTemporaryExpr>(this)
2185 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2186 case ExprWithCleanupsClass:
2187 return (cast<ExprWithCleanups>(this)
2188 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2189 }
2190 }
2191
2192 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2193 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2194 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2195 const Expr *E = IgnoreParens();
2196 switch (E->getStmtClass()) {
2197 default:
2198 return false;
2199 case ObjCIvarRefExprClass:
2200 return true;
2201 case Expr::UnaryOperatorClass:
2202 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2203 case ImplicitCastExprClass:
2204 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2205 case MaterializeTemporaryExprClass:
2206 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2207 ->isOBJCGCCandidate(Ctx);
2208 case CStyleCastExprClass:
2209 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2210 case DeclRefExprClass: {
2211 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2212
2213 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2214 if (VD->hasGlobalStorage())
2215 return true;
2216 QualType T = VD->getType();
2217 // dereferencing to a pointer is always a gc'able candidate,
2218 // unless it is __weak.
2219 return T->isPointerType() &&
2220 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2221 }
2222 return false;
2223 }
2224 case MemberExprClass: {
2225 const MemberExpr *M = cast<MemberExpr>(E);
2226 return M->getBase()->isOBJCGCCandidate(Ctx);
2227 }
2228 case ArraySubscriptExprClass:
2229 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2230 }
2231 }
2232
isBoundMemberFunction(ASTContext & Ctx) const2233 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2234 if (isTypeDependent())
2235 return false;
2236 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2237 }
2238
findBoundMemberType(const Expr * expr)2239 QualType Expr::findBoundMemberType(const Expr *expr) {
2240 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2241
2242 // Bound member expressions are always one of these possibilities:
2243 // x->m x.m x->*y x.*y
2244 // (possibly parenthesized)
2245
2246 expr = expr->IgnoreParens();
2247 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2248 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2249 return mem->getMemberDecl()->getType();
2250 }
2251
2252 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2253 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2254 ->getPointeeType();
2255 assert(type->isFunctionType());
2256 return type;
2257 }
2258
2259 assert(isa<UnresolvedMemberExpr>(expr));
2260 return QualType();
2261 }
2262
IgnoreParens()2263 Expr* Expr::IgnoreParens() {
2264 Expr* E = this;
2265 while (true) {
2266 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2267 E = P->getSubExpr();
2268 continue;
2269 }
2270 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2271 if (P->getOpcode() == UO_Extension) {
2272 E = P->getSubExpr();
2273 continue;
2274 }
2275 }
2276 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2277 if (!P->isResultDependent()) {
2278 E = P->getResultExpr();
2279 continue;
2280 }
2281 }
2282 return E;
2283 }
2284 }
2285
2286 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2287 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2288 Expr *Expr::IgnoreParenCasts() {
2289 Expr *E = this;
2290 while (true) {
2291 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2292 E = P->getSubExpr();
2293 continue;
2294 }
2295 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2296 E = P->getSubExpr();
2297 continue;
2298 }
2299 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2300 if (P->getOpcode() == UO_Extension) {
2301 E = P->getSubExpr();
2302 continue;
2303 }
2304 }
2305 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2306 if (!P->isResultDependent()) {
2307 E = P->getResultExpr();
2308 continue;
2309 }
2310 }
2311 if (MaterializeTemporaryExpr *Materialize
2312 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2313 E = Materialize->GetTemporaryExpr();
2314 continue;
2315 }
2316 if (SubstNonTypeTemplateParmExpr *NTTP
2317 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2318 E = NTTP->getReplacement();
2319 continue;
2320 }
2321 return E;
2322 }
2323 }
2324
2325 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2326 /// casts. This is intended purely as a temporary workaround for code
2327 /// that hasn't yet been rewritten to do the right thing about those
2328 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2329 Expr *Expr::IgnoreParenLValueCasts() {
2330 Expr *E = this;
2331 while (true) {
2332 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2333 E = P->getSubExpr();
2334 continue;
2335 } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2336 if (P->getCastKind() == CK_LValueToRValue) {
2337 E = P->getSubExpr();
2338 continue;
2339 }
2340 } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2341 if (P->getOpcode() == UO_Extension) {
2342 E = P->getSubExpr();
2343 continue;
2344 }
2345 } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2346 if (!P->isResultDependent()) {
2347 E = P->getResultExpr();
2348 continue;
2349 }
2350 } else if (MaterializeTemporaryExpr *Materialize
2351 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2352 E = Materialize->GetTemporaryExpr();
2353 continue;
2354 } else if (SubstNonTypeTemplateParmExpr *NTTP
2355 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2356 E = NTTP->getReplacement();
2357 continue;
2358 }
2359 break;
2360 }
2361 return E;
2362 }
2363
ignoreParenBaseCasts()2364 Expr *Expr::ignoreParenBaseCasts() {
2365 Expr *E = this;
2366 while (true) {
2367 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2368 E = P->getSubExpr();
2369 continue;
2370 }
2371 if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2372 if (CE->getCastKind() == CK_DerivedToBase ||
2373 CE->getCastKind() == CK_UncheckedDerivedToBase ||
2374 CE->getCastKind() == CK_NoOp) {
2375 E = CE->getSubExpr();
2376 continue;
2377 }
2378 }
2379
2380 return E;
2381 }
2382 }
2383
IgnoreParenImpCasts()2384 Expr *Expr::IgnoreParenImpCasts() {
2385 Expr *E = this;
2386 while (true) {
2387 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2388 E = P->getSubExpr();
2389 continue;
2390 }
2391 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2392 E = P->getSubExpr();
2393 continue;
2394 }
2395 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2396 if (P->getOpcode() == UO_Extension) {
2397 E = P->getSubExpr();
2398 continue;
2399 }
2400 }
2401 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2402 if (!P->isResultDependent()) {
2403 E = P->getResultExpr();
2404 continue;
2405 }
2406 }
2407 if (MaterializeTemporaryExpr *Materialize
2408 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2409 E = Materialize->GetTemporaryExpr();
2410 continue;
2411 }
2412 if (SubstNonTypeTemplateParmExpr *NTTP
2413 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2414 E = NTTP->getReplacement();
2415 continue;
2416 }
2417 return E;
2418 }
2419 }
2420
IgnoreConversionOperator()2421 Expr *Expr::IgnoreConversionOperator() {
2422 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2423 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2424 return MCE->getImplicitObjectArgument();
2425 }
2426 return this;
2427 }
2428
2429 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2430 /// value (including ptr->int casts of the same size). Strip off any
2431 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2432 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2433 Expr *E = this;
2434 while (true) {
2435 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2436 E = P->getSubExpr();
2437 continue;
2438 }
2439
2440 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2441 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2442 // ptr<->int casts of the same width. We also ignore all identity casts.
2443 Expr *SE = P->getSubExpr();
2444
2445 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2446 E = SE;
2447 continue;
2448 }
2449
2450 if ((E->getType()->isPointerType() ||
2451 E->getType()->isIntegralType(Ctx)) &&
2452 (SE->getType()->isPointerType() ||
2453 SE->getType()->isIntegralType(Ctx)) &&
2454 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2455 E = SE;
2456 continue;
2457 }
2458 }
2459
2460 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2461 if (P->getOpcode() == UO_Extension) {
2462 E = P->getSubExpr();
2463 continue;
2464 }
2465 }
2466
2467 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2468 if (!P->isResultDependent()) {
2469 E = P->getResultExpr();
2470 continue;
2471 }
2472 }
2473
2474 if (SubstNonTypeTemplateParmExpr *NTTP
2475 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2476 E = NTTP->getReplacement();
2477 continue;
2478 }
2479
2480 return E;
2481 }
2482 }
2483
isDefaultArgument() const2484 bool Expr::isDefaultArgument() const {
2485 const Expr *E = this;
2486 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2487 E = M->GetTemporaryExpr();
2488
2489 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2490 E = ICE->getSubExprAsWritten();
2491
2492 return isa<CXXDefaultArgExpr>(E);
2493 }
2494
2495 /// \brief Skip over any no-op casts and any temporary-binding
2496 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2497 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2498 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2499 E = M->GetTemporaryExpr();
2500
2501 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2502 if (ICE->getCastKind() == CK_NoOp)
2503 E = ICE->getSubExpr();
2504 else
2505 break;
2506 }
2507
2508 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2509 E = BE->getSubExpr();
2510
2511 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2512 if (ICE->getCastKind() == CK_NoOp)
2513 E = ICE->getSubExpr();
2514 else
2515 break;
2516 }
2517
2518 return E->IgnoreParens();
2519 }
2520
2521 /// isTemporaryObject - Determines if this expression produces a
2522 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2523 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2524 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2525 return false;
2526
2527 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2528
2529 // Temporaries are by definition pr-values of class type.
