• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Sema/SemaDiagnostic.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cstring>
36 using namespace clang;
37 
getBestDynamicClassType() const38 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
39   const Expr *E = ignoreParenBaseCasts();
40 
41   QualType DerivedType = E->getType();
42   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
43     DerivedType = PTy->getPointeeType();
44 
45   if (DerivedType->isDependentType())
46     return NULL;
47 
48   const RecordType *Ty = DerivedType->castAs<RecordType>();
49   Decl *D = Ty->getDecl();
50   return cast<CXXRecordDecl>(D);
51 }
52 
53 const Expr *
skipRValueSubobjectAdjustments(SmallVectorImpl<SubobjectAdjustment> & Adjustments) const54 Expr::skipRValueSubobjectAdjustments(
55                      SmallVectorImpl<SubobjectAdjustment> &Adjustments) const  {
56   const Expr *E = this;
57   while (true) {
58     E = E->IgnoreParens();
59 
60     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
61       if ((CE->getCastKind() == CK_DerivedToBase ||
62            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
63           E->getType()->isRecordType()) {
64         E = CE->getSubExpr();
65         CXXRecordDecl *Derived
66           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
67         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
68         continue;
69       }
70 
71       if (CE->getCastKind() == CK_NoOp) {
72         E = CE->getSubExpr();
73         continue;
74       }
75     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
76       if (!ME->isArrow() && ME->getBase()->isRValue()) {
77         assert(ME->getBase()->getType()->isRecordType());
78         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
79           E = ME->getBase();
80           Adjustments.push_back(SubobjectAdjustment(Field));
81           continue;
82         }
83       }
84     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
85       if (BO->isPtrMemOp()) {
86         assert(BO->getRHS()->isRValue());
87         E = BO->getLHS();
88         const MemberPointerType *MPT =
89           BO->getRHS()->getType()->getAs<MemberPointerType>();
90         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
91       }
92     }
93 
94     // Nothing changed.
95     break;
96   }
97   return E;
98 }
99 
100 const Expr *
findMaterializedTemporary(const MaterializeTemporaryExpr * & MTE) const101 Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
102   const Expr *E = this;
103   // Look through single-element init lists that claim to be lvalues. They're
104   // just syntactic wrappers in this case.
105   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
106     if (ILE->getNumInits() == 1 && ILE->isGLValue())
107       E = ILE->getInit(0);
108   }
109 
110   // Look through expressions for materialized temporaries (for now).
111   if (const MaterializeTemporaryExpr *M
112       = dyn_cast<MaterializeTemporaryExpr>(E)) {
113     MTE = M;
114     E = M->GetTemporaryExpr();
115   }
116 
117   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
118     E = DAE->getExpr();
119   return E;
120 }
121 
122 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
123 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
124 /// but also int expressions which are produced by things like comparisons in
125 /// C.
isKnownToHaveBooleanValue() const126 bool Expr::isKnownToHaveBooleanValue() const {
127   const Expr *E = IgnoreParens();
128 
129   // If this value has _Bool type, it is obvious 0/1.
130   if (E->getType()->isBooleanType()) return true;
131   // If this is a non-scalar-integer type, we don't care enough to try.
132   if (!E->getType()->isIntegralOrEnumerationType()) return false;
133 
134   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
135     switch (UO->getOpcode()) {
136     case UO_Plus:
137       return UO->getSubExpr()->isKnownToHaveBooleanValue();
138     default:
139       return false;
140     }
141   }
142 
143   // Only look through implicit casts.  If the user writes
144   // '(int) (a && b)' treat it as an arbitrary int.
145   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
146     return CE->getSubExpr()->isKnownToHaveBooleanValue();
147 
148   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
149     switch (BO->getOpcode()) {
150     default: return false;
151     case BO_LT:   // Relational operators.
152     case BO_GT:
153     case BO_LE:
154     case BO_GE:
155     case BO_EQ:   // Equality operators.
156     case BO_NE:
157     case BO_LAnd: // AND operator.
158     case BO_LOr:  // Logical OR operator.
159       return true;
160 
161     case BO_And:  // Bitwise AND operator.
162     case BO_Xor:  // Bitwise XOR operator.
163     case BO_Or:   // Bitwise OR operator.
164       // Handle things like (x==2)|(y==12).
165       return BO->getLHS()->isKnownToHaveBooleanValue() &&
166              BO->getRHS()->isKnownToHaveBooleanValue();
167 
168     case BO_Comma:
169     case BO_Assign:
170       return BO->getRHS()->isKnownToHaveBooleanValue();
171     }
172   }
173 
174   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
175     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
176            CO->getFalseExpr()->isKnownToHaveBooleanValue();
177 
178   return false;
179 }
180 
181 // Amusing macro metaprogramming hack: check whether a class provides
182 // a more specific implementation of getExprLoc().
183 //
184 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
185 namespace {
186   /// This implementation is used when a class provides a custom
187   /// implementation of getExprLoc.
188   template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)189   SourceLocation getExprLocImpl(const Expr *expr,
190                                 SourceLocation (T::*v)() const) {
191     return static_cast<const E*>(expr)->getExprLoc();
192   }
193 
194   /// This implementation is used when a class doesn't provide
195   /// a custom implementation of getExprLoc.  Overload resolution
196   /// should pick it over the implementation above because it's
197   /// more specialized according to function template partial ordering.
198   template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)199   SourceLocation getExprLocImpl(const Expr *expr,
200                                 SourceLocation (Expr::*v)() const) {
201     return static_cast<const E*>(expr)->getLocStart();
202   }
203 }
204 
getExprLoc() const205 SourceLocation Expr::getExprLoc() const {
206   switch (getStmtClass()) {
207   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
208 #define ABSTRACT_STMT(type)
209 #define STMT(type, base) \
210   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
211 #define EXPR(type, base) \
212   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
213 #include "clang/AST/StmtNodes.inc"
214   }
215   llvm_unreachable("unknown statement kind");
216 }
217 
218 //===----------------------------------------------------------------------===//
219 // Primary Expressions.
220 //===----------------------------------------------------------------------===//
221 
222 /// \brief Compute the type-, value-, and instantiation-dependence of a
223 /// declaration reference
224 /// based on the declaration being referenced.
computeDeclRefDependence(ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)225 static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
226                                      bool &TypeDependent,
227                                      bool &ValueDependent,
228                                      bool &InstantiationDependent) {
229   TypeDependent = false;
230   ValueDependent = false;
231   InstantiationDependent = false;
232 
233   // (TD) C++ [temp.dep.expr]p3:
234   //   An id-expression is type-dependent if it contains:
235   //
236   // and
237   //
238   // (VD) C++ [temp.dep.constexpr]p2:
239   //  An identifier is value-dependent if it is:
240 
241   //  (TD)  - an identifier that was declared with dependent type
242   //  (VD)  - a name declared with a dependent type,
243   if (T->isDependentType()) {
244     TypeDependent = true;
245     ValueDependent = true;
246     InstantiationDependent = true;
247     return;
248   } else if (T->isInstantiationDependentType()) {
249     InstantiationDependent = true;
250   }
251 
252   //  (TD)  - a conversion-function-id that specifies a dependent type
253   if (D->getDeclName().getNameKind()
254                                 == DeclarationName::CXXConversionFunctionName) {
255     QualType T = D->getDeclName().getCXXNameType();
256     if (T->isDependentType()) {
257       TypeDependent = true;
258       ValueDependent = true;
259       InstantiationDependent = true;
260       return;
261     }
262 
263     if (T->isInstantiationDependentType())
264       InstantiationDependent = true;
265   }
266 
267   //  (VD)  - the name of a non-type template parameter,
268   if (isa<NonTypeTemplateParmDecl>(D)) {
269     ValueDependent = true;
270     InstantiationDependent = true;
271     return;
272   }
273 
274   //  (VD) - a constant with integral or enumeration type and is
275   //         initialized with an expression that is value-dependent.
276   //  (VD) - a constant with literal type and is initialized with an
277   //         expression that is value-dependent [C++11].
278   //  (VD) - FIXME: Missing from the standard:
279   //       -  an entity with reference type and is initialized with an
280   //          expression that is value-dependent [C++11]
281   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
282     if ((Ctx.getLangOpts().CPlusPlus11 ?
283            Var->getType()->isLiteralType() :
284            Var->getType()->isIntegralOrEnumerationType()) &&
285         (Var->getType().isConstQualified() ||
286          Var->getType()->isReferenceType())) {
287       if (const Expr *Init = Var->getAnyInitializer())
288         if (Init->isValueDependent()) {
289           ValueDependent = true;
290           InstantiationDependent = true;
291         }
292     }
293 
294     // (VD) - FIXME: Missing from the standard:
295     //      -  a member function or a static data member of the current
296     //         instantiation
297     if (Var->isStaticDataMember() &&
298         Var->getDeclContext()->isDependentContext()) {
299       ValueDependent = true;
300       InstantiationDependent = true;
301     }
302 
303     return;
304   }
305 
306   // (VD) - FIXME: Missing from the standard:
307   //      -  a member function or a static data member of the current
308   //         instantiation
309   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
310     ValueDependent = true;
311     InstantiationDependent = true;
312   }
313 }
314 
computeDependence(ASTContext & Ctx)315 void DeclRefExpr::computeDependence(ASTContext &Ctx) {
316   bool TypeDependent = false;
317   bool ValueDependent = false;
318   bool InstantiationDependent = false;
319   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
320                            ValueDependent, InstantiationDependent);
321 
322   // (TD) C++ [temp.dep.expr]p3:
323   //   An id-expression is type-dependent if it contains:
324   //
325   // and
326   //
327   // (VD) C++ [temp.dep.constexpr]p2:
328   //  An identifier is value-dependent if it is:
329   if (!TypeDependent && !ValueDependent &&
330       hasExplicitTemplateArgs() &&
331       TemplateSpecializationType::anyDependentTemplateArguments(
332                                                             getTemplateArgs(),
333                                                        getNumTemplateArgs(),
334                                                       InstantiationDependent)) {
335     TypeDependent = true;
336     ValueDependent = true;
337     InstantiationDependent = true;
338   }
339 
340   ExprBits.TypeDependent = TypeDependent;
341   ExprBits.ValueDependent = ValueDependent;
342   ExprBits.InstantiationDependent = InstantiationDependent;
343 
344   // Is the declaration a parameter pack?
345   if (getDecl()->isParameterPack())
346     ExprBits.ContainsUnexpandedParameterPack = true;
347 }
348 
DeclRefExpr(ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)349 DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
350                          NestedNameSpecifierLoc QualifierLoc,
351                          SourceLocation TemplateKWLoc,
352                          ValueDecl *D, bool RefersToEnclosingLocal,
353                          const DeclarationNameInfo &NameInfo,
354                          NamedDecl *FoundD,
355                          const TemplateArgumentListInfo *TemplateArgs,
356                          QualType T, ExprValueKind VK)
357   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
358     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
359   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
360   if (QualifierLoc)
361     getInternalQualifierLoc() = QualifierLoc;
362   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
363   if (FoundD)
364     getInternalFoundDecl() = FoundD;
365   DeclRefExprBits.HasTemplateKWAndArgsInfo
366     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
367   DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
368   if (TemplateArgs) {
369     bool Dependent = false;
370     bool InstantiationDependent = false;
371     bool ContainsUnexpandedParameterPack = false;
372     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
373                                                Dependent,
374                                                InstantiationDependent,
375                                                ContainsUnexpandedParameterPack);
376     if (InstantiationDependent)
377       setInstantiationDependent(true);
378   } else if (TemplateKWLoc.isValid()) {
379     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
380   }
381   DeclRefExprBits.HadMultipleCandidates = 0;
382 
383   computeDependence(Ctx);
384 }
385 
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)386 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
387                                  NestedNameSpecifierLoc QualifierLoc,
388                                  SourceLocation TemplateKWLoc,
389                                  ValueDecl *D,
390                                  bool RefersToEnclosingLocal,
391                                  SourceLocation NameLoc,
392                                  QualType T,
393                                  ExprValueKind VK,
394                                  NamedDecl *FoundD,
395                                  const TemplateArgumentListInfo *TemplateArgs) {
396   return Create(Context, QualifierLoc, TemplateKWLoc, D,
397                 RefersToEnclosingLocal,
398                 DeclarationNameInfo(D->getDeclName(), NameLoc),
399                 T, VK, FoundD, TemplateArgs);
400 }
401 
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)402 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
403                                  NestedNameSpecifierLoc QualifierLoc,
404                                  SourceLocation TemplateKWLoc,
405                                  ValueDecl *D,
406                                  bool RefersToEnclosingLocal,
407                                  const DeclarationNameInfo &NameInfo,
408                                  QualType T,
409                                  ExprValueKind VK,
410                                  NamedDecl *FoundD,
411                                  const TemplateArgumentListInfo *TemplateArgs) {
412   // Filter out cases where the found Decl is the same as the value refenenced.
413   if (D == FoundD)
414     FoundD = 0;
415 
416   std::size_t Size = sizeof(DeclRefExpr);
417   if (QualifierLoc != 0)
418     Size += sizeof(NestedNameSpecifierLoc);
419   if (FoundD)
420     Size += sizeof(NamedDecl *);
421   if (TemplateArgs)
422     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
423   else if (TemplateKWLoc.isValid())
424     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
425 
426   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
427   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
428                                RefersToEnclosingLocal,
429                                NameInfo, FoundD, TemplateArgs, T, VK);
430 }
431 
CreateEmpty(ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)432 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
433                                       bool HasQualifier,
434                                       bool HasFoundDecl,
435                                       bool HasTemplateKWAndArgsInfo,
436                                       unsigned NumTemplateArgs) {
437   std::size_t Size = sizeof(DeclRefExpr);
438   if (HasQualifier)
439     Size += sizeof(NestedNameSpecifierLoc);
440   if (HasFoundDecl)
441     Size += sizeof(NamedDecl *);
442   if (HasTemplateKWAndArgsInfo)
443     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
444 
445   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
446   return new (Mem) DeclRefExpr(EmptyShell());
447 }
448 
getLocStart() const449 SourceLocation DeclRefExpr::getLocStart() const {
450   if (hasQualifier())
451     return getQualifierLoc().getBeginLoc();
452   return getNameInfo().getLocStart();
453 }
getLocEnd() const454 SourceLocation DeclRefExpr::getLocEnd() const {
455   if (hasExplicitTemplateArgs())
456     return getRAngleLoc();
457   return getNameInfo().getLocEnd();
458 }
459 
460 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
461 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)462 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
463   ASTContext &Context = CurrentDecl->getASTContext();
464 
465   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
466     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
467       return FD->getNameAsString();
468 
469     SmallString<256> Name;
470     llvm::raw_svector_ostream Out(Name);
471 
472     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
473       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
474         Out << "virtual ";
475       if (MD->isStatic())
476         Out << "static ";
477     }
478 
479     PrintingPolicy Policy(Context.getLangOpts());
480     std::string Proto;
481     llvm::raw_string_ostream POut(Proto);
482     FD->printQualifiedName(POut, Policy);
483 
484     const FunctionDecl *Decl = FD;
485     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
486       Decl = Pattern;
487     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
488     const FunctionProtoType *FT = 0;
489     if (FD->hasWrittenPrototype())
490       FT = dyn_cast<FunctionProtoType>(AFT);
491 
492     POut << "(";
493     if (FT) {
494       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
495         if (i) POut << ", ";
496         POut << Decl->getParamDecl(i)->getType().stream(Policy);
497       }
498 
499       if (FT->isVariadic()) {
500         if (FD->getNumParams()) POut << ", ";
501         POut << "...";
502       }
503     }
504     POut << ")";
505 
506     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
507       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
508       if (FT->isConst())
509         POut << " const";
510       if (FT->isVolatile())
511         POut << " volatile";
512       RefQualifierKind Ref = MD->getRefQualifier();
513       if (Ref == RQ_LValue)
514         POut << " &";
515       else if (Ref == RQ_RValue)
516         POut << " &&";
517     }
518 
519     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
520     SpecsTy Specs;
521     const DeclContext *Ctx = FD->getDeclContext();
522     while (Ctx && isa<NamedDecl>(Ctx)) {
523       const ClassTemplateSpecializationDecl *Spec
524                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
525       if (Spec && !Spec->isExplicitSpecialization())
526         Specs.push_back(Spec);
527       Ctx = Ctx->getParent();
528     }
529 
530     std::string TemplateParams;
531     llvm::raw_string_ostream TOut(TemplateParams);
532     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
533          I != E; ++I) {
534       const TemplateParameterList *Params
535                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
536       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
537       assert(Params->size() == Args.size());
538       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
539         StringRef Param = Params->getParam(i)->getName();
540         if (Param.empty()) continue;
541         TOut << Param << " = ";
542         Args.get(i).print(Policy, TOut);
543         TOut << ", ";
544       }
545     }
546 
547     FunctionTemplateSpecializationInfo *FSI
548                                           = FD->getTemplateSpecializationInfo();
549     if (FSI && !FSI->isExplicitSpecialization()) {
550       const TemplateParameterList* Params
551                                   = FSI->getTemplate()->getTemplateParameters();
552       const TemplateArgumentList* Args = FSI->TemplateArguments;
553       assert(Params->size() == Args->size());
554       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
555         StringRef Param = Params->getParam(i)->getName();
556         if (Param.empty()) continue;
557         TOut << Param << " = ";
558         Args->get(i).print(Policy, TOut);
559         TOut << ", ";
560       }
561     }
562 
563     TOut.flush();
564     if (!TemplateParams.empty()) {
565       // remove the trailing comma and space
566       TemplateParams.resize(TemplateParams.size() - 2);
567       POut << " [" << TemplateParams << "]";
568     }
569 
570     POut.flush();
571 
572     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
573       AFT->getResultType().getAsStringInternal(Proto, Policy);
574 
575     Out << Proto;
576 
577     Out.flush();
578     return Name.str().str();
579   }
580   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
581     SmallString<256> Name;
582     llvm::raw_svector_ostream Out(Name);
583     Out << (MD->isInstanceMethod() ? '-' : '+');
584     Out << '[';
585 
586     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
587     // a null check to avoid a crash.