2530 if (!E->Classify(C).isPRValue()) {
2531 // In this context, property reference is a message call and is pr-value.
2532 if (!isa<ObjCPropertyRefExpr>(E))
2533 return false;
2534 }
2535
2536 // Black-list a few cases which yield pr-values of class type that don't
2537 // refer to temporaries of that type:
2538
2539 // - implicit derived-to-base conversions
2540 if (isa<ImplicitCastExpr>(E)) {
2541 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2542 case CK_DerivedToBase:
2543 case CK_UncheckedDerivedToBase:
2544 return false;
2545 default:
2546 break;
2547 }
2548 }
2549
2550 // - member expressions (all)
2551 if (isa<MemberExpr>(E))
2552 return false;
2553
2554 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2555 if (BO->isPtrMemOp())
2556 return false;
2557
2558 // - opaque values (all)
2559 if (isa<OpaqueValueExpr>(E))
2560 return false;
2561
2562 return true;
2563 }
2564
isImplicitCXXThis() const2565 bool Expr::isImplicitCXXThis() const {
2566 const Expr *E = this;
2567
2568 // Strip away parentheses and casts we don't care about.
2569 while (true) {
2570 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2571 E = Paren->getSubExpr();
2572 continue;
2573 }
2574
2575 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2576 if (ICE->getCastKind() == CK_NoOp ||
2577 ICE->getCastKind() == CK_LValueToRValue ||
2578 ICE->getCastKind() == CK_DerivedToBase ||
2579 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2580 E = ICE->getSubExpr();
2581 continue;
2582 }
2583 }
2584
2585 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2586 if (UnOp->getOpcode() == UO_Extension) {
2587 E = UnOp->getSubExpr();
2588 continue;
2589 }
2590 }
2591
2592 if (const MaterializeTemporaryExpr *M
2593 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2594 E = M->GetTemporaryExpr();
2595 continue;
2596 }
2597
2598 break;
2599 }
2600
2601 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2602 return This->isImplicit();
2603
2604 return false;
2605 }
2606
2607 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2608 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(ArrayRef<Expr * > Exprs)2609 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2610 for (unsigned I = 0; I < Exprs.size(); ++I)
2611 if (Exprs[I]->isTypeDependent())
2612 return true;
2613
2614 return false;
2615 }
2616
isConstantInitializer(ASTContext & Ctx,bool IsForRef) const2617 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2618 // This function is attempting whether an expression is an initializer
2619 // which can be evaluated at compile-time. isEvaluatable handles most
2620 // of the cases, but it can't deal with some initializer-specific
2621 // expressions, and it can't deal with aggregates; we deal with those here,
2622 // and fall back to isEvaluatable for the other cases.
2623
2624 // If we ever capture reference-binding directly in the AST, we can
2625 // kill the second parameter.
2626
2627 if (IsForRef) {
2628 EvalResult Result;
2629 return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2630 }
2631
2632 switch (getStmtClass()) {
2633 default: break;
2634 case IntegerLiteralClass:
2635 case FloatingLiteralClass:
2636 case StringLiteralClass:
2637 case ObjCStringLiteralClass:
2638 case ObjCEncodeExprClass:
2639 return true;
2640 case CXXTemporaryObjectExprClass:
2641 case CXXConstructExprClass: {
2642 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2643
2644 // Only if it's
2645 if (CE->getConstructor()->isTrivial()) {
2646 // 1) an application of the trivial default constructor or
2647 if (!CE->getNumArgs()) return true;
2648
2649 // 2) an elidable trivial copy construction of an operand which is
2650 // itself a constant initializer. Note that we consider the
2651 // operand on its own, *not* as a reference binding.
2652 if (CE->isElidable() &&
2653 CE->getArg(0)->isConstantInitializer(Ctx, false))
2654 return true;
2655 }
2656
2657 // 3) a foldable constexpr constructor.
2658 break;
2659 }
2660 case CompoundLiteralExprClass: {
2661 // This handles gcc's extension that allows global initializers like
2662 // "struct x {int x;} x = (struct x) {};".
2663 // FIXME: This accepts other cases it shouldn't!
2664 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2665 return Exp->isConstantInitializer(Ctx, false);
2666 }
2667 case InitListExprClass: {
2668 // FIXME: This doesn't deal with fields with reference types correctly.
2669 // FIXME: This incorrectly allows pointers cast to integers to be assigned
2670 // to bitfields.
2671 const InitListExpr *Exp = cast<InitListExpr>(this);
2672 unsigned numInits = Exp->getNumInits();
2673 for (unsigned i = 0; i < numInits; i++) {
2674 if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2675 return false;
2676 }
2677 return true;
2678 }
2679 case ImplicitValueInitExprClass:
2680 return true;
2681 case ParenExprClass:
2682 return cast<ParenExpr>(this)->getSubExpr()
2683 ->isConstantInitializer(Ctx, IsForRef);
2684 case GenericSelectionExprClass:
2685 if (cast<GenericSelectionExpr>(this)->isResultDependent())
2686 return false;
2687 return cast<GenericSelectionExpr>(this)->getResultExpr()
2688 ->isConstantInitializer(Ctx, IsForRef);
2689 case ChooseExprClass:
2690 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2691 ->isConstantInitializer(Ctx, IsForRef);
2692 case UnaryOperatorClass: {
2693 const UnaryOperator* Exp = cast<UnaryOperator>(this);
2694 if (Exp->getOpcode() == UO_Extension)
2695 return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2696 break;
2697 }
2698 case CXXFunctionalCastExprClass:
2699 case CXXStaticCastExprClass:
2700 case ImplicitCastExprClass:
2701 case CStyleCastExprClass: {
2702 const CastExpr *CE = cast<CastExpr>(this);
2703
2704 // If we're promoting an integer to an _Atomic type then this is constant
2705 // if the integer is constant. We also need to check the converse in case
2706 // someone does something like:
2707 //
2708 // int a = (_Atomic(int))42;
2709 //
2710 // I doubt anyone would write code like this directly, but it's quite
2711 // possible as the result of macro expansions.
2712 if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2713 CE->getCastKind() == CK_AtomicToNonAtomic)
2714 return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2715
2716 // Handle bitcasts of vector constants.
2717 if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2718 return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2719
2720 // Handle misc casts we want to ignore.
2721 // FIXME: Is it really safe to ignore all these?
2722 if (CE->getCastKind() == CK_NoOp ||
2723 CE->getCastKind() == CK_LValueToRValue ||
2724 CE->getCastKind() == CK_ToUnion ||
2725 CE->getCastKind() == CK_ConstructorConversion)
2726 return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2727
2728 break;
2729 }
2730 case MaterializeTemporaryExprClass:
2731 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2732 ->isConstantInitializer(Ctx, false);
2733 }
2734 return isEvaluatable(Ctx);
2735 }
2736
HasSideEffects(const ASTContext & Ctx) const2737 bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2738 if (isInstantiationDependent())
2739 return true;
2740
2741 switch (getStmtClass()) {
2742 case NoStmtClass:
2743 #define ABSTRACT_STMT(Type)
2744 #define STMT(Type, Base) case Type##Class:
2745 #define EXPR(Type, Base)
2746 #include "clang/AST/StmtNodes.inc"
2747 llvm_unreachable("unexpected Expr kind");
2748
2749 case DependentScopeDeclRefExprClass:
2750 case CXXUnresolvedConstructExprClass:
2751 case CXXDependentScopeMemberExprClass:
2752 case UnresolvedLookupExprClass:
2753 case UnresolvedMemberExprClass:
2754 case PackExpansionExprClass:
2755 case SubstNonTypeTemplateParmPackExprClass:
2756 case FunctionParmPackExprClass:
2757 llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2758
2759 case DeclRefExprClass:
2760 case ObjCIvarRefExprClass:
2761 case PredefinedExprClass:
2762 case IntegerLiteralClass:
2763 case FloatingLiteralClass:
2764 case ImaginaryLiteralClass:
2765 case StringLiteralClass:
2766 case CharacterLiteralClass:
2767 case OffsetOfExprClass:
2768 case ImplicitValueInitExprClass:
2769 case UnaryExprOrTypeTraitExprClass:
2770 case AddrLabelExprClass:
2771 case GNUNullExprClass:
2772 case CXXBoolLiteralExprClass:
2773 case CXXNullPtrLiteralExprClass:
2774 case CXXThisExprClass:
2775 case CXXScalarValueInitExprClass:
2776 case TypeTraitExprClass:
2777 case UnaryTypeTraitExprClass:
2778 case BinaryTypeTraitExprClass:
2779 case ArrayTypeTraitExprClass:
2780 case ExpressionTraitExprClass:
2781 case CXXNoexceptExprClass:
2782 case SizeOfPackExprClass:
2783 case ObjCStringLiteralClass:
2784 case ObjCEncodeExprClass:
2785 case ObjCBoolLiteralExprClass:
2786 case CXXUuidofExprClass:
2787 case OpaqueValueExprClass:
2788 // These never have a side-effect.
2789 return false;
2790
2791 case CallExprClass:
2792 case CompoundAssignOperatorClass:
2793 case VAArgExprClass:
2794 case AtomicExprClass:
2795 case StmtExprClass:
2796 case CXXOperatorCallExprClass:
2797 case CXXMemberCallExprClass:
2798 case UserDefinedLiteralClass:
2799 case CXXThrowExprClass:
2800 case CXXNewExprClass:
2801 case CXXDeleteExprClass:
2802 case ExprWithCleanupsClass:
2803 case CXXBindTemporaryExprClass:
2804 case BlockExprClass:
2805 case CUDAKernelCallExprClass:
2806 // These always have a side-effect.
2807 return true;
2808
2809 case ParenExprClass:
2810 case ArraySubscriptExprClass:
2811 case MemberExprClass:
2812 case ConditionalOperatorClass:
2813 case BinaryConditionalOperatorClass:
2814 case CompoundLiteralExprClass:
2815 case ExtVectorElementExprClass:
2816 case DesignatedInitExprClass:
2817 case ParenListExprClass:
2818 case CXXPseudoDestructorExprClass:
2819 case SubstNonTypeTemplateParmExprClass:
2820 case MaterializeTemporaryExprClass:
2821 case ShuffleVectorExprClass:
2822 case AsTypeExprClass:
2823 // These have a side-effect if any subexpression does.
2824 break;
2825
2826 case UnaryOperatorClass:
2827 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2828 return true;
2829 break;
2830
2831 case BinaryOperatorClass:
2832 if (cast<BinaryOperator>(this)->isAssignmentOp())
2833 return true;
2834 break;
2835
2836 case InitListExprClass:
2837 // FIXME: The children for an InitListExpr doesn't include the array filler.
2838 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2839 if (E->HasSideEffects(Ctx))
2840 return true;
2841 break;
2842
2843 case GenericSelectionExprClass:
2844 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2845 HasSideEffects(Ctx);
2846
2847 case ChooseExprClass:
2848 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->HasSideEffects(Ctx);
2849
2850 case CXXDefaultArgExprClass:
2851 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2852
2853 case CXXDynamicCastExprClass: {
2854 // A dynamic_cast expression has side-effects if it can throw.
2855 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2856 if (DCE->getTypeAsWritten()->isReferenceType() &&
2857 DCE->getCastKind() == CK_Dynamic)
2858 return true;
2859 } // Fall through.
2860 case ImplicitCastExprClass:
2861 case CStyleCastExprClass:
2862 case CXXStaticCastExprClass:
2863 case CXXReinterpretCastExprClass:
2864 case CXXConstCastExprClass:
2865 case CXXFunctionalCastExprClass: {
2866 const CastExpr *CE = cast<CastExpr>(this);
2867 if (CE->getCastKind() == CK_LValueToRValue &&
2868 CE->getSubExpr()->getType().isVolatileQualified())
2869 return true;
2870 break;
2871 }
2872
2873 case CXXTypeidExprClass:
2874 // typeid might throw if its subexpression is potentially-evaluated, so has
2875 // side-effects in that case whether or not its subexpression does.
2876 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2877
2878 case CXXConstructExprClass:
2879 case CXXTemporaryObjectExprClass: {
2880 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2881 if (!CE->getConstructor()->isTrivial())
2882 return true;
2883 // A trivial constructor does not add any side-effects of its own. Just look
2884 // at its arguments.
2885 break;
2886 }
2887
2888 case LambdaExprClass: {
2889 const LambdaExpr *LE = cast<LambdaExpr>(this);
2890 for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2891 E = LE->capture_end(); I != E; ++I)
2892 if (I->getCaptureKind() == LCK_ByCopy)
2893 // FIXME: Only has a side-effect if the variable is volatile or if
2894 // the copy would invoke a non-trivial copy constructor.
2895 return true;
2896 return false;
2897 }
2898
2899 case PseudoObjectExprClass: {
2900 // Only look for side-effects in the semantic form, and look past
2901 // OpaqueValueExpr bindings in that form.
2902 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2903 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2904 E = PO->semantics_end();
2905 I != E; ++I) {
2906 const Expr *Subexpr = *I;
2907 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2908 Subexpr = OVE->getSourceExpr();
2909 if (Subexpr->HasSideEffects(Ctx))
2910 return true;
2911 }
2912 return false;
2913 }
2914
2915 case ObjCBoxedExprClass:
2916 case ObjCArrayLiteralClass:
2917 case ObjCDictionaryLiteralClass:
2918 case ObjCMessageExprClass:
2919 case ObjCSelectorExprClass:
2920 case ObjCProtocolExprClass:
2921 case ObjCPropertyRefExprClass:
2922 case ObjCIsaExprClass:
2923 case ObjCIndirectCopyRestoreExprClass:
2924 case ObjCSubscriptRefExprClass:
2925 case ObjCBridgedCastExprClass:
2926 // FIXME: Classify these cases better.
2927 return true;
2928 }
2929
2930 // Recurse to children.
2931 for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2932 if (const Stmt *S = *SubStmts)
2933 if (cast<Expr>(S)->HasSideEffects(Ctx))
2934 return true;
2935
2936 return false;
2937 }
2938
2939 namespace {
2940 /// \brief Look for a call to a non-trivial function within an expression.
2941 class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2942 {
2943 typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2944
2945 bool NonTrivial;
2946
2947 public:
NonTrivialCallFinder(ASTContext & Context)2948 explicit NonTrivialCallFinder(ASTContext &Context)
2949 : Inherited(Context), NonTrivial(false) { }
2950
hasNonTrivialCall() const2951 bool hasNonTrivialCall() const { return NonTrivial; }
2952
VisitCallExpr(CallExpr * E)2953 void VisitCallExpr(CallExpr *E) {
2954 if (CXXMethodDecl *Method
2955 = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2956 if (Method->isTrivial()) {
2957 // Recurse to children of the call.
2958 Inherited::VisitStmt(E);
2959 return;
2960 }
2961 }
2962
2963 NonTrivial = true;
2964 }
2965
VisitCXXConstructExpr(CXXConstructExpr * E)2966 void VisitCXXConstructExpr(CXXConstructExpr *E) {
2967 if (E->getConstructor()->isTrivial()) {
2968 // Recurse to children of the call.