588     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
589       Out << *ID;
590 
591     if (const ObjCCategoryImplDecl *CID =
592         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
593       Out << '(' << *CID << ')';
594 
595     Out <<  ' ';
596     Out << MD->getSelector().getAsString();
597     Out <<  ']';
598 
599     Out.flush();
600     return Name.str().str();
601   }
602   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
603     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
604     return "top level";
605   }
606   return "";
607 }
608 
setIntValue(ASTContext & C,const llvm::APInt & Val)609 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
610   if (hasAllocation())
611     C.Deallocate(pVal);
612 
613   BitWidth = Val.getBitWidth();
614   unsigned NumWords = Val.getNumWords();
615   const uint64_t* Words = Val.getRawData();
616   if (NumWords > 1) {
617     pVal = new (C) uint64_t[NumWords];
618     std::copy(Words, Words + NumWords, pVal);
619   } else if (NumWords == 1)
620     VAL = Words[0];
621   else
622     VAL = 0;
623 }
624 
IntegerLiteral(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)625 IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
626                                QualType type, SourceLocation l)
627   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
628          false, false),
629     Loc(l) {
630   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
631   assert(V.getBitWidth() == C.getIntWidth(type) &&
632          "Integer type is not the correct size for constant.");
633   setValue(C, V);
634 }
635 
636 IntegerLiteral *
Create(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)637 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
638                        QualType type, SourceLocation l) {
639   return new (C) IntegerLiteral(C, V, type, l);
640 }
641 
642 IntegerLiteral *
Create(ASTContext & C,EmptyShell Empty)643 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
644   return new (C) IntegerLiteral(Empty);
645 }
646 
FloatingLiteral(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)647 FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
648                                  bool isexact, QualType Type, SourceLocation L)
649   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
650          false, false), Loc(L) {
651   setSemantics(V.getSemantics());
652   FloatingLiteralBits.IsExact = isexact;
653   setValue(C, V);
654 }
655 
FloatingLiteral(ASTContext & C,EmptyShell Empty)656 FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
657   : Expr(FloatingLiteralClass, Empty) {
658   setRawSemantics(IEEEhalf);
659   FloatingLiteralBits.IsExact = false;
660 }
661 
662 FloatingLiteral *
Create(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)663 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
664                         bool isexact, QualType Type, SourceLocation L) {
665   return new (C) FloatingLiteral(C, V, isexact, Type, L);
666 }
667 
668 FloatingLiteral *
Create(ASTContext & C,EmptyShell Empty)669 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
670   return new (C) FloatingLiteral(C, Empty);
671 }
672 
getSemantics() const673 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
674   switch(FloatingLiteralBits.Semantics) {
675   case IEEEhalf:
676     return llvm::APFloat::IEEEhalf;
677   case IEEEsingle:
678     return llvm::APFloat::IEEEsingle;
679   case IEEEdouble:
680     return llvm::APFloat::IEEEdouble;
681   case x87DoubleExtended:
682     return llvm::APFloat::x87DoubleExtended;
683   case IEEEquad:
684     return llvm::APFloat::IEEEquad;
685   case PPCDoubleDouble:
686     return llvm::APFloat::PPCDoubleDouble;
687   }
688   llvm_unreachable("Unrecognised floating semantics");
689 }
690 
setSemantics(const llvm::fltSemantics & Sem)691 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
692   if (&Sem == &llvm::APFloat::IEEEhalf)
693     FloatingLiteralBits.Semantics = IEEEhalf;
694   else if (&Sem == &llvm::APFloat::IEEEsingle)
695     FloatingLiteralBits.Semantics = IEEEsingle;
696   else if (&Sem == &llvm::APFloat::IEEEdouble)
697     FloatingLiteralBits.Semantics = IEEEdouble;
698   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
699     FloatingLiteralBits.Semantics = x87DoubleExtended;
700   else if (&Sem == &llvm::APFloat::IEEEquad)
701     FloatingLiteralBits.Semantics = IEEEquad;
702   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
703     FloatingLiteralBits.Semantics = PPCDoubleDouble;
704   else
705     llvm_unreachable("Unknown floating semantics");
706 }
707 
708 /// getValueAsApproximateDouble - This returns the value as an inaccurate
709 /// double.  Note that this may cause loss of precision, but is useful for
710 /// debugging dumps, etc.
getValueAsApproximateDouble() const711 double FloatingLiteral::getValueAsApproximateDouble() const {
712   llvm::APFloat V = getValue();
713   bool ignored;
714   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
715             &ignored);
716   return V.convertToDouble();
717 }
718 
mapCharByteWidth(TargetInfo const & target,StringKind k)719 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
720   int CharByteWidth = 0;
721   switch(k) {
722     case Ascii:
723     case UTF8:
724       CharByteWidth = target.getCharWidth();
725       break;
726     case Wide:
727       CharByteWidth = target.getWCharWidth();
728       break;
729     case UTF16:
730       CharByteWidth = target.getChar16Width();
731       break;
732     case UTF32:
733       CharByteWidth = target.getChar32Width();
734       break;
735   }
736   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
737   CharByteWidth /= 8;
738   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
739          && "character byte widths supported are 1, 2, and 4 only");
740   return CharByteWidth;
741 }
742 
Create(ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)743 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
744                                      StringKind Kind, bool Pascal, QualType Ty,
745                                      const SourceLocation *Loc,
746                                      unsigned NumStrs) {
747   // Allocate enough space for the StringLiteral plus an array of locations for
748   // any concatenated string tokens.
749   void *Mem = C.Allocate(sizeof(StringLiteral)+
750                          sizeof(SourceLocation)*(NumStrs-1),
751                          llvm::alignOf<StringLiteral>());
752   StringLiteral *SL = new (Mem) StringLiteral(Ty);
753 
754   // OPTIMIZE: could allocate this appended to the StringLiteral.
755   SL->setString(C,Str,Kind,Pascal);
756 
757   SL->TokLocs[0] = Loc[0];
758   SL->NumConcatenated = NumStrs;
759 
760   if (NumStrs != 1)
761     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
762   return SL;
763 }
764 
CreateEmpty(ASTContext & C,unsigned NumStrs)765 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
766   void *Mem = C.Allocate(sizeof(StringLiteral)+
767                          sizeof(SourceLocation)*(NumStrs-1),
768                          llvm::alignOf<StringLiteral>());
769   StringLiteral *SL = new (Mem) StringLiteral(QualType());
770   SL->CharByteWidth = 0;
771   SL->Length = 0;
772   SL->NumConcatenated = NumStrs;
773   return SL;
774 }
775 
outputString(raw_ostream & OS) const776 void StringLiteral::outputString(raw_ostream &OS) const {
777   switch (getKind()) {
778   case Ascii: break; // no prefix.
779   case Wide:  OS << 'L'; break;
780   case UTF8:  OS << "u8"; break;
781   case UTF16: OS << 'u'; break;
782   case UTF32: OS << 'U'; break;
783   }
784   OS << '"';
785   static const char Hex[] = "0123456789ABCDEF";
786 
787   unsigned LastSlashX = getLength();
788   for (unsigned I = 0, N = getLength(); I != N; ++I) {
789     switch (uint32_t Char = getCodeUnit(I)) {
790     default:
791       // FIXME: Convert UTF-8 back to codepoints before rendering.
792 
793       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
794       // Leave invalid surrogates alone; we'll use \x for those.
795       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
796           Char <= 0xdbff) {
797         uint32_t Trail = getCodeUnit(I + 1);
798         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
799           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
800           ++I;
801         }
802       }
803 
804       if (Char > 0xff) {
805         // If this is a wide string, output characters over 0xff using \x
806         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
807         // codepoint: use \x escapes for invalid codepoints.
808         if (getKind() == Wide ||
809             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
810           // FIXME: Is this the best way to print wchar_t?
811           OS << "\\x";
812           int Shift = 28;
813           while ((Char >> Shift) == 0)
814             Shift -= 4;
815           for (/**/; Shift >= 0; Shift -= 4)
816             OS << Hex[(Char >> Shift) & 15];
817           LastSlashX = I;
818           break;
819         }
820 
821         if (Char > 0xffff)
822           OS << "\\U00"
823              << Hex[(Char >> 20) & 15]
824              << Hex[(Char >> 16) & 15];
825         else
826           OS << "\\u";
827         OS << Hex[(Char >> 12) & 15]
828            << Hex[(Char >>  8) & 15]
829            << Hex[(Char >>  4) & 15]
830            << Hex[(Char >>  0) & 15];
831         break;
832       }
833 
834       // If we used \x... for the previous character, and this character is a
835       // hexadecimal digit, prevent it being slurped as part of the \x.
836       if (LastSlashX + 1 == I) {
837         switch (Char) {
838           case '0': case '1': case '2': case '3': case '4':
839           case '5': case '6': case '7': case '8': case '9':
840           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
841           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
842             OS << "\"\"";
843         }
844       }
845 
846       assert(Char <= 0xff &&
847              "Characters above 0xff should already have been handled.");
848 
849       if (isPrintable(Char))
850         OS << (char)Char;
851       else  // Output anything hard as an octal escape.
852         OS << '\\'
853            << (char)('0' + ((Char >> 6) & 7))
854            << (char)('0' + ((Char >> 3) & 7))
855            << (char)('0' + ((Char >> 0) & 7));
856       break;
857     // Handle some common non-printable cases to make dumps prettier.
858     case '\\': OS << "\\\\"; break;
859     case '"': OS << "\\\""; break;
860     case '\n': OS << "\\n"; break;
861     case '\t': OS << "\\t"; break;
862     case '\a': OS << "\\a"; break;
863     case '\b': OS << "\\b"; break;
864     }
865   }
866   OS << '"';
867 }
868 
setString(ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)869 void StringLiteral::setString(ASTContext &C, StringRef Str,
870                               StringKind Kind, bool IsPascal) {
871   //FIXME: we assume that the string data comes from a target that uses the same
872   // code unit size and endianess for the type of string.
873   this->Kind = Kind;
874   this->IsPascal = IsPascal;
875 
876   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
877   assert((Str.size()%CharByteWidth == 0)
878          && "size of data must be multiple of CharByteWidth");
879   Length = Str.size()/CharByteWidth;
880 
881   switch(CharByteWidth) {
882     case 1: {
883       char *AStrData = new (C) char[Length];
884       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
885       StrData.asChar = AStrData;
886       break;
887     }
888     case 2: {
889       uint16_t *AStrData = new (C) uint16_t[Length];
890       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
891       StrData.asUInt16 = AStrData;
892       break;
893     }
894     case 4: {
895       uint32_t *AStrData = new (C) uint32_t[Length];
896       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
897       StrData.asUInt32 = AStrData;
898       break;
899     }
900     default:
901       assert(false && "unsupported CharByteWidth");
902   }
903 }
904 
905 /// getLocationOfByte - Return a source location that points to the specified
906 /// byte of this string literal.
907 ///
908 /// Strings are amazingly complex.  They can be formed from multiple tokens and
909 /// can have escape sequences in them in addition to the usual trigraph and
910 /// escaped newline business.  This routine handles this complexity.
911 ///
912 SourceLocation StringLiteral::
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target) const913 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
914                   const LangOptions &Features, const TargetInfo &Target) const {
915   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
916          "Only narrow string literals are currently supported");
917 
918   // Loop over all of the tokens in this string until we find the one that
919   // contains the byte we're looking for.
920   unsigned TokNo = 0;
921   while (1) {
922     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
923     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
924 
925     // Get the spelling of the string so that we can get the data that makes up
926     // the string literal, not the identifier for the macro it is potentially
927     // expanded through.
928     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
929 
930     // Re-lex the token to get its length and original spelling.
931     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
932     bool Invalid = false;
933     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
934     if (Invalid)
935       return StrTokSpellingLoc;
936 
937     const char *StrData = Buffer.data()+LocInfo.second;
938 
939     // Create a lexer starting at the beginning of this token.
940     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
941                    Buffer.begin(), StrData, Buffer.end());
942     Token TheTok;
943     TheLexer.LexFromRawLexer(TheTok);
944 
945     // Use the StringLiteralParser to compute the length of the string in bytes.
946     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
947     unsigned TokNumBytes = SLP.GetStringLength();
948 
949     // If the byte is in this token, return the location of the byte.
950     if (ByteNo < TokNumBytes ||
951         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
952       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
953 
954       // Now that we know the offset of the token in the spelling, use the
955       // preprocessor to get the offset in the original source.
956       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
957     }
958 
959     // Move to the next string token.
960     ++TokNo;
961     ByteNo -= TokNumBytes;
962   }
963 }
964 
965 
966 
967 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
968 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)969 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
970   switch (Op) {
971   case UO_PostInc: return "++";
972   case UO_PostDec: return "--";
973   case UO_PreInc:  return "++";
974   case UO_PreDec:  return "--";
975   case UO_AddrOf:  return "&";
976   case UO_Deref:   return "*";
977   case UO_Plus:    return "+";
978   case UO_Minus:   return "-";
979   case UO_Not:     return "~";
980   case UO_LNot:    return "!";
981   case UO_Real:    return "__real";
982   case UO_Imag:    return "__imag";
983   case UO_Extension: return "__extension__";
984   }
985   llvm_unreachable("Unknown unary operator");
986 }
987 
988 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)989 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
990   switch (OO) {
991   default: llvm_unreachable("No unary operator for overloaded function");
992   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
993   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
994   case OO_Amp:        return UO_AddrOf;
995   case OO_Star:       return UO_Deref;
996   case OO_Plus:       return UO_Plus;
997   case OO_Minus:      return UO_Minus;
998   case OO_Tilde:      return UO_Not;
999   case OO_Exclaim:    return UO_LNot;
1000   }
1001 }
1002 
getOverloadedOperator(Opcode Opc)1003 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1004   switch (Opc) {
1005   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1006   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1007   case UO_AddrOf: return OO_Amp;
1008   case UO_Deref: return OO_Star;
1009   case UO_Plus: return OO_Plus;
1010   case UO_Minus: return OO_Minus;
1011   case UO_Not: return OO_Tilde;
1012   case UO_LNot: return OO_Exclaim;
1013   default: return OO_None;
1014   }
1015 }
1016 
1017 
1018 //===----------------------------------------------------------------------===//
1019 // Postfix Operators.
1020 //===----------------------------------------------------------------------===//
1021 
CallExpr(ASTContext & C,StmtClass SC,Expr * fn,unsigned NumPreArgs,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1022 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1023                    ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
1024                    SourceLocation rparenloc)
1025   : Expr(SC, t, VK, OK_Ordinary,
1026          fn->isTypeDependent(),
1027          fn->isValueDependent(),
1028          fn->isInstantiationDependent(),
1029          fn->containsUnexpandedParameterPack()),
1030     NumArgs(args.size()) {
1031 
1032   SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1033   SubExprs[FN] = fn;
1034   for (unsigned i = 0; i != args.size(); ++i) {
1035     if (args[i]->isTypeDependent())
1036       ExprBits.TypeDependent = true;
1037     if (args[i]->isValueDependent())
1038       ExprBits.ValueDependent = true;
1039     if (args[i]->isInstantiationDependent())
1040       ExprBits.InstantiationDependent = true;
1041     if (args[i]->containsUnexpandedParameterPack())
1042       ExprBits.ContainsUnexpandedParameterPack = true;
1043 
1044     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1045   }
1046 
1047   CallExprBits.NumPreArgs = NumPreArgs;
1048   RParenLoc = rparenloc;
1049 }
1050 
CallExpr(ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1051 CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1052                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
1053   : Expr(CallExprClass, t, VK, OK_Ordinary,
1054          fn->isTypeDependent(),
1055          fn->isValueDependent(),
1056          fn->isInstantiationDependent(),
1057          fn->containsUnexpandedParameterPack()),
1058     NumArgs(args.size()) {
1059 
1060   SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1061   SubExprs[FN] = fn;
1062   for (unsigned i = 0; i != args.size(); ++i) {
1063     if (args[i]->isTypeDependent())
1064       ExprBits.TypeDependent = true;
1065     if (args[i]->isValueDependent())
1066       ExprBits.ValueDependent = true;
1067     if (args[i]->isInstantiationDependent())
1068       ExprBits.InstantiationDependent = true;
1069     if (args[i]->containsUnexpandedParameterPack())
1070       ExprBits.ContainsUnexpandedParameterPack = true;
1071 
1072     SubExprs[i+PREARGS_START] = args[i];
1073   }
1074 
1075   CallExprBits.NumPreArgs = 0;
1076   RParenLoc = rparenloc;
1077 }
1078 
CallExpr(ASTContext & C,StmtClass SC,EmptyShell Empty)1079 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
1080   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1081   // FIXME: Why do we allocate this?