2969 Inherited::VisitStmt(E);
2970 return;
2971 }
2972
2973 NonTrivial = true;
2974 }
2975
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)2976 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2977 if (E->getTemporary()->getDestructor()->isTrivial()) {
2978 Inherited::VisitStmt(E);
2979 return;
2980 }
2981
2982 NonTrivial = true;
2983 }
2984 };
2985 }
2986
hasNonTrivialCall(ASTContext & Ctx)2987 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2988 NonTrivialCallFinder Finder(Ctx);
2989 Finder.Visit(this);
2990 return Finder.hasNonTrivialCall();
2991 }
2992
2993 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2994 /// pointer constant or not, as well as the specific kind of constant detected.
2995 /// Null pointer constants can be integer constant expressions with the
2996 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
2997 /// (a GNU extension).
2998 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const2999 Expr::isNullPointerConstant(ASTContext &Ctx,
3000 NullPointerConstantValueDependence NPC) const {
3001 if (isValueDependent()) {
3002 switch (NPC) {
3003 case NPC_NeverValueDependent:
3004 llvm_unreachable("Unexpected value dependent expression!");
3005 case NPC_ValueDependentIsNull:
3006 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3007 return NPCK_ZeroExpression;
3008 else
3009 return NPCK_NotNull;
3010
3011 case NPC_ValueDependentIsNotNull:
3012 return NPCK_NotNull;
3013 }
3014 }
3015
3016 // Strip off a cast to void*, if it exists. Except in C++.
3017 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3018 if (!Ctx.getLangOpts().CPlusPlus) {
3019 // Check that it is a cast to void*.
3020 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3021 QualType Pointee = PT->getPointeeType();
3022 if (!Pointee.hasQualifiers() &&
3023 Pointee->isVoidType() && // to void*
3024 CE->getSubExpr()->getType()->isIntegerType()) // from int.
3025 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3026 }
3027 }
3028 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3029 // Ignore the ImplicitCastExpr type entirely.
3030 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3031 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3032 // Accept ((void*)0) as a null pointer constant, as many other
3033 // implementations do.
3034 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3035 } else if (const GenericSelectionExpr *GE =
3036 dyn_cast<GenericSelectionExpr>(this)) {
3037 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3038 } else if (const CXXDefaultArgExpr *DefaultArg
3039 = dyn_cast<CXXDefaultArgExpr>(this)) {
3040 // See through default argument expressions
3041 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3042 } else if (isa<GNUNullExpr>(this)) {
3043 // The GNU __null extension is always a null pointer constant.
3044 return NPCK_GNUNull;
3045 } else if (const MaterializeTemporaryExpr *M
3046 = dyn_cast<MaterializeTemporaryExpr>(this)) {
3047 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3048 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3049 if (const Expr *Source = OVE->getSourceExpr())
3050 return Source->isNullPointerConstant(Ctx, NPC);
3051 }
3052
3053 // C++11 nullptr_t is always a null pointer constant.
3054 if (getType()->isNullPtrType())
3055 return NPCK_CXX11_nullptr;
3056
3057 if (const RecordType *UT = getType()->getAsUnionType())
3058 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3059 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3060 const Expr *InitExpr = CLE->getInitializer();
3061 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3062 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3063 }
3064 // This expression must be an integer type.
3065 if (!getType()->isIntegerType() ||
3066 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3067 return NPCK_NotNull;
3068
3069 // If we have an integer constant expression, we need to *evaluate* it and
3070 // test for the value 0. Don't use the C++11 constant expression semantics
3071 // for this, for now; once the dust settles on core issue 903, we might only
3072 // allow a literal 0 here in C++11 mode.
3073 if (Ctx.getLangOpts().CPlusPlus11) {
3074 if (!isCXX98IntegralConstantExpr(Ctx))
3075 return NPCK_NotNull;
3076 } else {
3077 if (!isIntegerConstantExpr(Ctx))
3078 return NPCK_NotNull;
3079 }
3080
3081 if (EvaluateKnownConstInt(Ctx) != 0)
3082 return NPCK_NotNull;
3083
3084 if (isa<IntegerLiteral>(this))
3085 return NPCK_ZeroLiteral;
3086 return NPCK_ZeroExpression;
3087 }
3088
3089 /// \brief If this expression is an l-value for an Objective C
3090 /// property, find the underlying property reference expression.
getObjCProperty() const3091 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3092 const Expr *E = this;
3093 while (true) {
3094 assert((E->getValueKind() == VK_LValue &&
3095 E->getObjectKind() == OK_ObjCProperty) &&
3096 "expression is not a property reference");
3097 E = E->IgnoreParenCasts();
3098 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3099 if (BO->getOpcode() == BO_Comma) {
3100 E = BO->getRHS();
3101 continue;
3102 }
3103 }
3104
3105 break;
3106 }
3107
3108 return cast<ObjCPropertyRefExpr>(E);
3109 }
3110
isObjCSelfExpr() const3111 bool Expr::isObjCSelfExpr() const {
3112 const Expr *E = IgnoreParenImpCasts();
3113
3114 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3115 if (!DRE)
3116 return false;
3117
3118 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3119 if (!Param)
3120 return false;
3121
3122 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3123 if (!M)
3124 return false;
3125
3126 return M->getSelfDecl() == Param;
3127 }
3128
getBitField()3129 FieldDecl *Expr::getBitField() {
3130 Expr *E = this->IgnoreParens();
3131
3132 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3133 if (ICE->getCastKind() == CK_LValueToRValue ||
3134 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3135 E = ICE->getSubExpr()->IgnoreParens();
3136 else
3137 break;
3138 }
3139
3140 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3141 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3142 if (Field->isBitField())
3143 return Field;
3144
3145 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3146 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3147 if (Field->isBitField())
3148 return Field;
3149
3150 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3151 if (BinOp->isAssignmentOp() && BinOp->getLHS())
3152 return BinOp->getLHS()->getBitField();
3153
3154 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3155 return BinOp->getRHS()->getBitField();
3156 }
3157
3158 return 0;
3159 }
3160
refersToVectorElement() const3161 bool Expr::refersToVectorElement() const {
3162 const Expr *E = this->IgnoreParens();
3163
3164 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3165 if (ICE->getValueKind() != VK_RValue &&
3166 ICE->getCastKind() == CK_NoOp)
3167 E = ICE->getSubExpr()->IgnoreParens();
3168 else
3169 break;
3170 }
3171
3172 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3173 return ASE->getBase()->getType()->isVectorType();
3174
3175 if (isa<ExtVectorElementExpr>(E))
3176 return true;
3177
3178 return false;
3179 }
3180
3181 /// isArrow - Return true if the base expression is a pointer to vector,
3182 /// return false if the base expression is a vector.
isArrow() const3183 bool ExtVectorElementExpr::isArrow() const {
3184 return getBase()->getType()->isPointerType();
3185 }
3186
getNumElements() const3187 unsigned ExtVectorElementExpr::getNumElements() const {
3188 if (const VectorType *VT = getType()->getAs<VectorType>())
3189 return VT->getNumElements();
3190 return 1;
3191 }
3192
3193 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const3194 bool ExtVectorElementExpr::containsDuplicateElements() const {
3195 // FIXME: Refactor this code to an accessor on the AST node which returns the
3196 // "type" of component access, and share with code below and in Sema.
3197 StringRef Comp = Accessor->getName();
3198
3199 // Halving swizzles do not contain duplicate elements.
3200 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3201 return false;
3202
3203 // Advance past s-char prefix on hex swizzles.