1082   SubExprs = new (C) Stmt*[PREARGS_START];
1083   CallExprBits.NumPreArgs = 0;
1084 }
1085 
CallExpr(ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)1086 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1087                    EmptyShell Empty)
1088   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1089   // FIXME: Why do we allocate this?
1090   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1091   CallExprBits.NumPreArgs = NumPreArgs;
1092 }
1093 
getCalleeDecl()1094 Decl *CallExpr::getCalleeDecl() {
1095   Expr *CEE = getCallee()->IgnoreParenImpCasts();
1096 
1097   while (SubstNonTypeTemplateParmExpr *NTTP
1098                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1099     CEE = NTTP->getReplacement()->IgnoreParenCasts();
1100   }
1101 
1102   // If we're calling a dereference, look at the pointer instead.
1103   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1104     if (BO->isPtrMemOp())
1105       CEE = BO->getRHS()->IgnoreParenCasts();
1106   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1107     if (UO->getOpcode() == UO_Deref)
1108       CEE = UO->getSubExpr()->IgnoreParenCasts();
1109   }
1110   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1111     return DRE->getDecl();
1112   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1113     return ME->getMemberDecl();
1114 
1115   return 0;
1116 }
1117 
getDirectCallee()1118 FunctionDecl *CallExpr::getDirectCallee() {
1119   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1120 }
1121 
1122 /// setNumArgs - This changes the number of arguments present in this call.
1123 /// Any orphaned expressions are deleted by this, and any new operands are set
1124 /// to null.
setNumArgs(ASTContext & C,unsigned NumArgs)1125 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1126   // No change, just return.
1127   if (NumArgs == getNumArgs()) return;
1128 
1129   // If shrinking # arguments, just delete the extras and forgot them.
1130   if (NumArgs < getNumArgs()) {
1131     this->NumArgs = NumArgs;
1132     return;
1133   }
1134 
1135   // Otherwise, we are growing the # arguments.  New an bigger argument array.
1136   unsigned NumPreArgs = getNumPreArgs();
1137   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1138   // Copy over args.
1139   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1140     NewSubExprs[i] = SubExprs[i];
1141   // Null out new args.
1142   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1143        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1144     NewSubExprs[i] = 0;
1145 
1146   if (SubExprs) C.Deallocate(SubExprs);
1147   SubExprs = NewSubExprs;
1148   this->NumArgs = NumArgs;
1149 }
1150 
1151 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1152 /// not, return 0.
isBuiltinCall() const1153 unsigned CallExpr::isBuiltinCall() const {
1154   // All simple function calls (e.g. func()) are implicitly cast to pointer to
1155   // function. As a result, we try and obtain the DeclRefExpr from the
1156   // ImplicitCastExpr.
1157   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1158   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1159     return 0;
1160 
1161   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1162   if (!DRE)
1163     return 0;
1164 
1165   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1166   if (!FDecl)
1167     return 0;
1168 
1169   if (!FDecl->getIdentifier())
1170     return 0;
1171 
1172   return FDecl->getBuiltinID();
1173 }
1174 
isUnevaluatedBuiltinCall(ASTContext & Ctx) const1175 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1176   if (unsigned BI = isBuiltinCall())
1177     return Ctx.BuiltinInfo.isUnevaluated(BI);
1178   return false;
1179 }
1180 
getCallReturnType() const1181 QualType CallExpr::getCallReturnType() const {
1182   QualType CalleeType = getCallee()->getType();
1183   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1184     CalleeType = FnTypePtr->getPointeeType();
1185   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1186     CalleeType = BPT->getPointeeType();
1187   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1188     // This should never be overloaded and so should never return null.
1189     CalleeType = Expr::findBoundMemberType(getCallee());
1190 
1191   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1192   return FnType->getResultType();
1193 }
1194 
getLocStart() const1195 SourceLocation CallExpr::getLocStart() const {
1196   if (isa<CXXOperatorCallExpr>(this))
1197     return cast<CXXOperatorCallExpr>(this)->getLocStart();
1198 
1199   SourceLocation begin = getCallee()->getLocStart();
1200   if (begin.isInvalid() && getNumArgs() > 0)
1201     begin = getArg(0)->getLocStart();
1202   return begin;
1203 }
getLocEnd() const1204 SourceLocation CallExpr::getLocEnd() const {
1205   if (isa<CXXOperatorCallExpr>(this))
1206     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1207 
1208   SourceLocation end = getRParenLoc();
1209   if (end.isInvalid() && getNumArgs() > 0)
1210     end = getArg(getNumArgs() - 1)->getLocEnd();
1211   return end;
1212 }
1213 
Create(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1214 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1215                                    SourceLocation OperatorLoc,
1216                                    TypeSourceInfo *tsi,
1217                                    ArrayRef<OffsetOfNode> comps,
1218                                    ArrayRef<Expr*> exprs,
1219                                    SourceLocation RParenLoc) {
1220   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1221                          sizeof(OffsetOfNode) * comps.size() +
1222                          sizeof(Expr*) * exprs.size());
1223 
1224   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1225                                 RParenLoc);
1226 }
1227 
CreateEmpty(ASTContext & C,unsigned numComps,unsigned numExprs)1228 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1229                                         unsigned numComps, unsigned numExprs) {
1230   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1231                          sizeof(OffsetOfNode) * numComps +
1232                          sizeof(Expr*) * numExprs);
1233   return new (Mem) OffsetOfExpr(numComps, numExprs);
1234 }
1235 
OffsetOfExpr(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1236 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1237                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1238                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1239                            SourceLocation RParenLoc)
1240   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1241          /*TypeDependent=*/false,
1242          /*ValueDependent=*/tsi->getType()->isDependentType(),
1243          tsi->getType()->isInstantiationDependentType(),
1244          tsi->getType()->containsUnexpandedParameterPack()),
1245     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1246     NumComps(comps.size()), NumExprs(exprs.size())
1247 {
1248   for (unsigned i = 0; i != comps.size(); ++i) {
1249     setComponent(i, comps[i]);
1250   }
1251 
1252   for (unsigned i = 0; i != exprs.size(); ++i) {
1253     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1254       ExprBits.ValueDependent = true;
1255     if (exprs[i]->containsUnexpandedParameterPack())
1256       ExprBits.ContainsUnexpandedParameterPack = true;
1257 
1258     setIndexExpr(i, exprs[i]);
1259   }
1260 }
1261 
getFieldName() const1262 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1263   assert(getKind() == Field || getKind() == Identifier);
1264   if (getKind() == Field)
1265     return getField()->getIdentifier();
1266 
1267   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1268 }
1269 
Create(ASTContext & C,Expr * base,bool isarrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1270 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1271                                NestedNameSpecifierLoc QualifierLoc,
1272                                SourceLocation TemplateKWLoc,
1273                                ValueDecl *memberdecl,
1274                                DeclAccessPair founddecl,
1275                                DeclarationNameInfo nameinfo,
1276                                const TemplateArgumentListInfo *targs,
1277                                QualType ty,
1278                                ExprValueKind vk,
1279                                ExprObjectKind ok) {
1280   std::size_t Size = sizeof(MemberExpr);
1281 
1282   bool hasQualOrFound = (QualifierLoc ||
1283                          founddecl.getDecl() != memberdecl ||
1284                          founddecl.getAccess() != memberdecl->getAccess());
1285   if (hasQualOrFound)
1286     Size += sizeof(MemberNameQualifier);
1287 
1288   if (targs)
1289     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1290   else if (TemplateKWLoc.isValid())
1291     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1292 
1293   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1294   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1295                                        ty, vk, ok);
1296 
1297   if (hasQualOrFound) {
1298     // FIXME: Wrong. We should be looking at the member declaration we found.
1299     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1300       E->setValueDependent(true);
1301       E->setTypeDependent(true);
1302       E->setInstantiationDependent(true);
1303     }
1304     else if (QualifierLoc &&
1305              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1306       E->setInstantiationDependent(true);
1307 
1308     E->HasQualifierOrFoundDecl = true;
1309 
1310     MemberNameQualifier *NQ = E->getMemberQualifier();
1311     NQ->QualifierLoc = QualifierLoc;
1312     NQ->FoundDecl = founddecl;
1313   }
1314 
1315   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1316 
1317   if (targs) {
1318     bool Dependent = false;
1319     bool InstantiationDependent = false;
1320     bool ContainsUnexpandedParameterPack = false;
1321     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1322                                                   Dependent,
1323                                                   InstantiationDependent,
1324                                              ContainsUnexpandedParameterPack);
1325     if (InstantiationDependent)
1326       E->setInstantiationDependent(true);
1327   } else if (TemplateKWLoc.isValid()) {
1328     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1329   }
1330 
1331   return E;
1332 }
1333 
getLocStart() const1334 SourceLocation MemberExpr::getLocStart() const {
1335   if (isImplicitAccess()) {
1336     if (hasQualifier())
1337       return getQualifierLoc().getBeginLoc();
1338     return MemberLoc;
1339   }
1340 
1341   // FIXME: We don't want this to happen. Rather, we should be able to
1342   // detect all kinds of implicit accesses more cleanly.
1343   SourceLocation BaseStartLoc = getBase()->getLocStart();
1344   if (BaseStartLoc.isValid())
1345     return BaseStartLoc;
1346   return MemberLoc;
1347 }
getLocEnd() const1348 SourceLocation MemberExpr::getLocEnd() const {
1349   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1350   if (hasExplicitTemplateArgs())
1351     EndLoc = getRAngleLoc();
1352   else if (EndLoc.isInvalid())
1353     EndLoc = getBase()->getLocEnd();
1354   return EndLoc;
1355 }
1356 
CheckCastConsistency() const1357 void CastExpr::CheckCastConsistency() const {
1358   switch (getCastKind()) {
1359   case CK_DerivedToBase:
1360   case CK_UncheckedDerivedToBase:
1361   case CK_DerivedToBaseMemberPointer:
1362   case CK_BaseToDerived:
1363   case CK_BaseToDerivedMemberPointer:
1364     assert(!path_empty() && "Cast kind should have a base path!");
1365     break;
1366 
1367   case CK_CPointerToObjCPointerCast:
1368     assert(getType()->isObjCObjectPointerType());
1369     assert(getSubExpr()->getType()->isPointerType());
1370     goto CheckNoBasePath;
1371 
1372   case CK_BlockPointerToObjCPointerCast:
1373     assert(getType()->isObjCObjectPointerType());
1374     assert(getSubExpr()->getType()->isBlockPointerType());
1375     goto CheckNoBasePath;
1376 
1377   case CK_ReinterpretMemberPointer:
1378     assert(getType()->isMemberPointerType());
1379     assert(getSubExpr()->getType()->isMemberPointerType());
1380     goto CheckNoBasePath;
1381 
1382   case CK_BitCast:
1383     // Arbitrary casts to C pointer types count as bitcasts.
1384     // Otherwise, we should only have block and ObjC pointer casts
1385     // here if they stay within the type kind.
1386     if (!getType()->isPointerType()) {
1387       assert(getType()->isObjCObjectPointerType() ==
1388              getSubExpr()->getType()->isObjCObjectPointerType());
1389       assert(getType()->isBlockPointerType() ==
1390              getSubExpr()->getType()->isBlockPointerType());
1391     }
1392     goto CheckNoBasePath;
1393 
1394   case CK_AnyPointerToBlockPointerCast:
1395     assert(getType()->isBlockPointerType());
1396     assert(getSubExpr()->getType()->isAnyPointerType() &&
1397            !getSubExpr()->getType()->isBlockPointerType());
1398     goto CheckNoBasePath;
1399 
1400   case CK_CopyAndAutoreleaseBlockObject:
1401     assert(getType()->isBlockPointerType());
1402     assert(getSubExpr()->getType()->isBlockPointerType());
1403     goto CheckNoBasePath;
1404 
1405   case CK_FunctionToPointerDecay:
1406     assert(getType()->isPointerType());
1407     assert(getSubExpr()->getType()->isFunctionType());
1408     goto CheckNoBasePath;
1409 
1410   // These should not have an inheritance path.
1411   case CK_Dynamic:
1412   case CK_ToUnion:
1413   case CK_ArrayToPointerDecay:
1414   case CK_NullToMemberPointer:
1415   case CK_NullToPointer:
1416   case CK_ConstructorConversion:
1417   case CK_IntegralToPointer:
1418   case CK_PointerToIntegral:
1419   case CK_ToVoid:
1420   case CK_VectorSplat:
1421   case CK_IntegralCast:
1422   case CK_IntegralToFloating:
1423   case CK_FloatingToIntegral:
1424   case CK_FloatingCast:
1425   case CK_ObjCObjectLValueCast:
1426   case CK_FloatingRealToComplex:
1427   case CK_FloatingComplexToReal:
1428   case CK_FloatingComplexCast:
1429   case CK_FloatingComplexToIntegralComplex:
1430   case CK_IntegralRealToComplex:
1431   case CK_IntegralComplexToReal:
1432   case CK_IntegralComplexCast:
1433   case CK_IntegralComplexToFloatingComplex:
1434   case CK_ARCProduceObject:
1435   case CK_ARCConsumeObject:
1436   case CK_ARCReclaimReturnedObject:
1437   case CK_ARCExtendBlockObject:
1438   case CK_ZeroToOCLEvent:
1439     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1440     goto CheckNoBasePath;
1441 
1442   case CK_Dependent:
1443   case CK_LValueToRValue:
1444   case CK_NoOp:
1445   case CK_AtomicToNonAtomic:
1446   case CK_NonAtomicToAtomic:
1447   case CK_PointerToBoolean:
1448   case CK_IntegralToBoolean:
1449   case CK_FloatingToBoolean:
1450   case CK_MemberPointerToBoolean:
1451   case CK_FloatingComplexToBoolean:
1452   case CK_IntegralComplexToBoolean:
1453   case CK_LValueBitCast:            // -> bool&
1454   case CK_UserDefinedConversion:    // operator bool()
1455   case CK_BuiltinFnToFnPtr:
1456   CheckNoBasePath:
1457     assert(path_empty() && "Cast kind should not have a base path!");
1458     break;
1459   }
1460 }
1461 
getCastKindName() const1462 const char *CastExpr::getCastKindName() const {
1463   switch (getCastKind()) {
1464   case CK_Dependent:
1465     return "Dependent";
1466   case CK_BitCast:
1467     return "BitCast";
1468   case CK_LValueBitCast:
1469     return "LValueBitCast";
1470   case CK_LValueToRValue:
1471     return "LValueToRValue";
1472   case CK_NoOp:
1473     return "NoOp";
1474   case CK_BaseToDerived:
1475     return "BaseToDerived";
1476   case CK_DerivedToBase:
1477     return "DerivedToBase";
1478   case CK_UncheckedDerivedToBase:
1479     return "UncheckedDerivedToBase";
1480   case CK_Dynamic:
1481     return "Dynamic";
1482   case CK_ToUnion:
1483     return "ToUnion";
1484   case CK_ArrayToPointerDecay:
1485     return "ArrayToPointerDecay";
1486   case CK_FunctionToPointerDecay:
1487     return "FunctionToPointerDecay";
1488   case CK_NullToMemberPointer:
1489     return "NullToMemberPointer";
1490   case CK_NullToPointer:
1491     return "NullToPointer";
1492   case CK_BaseToDerivedMemberPointer:
1493     return "BaseToDerivedMemberPointer";
1494   case CK_DerivedToBaseMemberPointer:
1495     return "DerivedToBaseMemberPointer";
1496   case CK_ReinterpretMemberPointer:
1497     return "ReinterpretMemberPointer";
1498   case CK_UserDefinedConversion:
1499     return "UserDefinedConversion";
1500   case CK_ConstructorConversion:
1501     return "ConstructorConversion";
1502   case CK_IntegralToPointer:
1503     return "IntegralToPointer";
1504   case CK_PointerToIntegral:
1505     return "PointerToIntegral";
1506   case CK_PointerToBoolean:
1507     return "PointerToBoolean";
1508   case CK_ToVoid:
1509     return "ToVoid";
1510   case CK_VectorSplat:
1511     return "VectorSplat";
1512   case CK_IntegralCast:
1513     return "IntegralCast";
1514   case CK_IntegralToBoolean:
1515     return "IntegralToBoolean";
1516   case CK_IntegralToFloating:
1517     return "IntegralToFloating";
1518   case CK_FloatingToIntegral:
1519     return "FloatingToIntegral";
1520   case CK_FloatingCast:
1521     return "FloatingCast";
1522   case CK_FloatingToBoolean:
1523     return "FloatingToBoolean";
1524   case CK_MemberPointerToBoolean:
1525     return "MemberPointerToBoolean";
1526   case CK_CPointerToObjCPointerCast:
1527     return "CPointerToObjCPointerCast";
1528   case CK_BlockPointerToObjCPointerCast:
1529     return "BlockPointerToObjCPointerCast";
1530   case CK_AnyPointerToBlockPointerCast:
1531     return "AnyPointerToBlockPointerCast";
1532   case CK_ObjCObjectLValueCast:
1533     return "ObjCObjectLValueCast";
1534   case CK_FloatingRealToComplex:
1535     return "FloatingRealToComplex";
1536   case CK_FloatingComplexToReal:
1537     return "FloatingComplexToReal";
1538   case CK_FloatingComplexToBoolean:
1539     return "FloatingComplexToBoolean";
1540   case CK_FloatingComplexCast:
1541     return "FloatingComplexCast";
1542   case CK_FloatingComplexToIntegralComplex:
1543     return "FloatingComplexToIntegralComplex";
1544   case CK_IntegralRealToComplex:
1545     return "IntegralRealToComplex";
1546   case CK_IntegralComplexToReal:
1547     return "IntegralComplexToReal";
1548   case CK_IntegralComplexToBoolean:
1549     return "IntegralComplexToBoolean";
1550   case CK_IntegralComplexCast:
1551     return "IntegralComplexCast";
1552   case CK_IntegralComplexToFloatingComplex:
1553     return "IntegralComplexToFloatingComplex";
1554   case CK_ARCConsumeObject:
1555     return "ARCConsumeObject";
1556   case CK_ARCProduceObject:
1557     return "ARCProduceObject";
1558   case CK_ARCReclaimReturnedObject:
1559     return "ARCReclaimReturnedObject";
1560   case CK_ARCExtendBlockObject:
1561     return "ARCCExtendBlockObject";
1562   case CK_AtomicToNonAtomic:
1563     return "AtomicToNonAtomic";
1564   case CK_NonAtomicToAtomic:
1565     return "NonAtomicToAtomic";
1566   case CK_CopyAndAutoreleaseBlockObject:
1567     return "CopyAndAutoreleaseBlockObject";
1568   case CK_BuiltinFnToFnPtr:
1569     return "BuiltinFnToFnPtr";
1570   case CK_ZeroToOCLEvent:
1571     return "ZeroToOCLEvent";
1572   }
1573 
1574   llvm_unreachable("Unhandled cast kind!");
1575 }
1576 
getSubExprAsWritten()1577 Expr *CastExpr::getSubExprAsWritten() {
1578   Expr *SubExpr = 0;
1579   CastExpr *E = this;
1580   do {
1581     SubExpr = E->getSubExpr();
1582 
1583     // Skip through reference binding to temporary.
1584     if (MaterializeTemporaryExpr *Materialize
1585                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1586       SubExpr = Materialize->GetTemporaryExpr();
1587 
1588     // Skip any temporary bindings; they're implicit.
1589     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1590       SubExpr = Binder->getSubExpr();
1591 
1592     // Conversions by constructor and conversion functions have a
1593     // subexpression describing the call; strip it off.
1594     if (E->getCastKind() == CK_ConstructorConversion)
1595       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1596     else if (E->getCastKind() == CK_UserDefinedConversion)
1597       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1598 
1599     // If the subexpression we're left with is an implicit cast, look
1600     // through that, too.
1601   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1602 
1603   return SubExpr;
1604 }
1605 
path_buffer()1606 CXXBaseSpecifier **CastExpr::path_buffer() {
1607   switch (getStmtClass()) {
1608 #define ABSTRACT_STMT(x)
1609 #define CASTEXPR(Type, Base) \
1610   case Stmt::Type##Class: \
1611     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1612 #define STMT(Type, Base)
1613 #include "clang/AST/StmtNodes.inc"
1614   default:
1615     llvm_unreachable("non-cast expressions not possible here");
1616   }
1617 }
1618 
setCastPath(const CXXCastPath & Path)1619 void CastExpr::setCastPath(const CXXCastPath &Path) {
1620   assert(Path.size() == path_size());
1621   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1622 }
1623 
Create(ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1624 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1625                                            CastKind Kind, Expr *Operand,
1626                                            const CXXCastPath *BasePath,
1627                                            ExprValueKind VK) {
1628   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1629   void *Buffer =
1630     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1631   ImplicitCastExpr *E =
1632     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1633   if (PathSize) E->setCastPath(*BasePath);
1634   return E;
1635 }
1636 
CreateEmpty(ASTContext & C,unsigned PathSize)1637 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1638                                                 unsigned PathSize) {
1639   void *Buffer =
1640     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1641   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1642 }
1643 
1644 
Create(ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1645 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1646                                        ExprValueKind VK, CastKind K, Expr *Op,
1647                                        const CXXCastPath *BasePath,
1648                                        TypeSourceInfo *WrittenTy,
1649                                        SourceLocation L, SourceLocation R) {
1650   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1651   void *Buffer =
1652     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1653   CStyleCastExpr *E =
1654     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1655   if (PathSize) E->setCastPath(*BasePath);
1656   return E;
1657 }
1658 
CreateEmpty(ASTContext & C,unsigned PathSize)1659 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1660   void *Buffer =
1661     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1662   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1663 }
1664 
1665 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1666 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1667 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1668   switch (Op) {
1669   case BO_PtrMemD:   return ".*";
1670   case BO_PtrMemI:   return "->*";
1671   case BO_Mul:       return "*";
1672   case BO_Div:       return "/";
1673   case BO_Rem:       return "%";
1674   case BO_Add:       return "+";
1675   case BO_Sub:       return "-";
1676   case BO_Shl:       return "<<";
1677   case BO_Shr:       return ">>";
1678   case BO_LT:        return "<";
1679   case BO_GT:        return ">";
1680   case BO_LE:        return "<=";
1681   case BO_GE:        return ">=";
1682   case BO_EQ:        return "==";
1683   case BO_NE:        return "!=";
1684   case BO_And:       return "&";
1685   case BO_Xor:       return "^";
1686   case BO_Or:        return "|";
1687   case BO_LAnd:      return "&&";
1688   case BO_LOr:       return "||";
1689   case BO_Assign:    return "=";
1690   case BO_MulAssign: return "*=";
1691   case BO_DivAssign: return "/=";
1692   case BO_RemAssign: return "%=";
1693   case BO_AddAssign: return "+=";
1694   case BO_SubAssign: return "-=";
1695   case BO_ShlAssign: return "<<=";
1696   case BO_ShrAssign: return ">>=";
1697   case BO_AndAssign: return "&=";
1698   case BO_XorAssign: return "^=";
1699   case BO_OrAssign:  return "|=";
1700   case BO_Comma:     return ",";
1701   }
1702 
1703   llvm_unreachable("Invalid OpCode!");
1704 }
1705 
1706 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1707 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1708   switch (OO) {
1709   default: llvm_unreachable("Not an overloadable binary operator");
1710   case OO_Plus: return BO_Add;
1711   case OO_Minus: return BO_Sub;
1712   case OO_Star: return BO_Mul;
1713   case OO_Slash: return BO_Div;
1714   case OO_Percent: return BO_Rem;
1715   case OO_Caret: return BO_Xor;
1716   case OO_Amp: return BO_And;
1717   case OO_Pipe: return BO_Or;
1718   case OO_Equal: return BO_Assign;
1719   case OO_Less: return BO_LT;
1720   case OO_Greater: return BO_GT;
1721   case OO_PlusEqual: return BO_AddAssign;
1722   case OO_MinusEqual: return BO_SubAssign;
1723   case OO_StarEqual: return BO_MulAssign;
1724   case OO_SlashEqual: return BO_DivAssign;
1725   case OO_PercentEqual: return BO_RemAssign;
1726   case OO_CaretEqual: return BO_XorAssign;
1727   case OO_AmpEqual: return BO_AndAssign;
1728   case OO_PipeEqual: return BO_OrAssign;
1729   case OO_LessLess: return BO_Shl;
1730   case OO_GreaterGreater: return BO_Shr;
1731   case OO_LessLessEqual: return BO_ShlAssign;
1732   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1733   case OO_EqualEqual: return BO_EQ;
1734   case OO_ExclaimEqual: return BO_NE;
1735   case OO_LessEqual: return BO_LE;
1736   case OO_GreaterEqual: return BO_GE;
1737   case OO_AmpAmp: return BO_LAnd;
1738   case OO_PipePipe: return BO_LOr;
1739   case OO_Comma: return BO_Comma;
1740   case OO_ArrowStar: return BO_PtrMemI;
1741   }
1742 }
1743 
getOverloadedOperator(Opcode Opc)1744 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1745   static const OverloadedOperatorKind OverOps[] = {
1746     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1747     OO_Star, OO_Slash, OO_Percent,
1748     OO_Plus, OO_Minus,
1749     OO_LessLess, OO_GreaterGreater,
1750     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1751     OO_EqualEqual, OO_ExclaimEqual,
1752     OO_Amp,
1753     OO_Caret,
1754     OO_Pipe,
1755     OO_AmpAmp,
1756     OO_PipePipe,
1757     OO_Equal, OO_StarEqual,
1758     OO_SlashEqual, OO_PercentEqual,
1759     OO_PlusEqual, OO_MinusEqual,
1760     OO_LessLessEqual, OO_GreaterGreaterEqual,
1761     OO_AmpEqual, OO_CaretEqual,
1762     OO_PipeEqual,
1763     OO_Comma
1764   };
1765   return OverOps[Opc];
1766 }
1767 
InitListExpr(ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)1768 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1769                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1770   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1771          false, false),
1772     InitExprs(C, initExprs.size()),
1773     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
1774 {
1775   sawArrayRangeDesignator(false);
1776   setInitializesStdInitializerList(false);
1777   for (unsigned I = 0; I != initExprs.size(); ++I) {
1778     if (initExprs[I]->isTypeDependent())
1779       ExprBits.TypeDependent = true;
1780     if (initExprs[I]->isValueDependent())
1781       ExprBits.ValueDependent = true;
1782     if (initExprs[I]->isInstantiationDependent())
1783       ExprBits.InstantiationDependent = true;
1784     if (initExprs[I]->containsUnexpandedParameterPack())
1785       ExprBits.ContainsUnexpandedParameterPack = true;
1786   }
1787 
1788   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1789 }
1790 
reserveInits(ASTContext & C,unsigned NumInits)1791 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1792   if (NumInits > InitExprs.size())
1793     InitExprs.reserve(C, NumInits);
1794 }
1795 
resizeInits(ASTContext & C,unsigned NumInits)1796 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1797   InitExprs.resize(C, NumInits, 0);
1798 }
1799 
updateInit(ASTContext & C,unsigned Init,Expr * expr)1800 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1801   if (Init >= InitExprs.size()) {
1802     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1803     InitExprs.back() = expr;
1804     return 0;
1805   }
1806 
1807   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1808   InitExprs[Init] = expr;
1809   return Result;
1810 }
1811 
setArrayFiller(Expr * filler)1812 void InitListExpr::setArrayFiller(Expr *filler) {
1813   assert(!hasArrayFiller() && "Filler already set!");
1814   ArrayFillerOrUnionFieldInit = filler;
1815   // Fill out any "holes" in the array due to designated initializers.
1816   Expr **inits = getInits();
1817   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1818     if (inits[i] == 0)
1819       inits[i] = filler;
1820 }
1821 
isStringLiteralInit() const1822 bool InitListExpr::isStringLiteralInit() const {
1823   if (getNumInits() != 1)
1824     return false;
1825   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1826   if (!AT || !AT->getElementType()->isIntegerType())
1827     return false;
1828   const Expr *Init = getInit(0)->IgnoreParens();
1829   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1830 }
1831 
getLocStart() const1832 SourceLocation InitListExpr::getLocStart() const {
1833   if (InitListExpr *SyntacticForm = getSyntacticForm())
1834     return SyntacticForm->getLocStart();
1835   SourceLocation Beg = LBraceLoc;
1836   if (Beg.isInvalid()) {
1837     // Find the first non-null initializer.
1838     for (InitExprsTy::const_iterator I = InitExprs.begin(),
1839                                      E = InitExprs.end();
1840       I != E; ++I) {
1841       if (Stmt *S = *I) {
1842         Beg = S->getLocStart();
1843         break;
1844       }
1845     }
1846   }
1847   return Beg;
1848 }
1849 
getLocEnd() const1850 SourceLocation InitListExpr::getLocEnd() const {
1851   if (InitListExpr *SyntacticForm = getSyntacticForm())
1852     return SyntacticForm->getLocEnd();
1853   SourceLocation End = RBraceLoc;
1854   if (End.isInvalid()) {
1855     // Find the first non-null initializer from the end.
1856     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1857          E = InitExprs.rend();
1858          I != E; ++I) {
1859       if (Stmt *S = *I) {
1860         End = S->getLocEnd();
1861         break;
1862       }
1863     }
1864   }
1865   return End;
1866 }
1867 
1868 /// getFunctionType - Return the underlying function type for this block.
1869 ///
getFunctionType() const1870 const FunctionProtoType *BlockExpr::getFunctionType() const {
1871   // The block pointer is never sugared, but the function type might be.
1872   return cast<BlockPointerType>(getType())
1873            ->getPointeeType()->castAs<FunctionProtoType>();
1874 }
1875 
getCaretLocation() const1876 SourceLocation BlockExpr::getCaretLocation() const {
1877   return TheBlock->getCaretLocation();
1878 }
getBody() const1879 const Stmt *BlockExpr::getBody() const {
1880   return TheBlock->getBody();
1881 }
getBody()1882 Stmt *BlockExpr::getBody() {
1883   return TheBlock->getBody();
1884 }
1885 
1886 
1887 //===----------------------------------------------------------------------===//
1888 // Generic Expression Routines
1889 //===----------------------------------------------------------------------===//
1890 
1891 /// isUnusedResultAWarning - Return true if this immediate expression should
1892 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
1893 /// with location to warn on and the source range[s] to report with the
1894 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const1895 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1896                                   SourceRange &R1, SourceRange &R2,
1897                                   ASTContext &Ctx) const {
1898   // Don't warn if the expr is type dependent. The type could end up
1899   // instantiating to void.
1900   if (isTypeDependent())
1901     return false;
1902 
1903   switch (getStmtClass()) {
1904   default:
1905     if (getType()->isVoidType())
1906       return false;
1907     WarnE = this;
1908     Loc = getExprLoc();
1909     R1 = getSourceRange();
1910     return true;
1911   case ParenExprClass:
1912     return cast<ParenExpr>(this)->getSubExpr()->
1913       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1914   case GenericSelectionExprClass:
1915     return cast<GenericSelectionExpr>(this)->getResultExpr()->
1916       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1917   case UnaryOperatorClass: {
1918     const UnaryOperator *UO = cast<UnaryOperator>(this);
1919 
1920     switch (UO->getOpcode()) {
1921     case UO_Plus:
1922     case UO_Minus:
1923     case UO_AddrOf:
1924     case UO_Not:
1925     case UO_LNot:
1926     case UO_Deref:
1927       break;
1928     case UO_PostInc:
1929     case UO_PostDec:
1930     case UO_PreInc:
1931     case UO_PreDec:                 // ++/--
1932       return false;  // Not a warning.
1933     case UO_Real:
1934     case UO_Imag:
1935       // accessing a piece of a volatile complex is a side-effect.
1936       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1937           .isVolatileQualified())
1938         return false;
1939       break;
1940     case UO_Extension:
1941       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1942     }
1943     WarnE = this;
1944     Loc = UO->getOperatorLoc();
1945     R1 = UO->getSubExpr()->getSourceRange();
1946     return true;
1947   }
1948   case BinaryOperatorClass: {
1949     const BinaryOperator *BO = cast<BinaryOperator>(this);
1950     switch (BO->getOpcode()) {
1951       default:
1952         break;
1953       // Consider the RHS of comma for side effects. LHS was checked by
1954       // Sema::CheckCommaOperands.
1955       case BO_Comma:
1956         // ((foo = <blah>), 0) is an idiom for hiding the result (and
1957         // lvalue-ness) of an assignment written in a macro.
1958         if (IntegerLiteral *IE =
1959               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1960           if (IE->getValue() == 0)
1961             return false;
1962         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1963       // Consider '||', '&&' to have side effects if the LHS or RHS does.
1964       case BO_LAnd:
1965       case BO_LOr:
1966         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1967             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1968           return false;
1969         break;
1970     }
1971     if (BO->isAssignmentOp())
1972       return false;
1973     WarnE = this;
1974     Loc = BO->getOperatorLoc();
1975     R1 = BO->getLHS()->getSourceRange();
1976     R2 = BO->getRHS()->getSourceRange();
1977     return true;
1978   }
1979   case CompoundAssignOperatorClass:
1980   case VAArgExprClass:
1981   case AtomicExprClass:
1982     return false;
1983 
1984   case ConditionalOperatorClass: {
1985     // If only one of the LHS or RHS is a warning, the operator might
1986     // be being used for control flow. Only warn if both the LHS and
1987     // RHS are warnings.
1988     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1989     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1990       return false;
1991     if (!Exp->getLHS())
1992       return true;
1993     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1994   }
1995 
1996   case MemberExprClass:
1997     WarnE = this;
1998     Loc = cast<MemberExpr>(this)->getMemberLoc();
1999     R1 = SourceRange(Loc, Loc);
2000     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2001     return true;
2002 
2003   case ArraySubscriptExprClass:
2004     WarnE = this;
2005     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2006     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2007     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2008     return true;
2009 
2010   case CXXOperatorCallExprClass: {
2011     // We warn about operator== and operator!= even when user-defined operator
2012     // overloads as there is no reasonable way to define these such that they
2013     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2014     // warning: these operators are commonly typo'ed, and so warning on them
2015     // provides additional value as well. If this list is updated,
2016     // DiagnoseUnusedComparison should be as well.
2017     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2018     if (Op->getOperator() == OO_EqualEqual ||
2019         Op->getOperator() == OO_ExclaimEqual) {
2020       WarnE = this;
2021       Loc = Op->getOperatorLoc();
2022       R1 = Op->getSourceRange();
2023       return true;
2024     }
2025 
2026     // Fallthrough for generic call handling.