3204 if (Comp[0] == 's' || Comp[0] == 'S')
3205 Comp = Comp.substr(1);
3206
3207 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3208 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3209 return true;
3210
3211 return false;
3212 }
3213
3214 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<unsigned> & Elts) const3215 void ExtVectorElementExpr::getEncodedElementAccess(
3216 SmallVectorImpl<unsigned> &Elts) const {
3217 StringRef Comp = Accessor->getName();
3218 if (Comp[0] == 's' || Comp[0] == 'S')
3219 Comp = Comp.substr(1);
3220
3221 bool isHi = Comp == "hi";
3222 bool isLo = Comp == "lo";
3223 bool isEven = Comp == "even";
3224 bool isOdd = Comp == "odd";
3225
3226 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3227 uint64_t Index;
3228
3229 if (isHi)
3230 Index = e + i;
3231 else if (isLo)
3232 Index = i;
3233 else if (isEven)
3234 Index = 2 * i;
3235 else if (isOdd)
3236 Index = 2 * i + 1;
3237 else
3238 Index = ExtVectorType::getAccessorIdx(Comp[i]);
3239
3240 Elts.push_back(Index);
3241 }
3242 }
3243
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3244 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3245 ExprValueKind VK,
3246 SourceLocation LBracLoc,
3247 SourceLocation SuperLoc,
3248 bool IsInstanceSuper,
3249 QualType SuperType,
3250 Selector Sel,
3251 ArrayRef<SourceLocation> SelLocs,
3252 SelectorLocationsKind SelLocsK,
3253 ObjCMethodDecl *Method,
3254 ArrayRef<Expr *> Args,
3255 SourceLocation RBracLoc,
3256 bool isImplicit)
3257 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3258 /*TypeDependent=*/false, /*ValueDependent=*/false,
3259 /*InstantiationDependent=*/false,
3260 /*ContainsUnexpandedParameterPack=*/false),
3261 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3262 : Sel.getAsOpaquePtr())),
3263 Kind(IsInstanceSuper? SuperInstance : SuperClass),
3264 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3265 SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3266 {
3267 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3268 setReceiverPointer(SuperType.getAsOpaquePtr());
3269 }
3270
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3271 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3272 ExprValueKind VK,
3273 SourceLocation LBracLoc,
3274 TypeSourceInfo *Receiver,
3275 Selector Sel,
3276 ArrayRef<SourceLocation> SelLocs,
3277 SelectorLocationsKind SelLocsK,
3278 ObjCMethodDecl *Method,
3279 ArrayRef<Expr *> Args,
3280 SourceLocation RBracLoc,
3281 bool isImplicit)
3282 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3283 T->isDependentType(), T->isInstantiationDependentType(),
3284 T->containsUnexpandedParameterPack()),
3285 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3286 : Sel.getAsOpaquePtr())),
3287 Kind(Class),
3288 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3289 LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3290 {
3291 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3292 setReceiverPointer(Receiver);
3293 }
3294
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3295 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3296 ExprValueKind VK,
3297 SourceLocation LBracLoc,
3298 Expr *Receiver,
3299 Selector Sel,
3300 ArrayRef<SourceLocation> SelLocs,
3301 SelectorLocationsKind SelLocsK,
3302 ObjCMethodDecl *Method,
3303 ArrayRef<Expr *> Args,
3304 SourceLocation RBracLoc,
3305 bool isImplicit)
3306 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3307 Receiver->isTypeDependent(),
3308 Receiver->isInstantiationDependent(),
3309 Receiver->containsUnexpandedParameterPack()),
3310 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3311 : Sel.getAsOpaquePtr())),
3312 Kind(Instance),
3313 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3314 LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3315 {
3316 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3317 setReceiverPointer(Receiver);
3318 }
3319
initArgsAndSelLocs(ArrayRef<Expr * > Args,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK)3320 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3321 ArrayRef<SourceLocation> SelLocs,
3322 SelectorLocationsKind SelLocsK) {
3323 setNumArgs(Args.size());
3324 Expr **MyArgs = getArgs();
3325 for (unsigned I = 0; I != Args.size(); ++I) {
3326 if (Args[I]->isTypeDependent())
3327 ExprBits.TypeDependent = true;
3328 if (Args[I]->isValueDependent())
3329 ExprBits.ValueDependent = true;
3330 if (Args[I]->isInstantiationDependent())
3331 ExprBits.InstantiationDependent = true;
3332 if (Args[I]->containsUnexpandedParameterPack())
3333 ExprBits.ContainsUnexpandedParameterPack = true;
3334
3335 MyArgs[I] = Args[I];
3336 }
3337
3338 SelLocsKind = SelLocsK;
3339 if (!isImplicit()) {
3340 if (SelLocsK == SelLoc_NonStandard)
3341 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3342 }
3343 }
3344
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3345 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3346 ExprValueKind VK,
3347 SourceLocation LBracLoc,
3348 SourceLocation SuperLoc,
3349 bool IsInstanceSuper,
3350 QualType SuperType,
3351 Selector Sel,
3352 ArrayRef<SourceLocation> SelLocs,
3353 ObjCMethodDecl *Method,
3354 ArrayRef<Expr *> Args,
3355 SourceLocation RBracLoc,
3356 bool isImplicit) {
3357 assert((!SelLocs.empty() || isImplicit) &&
3358 "No selector locs for non-implicit message");
3359 ObjCMessageExpr *Mem;
3360 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3361 if (isImplicit)
3362 Mem = alloc(Context, Args.size(), 0);
3363 else
3364 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3365 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3366 SuperType, Sel, SelLocs, SelLocsK,
3367 Method, Args, RBracLoc, isImplicit);
3368 }
3369
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3370 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3371 ExprValueKind VK,
3372 SourceLocation LBracLoc,
3373 TypeSourceInfo *Receiver,
3374 Selector Sel,
3375 ArrayRef<SourceLocation> SelLocs,
3376 ObjCMethodDecl *Method,
3377 ArrayRef<Expr *> Args,
3378 SourceLocation RBracLoc,
3379 bool isImplicit) {
3380 assert((!SelLocs.empty() || isImplicit) &&
3381 "No selector locs for non-implicit message");
3382 ObjCMessageExpr *Mem;
3383 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3384 if (isImplicit)
3385 Mem = alloc(Context, Args.size(), 0);
3386 else
3387 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3388 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3389 SelLocs, SelLocsK, Method, Args, RBracLoc,
3390 isImplicit);
3391 }
3392
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3393 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3394 ExprValueKind VK,
3395 SourceLocation LBracLoc,
3396 Expr *Receiver,
3397 Selector Sel,
3398 ArrayRef<SourceLocation> SelLocs,
3399 ObjCMethodDecl *Method,
3400 ArrayRef<Expr *> Args,
3401 SourceLocation RBracLoc,
3402 bool isImplicit) {
3403 assert((!SelLocs.empty() || isImplicit) &&
3404 "No selector locs for non-implicit message");
3405 ObjCMessageExpr *Mem;
3406 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3407 if (isImplicit)
3408 Mem = alloc(Context, Args.size(), 0);
3409 else
3410 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3411 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3412 SelLocs, SelLocsK, Method, Args, RBracLoc,
3413 isImplicit);
3414 }
3415
CreateEmpty(ASTContext & Context,unsigned NumArgs,unsigned NumStoredSelLocs)3416 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3417 unsigned NumArgs,
3418 unsigned NumStoredSelLocs) {
3419 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3420 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3421 }
3422
alloc(ASTContext & C,ArrayRef<Expr * > Args,SourceLocation RBraceLoc,ArrayRef<SourceLocation> SelLocs,Selector Sel,SelectorLocationsKind & SelLocsK)3423 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3424 ArrayRef<Expr *> Args,
3425 SourceLocation RBraceLoc,
3426 ArrayRef<SourceLocation> SelLocs,
3427 Selector Sel,
3428 SelectorLocationsKind &SelLocsK) {
3429 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3430 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3431 : 0;
3432 return alloc(C, Args.size(), NumStoredSelLocs);
3433 }
3434
alloc(ASTContext & C,unsigned NumArgs,unsigned NumStoredSelLocs)3435 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3436 unsigned NumArgs,
3437 unsigned NumStoredSelLocs) {
3438 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3439 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3440 return (ObjCMessageExpr *)C.Allocate(Size,
3441 llvm::AlignOf<ObjCMessageExpr>::Alignment);
3442 }
3443
getSelectorLocs(SmallVectorImpl<SourceLocation> & SelLocs) const3444 void ObjCMessageExpr::getSelectorLocs(
3445 SmallVectorImpl<SourceLocation> &SelLocs) const {
3446 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3447 SelLocs.push_back(getSelectorLoc(i));
3448 }
3449
getReceiverRange() const3450 SourceRange ObjCMessageExpr::getReceiverRange() const {
3451 switch (getReceiverKind()) {
3452 case Instance:
3453 return getInstanceReceiver()->getSourceRange();
3454
3455 case Class:
3456 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3457
3458 case SuperInstance:
3459 case SuperClass:
3460 return getSuperLoc();
3461 }
3462
3463 llvm_unreachable("Invalid ReceiverKind!");
3464 }
3465
getSelector() const3466 Selector ObjCMessageExpr::getSelector() const {
3467 if (HasMethod)
3468 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3469 ->getSelector();
3470 return Selector(SelectorOrMethod);
3471 }
3472
getReceiverType() const3473 QualType ObjCMessageExpr::getReceiverType() const {
3474 switch (getReceiverKind()) {
3475 case Instance:
3476 return getInstanceReceiver()->getType();
3477 case Class:
3478 return getClassReceiver();
3479 case SuperInstance:
3480 case SuperClass:
3481 return getSuperType();
3482 }
3483
3484 llvm_unreachable("unexpected receiver kind");
3485 }
3486
getReceiverInterface() const3487 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3488 QualType T = getReceiverType();
3489
3490 if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3491 return Ptr->getInterfaceDecl();
3492
3493 if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3494 return Ty->getInterface();
3495
3496 return 0;
3497 }
3498
getBridgeKindName() const3499 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3500 switch (getBridgeKind()) {
3501 case OBC_Bridge:
3502 return "__bridge";
3503 case OBC_BridgeTransfer:
3504 return "__bridge_transfer";
3505 case OBC_BridgeRetained:
3506 return "__bridge_retained";
3507 }
3508
3509 llvm_unreachable("Invalid BridgeKind!");
3510 }
3511
isConditionTrue(const ASTContext & C) const3512 bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3513 return getCond()->EvaluateKnownConstInt(C) != 0;
3514 }
3515
ShuffleVectorExpr(ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)3516 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
3517 QualType Type, SourceLocation BLoc,
3518 SourceLocation RP)
3519 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3520 Type->isDependentType(), Type->isDependentType(),
3521 Type->isInstantiationDependentType(),
3522 Type->containsUnexpandedParameterPack()),
3523 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3524 {
3525 SubExprs = new (C) Stmt*[args.size()];
3526 for (unsigned i = 0; i != args.size(); i++) {
3527 if (args[i]->isTypeDependent())
3528 ExprBits.TypeDependent = true;
3529 if (args[i]->isValueDependent())
3530 ExprBits.ValueDependent = true;
3531 if (args[i]->isInstantiationDependent())
3532 ExprBits.InstantiationDependent = true;
3533 if (args[i]->containsUnexpandedParameterPack())
3534 ExprBits.ContainsUnexpandedParameterPack = true;
3535
3536 SubExprs[i] = args[i];
3537 }
3538 }
3539
setExprs(ASTContext & C,Expr ** Exprs,unsigned NumExprs)3540 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3541 unsigned NumExprs) {
3542 if (SubExprs) C.Deallocate(SubExprs);
3543
3544 SubExprs = new (C) Stmt* [NumExprs];
3545 this->NumExprs = NumExprs;
3546 memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3547 }
3548
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3549 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3550 SourceLocation GenericLoc, Expr *ControllingExpr,
3551 ArrayRef<TypeSourceInfo*> AssocTypes,
3552 ArrayRef<Expr*> AssocExprs,
3553 SourceLocation DefaultLoc,
3554 SourceLocation RParenLoc,
3555 bool ContainsUnexpandedParameterPack,
3556 unsigned ResultIndex)
3557 : Expr(GenericSelectionExprClass,
3558 AssocExprs[ResultIndex]->getType(),
3559 AssocExprs[ResultIndex]->getValueKind(),
3560 AssocExprs[ResultIndex]->getObjectKind(),
3561 AssocExprs[ResultIndex]->isTypeDependent(),
3562 AssocExprs[ResultIndex]->isValueDependent(),
3563 AssocExprs[ResultIndex]->isInstantiationDependent(),
3564 ContainsUnexpandedParameterPack),
3565 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3566 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3567 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3568 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3569 SubExprs[CONTROLLING] = ControllingExpr;
3570 assert(AssocTypes.size() == AssocExprs.size());
3571 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3572 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3573 }
3574
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3575 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3576 SourceLocation GenericLoc, Expr *ControllingExpr,
3577 ArrayRef<TypeSourceInfo*> AssocTypes,
3578 ArrayRef<Expr*> AssocExprs,
3579 SourceLocation DefaultLoc,
3580 SourceLocation RParenLoc,
3581 bool ContainsUnexpandedParameterPack)
3582 : Expr(GenericSelectionExprClass,
3583 Context.DependentTy,
3584 VK_RValue,
3585 OK_Ordinary,
3586 /*isTypeDependent=*/true,
3587 /*isValueDependent=*/true,
3588 /*isInstantiationDependent=*/true,
3589 ContainsUnexpandedParameterPack),
3590 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3591 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3592 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3593 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3594 SubExprs[CONTROLLING] = ControllingExpr;
3595 assert(AssocTypes.size() == AssocExprs.size());
3596 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3597 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3598 }
3599
3600 //===----------------------------------------------------------------------===//
3601 // DesignatedInitExpr
3602 //===----------------------------------------------------------------------===//
3603
getFieldName() const3604 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3605 assert(Kind == FieldDesignator && "Only valid on a field designator");
3606 if (Field.NameOrField & 0x01)
3607 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3608 else
3609 return getField()->getIdentifier();
3610 }
3611
DesignatedInitExpr(ASTContext & C,QualType Ty,unsigned NumDesignators,const Designator * Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)3612 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3613 unsigned NumDesignators,
3614 const Designator *Designators,
3615 SourceLocation EqualOrColonLoc,
3616 bool GNUSyntax,
3617 ArrayRef<Expr*> IndexExprs,
3618 Expr *Init)
3619 : Expr(DesignatedInitExprClass, Ty,
3620 Init->getValueKind(), Init->getObjectKind(),
3621 Init->isTypeDependent(), Init->isValueDependent(),
3622 Init->isInstantiationDependent(),
3623 Init->containsUnexpandedParameterPack()),
3624 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3625 NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3626 this->Designators = new (C) Designator[NumDesignators];
3627
3628 // Record the initializer itself.
3629 child_range Child = children();
3630 *Child++ = Init;
3631
3632 // Copy the designators and their subexpressions, computing
3633 // value-dependence along the way.
3634 unsigned IndexIdx = 0;
3635 for (unsigned I = 0; I != NumDesignators; ++I) {
3636 this->Designators[I] = Designators[I];
3637
3638 if (this->Designators[I].isArrayDesignator()) {
3639 // Compute type- and value-dependence.
3640 Expr *Index = IndexExprs[IndexIdx];
3641 if (Index->isTypeDependent() || Index->isValueDependent())
3642 ExprBits.ValueDependent = true;
3643 if (Index->isInstantiationDependent())
3644 ExprBits.InstantiationDependent = true;
3645 // Propagate unexpanded parameter packs.
3646 if (Index->containsUnexpandedParameterPack())
3647 ExprBits.ContainsUnexpandedParameterPack = true;
3648
3649 // Copy the index expressions into permanent storage.
3650 *Child++ = IndexExprs[IndexIdx++];
3651 } else if (this->Designators[I].isArrayRangeDesignator()) {
3652 // Compute type- and value-dependence.
3653 Expr *Start = IndexExprs[IndexIdx];
3654 Expr *End = IndexExprs[IndexIdx + 1];
3655 if (Start->isTypeDependent() || Start->isValueDependent() ||
3656 End->isTypeDependent() || End->isValueDependent()) {
3657 ExprBits.ValueDependent = true;
3658 ExprBits.InstantiationDependent = true;
3659 } else if (Start->isInstantiationDependent() ||
3660 End->isInstantiationDependent()) {
3661 ExprBits.InstantiationDependent = true;
3662 }
3663
3664 // Propagate unexpanded parameter packs.