2027   }
2028   case CallExprClass:
2029   case CXXMemberCallExprClass:
2030   case UserDefinedLiteralClass: {
2031     // If this is a direct call, get the callee.
2032     const CallExpr *CE = cast<CallExpr>(this);
2033     if (const Decl *FD = CE->getCalleeDecl()) {
2034       // If the callee has attribute pure, const, or warn_unused_result, warn
2035       // about it. void foo() { strlen("bar"); } should warn.
2036       //
2037       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2038       // updated to match for QoI.
2039       if (FD->getAttr<WarnUnusedResultAttr>() ||
2040           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
2041         WarnE = this;
2042         Loc = CE->getCallee()->getLocStart();
2043         R1 = CE->getCallee()->getSourceRange();
2044 
2045         if (unsigned NumArgs = CE->getNumArgs())
2046           R2 = SourceRange(CE->getArg(0)->getLocStart(),
2047                            CE->getArg(NumArgs-1)->getLocEnd());
2048         return true;
2049       }
2050     }
2051     return false;
2052   }
2053 
2054   // If we don't know precisely what we're looking at, let's not warn.
2055   case UnresolvedLookupExprClass:
2056   case CXXUnresolvedConstructExprClass:
2057     return false;
2058 
2059   case CXXTemporaryObjectExprClass:
2060   case CXXConstructExprClass:
2061     return false;
2062 
2063   case ObjCMessageExprClass: {
2064     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2065     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2066         ME->isInstanceMessage() &&
2067         !ME->getType()->isVoidType() &&
2068         ME->getSelector().getIdentifierInfoForSlot(0) &&
2069         ME->getSelector().getIdentifierInfoForSlot(0)
2070                                                ->getName().startswith("init")) {
2071       WarnE = this;
2072       Loc = getExprLoc();
2073       R1 = ME->getSourceRange();
2074       return true;
2075     }
2076 
2077     const ObjCMethodDecl *MD = ME->getMethodDecl();
2078     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
2079       WarnE = this;
2080       Loc = getExprLoc();
2081       return true;
2082     }
2083     return false;
2084   }
2085 
2086   case ObjCPropertyRefExprClass:
2087     WarnE = this;
2088     Loc = getExprLoc();
2089     R1 = getSourceRange();
2090     return true;
2091 
2092   case PseudoObjectExprClass: {
2093     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2094 
2095     // Only complain about things that have the form of a getter.
2096     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2097         isa<BinaryOperator>(PO->getSyntacticForm()))
2098       return false;
2099 
2100     WarnE = this;
2101     Loc = getExprLoc();
2102     R1 = getSourceRange();
2103     return true;
2104   }
2105 
2106   case StmtExprClass: {
2107     // Statement exprs don't logically have side effects themselves, but are
2108     // sometimes used in macros in ways that give them a type that is unused.
2109     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2110     // however, if the result of the stmt expr is dead, we don't want to emit a
2111     // warning.
2112     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2113     if (!CS->body_empty()) {
2114       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2115         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2116       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2117         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2118           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2119     }
2120 
2121     if (getType()->isVoidType())
2122       return false;
2123     WarnE = this;
2124     Loc = cast<StmtExpr>(this)->getLParenLoc();
2125     R1 = getSourceRange();
2126     return true;
2127   }
2128   case CXXFunctionalCastExprClass:
2129   case CStyleCastExprClass: {
2130     // Ignore an explicit cast to void unless the operand is a non-trivial
2131     // volatile lvalue.
2132     const CastExpr *CE = cast<CastExpr>(this);
2133     if (CE->getCastKind() == CK_ToVoid) {
2134       if (CE->getSubExpr()->isGLValue() &&
2135           CE->getSubExpr()->getType().isVolatileQualified()) {
2136         const DeclRefExpr *DRE =
2137             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2138         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2139               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2140           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2141                                                           R1, R2, Ctx);
2142         }
2143       }
2144       return false;
2145     }
2146 
2147     // If this is a cast to a constructor conversion, check the operand.
2148     // Otherwise, the result of the cast is unused.
2149     if (CE->getCastKind() == CK_ConstructorConversion)
2150       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2151 
2152     WarnE = this;
2153     if (const CXXFunctionalCastExpr *CXXCE =
2154             dyn_cast<CXXFunctionalCastExpr>(this)) {
2155       Loc = CXXCE->getTypeBeginLoc();
2156       R1 = CXXCE->getSubExpr()->getSourceRange();
2157     } else {
2158       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2159       Loc = CStyleCE->getLParenLoc();
2160       R1 = CStyleCE->getSubExpr()->getSourceRange();
2161     }
2162     return true;
2163   }
2164   case ImplicitCastExprClass: {
2165     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2166 
2167     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2168     if (ICE->getCastKind() == CK_LValueToRValue &&
2169         ICE->getSubExpr()->getType().isVolatileQualified())
2170       return false;
2171 
2172     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2173   }
2174   case CXXDefaultArgExprClass:
2175     return (cast<CXXDefaultArgExpr>(this)
2176             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2177 
2178   case CXXNewExprClass:
2179     // FIXME: In theory, there might be new expressions that don't have side
2180     // effects (e.g. a placement new with an uninitialized POD).
2181   case CXXDeleteExprClass:
2182     return false;
2183   case CXXBindTemporaryExprClass:
2184     return (cast<CXXBindTemporaryExpr>(this)
2185             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2186   case ExprWithCleanupsClass:
2187     return (cast<ExprWithCleanups>(this)
2188             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2189   }
2190 }
2191 
2192 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2193 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2194 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2195   const Expr *E = IgnoreParens();
2196   switch (E->getStmtClass()) {
2197   default:
2198     return false;
2199   case ObjCIvarRefExprClass:
2200     return true;
2201   case Expr::UnaryOperatorClass:
2202     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2203   case ImplicitCastExprClass:
2204     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2205   case MaterializeTemporaryExprClass:
2206     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2207                                                       ->isOBJCGCCandidate(Ctx);
2208   case CStyleCastExprClass:
2209     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2210   case DeclRefExprClass: {
2211     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2212 
2213     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2214       if (VD->hasGlobalStorage())
2215         return true;
2216       QualType T = VD->getType();
2217       // dereferencing to a  pointer is always a gc'able candidate,
2218       // unless it is __weak.
2219       return T->isPointerType() &&
2220              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2221     }
2222     return false;
2223   }
2224   case MemberExprClass: {
2225     const MemberExpr *M = cast<MemberExpr>(E);
2226     return M->getBase()->isOBJCGCCandidate(Ctx);
2227   }
2228   case ArraySubscriptExprClass:
2229     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2230   }
2231 }
2232 
isBoundMemberFunction(ASTContext & Ctx) const2233 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2234   if (isTypeDependent())
2235     return false;
2236   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2237 }
2238 
findBoundMemberType(const Expr * expr)2239 QualType Expr::findBoundMemberType(const Expr *expr) {
2240   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2241 
2242   // Bound member expressions are always one of these possibilities:
2243   //   x->m      x.m      x->*y      x.*y
2244   // (possibly parenthesized)
2245 
2246   expr = expr->IgnoreParens();
2247   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2248     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2249     return mem->getMemberDecl()->getType();
2250   }
2251 
2252   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2253     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2254                       ->getPointeeType();
2255     assert(type->isFunctionType());
2256     return type;
2257   }
2258 
2259   assert(isa<UnresolvedMemberExpr>(expr));
2260   return QualType();
2261 }
2262 
IgnoreParens()2263 Expr* Expr::IgnoreParens() {
2264   Expr* E = this;
2265   while (true) {
2266     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2267       E = P->getSubExpr();
2268       continue;
2269     }
2270     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2271       if (P->getOpcode() == UO_Extension) {
2272         E = P->getSubExpr();
2273         continue;
2274       }
2275     }
2276     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2277       if (!P->isResultDependent()) {
2278         E = P->getResultExpr();
2279         continue;
2280       }
2281     }
2282     return E;
2283   }
2284 }
2285 
2286 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2287 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2288 Expr *Expr::IgnoreParenCasts() {
2289   Expr *E = this;
2290   while (true) {
2291     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2292       E = P->getSubExpr();
2293       continue;
2294     }
2295     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2296       E = P->getSubExpr();
2297       continue;
2298     }
2299     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2300       if (P->getOpcode() == UO_Extension) {
2301         E = P->getSubExpr();
2302         continue;
2303       }
2304     }
2305     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2306       if (!P->isResultDependent()) {
2307         E = P->getResultExpr();
2308         continue;
2309       }
2310     }
2311     if (MaterializeTemporaryExpr *Materialize
2312                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2313       E = Materialize->GetTemporaryExpr();
2314       continue;
2315     }
2316     if (SubstNonTypeTemplateParmExpr *NTTP
2317                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2318       E = NTTP->getReplacement();
2319       continue;
2320     }
2321     return E;
2322   }
2323 }
2324 
2325 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2326 /// casts.  This is intended purely as a temporary workaround for code
2327 /// that hasn't yet been rewritten to do the right thing about those
2328 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2329 Expr *Expr::IgnoreParenLValueCasts() {
2330   Expr *E = this;
2331   while (true) {
2332     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2333       E = P->getSubExpr();
2334       continue;
2335     } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2336       if (P->getCastKind() == CK_LValueToRValue) {
2337         E = P->getSubExpr();
2338         continue;
2339       }
2340     } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2341       if (P->getOpcode() == UO_Extension) {
2342         E = P->getSubExpr();
2343         continue;
2344       }
2345     } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2346       if (!P->isResultDependent()) {
2347         E = P->getResultExpr();
2348         continue;
2349       }
2350     } else if (MaterializeTemporaryExpr *Materialize
2351                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2352       E = Materialize->GetTemporaryExpr();
2353       continue;
2354     } else if (SubstNonTypeTemplateParmExpr *NTTP
2355                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2356       E = NTTP->getReplacement();
2357       continue;
2358     }
2359     break;
2360   }
2361   return E;
2362 }
2363 
ignoreParenBaseCasts()2364 Expr *Expr::ignoreParenBaseCasts() {
2365   Expr *E = this;
2366   while (true) {
2367     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2368       E = P->getSubExpr();
2369       continue;
2370     }
2371     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2372       if (CE->getCastKind() == CK_DerivedToBase ||
2373           CE->getCastKind() == CK_UncheckedDerivedToBase ||
2374           CE->getCastKind() == CK_NoOp) {
2375         E = CE->getSubExpr();
2376         continue;
2377       }
2378     }
2379 
2380     return E;
2381   }
2382 }
2383 
IgnoreParenImpCasts()2384 Expr *Expr::IgnoreParenImpCasts() {
2385   Expr *E = this;
2386   while (true) {
2387     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2388       E = P->getSubExpr();
2389       continue;
2390     }
2391     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2392       E = P->getSubExpr();
2393       continue;
2394     }
2395     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2396       if (P->getOpcode() == UO_Extension) {
2397         E = P->getSubExpr();
2398         continue;
2399       }
2400     }
2401     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2402       if (!P->isResultDependent()) {
2403         E = P->getResultExpr();
2404         continue;
2405       }
2406     }
2407     if (MaterializeTemporaryExpr *Materialize
2408                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2409       E = Materialize->GetTemporaryExpr();
2410       continue;
2411     }
2412     if (SubstNonTypeTemplateParmExpr *NTTP
2413                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2414       E = NTTP->getReplacement();
2415       continue;
2416     }
2417     return E;
2418   }
2419 }
2420 
IgnoreConversionOperator()2421 Expr *Expr::IgnoreConversionOperator() {
2422   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2423     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2424       return MCE->getImplicitObjectArgument();
2425   }
2426   return this;
2427 }
2428 
2429 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2430 /// value (including ptr->int casts of the same size).  Strip off any
2431 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2432 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2433   Expr *E = this;
2434   while (true) {
2435     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2436       E = P->getSubExpr();
2437       continue;
2438     }
2439 
2440     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2441       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2442       // ptr<->int casts of the same width.  We also ignore all identity casts.
2443       Expr *SE = P->getSubExpr();
2444 
2445       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2446         E = SE;
2447         continue;
2448       }
2449 
2450       if ((E->getType()->isPointerType() ||
2451            E->getType()->isIntegralType(Ctx)) &&
2452           (SE->getType()->isPointerType() ||
2453            SE->getType()->isIntegralType(Ctx)) &&
2454           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2455         E = SE;
2456         continue;
2457       }
2458     }
2459 
2460     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2461       if (P->getOpcode() == UO_Extension) {
2462         E = P->getSubExpr();
2463         continue;
2464       }
2465     }
2466 
2467     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2468       if (!P->isResultDependent()) {
2469         E = P->getResultExpr();
2470         continue;
2471       }
2472     }
2473 
2474     if (SubstNonTypeTemplateParmExpr *NTTP
2475                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2476       E = NTTP->getReplacement();
2477       continue;
2478     }
2479 
2480     return E;
2481   }
2482 }
2483 
isDefaultArgument() const2484 bool Expr::isDefaultArgument() const {
2485   const Expr *E = this;
2486   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2487     E = M->GetTemporaryExpr();
2488 
2489   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2490     E = ICE->getSubExprAsWritten();
2491 
2492   return isa<CXXDefaultArgExpr>(E);
2493 }
2494 
2495 /// \brief Skip over any no-op casts and any temporary-binding
2496 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2497 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2498   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2499     E = M->GetTemporaryExpr();
2500 
2501   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2502     if (ICE->getCastKind() == CK_NoOp)
2503       E = ICE->getSubExpr();
2504     else
2505       break;
2506   }
2507 
2508   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2509     E = BE->getSubExpr();
2510 
2511   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2512     if (ICE->getCastKind() == CK_NoOp)
2513       E = ICE->getSubExpr();
2514     else
2515       break;
2516   }
2517 
2518   return E->IgnoreParens();
2519 }
2520 
2521 /// isTemporaryObject - Determines if this expression produces a
2522 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2523 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2524   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2525     return false;
2526 
2527   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2528 
2529   // Temporaries are by definition pr-values of class type.
2530   if (!E->Classify(C).isPRValue()) {
2531     // In this context, property reference is a message call and is pr-value.
2532     if (!isa<ObjCPropertyRefExpr>(E))
2533       return false;
2534   }
2535 
2536   // Black-list a few cases which yield pr-values of class type that don't
2537   // refer to temporaries of that type:
2538 
2539   // - implicit derived-to-base conversions
2540   if (isa<ImplicitCastExpr>(E)) {
2541     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2542     case CK_DerivedToBase:
2543     case CK_UncheckedDerivedToBase:
2544       return false;
2545     default:
2546       break;
2547     }
2548   }
2549 
2550   // - member expressions (all)
2551   if (isa<MemberExpr>(E))
2552     return false;
2553 
2554   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2555     if (BO->isPtrMemOp())
2556       return false;
2557 
2558   // - opaque values (all)
2559   if (isa<OpaqueValueExpr>(E))
2560     return false;
2561 
2562   return true;
2563 }
2564 
isImplicitCXXThis() const2565 bool Expr::isImplicitCXXThis() const {
2566   const Expr *E = this;
2567 
2568   // Strip away parentheses and casts we don't care about.
2569   while (true) {
2570     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2571       E = Paren->getSubExpr();
2572       continue;
2573     }
2574 
2575     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2576       if (ICE->getCastKind() == CK_NoOp ||
2577           ICE->getCastKind() == CK_LValueToRValue ||
2578           ICE->getCastKind() == CK_DerivedToBase ||
2579           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2580         E = ICE->getSubExpr();
2581         continue;
2582       }
2583     }
2584 
2585     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2586       if (UnOp->getOpcode() == UO_Extension) {
2587         E = UnOp->getSubExpr();
2588         continue;
2589       }
2590     }
2591 
2592     if (const MaterializeTemporaryExpr *M
2593                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2594       E = M->GetTemporaryExpr();
2595       continue;
2596     }
2597 
2598     break;
2599   }
2600 
2601   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2602     return This->isImplicit();
2603 
2604   return false;
2605 }
2606 
2607 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2608 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(ArrayRef<Expr * > Exprs)2609 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2610   for (unsigned I = 0; I < Exprs.size(); ++I)
2611     if (Exprs[I]->isTypeDependent())
2612       return true;
2613 
2614   return false;
2615 }
2616 
isConstantInitializer(ASTContext & Ctx,bool IsForRef) const2617 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2618   // This function is attempting whether an expression is an initializer
2619   // which can be evaluated at compile-time.  isEvaluatable handles most
2620   // of the cases, but it can't deal with some initializer-specific
2621   // expressions, and it can't deal with aggregates; we deal with those here,
2622   // and fall back to isEvaluatable for the other cases.
2623 
2624   // If we ever capture reference-binding directly in the AST, we can
2625   // kill the second parameter.
2626 
2627   if (IsForRef) {
2628     EvalResult Result;
2629     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2630   }
2631 
2632   switch (getStmtClass()) {
2633   default: break;
2634   case IntegerLiteralClass:
2635   case FloatingLiteralClass:
2636   case StringLiteralClass:
2637   case ObjCStringLiteralClass:
2638   case ObjCEncodeExprClass:
2639     return true;
2640   case CXXTemporaryObjectExprClass:
2641   case CXXConstructExprClass: {
2642     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2643 
2644     // Only if it's
2645     if (CE->getConstructor()->isTrivial()) {
2646       // 1) an application of the trivial default constructor or
2647       if (!CE->getNumArgs()) return true;
2648 
2649       // 2) an elidable trivial copy construction of an operand which is
2650       //    itself a constant initializer.  Note that we consider the
2651       //    operand on its own, *not* as a reference binding.
2652       if (CE->isElidable() &&
2653           CE->getArg(0)->isConstantInitializer(Ctx, false))
2654         return true;
2655     }
2656 
2657     // 3) a foldable constexpr constructor.
2658     break;
2659   }
2660   case CompoundLiteralExprClass: {
2661     // This handles gcc's extension that allows global initializers like
2662     // "struct x {int x;} x = (struct x) {};".
2663     // FIXME: This accepts other cases it shouldn't!
2664     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2665     return Exp->isConstantInitializer(Ctx, false);
2666   }
2667   case InitListExprClass: {
2668     // FIXME: This doesn't deal with fields with reference types correctly.
2669     // FIXME: This incorrectly allows pointers cast to integers to be assigned
2670     // to bitfields.
2671     const InitListExpr *Exp = cast<InitListExpr>(this);
2672     unsigned numInits = Exp->getNumInits();
2673     for (unsigned i = 0; i < numInits; i++) {
2674       if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2675         return false;
2676     }
2677     return true;
2678   }
2679   case ImplicitValueInitExprClass:
2680     return true;
2681   case ParenExprClass:
2682     return cast<ParenExpr>(this)->getSubExpr()
2683       ->isConstantInitializer(Ctx, IsForRef);
2684   case GenericSelectionExprClass:
2685     if (cast<GenericSelectionExpr>(this)->isResultDependent())
2686       return false;
2687     return cast<GenericSelectionExpr>(this)->getResultExpr()
2688       ->isConstantInitializer(Ctx, IsForRef);
2689   case ChooseExprClass:
2690     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2691       ->isConstantInitializer(Ctx, IsForRef);
2692   case UnaryOperatorClass: {
2693     const UnaryOperator* Exp = cast<UnaryOperator>(this);
2694     if (Exp->getOpcode() == UO_Extension)
2695       return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2696     break;
2697   }
2698   case CXXFunctionalCastExprClass:
2699   case CXXStaticCastExprClass:
2700   case ImplicitCastExprClass:
2701   case CStyleCastExprClass: {
2702     const CastExpr *CE = cast<CastExpr>(this);
2703 
2704     // If we're promoting an integer to an _Atomic type then this is constant
2705     // if the integer is constant.  We also need to check the converse in case
2706     // someone does something like:
2707     //
2708     // int a = (_Atomic(int))42;
2709     //
2710     // I doubt anyone would write code like this directly, but it's quite
2711     // possible as the result of macro expansions.
2712     if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2713         CE->getCastKind() == CK_AtomicToNonAtomic)
2714       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2715 
2716     // Handle bitcasts of vector constants.
2717     if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2718       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2719 
2720     // Handle misc casts we want to ignore.
2721     // FIXME: Is it really safe to ignore all these?
2722     if (CE->getCastKind() == CK_NoOp ||
2723         CE->getCastKind() == CK_LValueToRValue ||
2724         CE->getCastKind() == CK_ToUnion ||
2725         CE->getCastKind() == CK_ConstructorConversion)
2726       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2727 
2728     break;
2729   }
2730   case MaterializeTemporaryExprClass:
2731     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2732                                             ->isConstantInitializer(Ctx, false);
2733   }
2734   return isEvaluatable(Ctx);
2735 }
2736 
HasSideEffects(const ASTContext & Ctx) const2737 bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2738   if (isInstantiationDependent())
2739     return true;
2740 
2741   switch (getStmtClass()) {
2742   case NoStmtClass:
2743   #define ABSTRACT_STMT(Type)
2744   #define STMT(Type, Base) case Type##Class:
2745   #define EXPR(Type, Base)
2746   #include "clang/AST/StmtNodes.inc"
2747     llvm_unreachable("unexpected Expr kind");
2748 
2749   case DependentScopeDeclRefExprClass:
2750   case CXXUnresolvedConstructExprClass:
2751   case CXXDependentScopeMemberExprClass:
2752   case UnresolvedLookupExprClass:
2753   case UnresolvedMemberExprClass:
2754   case PackExpansionExprClass:
2755   case SubstNonTypeTemplateParmPackExprClass:
2756   case FunctionParmPackExprClass:
2757     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2758 
2759   case DeclRefExprClass:
2760   case ObjCIvarRefExprClass:
2761   case PredefinedExprClass:
2762   case IntegerLiteralClass:
2763   case FloatingLiteralClass:
2764   case ImaginaryLiteralClass:
2765   case StringLiteralClass:
2766   case CharacterLiteralClass:
2767   case OffsetOfExprClass:
2768   case ImplicitValueInitExprClass:
2769   case UnaryExprOrTypeTraitExprClass:
2770   case AddrLabelExprClass:
2771   case GNUNullExprClass:
2772   case CXXBoolLiteralExprClass:
2773   case CXXNullPtrLiteralExprClass:
2774   case CXXThisExprClass:
2775   case CXXScalarValueInitExprClass:
2776   case TypeTraitExprClass:
2777   case UnaryTypeTraitExprClass:
2778   case BinaryTypeTraitExprClass:
2779   case ArrayTypeTraitExprClass:
2780   case ExpressionTraitExprClass:
2781   case CXXNoexceptExprClass:
2782   case SizeOfPackExprClass:
2783   case ObjCStringLiteralClass:
2784   case ObjCEncodeExprClass:
2785   case ObjCBoolLiteralExprClass:
2786   case CXXUuidofExprClass:
2787   case OpaqueValueExprClass:
2788     // These never have a side-effect.
2789     return false;
2790 
2791   case CallExprClass:
2792   case CompoundAssignOperatorClass:
2793   case VAArgExprClass:
2794   case AtomicExprClass:
2795   case StmtExprClass:
2796   case CXXOperatorCallExprClass:
2797   case CXXMemberCallExprClass:
2798   case UserDefinedLiteralClass:
2799   case CXXThrowExprClass:
2800   case CXXNewExprClass:
2801   case CXXDeleteExprClass:
2802   case ExprWithCleanupsClass:
2803   case CXXBindTemporaryExprClass:
2804   case BlockExprClass:
2805   case CUDAKernelCallExprClass:
2806     // These always have a side-effect.
2807     return true;
2808 
2809   case ParenExprClass:
2810   case ArraySubscriptExprClass:
2811   case MemberExprClass:
2812   case ConditionalOperatorClass:
2813   case BinaryConditionalOperatorClass:
2814   case CompoundLiteralExprClass:
2815   case ExtVectorElementExprClass:
2816   case DesignatedInitExprClass:
2817   case ParenListExprClass:
2818   case CXXPseudoDestructorExprClass:
2819   case SubstNonTypeTemplateParmExprClass:
2820   case MaterializeTemporaryExprClass:
2821   case ShuffleVectorExprClass:
2822   case AsTypeExprClass:
2823     // These have a side-effect if any subexpression does.
2824     break;
2825 
2826   case UnaryOperatorClass:
2827     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2828       return true;
2829     break;
2830 
2831   case BinaryOperatorClass:
2832     if (cast<BinaryOperator>(this)->isAssignmentOp())
2833       return true;
2834     break;
2835 
2836   case InitListExprClass:
2837     // FIXME: The children for an InitListExpr doesn't include the array filler.
2838     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2839       if (E->HasSideEffects(Ctx))
2840         return true;
2841     break;
2842 
2843   case GenericSelectionExprClass:
2844     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2845         HasSideEffects(Ctx);
2846 
2847   case ChooseExprClass:
2848     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->HasSideEffects(Ctx);
2849 
2850   case CXXDefaultArgExprClass:
2851     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2852 
2853   case CXXDynamicCastExprClass: {
2854     // A dynamic_cast expression has side-effects if it can throw.
2855     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2856     if (DCE->getTypeAsWritten()->isReferenceType() &&
2857         DCE->getCastKind() == CK_Dynamic)
2858       return true;
2859   } // Fall through.
2860   case ImplicitCastExprClass:
2861   case CStyleCastExprClass:
2862   case CXXStaticCastExprClass:
2863   case CXXReinterpretCastExprClass:
2864   case CXXConstCastExprClass:
2865   case CXXFunctionalCastExprClass: {
2866     const CastExpr *CE = cast<CastExpr>(this);
2867     if (CE->getCastKind() == CK_LValueToRValue &&
2868         CE->getSubExpr()->getType().isVolatileQualified())
2869       return true;
2870     break;
2871   }
2872 
2873   case CXXTypeidExprClass:
2874     // typeid might throw if its subexpression is potentially-evaluated, so has
2875     // side-effects in that case whether or not its subexpression does.
2876     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2877 
2878   case CXXConstructExprClass:
2879   case CXXTemporaryObjectExprClass: {
2880     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2881     if (!CE->getConstructor()->isTrivial())
2882       return true;
2883     // A trivial constructor does not add any side-effects of its own. Just look
2884     // at its arguments.
2885     break;
2886   }
2887 
2888   case LambdaExprClass: {
2889     const LambdaExpr *LE = cast<LambdaExpr>(this);
2890     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2891                                       E = LE->capture_end(); I != E; ++I)
2892       if (I->getCaptureKind() == LCK_ByCopy)
2893         // FIXME: Only has a side-effect if the variable is volatile or if
2894         // the copy would invoke a non-trivial copy constructor.
2895         return true;
2896     return false;
2897   }
2898 
2899   case PseudoObjectExprClass: {
2900     // Only look for side-effects in the semantic form, and look past
2901     // OpaqueValueExpr bindings in that form.
2902     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2903     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2904                                                     E = PO->semantics_end();
2905          I != E; ++I) {
2906       const Expr *Subexpr = *I;
2907       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2908         Subexpr = OVE->getSourceExpr();
2909       if (Subexpr->HasSideEffects(Ctx))
2910         return true;
2911     }
2912     return false;
2913   }
2914 
2915   case ObjCBoxedExprClass:
2916   case ObjCArrayLiteralClass:
2917   case ObjCDictionaryLiteralClass:
2918   case ObjCMessageExprClass:
2919   case ObjCSelectorExprClass:
2920   case ObjCProtocolExprClass:
2921   case ObjCPropertyRefExprClass:
2922   case ObjCIsaExprClass:
2923   case ObjCIndirectCopyRestoreExprClass:
2924   case ObjCSubscriptRefExprClass:
2925   case ObjCBridgedCastExprClass:
2926     // FIXME: Classify these cases better.
2927     return true;
2928   }
2929 
2930   // Recurse to children.
2931   for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2932     if (const Stmt *S = *SubStmts)
2933       if (cast<Expr>(S)->HasSideEffects(Ctx))
2934         return true;
2935 
2936   return false;
2937 }
2938 
2939 namespace {
2940   /// \brief Look for a call to a non-trivial function within an expression.
2941   class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2942   {
2943     typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2944 
2945     bool NonTrivial;
2946 
2947   public:
NonTrivialCallFinder(ASTContext & Context)2948     explicit NonTrivialCallFinder(ASTContext &Context)
2949       : Inherited(Context), NonTrivial(false) { }
2950 
hasNonTrivialCall() const2951     bool hasNonTrivialCall() const { return NonTrivial; }
2952 
VisitCallExpr(CallExpr * E)2953     void VisitCallExpr(CallExpr *E) {
2954       if (CXXMethodDecl *Method
2955           = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2956         if (Method->isTrivial()) {
2957           // Recurse to children of the call.
2958           Inherited::VisitStmt(E);
2959           return;
2960         }
2961       }
2962 
2963       NonTrivial = true;
2964     }
2965 
VisitCXXConstructExpr(CXXConstructExpr * E)2966     void VisitCXXConstructExpr(CXXConstructExpr *E) {
2967       if (E->getConstructor()->isTrivial()) {
2968         // Recurse to children of the call.
2969         Inherited::VisitStmt(E);
2970         return;
2971       }
2972 
2973       NonTrivial = true;
2974     }
2975 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)2976     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2977       if (E->getTemporary()->getDestructor()->isTrivial()) {
2978         Inherited::VisitStmt(E);
2979         return;
2980       }
2981 
2982       NonTrivial = true;
2983     }
2984   };
2985 }
2986 
hasNonTrivialCall(ASTContext & Ctx)2987 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2988   NonTrivialCallFinder Finder(Ctx);
2989   Finder.Visit(this);
2990   return Finder.hasNonTrivialCall();
2991 }
2992 
2993 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2994 /// pointer constant or not, as well as the specific kind of constant detected.
2995 /// Null pointer constants can be integer constant expressions with the
2996 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
2997 /// (a GNU extension).
2998 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const2999 Expr::isNullPointerConstant(ASTContext &Ctx,
3000                             NullPointerConstantValueDependence NPC) const {
3001   if (isValueDependent()) {
3002     switch (NPC) {
3003     case NPC_NeverValueDependent:
3004       llvm_unreachable("Unexpected value dependent expression!");
3005     case NPC_ValueDependentIsNull:
3006       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3007         return NPCK_ZeroExpression;
3008       else
3009         return NPCK_NotNull;
3010 
3011     case NPC_ValueDependentIsNotNull:
3012       return NPCK_NotNull;
3013     }
3014   }
3015 
3016   // Strip off a cast to void*, if it exists. Except in C++.
3017   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3018     if (!Ctx.getLangOpts().CPlusPlus) {
3019       // Check that it is a cast to void*.
3020       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3021         QualType Pointee = PT->getPointeeType();
3022         if (!Pointee.hasQualifiers() &&
3023             Pointee->isVoidType() &&                              // to void*
3024             CE->getSubExpr()->getType()->isIntegerType())         // from int.
3025           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3026       }
3027     }
3028   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3029     // Ignore the ImplicitCastExpr type entirely.
3030     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3031   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3032     // Accept ((void*)0) as a null pointer constant, as many other
3033     // implementations do.
3034     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3035   } else if (const GenericSelectionExpr *GE =
3036                dyn_cast<GenericSelectionExpr>(this)) {
3037     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3038   } else if (const CXXDefaultArgExpr *DefaultArg
3039                = dyn_cast<CXXDefaultArgExpr>(this)) {
3040     // See through default argument expressions
3041     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3042   } else if (isa<GNUNullExpr>(this)) {
3043     // The GNU __null extension is always a null pointer constant.
3044     return NPCK_GNUNull;
3045   } else if (const MaterializeTemporaryExpr *M
3046                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3047     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3048   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3049     if (const Expr *Source = OVE->getSourceExpr())
3050       return Source->isNullPointerConstant(Ctx, NPC);
3051   }
3052 
3053   // C++11 nullptr_t is always a null pointer constant.
3054   if (getType()->isNullPtrType())
3055     return NPCK_CXX11_nullptr;
3056 
3057   if (const RecordType *UT = getType()->getAsUnionType())
3058     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3059       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3060         const Expr *InitExpr = CLE->getInitializer();
3061         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3062           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3063       }
3064   // This expression must be an integer type.
3065   if (!getType()->isIntegerType() ||
3066       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3067     return NPCK_NotNull;
3068 
3069   // If we have an integer constant expression, we need to *evaluate* it and
3070   // test for the value 0. Don't use the C++11 constant expression semantics
3071   // for this, for now; once the dust settles on core issue 903, we might only
3072   // allow a literal 0 here in C++11 mode.
3073   if (Ctx.getLangOpts().CPlusPlus11) {
3074     if (!isCXX98IntegralConstantExpr(Ctx))
3075       return NPCK_NotNull;
3076   } else {
3077     if (!isIntegerConstantExpr(Ctx))
3078       return NPCK_NotNull;
3079   }
3080 
3081   if (EvaluateKnownConstInt(Ctx) != 0)
3082     return NPCK_NotNull;
3083 
3084   if (isa<IntegerLiteral>(this))
3085     return NPCK_ZeroLiteral;
3086   return NPCK_ZeroExpression;
3087 }
3088 
3089 /// \brief If this expression is an l-value for an Objective C
3090 /// property, find the underlying property reference expression.
getObjCProperty() const3091 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3092   const Expr *E = this;
3093   while (true) {
3094     assert((E->getValueKind() == VK_LValue &&
3095             E->getObjectKind() == OK_ObjCProperty) &&
3096            "expression is not a property reference");
3097     E = E->IgnoreParenCasts();
3098     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3099       if (BO->getOpcode() == BO_Comma) {
3100         E = BO->getRHS();
3101         continue;
3102       }
3103     }
3104 
3105     break;
3106   }
3107 
3108   return cast<ObjCPropertyRefExpr>(E);
3109 }
3110 
isObjCSelfExpr() const3111 bool Expr::isObjCSelfExpr() const {
3112   const Expr *E = IgnoreParenImpCasts();
3113 
3114   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3115   if (!DRE)
3116     return false;
3117 
3118   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3119   if (!Param)
3120     return false;
3121 
3122   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3123   if (!M)
3124     return false;
3125 
3126   return M->getSelfDecl() == Param;
3127 }
3128 
getBitField()3129 FieldDecl *Expr::getBitField() {
3130   Expr *E = this->IgnoreParens();
3131 
3132   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3133     if (ICE->getCastKind() == CK_LValueToRValue ||
3134         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3135       E = ICE->getSubExpr()->IgnoreParens();
3136     else
3137       break;
3138   }
3139 
3140   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3141     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3142       if (Field->isBitField())
3143         return Field;
3144 
3145   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3146     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3147       if (Field->isBitField())
3148         return Field;
3149 
3150   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3151     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3152       return BinOp->getLHS()->getBitField();
3153 
3154     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3155       return BinOp->getRHS()->getBitField();
3156   }
3157 
3158   return 0;
3159 }
3160 
refersToVectorElement() const3161 bool Expr::refersToVectorElement() const {
3162   const Expr *E = this->IgnoreParens();
3163 
3164   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3165     if (ICE->getValueKind() != VK_RValue &&
3166         ICE->getCastKind() == CK_NoOp)
3167       E = ICE->getSubExpr()->IgnoreParens();
3168     else
3169       break;
3170   }
3171 
3172   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3173     return ASE->getBase()->getType()->isVectorType();
3174 
3175   if (isa<ExtVectorElementExpr>(E))
3176     return true;
3177 
3178   return false;
3179 }
3180 
3181 /// isArrow - Return true if the base expression is a pointer to vector,
3182 /// return false if the base expression is a vector.
isArrow() const3183 bool ExtVectorElementExpr::isArrow() const {
3184   return getBase()->getType()->isPointerType();
3185 }
3186 
getNumElements() const3187 unsigned ExtVectorElementExpr::getNumElements() const {
3188   if (const VectorType *VT = getType()->getAs<VectorType>())
3189     return VT->getNumElements();
3190   return 1;
3191 }
3192 
3193 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const3194 bool ExtVectorElementExpr::containsDuplicateElements() const {
3195   // FIXME: Refactor this code to an accessor on the AST node which returns the
3196   // "type" of component access, and share with code below and in Sema.