3665 if (Start->containsUnexpandedParameterPack() ||
3666 End->containsUnexpandedParameterPack())
3667 ExprBits.ContainsUnexpandedParameterPack = true;
3668
3669 // Copy the start/end expressions into permanent storage.
3670 *Child++ = IndexExprs[IndexIdx++];
3671 *Child++ = IndexExprs[IndexIdx++];
3672 }
3673 }
3674
3675 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3676 }
3677
3678 DesignatedInitExpr *
Create(ASTContext & C,Designator * Designators,unsigned NumDesignators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3679 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3680 unsigned NumDesignators,
3681 ArrayRef<Expr*> IndexExprs,
3682 SourceLocation ColonOrEqualLoc,
3683 bool UsesColonSyntax, Expr *Init) {
3684 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3685 sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3686 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3687 ColonOrEqualLoc, UsesColonSyntax,
3688 IndexExprs, Init);
3689 }
3690
CreateEmpty(ASTContext & C,unsigned NumIndexExprs)3691 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3692 unsigned NumIndexExprs) {
3693 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3694 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3695 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3696 }
3697
setDesignators(ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3698 void DesignatedInitExpr::setDesignators(ASTContext &C,
3699 const Designator *Desigs,
3700 unsigned NumDesigs) {
3701 Designators = new (C) Designator[NumDesigs];
3702 NumDesignators = NumDesigs;
3703 for (unsigned I = 0; I != NumDesigs; ++I)
3704 Designators[I] = Desigs[I];
3705 }
3706
getDesignatorsSourceRange() const3707 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3708 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3709 if (size() == 1)
3710 return DIE->getDesignator(0)->getSourceRange();
3711 return SourceRange(DIE->getDesignator(0)->getLocStart(),
3712 DIE->getDesignator(size()-1)->getLocEnd());
3713 }
3714
getLocStart() const3715 SourceLocation DesignatedInitExpr::getLocStart() const {
3716 SourceLocation StartLoc;
3717 Designator &First =
3718 *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3719 if (First.isFieldDesignator()) {
3720 if (GNUSyntax)
3721 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3722 else
3723 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3724 } else
3725 StartLoc =
3726 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3727 return StartLoc;
3728 }
3729
getLocEnd() const3730 SourceLocation DesignatedInitExpr::getLocEnd() const {
3731 return getInit()->getLocEnd();
3732 }
3733
getArrayIndex(const Designator & D) const3734 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3735 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3736 char *Ptr = static_cast<char *>(
3737 const_cast<void *>(static_cast<const void *>(this)));
3738 Ptr += sizeof(DesignatedInitExpr);
3739 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3740 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3741 }
3742
getArrayRangeStart(const Designator & D) const3743 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3744 assert(D.Kind == Designator::ArrayRangeDesignator &&
3745 "Requires array range designator");
3746 char *Ptr = static_cast<char *>(
3747 const_cast<void *>(static_cast<const void *>(this)));
3748 Ptr += sizeof(DesignatedInitExpr);
3749 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3750 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3751 }
3752
getArrayRangeEnd(const Designator & D) const3753 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3754 assert(D.Kind == Designator::ArrayRangeDesignator &&
3755 "Requires array range designator");
3756 char *Ptr = static_cast<char *>(
3757 const_cast<void *>(static_cast<const void *>(this)));
3758 Ptr += sizeof(DesignatedInitExpr);
3759 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3760 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3761 }
3762
3763 /// \brief Replaces the designator at index @p Idx with the series
3764 /// of designators in [First, Last).
ExpandDesignator(ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3765 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3766 const Designator *First,
3767 const Designator *Last) {
3768 unsigned NumNewDesignators = Last - First;
3769 if (NumNewDesignators == 0) {
3770 std::copy_backward(Designators + Idx + 1,
3771 Designators + NumDesignators,
3772 Designators + Idx);
3773 --NumNewDesignators;
3774 return;
3775 } else if (NumNewDesignators == 1) {
3776 Designators[Idx] = *First;
3777 return;
3778 }
3779
3780 Designator *NewDesignators
3781 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3782 std::copy(Designators, Designators + Idx, NewDesignators);
3783 std::copy(First, Last, NewDesignators + Idx);
3784 std::copy(Designators + Idx + 1, Designators + NumDesignators,
3785 NewDesignators + Idx + NumNewDesignators);
3786 Designators = NewDesignators;
3787 NumDesignators = NumDesignators - 1 + NumNewDesignators;
3788 }
3789
ParenListExpr(ASTContext & C,SourceLocation lparenloc,ArrayRef<Expr * > exprs,SourceLocation rparenloc)3790 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3791 ArrayRef<Expr*> exprs,
3792 SourceLocation rparenloc)
3793 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3794 false, false, false, false),
3795 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3796 Exprs = new (C) Stmt*[exprs.size()];
3797 for (unsigned i = 0; i != exprs.size(); ++i) {
3798 if (exprs[i]->isTypeDependent())
3799 ExprBits.TypeDependent = true;
3800 if (exprs[i]->isValueDependent())
3801 ExprBits.ValueDependent = true;
3802 if (exprs[i]->isInstantiationDependent())
3803 ExprBits.InstantiationDependent = true;
3804 if (exprs[i]->containsUnexpandedParameterPack())
3805 ExprBits.ContainsUnexpandedParameterPack = true;
3806
3807 Exprs[i] = exprs[i];
3808 }
3809 }
3810
findInCopyConstruct(const Expr * e)3811 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3812 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3813 e = ewc->getSubExpr();
3814 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3815 e = m->GetTemporaryExpr();
3816 e = cast<CXXConstructExpr>(e)->getArg(0);
3817 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3818 e = ice->getSubExpr();
3819 return cast<OpaqueValueExpr>(e);
3820 }
3821
Create(ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3822 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3823 unsigned numSemanticExprs) {
3824 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3825 (1 + numSemanticExprs) * sizeof(Expr*),
3826 llvm::alignOf<PseudoObjectExpr>());
3827 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3828 }
3829
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3830 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3831 : Expr(PseudoObjectExprClass, shell) {
3832 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3833 }
3834
Create(ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3835 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3836 ArrayRef<Expr*> semantics,
3837 unsigned resultIndex) {
3838 assert(syntax && "no syntactic expression!");
3839 assert(semantics.size() && "no semantic expressions!");
3840
3841 QualType type;
3842 ExprValueKind VK;
3843 if (resultIndex == NoResult) {
3844 type = C.VoidTy;
3845 VK = VK_RValue;
3846 } else {
3847 assert(resultIndex < semantics.size());
3848 type = semantics[resultIndex]->getType();
3849 VK = semantics[resultIndex]->getValueKind();
3850 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3851 }
3852
3853 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3854 (1 + semantics.size()) * sizeof(Expr*),
3855 llvm::alignOf<PseudoObjectExpr>());
3856 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3857 resultIndex);
3858 }
3859
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3860 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3861 Expr *syntax, ArrayRef<Expr*> semantics,
3862 unsigned resultIndex)
3863 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3864 /*filled in at end of ctor*/ false, false, false, false) {
3865 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3866 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3867
3868 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3869 Expr *E = (i == 0 ? syntax : semantics[i-1]);
3870 getSubExprsBuffer()[i] = E;
3871
3872 if (E->isTypeDependent())
3873 ExprBits.TypeDependent = true;
3874 if (E->isValueDependent())
3875 ExprBits.ValueDependent = true;
3876 if (E->isInstantiationDependent())
3877 ExprBits.InstantiationDependent = true;
3878 if (E->containsUnexpandedParameterPack())
3879 ExprBits.ContainsUnexpandedParameterPack = true;
3880
3881 if (isa<OpaqueValueExpr>(E))
3882 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3883 "opaque-value semantic expressions for pseudo-object "
3884 "operations must have sources");
3885 }
3886 }
3887
3888 //===----------------------------------------------------------------------===//
3889 // ExprIterator.