3197   StringRef Comp = Accessor->getName();
3198 
3199   // Halving swizzles do not contain duplicate elements.
3200   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3201     return false;
3202 
3203   // Advance past s-char prefix on hex swizzles.
3204   if (Comp[0] == 's' || Comp[0] == 'S')
3205     Comp = Comp.substr(1);
3206 
3207   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3208     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3209         return true;
3210 
3211   return false;
3212 }
3213 
3214 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<unsigned> & Elts) const3215 void ExtVectorElementExpr::getEncodedElementAccess(
3216                                   SmallVectorImpl<unsigned> &Elts) const {
3217   StringRef Comp = Accessor->getName();
3218   if (Comp[0] == 's' || Comp[0] == 'S')
3219     Comp = Comp.substr(1);
3220 
3221   bool isHi =   Comp == "hi";
3222   bool isLo =   Comp == "lo";
3223   bool isEven = Comp == "even";
3224   bool isOdd  = Comp == "odd";
3225 
3226   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3227     uint64_t Index;
3228 
3229     if (isHi)
3230       Index = e + i;
3231     else if (isLo)
3232       Index = i;
3233     else if (isEven)
3234       Index = 2 * i;
3235     else if (isOdd)
3236       Index = 2 * i + 1;
3237     else
3238       Index = ExtVectorType::getAccessorIdx(Comp[i]);
3239 
3240     Elts.push_back(Index);
3241   }
3242 }
3243 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3244 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3245                                  ExprValueKind VK,
3246                                  SourceLocation LBracLoc,
3247                                  SourceLocation SuperLoc,
3248                                  bool IsInstanceSuper,
3249                                  QualType SuperType,
3250                                  Selector Sel,
3251                                  ArrayRef<SourceLocation> SelLocs,
3252                                  SelectorLocationsKind SelLocsK,
3253                                  ObjCMethodDecl *Method,
3254                                  ArrayRef<Expr *> Args,
3255                                  SourceLocation RBracLoc,
3256                                  bool isImplicit)
3257   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3258          /*TypeDependent=*/false, /*ValueDependent=*/false,
3259          /*InstantiationDependent=*/false,
3260          /*ContainsUnexpandedParameterPack=*/false),
3261     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3262                                                        : Sel.getAsOpaquePtr())),
3263     Kind(IsInstanceSuper? SuperInstance : SuperClass),
3264     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3265     SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3266 {
3267   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3268   setReceiverPointer(SuperType.getAsOpaquePtr());
3269 }
3270 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3271 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3272                                  ExprValueKind VK,
3273                                  SourceLocation LBracLoc,
3274                                  TypeSourceInfo *Receiver,
3275                                  Selector Sel,
3276                                  ArrayRef<SourceLocation> SelLocs,
3277                                  SelectorLocationsKind SelLocsK,
3278                                  ObjCMethodDecl *Method,
3279                                  ArrayRef<Expr *> Args,
3280                                  SourceLocation RBracLoc,
3281                                  bool isImplicit)
3282   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3283          T->isDependentType(), T->isInstantiationDependentType(),
3284          T->containsUnexpandedParameterPack()),
3285     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3286                                                        : Sel.getAsOpaquePtr())),
3287     Kind(Class),
3288     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3289     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3290 {
3291   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3292   setReceiverPointer(Receiver);
3293 }
3294 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3295 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3296                                  ExprValueKind VK,
3297                                  SourceLocation LBracLoc,
3298                                  Expr *Receiver,
3299                                  Selector Sel,
3300                                  ArrayRef<SourceLocation> SelLocs,
3301                                  SelectorLocationsKind SelLocsK,
3302                                  ObjCMethodDecl *Method,
3303                                  ArrayRef<Expr *> Args,
3304                                  SourceLocation RBracLoc,
3305                                  bool isImplicit)
3306   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3307          Receiver->isTypeDependent(),
3308          Receiver->isInstantiationDependent(),
3309          Receiver->containsUnexpandedParameterPack()),
3310     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3311                                                        : Sel.getAsOpaquePtr())),
3312     Kind(Instance),
3313     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3314     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3315 {
3316   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3317   setReceiverPointer(Receiver);
3318 }
3319 
initArgsAndSelLocs(ArrayRef<Expr * > Args,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK)3320 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3321                                          ArrayRef<SourceLocation> SelLocs,
3322                                          SelectorLocationsKind SelLocsK) {
3323   setNumArgs(Args.size());
3324   Expr **MyArgs = getArgs();
3325   for (unsigned I = 0; I != Args.size(); ++I) {
3326     if (Args[I]->isTypeDependent())
3327       ExprBits.TypeDependent = true;
3328     if (Args[I]->isValueDependent())
3329       ExprBits.ValueDependent = true;
3330     if (Args[I]->isInstantiationDependent())
3331       ExprBits.InstantiationDependent = true;
3332     if (Args[I]->containsUnexpandedParameterPack())
3333       ExprBits.ContainsUnexpandedParameterPack = true;
3334 
3335     MyArgs[I] = Args[I];
3336   }
3337 
3338   SelLocsKind = SelLocsK;
3339   if (!isImplicit()) {
3340     if (SelLocsK == SelLoc_NonStandard)
3341       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3342   }
3343 }
3344 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3345 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3346                                          ExprValueKind VK,
3347                                          SourceLocation LBracLoc,
3348                                          SourceLocation SuperLoc,
3349                                          bool IsInstanceSuper,
3350                                          QualType SuperType,
3351                                          Selector Sel,
3352                                          ArrayRef<SourceLocation> SelLocs,
3353                                          ObjCMethodDecl *Method,
3354                                          ArrayRef<Expr *> Args,
3355                                          SourceLocation RBracLoc,
3356                                          bool isImplicit) {
3357   assert((!SelLocs.empty() || isImplicit) &&
3358          "No selector locs for non-implicit message");
3359   ObjCMessageExpr *Mem;
3360   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3361   if (isImplicit)
3362     Mem = alloc(Context, Args.size(), 0);
3363   else
3364     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3365   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3366                                    SuperType, Sel, SelLocs, SelLocsK,
3367                                    Method, Args, RBracLoc, isImplicit);
3368 }
3369 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3370 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3371                                          ExprValueKind VK,
3372                                          SourceLocation LBracLoc,
3373                                          TypeSourceInfo *Receiver,
3374                                          Selector Sel,
3375                                          ArrayRef<SourceLocation> SelLocs,
3376                                          ObjCMethodDecl *Method,
3377                                          ArrayRef<Expr *> Args,
3378                                          SourceLocation RBracLoc,
3379                                          bool isImplicit) {
3380   assert((!SelLocs.empty() || isImplicit) &&
3381          "No selector locs for non-implicit message");
3382   ObjCMessageExpr *Mem;
3383   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3384   if (isImplicit)
3385     Mem = alloc(Context, Args.size(), 0);
3386   else
3387     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3388   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3389                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3390                                    isImplicit);
3391 }
3392 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3393 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3394                                          ExprValueKind VK,
3395                                          SourceLocation LBracLoc,
3396                                          Expr *Receiver,
3397                                          Selector Sel,
3398                                          ArrayRef<SourceLocation> SelLocs,
3399                                          ObjCMethodDecl *Method,
3400                                          ArrayRef<Expr *> Args,
3401                                          SourceLocation RBracLoc,
3402                                          bool isImplicit) {
3403   assert((!SelLocs.empty() || isImplicit) &&
3404          "No selector locs for non-implicit message");
3405   ObjCMessageExpr *Mem;
3406   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3407   if (isImplicit)
3408     Mem = alloc(Context, Args.size(), 0);
3409   else
3410     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3411   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3412                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3413                                    isImplicit);
3414 }
3415 
CreateEmpty(ASTContext & Context,unsigned NumArgs,unsigned NumStoredSelLocs)3416 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3417                                               unsigned NumArgs,
3418                                               unsigned NumStoredSelLocs) {
3419   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3420   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3421 }
3422 
alloc(ASTContext & C,ArrayRef<Expr * > Args,SourceLocation RBraceLoc,ArrayRef<SourceLocation> SelLocs,Selector Sel,SelectorLocationsKind & SelLocsK)3423 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3424                                         ArrayRef<Expr *> Args,
3425                                         SourceLocation RBraceLoc,
3426                                         ArrayRef<SourceLocation> SelLocs,
3427                                         Selector Sel,
3428                                         SelectorLocationsKind &SelLocsK) {
3429   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3430   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3431                                                                : 0;
3432   return alloc(C, Args.size(), NumStoredSelLocs);
3433 }
3434 
alloc(ASTContext & C,unsigned NumArgs,unsigned NumStoredSelLocs)3435 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3436                                         unsigned NumArgs,
3437                                         unsigned NumStoredSelLocs) {
3438   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3439     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3440   return (ObjCMessageExpr *)C.Allocate(Size,
3441                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
3442 }
3443 
getSelectorLocs(SmallVectorImpl<SourceLocation> & SelLocs) const3444 void ObjCMessageExpr::getSelectorLocs(
3445                                SmallVectorImpl<SourceLocation> &SelLocs) const {
3446   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3447     SelLocs.push_back(getSelectorLoc(i));
3448 }
3449 
getReceiverRange() const3450 SourceRange ObjCMessageExpr::getReceiverRange() const {
3451   switch (getReceiverKind()) {
3452   case Instance:
3453     return getInstanceReceiver()->getSourceRange();
3454 
3455   case Class:
3456     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3457 
3458   case SuperInstance:
3459   case SuperClass:
3460     return getSuperLoc();
3461   }
3462 
3463   llvm_unreachable("Invalid ReceiverKind!");
3464 }
3465 
getSelector() const3466 Selector ObjCMessageExpr::getSelector() const {
3467   if (HasMethod)
3468     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3469                                                                ->getSelector();
3470   return Selector(SelectorOrMethod);
3471 }
3472 
getReceiverType() const3473 QualType ObjCMessageExpr::getReceiverType() const {
3474   switch (getReceiverKind()) {
3475   case Instance:
3476     return getInstanceReceiver()->getType();
3477   case Class:
3478     return getClassReceiver();
3479   case SuperInstance:
3480   case SuperClass:
3481     return getSuperType();
3482   }
3483 
3484   llvm_unreachable("unexpected receiver kind");
3485 }
3486 
getReceiverInterface() const3487 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3488   QualType T = getReceiverType();
3489 
3490   if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3491     return Ptr->getInterfaceDecl();
3492 
3493   if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3494     return Ty->getInterface();
3495 
3496   return 0;
3497 }
3498 
getBridgeKindName() const3499 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3500   switch (getBridgeKind()) {
3501   case OBC_Bridge:
3502     return "__bridge";
3503   case OBC_BridgeTransfer:
3504     return "__bridge_transfer";
3505   case OBC_BridgeRetained:
3506     return "__bridge_retained";
3507   }
3508 
3509   llvm_unreachable("Invalid BridgeKind!");
3510 }
3511 
isConditionTrue(const ASTContext & C) const3512 bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3513   return getCond()->EvaluateKnownConstInt(C) != 0;
3514 }
3515 
ShuffleVectorExpr(ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)3516 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
3517                                      QualType Type, SourceLocation BLoc,
3518                                      SourceLocation RP)
3519    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3520           Type->isDependentType(), Type->isDependentType(),
3521           Type->isInstantiationDependentType(),
3522           Type->containsUnexpandedParameterPack()),
3523      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3524 {
3525   SubExprs = new (C) Stmt*[args.size()];
3526   for (unsigned i = 0; i != args.size(); i++) {
3527     if (args[i]->isTypeDependent())
3528       ExprBits.TypeDependent = true;
3529     if (args[i]->isValueDependent())
3530       ExprBits.ValueDependent = true;
3531     if (args[i]->isInstantiationDependent())
3532       ExprBits.InstantiationDependent = true;
3533     if (args[i]->containsUnexpandedParameterPack())
3534       ExprBits.ContainsUnexpandedParameterPack = true;
3535 
3536     SubExprs[i] = args[i];
3537   }
3538 }
3539 
setExprs(ASTContext & C,Expr ** Exprs,unsigned NumExprs)3540 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3541                                  unsigned NumExprs) {
3542   if (SubExprs) C.Deallocate(SubExprs);
3543 
3544   SubExprs = new (C) Stmt* [NumExprs];
3545   this->NumExprs = NumExprs;
3546   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3547 }
3548 
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3549 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3550                                SourceLocation GenericLoc, Expr *ControllingExpr,
3551                                ArrayRef<TypeSourceInfo*> AssocTypes,
3552                                ArrayRef<Expr*> AssocExprs,
3553                                SourceLocation DefaultLoc,
3554                                SourceLocation RParenLoc,
3555                                bool ContainsUnexpandedParameterPack,
3556                                unsigned ResultIndex)
3557   : Expr(GenericSelectionExprClass,
3558          AssocExprs[ResultIndex]->getType(),
3559          AssocExprs[ResultIndex]->getValueKind(),
3560          AssocExprs[ResultIndex]->getObjectKind(),
3561          AssocExprs[ResultIndex]->isTypeDependent(),
3562          AssocExprs[ResultIndex]->isValueDependent(),
3563          AssocExprs[ResultIndex]->isInstantiationDependent(),
3564          ContainsUnexpandedParameterPack),
3565     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3566     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3567     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3568     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3569   SubExprs[CONTROLLING] = ControllingExpr;
3570   assert(AssocTypes.size() == AssocExprs.size());
3571   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3572   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3573 }
3574 
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3575 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3576                                SourceLocation GenericLoc, Expr *ControllingExpr,
3577                                ArrayRef<TypeSourceInfo*> AssocTypes,
3578                                ArrayRef<Expr*> AssocExprs,
3579                                SourceLocation DefaultLoc,
3580                                SourceLocation RParenLoc,
3581                                bool ContainsUnexpandedParameterPack)
3582   : Expr(GenericSelectionExprClass,
3583          Context.DependentTy,
3584          VK_RValue,
3585          OK_Ordinary,
3586          /*isTypeDependent=*/true,
3587          /*isValueDependent=*/true,
3588          /*isInstantiationDependent=*/true,
3589          ContainsUnexpandedParameterPack),
3590     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3591     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3592     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3593     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3594   SubExprs[CONTROLLING] = ControllingExpr;
3595   assert(AssocTypes.size() == AssocExprs.size());
3596   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3597   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3598 }
3599 
3600 //===----------------------------------------------------------------------===//
3601 //  DesignatedInitExpr
3602 //===----------------------------------------------------------------------===//
3603 
getFieldName() const3604 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3605   assert(Kind == FieldDesignator && "Only valid on a field designator");
3606   if (Field.NameOrField & 0x01)
3607     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3608   else
3609     return getField()->getIdentifier();
3610 }
3611 
DesignatedInitExpr(ASTContext & C,QualType Ty,unsigned NumDesignators,const Designator * Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)3612 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3613                                        unsigned NumDesignators,
3614                                        const Designator *Designators,
3615                                        SourceLocation EqualOrColonLoc,
3616                                        bool GNUSyntax,
3617                                        ArrayRef<Expr*> IndexExprs,
3618                                        Expr *Init)
3619   : Expr(DesignatedInitExprClass, Ty,
3620          Init->getValueKind(), Init->getObjectKind(),
3621          Init->isTypeDependent(), Init->isValueDependent(),
3622          Init->isInstantiationDependent(),
3623          Init->containsUnexpandedParameterPack()),
3624     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3625     NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3626   this->Designators = new (C) Designator[NumDesignators];
3627 
3628   // Record the initializer itself.
3629   child_range Child = children();
3630   *Child++ = Init;
3631 
3632   // Copy the designators and their subexpressions, computing
3633   // value-dependence along the way.
3634   unsigned IndexIdx = 0;
3635   for (unsigned I = 0; I != NumDesignators; ++I) {
3636     this->Designators[I] = Designators[I];
3637 
3638     if (this->Designators[I].isArrayDesignator()) {
3639       // Compute type- and value-dependence.
3640       Expr *Index = IndexExprs[IndexIdx];
3641       if (Index->isTypeDependent() || Index->isValueDependent())
3642         ExprBits.ValueDependent = true;
3643       if (Index->isInstantiationDependent())
3644         ExprBits.InstantiationDependent = true;
3645       // Propagate unexpanded parameter packs.
3646       if (Index->containsUnexpandedParameterPack())
3647         ExprBits.ContainsUnexpandedParameterPack = true;
3648 
3649       // Copy the index expressions into permanent storage.
3650       *Child++ = IndexExprs[IndexIdx++];
3651     } else if (this->Designators[I].isArrayRangeDesignator()) {
3652       // Compute type- and value-dependence.
3653       Expr *Start = IndexExprs[IndexIdx];
3654       Expr *End = IndexExprs[IndexIdx + 1];
3655       if (Start->isTypeDependent() || Start->isValueDependent() ||
3656           End->isTypeDependent() || End->isValueDependent()) {
3657         ExprBits.ValueDependent = true;
3658         ExprBits.InstantiationDependent = true;
3659       } else if (Start->isInstantiationDependent() ||
3660                  End->isInstantiationDependent()) {
3661         ExprBits.InstantiationDependent = true;
3662       }
3663 
3664       // Propagate unexpanded parameter packs.
3665       if (Start->containsUnexpandedParameterPack() ||
3666           End->containsUnexpandedParameterPack())
3667         ExprBits.ContainsUnexpandedParameterPack = true;
3668 
3669       // Copy the start/end expressions into permanent storage.
3670       *Child++ = IndexExprs[IndexIdx++];
3671       *Child++ = IndexExprs[IndexIdx++];
3672     }
3673   }
3674 
3675   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3676 }
3677 
3678 DesignatedInitExpr *
Create(ASTContext & C,Designator * Designators,unsigned NumDesignators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3679 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3680                            unsigned NumDesignators,
3681                            ArrayRef<Expr*> IndexExprs,
3682                            SourceLocation ColonOrEqualLoc,
3683                            bool UsesColonSyntax, Expr *Init) {
3684   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3685                          sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3686   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3687                                       ColonOrEqualLoc, UsesColonSyntax,
3688                                       IndexExprs, Init);
3689 }
3690 
CreateEmpty(ASTContext & C,unsigned NumIndexExprs)3691 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3692                                                     unsigned NumIndexExprs) {
3693   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3694                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3695   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3696 }
3697 
setDesignators(ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3698 void DesignatedInitExpr::setDesignators(ASTContext &C,
3699                                         const Designator *Desigs,
3700                                         unsigned NumDesigs) {
3701   Designators = new (C) Designator[NumDesigs];
3702   NumDesignators = NumDesigs;
3703   for (unsigned I = 0; I != NumDesigs; ++I)
3704     Designators[I] = Desigs[I];
3705 }
3706 
getDesignatorsSourceRange() const3707 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3708   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3709   if (size() == 1)
3710     return DIE->getDesignator(0)->getSourceRange();
3711   return SourceRange(DIE->getDesignator(0)->getLocStart(),
3712                      DIE->getDesignator(size()-1)->getLocEnd());
3713 }
3714 
getLocStart() const3715 SourceLocation DesignatedInitExpr::getLocStart() const {
3716   SourceLocation StartLoc;
3717   Designator &First =
3718     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3719   if (First.isFieldDesignator()) {
3720     if (GNUSyntax)
3721       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3722     else
3723       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3724   } else
3725     StartLoc =
3726       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3727   return StartLoc;
3728 }
3729 
getLocEnd() const3730 SourceLocation DesignatedInitExpr::getLocEnd() const {
3731   return getInit()->getLocEnd();
3732 }
3733 
getArrayIndex(const Designator & D) const3734 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3735   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3736   char *Ptr = static_cast<char *>(
3737                   const_cast<void *>(static_cast<const void *>(this)));
3738   Ptr += sizeof(DesignatedInitExpr);
3739   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3740   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3741 }
3742 
getArrayRangeStart(const Designator & D) const3743 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3744   assert(D.Kind == Designator::ArrayRangeDesignator &&
3745          "Requires array range designator");
3746   char *Ptr = static_cast<char *>(
3747                   const_cast<void *>(static_cast<const void *>(this)));
3748   Ptr += sizeof(DesignatedInitExpr);
3749   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3750   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3751 }
3752 
getArrayRangeEnd(const Designator & D) const3753 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3754   assert(D.Kind == Designator::ArrayRangeDesignator &&
3755          "Requires array range designator");
3756   char *Ptr = static_cast<char *>(
3757                   const_cast<void *>(static_cast<const void *>(this)));
3758   Ptr += sizeof(DesignatedInitExpr);
3759   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3760   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3761 }
3762 
3763 /// \brief Replaces the designator at index @p Idx with the series
3764 /// of designators in [First, Last).
ExpandDesignator(ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3765 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3766                                           const Designator *First,
3767                                           const Designator *Last) {
3768   unsigned NumNewDesignators = Last - First;
3769   if (NumNewDesignators == 0) {
3770     std::copy_backward(Designators + Idx + 1,
3771                        Designators + NumDesignators,
3772                        Designators + Idx);
3773     --NumNewDesignators;
3774     return;
3775   } else if (NumNewDesignators == 1) {
3776     Designators[Idx] = *First;
3777     return;
3778   }
3779 
3780   Designator *NewDesignators
3781     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3782   std::copy(Designators, Designators + Idx, NewDesignators);
3783   std::copy(First, Last, NewDesignators + Idx);
3784   std::copy(Designators + Idx + 1, Designators + NumDesignators,
3785             NewDesignators + Idx + NumNewDesignators);
3786   Designators = NewDesignators;
3787   NumDesignators = NumDesignators - 1 + NumNewDesignators;
3788 }
3789 
ParenListExpr(ASTContext & C,SourceLocation lparenloc,ArrayRef<Expr * > exprs,SourceLocation rparenloc)3790 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3791                              ArrayRef<Expr*> exprs,
3792                              SourceLocation rparenloc)
3793   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3794          false, false, false, false),
3795     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3796   Exprs = new (C) Stmt*[exprs.size()];
3797   for (unsigned i = 0; i != exprs.size(); ++i) {
3798     if (exprs[i]->isTypeDependent())
3799       ExprBits.TypeDependent = true;
3800     if (exprs[i]->isValueDependent())
3801       ExprBits.ValueDependent = true;
3802     if (exprs[i]->isInstantiationDependent())
3803       ExprBits.InstantiationDependent = true;
3804     if (exprs[i]->containsUnexpandedParameterPack())
3805       ExprBits.ContainsUnexpandedParameterPack = true;
3806 
3807     Exprs[i] = exprs[i];
3808   }
3809 }
3810 
findInCopyConstruct(const Expr * e)3811 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3812   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3813     e = ewc->getSubExpr();
3814   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3815     e = m->GetTemporaryExpr();
3816   e = cast<CXXConstructExpr>(e)->getArg(0);
3817   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3818     e = ice->getSubExpr();
3819   return cast<OpaqueValueExpr>(e);
3820 }
3821 
Create(ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3822 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3823                                            unsigned numSemanticExprs) {
3824   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3825                                     (1 + numSemanticExprs) * sizeof(Expr*),
3826                                   llvm::alignOf<PseudoObjectExpr>());
3827   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3828 }
3829 
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3830 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3831   : Expr(PseudoObjectExprClass, shell) {
3832   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3833 }
3834 
Create(ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3835 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3836                                            ArrayRef<Expr*> semantics,
3837                                            unsigned resultIndex) {
3838   assert(syntax && "no syntactic expression!");
3839   assert(semantics.size() && "no semantic expressions!");
3840 
3841   QualType type;
3842   ExprValueKind VK;
3843   if (resultIndex == NoResult) {
3844     type = C.VoidTy;
3845     VK = VK_RValue;
3846   } else {
3847     assert(resultIndex < semantics.size());
3848     type = semantics[resultIndex]->getType();
3849     VK = semantics[resultIndex]->getValueKind();
3850     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3851   }
3852 
3853   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3854                               (1 + semantics.size()) * sizeof(Expr*),
3855                             llvm::alignOf<PseudoObjectExpr>());
3856   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3857                                       resultIndex);
3858 }
3859 
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3860 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3861                                    Expr *syntax, ArrayRef<Expr*> semantics,
3862                                    unsigned resultIndex)
3863   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3864          /*filled in at end of ctor*/ false, false, false, false) {
3865   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3866   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3867 
3868   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3869     Expr *E = (i == 0 ? syntax : semantics[i-1]);
3870     getSubExprsBuffer()[i] = E;
3871 
3872     if (E->isTypeDependent())
3873       ExprBits.TypeDependent = true;
3874     if (E->isValueDependent())
3875       ExprBits.ValueDependent = true;
3876     if (E->isInstantiationDependent())
3877       ExprBits.InstantiationDependent = true;
3878     if (E->containsUnexpandedParameterPack())
3879       ExprBits.ContainsUnexpandedParameterPack = true;
3880 
3881     if (isa<OpaqueValueExpr>(E))
3882       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3883              "opaque-value semantic expressions for pseudo-object "
3884              "operations must have sources");
3885   }
3886 }
3887 
3888 //===----------------------------------------------------------------------===//
3889 //  ExprIterator.
3890 //===----------------------------------------------------------------------===//
3891 
operator [](size_t idx)3892 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
operator *() const3893 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3894 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
operator [](size_t idx) const3895 const Expr* ConstExprIterator::operator[](size_t idx) const {
3896   return cast<Expr>(I[idx]);
3897 }
operator *() const3898 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3899 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3900 
3901 //===----------------------------------------------------------------------===//
3902 //  Child Iterators for iterating over subexpressions/substatements
3903 //===----------------------------------------------------------------------===//
3904 
3905 // UnaryExprOrTypeTraitExpr
children()3906 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3907   // If this is of a type and the type is a VLA type (and not a typedef), the
3908   // size expression of the VLA needs to be treated as an executable expression.
3909   // Why isn't this weirdness documented better in StmtIterator?
3910   if (isArgumentType()) {
3911     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3912                                    getArgumentType().getTypePtr()))
3913       return child_range(child_iterator(T), child_iterator());
3914     return child_range();
3915   }
3916   return child_range(&Argument.Ex, &Argument.Ex + 1);
3917 }
3918 
3919 // ObjCMessageExpr
children()3920 Stmt::child_range ObjCMessageExpr::children() {
3921   Stmt **begin;
3922   if (getReceiverKind() == Instance)
3923     begin = reinterpret_cast<Stmt **>(this + 1);
3924   else
3925     begin = reinterpret_cast<Stmt **>(getArgs());
3926   return child_range(begin,
3927                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3928 }
3929 
ObjCArrayLiteral(ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3930 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
3931                                    QualType T, ObjCMethodDecl *Method,
3932                                    SourceRange SR)
3933   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3934          false, false, false, false),
3935     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3936 {
3937   Expr **SaveElements = getElements();
3938   for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3939     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3940       ExprBits.ValueDependent = true;
3941     if (Elements[I]->isInstantiationDependent())
3942       ExprBits.InstantiationDependent = true;
3943     if (Elements[I]->containsUnexpandedParameterPack())
3944       ExprBits.ContainsUnexpandedParameterPack = true;
3945 
3946     SaveElements[I] = Elements[I];
3947   }
3948 }
3949 
Create(ASTContext & C,ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3950 ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3951                                            ArrayRef<Expr *> Elements,
3952                                            QualType T, ObjCMethodDecl * Method,
3953                                            SourceRange SR) {
3954   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3955                          + Elements.size() * sizeof(Expr *));
3956   return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3957 }
3958 
CreateEmpty(ASTContext & C,unsigned NumElements)3959 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3960                                                 unsigned NumElements) {
3961 
3962   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3963                          + NumElements * sizeof(Expr *));
3964   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3965 }
3966 
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3967 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3968                                              ArrayRef<ObjCDictionaryElement> VK,
3969                                              bool HasPackExpansions,
3970                                              QualType T, ObjCMethodDecl *method,
3971                                              SourceRange SR)
3972   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3973          false, false),
3974     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3975     DictWithObjectsMethod(method)
3976 {
3977   KeyValuePair *KeyValues = getKeyValues();
3978   ExpansionData *Expansions = getExpansionData();
3979   for (unsigned I = 0; I < NumElements; I++) {
3980     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3981         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3982       ExprBits.ValueDependent = true;
3983     if (VK[I].Key->isInstantiationDependent() ||
3984         VK[I].Value->isInstantiationDependent())
3985       ExprBits.InstantiationDependent = true;
3986     if (VK[I].EllipsisLoc.isInvalid() &&
3987         (VK[I].Key->containsUnexpandedParameterPack() ||
3988          VK[I].Value->containsUnexpandedParameterPack()))
3989       ExprBits.ContainsUnexpandedParameterPack = true;
3990 
3991     KeyValues[I].Key = VK[I].Key;
3992     KeyValues[I].Value = VK[I].Value;
3993     if (Expansions) {
3994       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3995       if (VK[I].NumExpansions)
3996         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3997       else
3998         Expansions[I].NumExpansionsPlusOne = 0;
3999     }
4000   }
4001 }
4002 
4003 ObjCDictionaryLiteral *
Create(ASTContext & C,ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)4004 ObjCDictionaryLiteral::Create(ASTContext &C,
4005                               ArrayRef<ObjCDictionaryElement> VK,
4006                               bool HasPackExpansions,
4007                               QualType T, ObjCMethodDecl *method,
4008                               SourceRange SR) {
4009   unsigned ExpansionsSize = 0;
4010   if (HasPackExpansions)
4011     ExpansionsSize = sizeof(ExpansionData) * VK.size();
4012 
4013   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4014                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4015   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4016 }
4017 
4018 ObjCDictionaryLiteral *
CreateEmpty(ASTContext & C,unsigned NumElements,bool HasPackExpansions)4019 ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
4020                                    bool HasPackExpansions) {
4021   unsigned ExpansionsSize = 0;
4022   if (HasPackExpansions)
4023     ExpansionsSize = sizeof(ExpansionData) * NumElements;
4024   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4025                          sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4026   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
4027                                          HasPackExpansions);
4028 }
4029 
Create(ASTContext & C,Expr * base,Expr * key,QualType T,ObjCMethodDecl * getMethod,ObjCMethodDecl * setMethod,SourceLocation RB)4030 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
4031                                                    Expr *base,
4032                                                    Expr *key, QualType T,
4033                                                    ObjCMethodDecl *getMethod,
4034                                                    ObjCMethodDecl *setMethod,
4035                                                    SourceLocation RB) {
4036   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4037   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4038                                         OK_ObjCSubscript,
4039                                         getMethod, setMethod, RB);
4040 }
4041 
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)4042 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4043                        QualType t, AtomicOp op, SourceLocation RP)
4044   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4045          false, false, false, false),
4046     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4047 {
4048   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4049   for (unsigned i = 0; i != args.size(); i++) {
4050     if (args[i]->isTypeDependent())
4051       ExprBits.TypeDependent = true;
4052     if (args[i]->isValueDependent())
4053       ExprBits.ValueDependent = true;
4054     if (args[i]->isInstantiationDependent())
4055       ExprBits.InstantiationDependent = true;
4056     if (args[i]->containsUnexpandedParameterPack())
4057       ExprBits.ContainsUnexpandedParameterPack = true;
4058 
4059     SubExprs[i] = args[i];
4060   }
4061 }
4062 
getNumSubExprs(AtomicOp Op)4063 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4064   switch (Op) {
4065   case AO__c11_atomic_init:
4066   case AO__c11_atomic_load:
4067   case AO__atomic_load_n:
4068     return 2;
4069 
4070   case AO__c11_atomic_store:
4071   case AO__c11_atomic_exchange:
4072   case AO__atomic_load:
4073   case AO__atomic_store:
4074   case AO__atomic_store_n:
4075   case AO__atomic_exchange_n:
4076   case AO__c11_atomic_fetch_add:
4077   case AO__c11_atomic_fetch_sub:
4078   case AO__c11_atomic_fetch_and:
4079   case AO__c11_atomic_fetch_or:
4080   case AO__c11_atomic_fetch_xor:
4081   case AO__atomic_fetch_add:
4082   case AO__atomic_fetch_sub:
4083   case AO__atomic_fetch_and:
4084   case AO__atomic_fetch_or:
4085   case AO__atomic_fetch_xor:
4086   case AO__atomic_fetch_nand:
4087   case AO__atomic_add_fetch:
4088   case AO__atomic_sub_fetch:
4089   case AO__atomic_and_fetch:
4090   case AO__atomic_or_fetch:
4091   case AO__atomic_xor_fetch:
4092   case AO__atomic_nand_fetch:
4093     return 3;
4094 
4095   case AO__atomic_exchange:
4096     return 4;
4097 
4098   case AO__c11_atomic_compare_exchange_strong:
4099   case AO__c11_atomic_compare_exchange_weak:
4100     return 5;
4101 
4102   case AO__atomic_compare_exchange:
4103   case AO__atomic_compare_exchange_n:
4104     return 6;
4105   }
4106   llvm_unreachable("unknown atomic op");
4107 }
4108