3890 //===----------------------------------------------------------------------===//
3891
operator [](size_t idx)3892 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
operator *() const3893 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3894 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
operator [](size_t idx) const3895 const Expr* ConstExprIterator::operator[](size_t idx) const {
3896 return cast<Expr>(I[idx]);
3897 }
operator *() const3898 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3899 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3900
3901 //===----------------------------------------------------------------------===//
3902 // Child Iterators for iterating over subexpressions/substatements
3903 //===----------------------------------------------------------------------===//
3904
3905 // UnaryExprOrTypeTraitExpr
children()3906 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3907 // If this is of a type and the type is a VLA type (and not a typedef), the
3908 // size expression of the VLA needs to be treated as an executable expression.
3909 // Why isn't this weirdness documented better in StmtIterator?
3910 if (isArgumentType()) {
3911 if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3912 getArgumentType().getTypePtr()))
3913 return child_range(child_iterator(T), child_iterator());
3914 return child_range();
3915 }
3916 return child_range(&Argument.Ex, &Argument.Ex + 1);
3917 }
3918
3919 // ObjCMessageExpr
children()3920 Stmt::child_range ObjCMessageExpr::children() {
3921 Stmt **begin;
3922 if (getReceiverKind() == Instance)
3923 begin = reinterpret_cast<Stmt **>(this + 1);
3924 else
3925 begin = reinterpret_cast<Stmt **>(getArgs());
3926 return child_range(begin,
3927 reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3928 }
3929
ObjCArrayLiteral(ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3930 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
3931 QualType T, ObjCMethodDecl *Method,
3932 SourceRange SR)
3933 : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3934 false, false, false, false),
3935 NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3936 {
3937 Expr **SaveElements = getElements();
3938 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3939 if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3940 ExprBits.ValueDependent = true;
3941 if (Elements[I]->isInstantiationDependent())
3942 ExprBits.InstantiationDependent = true;
3943 if (Elements[I]->containsUnexpandedParameterPack())
3944 ExprBits.ContainsUnexpandedParameterPack = true;
3945
3946 SaveElements[I] = Elements[I];
3947 }
3948 }
3949
Create(ASTContext & C,ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3950 ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3951 ArrayRef<Expr *> Elements,
3952 QualType T, ObjCMethodDecl * Method,
3953 SourceRange SR) {
3954 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3955 + Elements.size() * sizeof(Expr *));
3956 return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3957 }
3958
CreateEmpty(ASTContext & C,unsigned NumElements)3959 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3960 unsigned NumElements) {
3961
3962 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3963 + NumElements * sizeof(Expr *));
3964 return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3965 }
3966
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3967 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3968 ArrayRef<ObjCDictionaryElement> VK,
3969 bool HasPackExpansions,
3970 QualType T, ObjCMethodDecl *method,
3971 SourceRange SR)
3972 : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3973 false, false),
3974 NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3975 DictWithObjectsMethod(method)
3976 {
3977 KeyValuePair *KeyValues = getKeyValues();
3978 ExpansionData *Expansions = getExpansionData();
3979 for (unsigned I = 0; I < NumElements; I++) {
3980 if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3981 VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3982 ExprBits.ValueDependent = true;
3983 if (VK[I].Key->isInstantiationDependent() ||
3984 VK[I].Value->isInstantiationDependent())
3985 ExprBits.InstantiationDependent = true;
3986 if (VK[I].EllipsisLoc.isInvalid() &&
3987 (VK[I].Key->containsUnexpandedParameterPack() ||
3988 VK[I].Value->containsUnexpandedParameterPack()))
3989 ExprBits.ContainsUnexpandedParameterPack = true;
3990
3991 KeyValues[I].Key = VK[I].Key;
3992 KeyValues[I].Value = VK[I].Value;
3993 if (Expansions) {
3994 Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3995 if (VK[I].NumExpansions)
3996 Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3997 else
3998 Expansions[I].NumExpansionsPlusOne = 0;
3999 }
4000 }
4001 }
4002
4003 ObjCDictionaryLiteral *
Create(ASTContext & C,ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)4004 ObjCDictionaryLiteral::Create(ASTContext &C,
4005 ArrayRef<ObjCDictionaryElement> VK,
4006 bool HasPackExpansions,
4007 QualType T, ObjCMethodDecl *method,
4008 SourceRange SR) {
4009 unsigned ExpansionsSize = 0;
4010 if (HasPackExpansions)
4011 ExpansionsSize = sizeof(ExpansionData) * VK.size();
4012
4013 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4014 sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4015 return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4016 }
4017
4018 ObjCDictionaryLiteral *
CreateEmpty(ASTContext & C,unsigned NumElements,bool HasPackExpansions)4019 ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
4020 bool HasPackExpansions) {
4021 unsigned ExpansionsSize = 0;
4022 if (HasPackExpansions)
4023 ExpansionsSize = sizeof(ExpansionData) * NumElements;
4024 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4025 sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4026 return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
4027 HasPackExpansions);
4028 }
4029
Create(ASTContext & C,Expr * base,Expr * key,QualType T,ObjCMethodDecl * getMethod,ObjCMethodDecl * setMethod,SourceLocation RB)4030 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
4031 Expr *base,
4032 Expr *key, QualType T,
4033 ObjCMethodDecl *getMethod,
4034 ObjCMethodDecl *setMethod,
4035 SourceLocation RB) {
4036 void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4037 return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4038 OK_ObjCSubscript,
4039 getMethod, setMethod, RB);
4040 }
4041
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)4042 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4043 QualType t, AtomicOp op, SourceLocation RP)
4044 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4045 false, false, false, false),
4046 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4047 {
4048 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4049 for (unsigned i = 0; i != args.size(); i++) {
4050 if (args[i]->isTypeDependent())
4051 ExprBits.TypeDependent = true;
4052 if (args[i]->isValueDependent())
4053 ExprBits.ValueDependent = true;
4054 if (args[i]->isInstantiationDependent())
4055 ExprBits.InstantiationDependent = true;
4056 if (args[i]->containsUnexpandedParameterPack())
4057 ExprBits.ContainsUnexpandedParameterPack = true;
4058
4059 SubExprs[i] = args[i];
4060 }
4061 }
4062
getNumSubExprs(AtomicOp Op)4063 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4064 switch (Op) {
4065 case AO__c11_atomic_init:
4066 case AO__c11_atomic_load:
4067 case AO__atomic_load_n:
4068 return 2;
4069
4070 case AO__c11_atomic_store:
4071 case AO__c11_atomic_exchange:
4072 case AO__atomic_load:
4073 case AO__atomic_store:
4074 case AO__atomic_store_n:
4075 case AO__atomic_exchange_n:
4076 case AO__c11_atomic_fetch_add:
4077 case AO__c11_atomic_fetch_sub:
4078 case AO__c11_atomic_fetch_and:
4079 case AO__c11_atomic_fetch_or:
4080 case AO__c11_atomic_fetch_xor:
4081 case AO__atomic_fetch_add:
4082 case AO__atomic_fetch_sub:
4083 case AO__atomic_fetch_and:
4084 case AO__atomic_fetch_or:
4085 case AO__atomic_fetch_xor:
4086 case AO__atomic_fetch_nand:
4087 case AO__atomic_add_fetch:
4088 case AO__atomic_sub_fetch:
4089 case AO__atomic_and_fetch:
4090 case AO__atomic_or_fetch:
4091 case AO__atomic_xor_fetch:
4092 case AO__atomic_nand_fetch:
4093 return 3;
4094
4095 case AO__atomic_exchange:
4096 return 4;
4097
4098 case AO__c11_atomic_compare_exchange_strong:
4099 case AO__c11_atomic_compare_exchange_weak:
4100 return 5;
4101
4102 case AO__atomic_compare_exchange:
4103 case AO__atomic_compare_exchange_n:
4104 return 6;
4105 }
4106 llvm_unreachable("unknown atomic op");
4107 }
4108