1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/IntEqClasses.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/TableGen/Error.h"
23
24 using namespace llvm;
25
26 //===----------------------------------------------------------------------===//
27 // CodeGenSubRegIndex
28 //===----------------------------------------------------------------------===//
29
CodeGenSubRegIndex(Record * R,unsigned Enum)30 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
31 : TheDef(R), EnumValue(Enum), LaneMask(0) {
32 Name = R->getName();
33 if (R->getValue("Namespace"))
34 Namespace = R->getValueAsString("Namespace");
35 }
36
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)37 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
38 unsigned Enum)
39 : TheDef(0), Name(N), Namespace(Nspace), EnumValue(Enum), LaneMask(0) {
40 }
41
getQualifiedName() const42 std::string CodeGenSubRegIndex::getQualifiedName() const {
43 std::string N = getNamespace();
44 if (!N.empty())
45 N += "::";
46 N += getName();
47 return N;
48 }
49
updateComponents(CodeGenRegBank & RegBank)50 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
51 if (!TheDef)
52 return;
53
54 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
55 if (!Comps.empty()) {
56 if (Comps.size() != 2)
57 PrintFatalError(TheDef->getLoc(),
58 "ComposedOf must have exactly two entries");
59 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
60 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
61 CodeGenSubRegIndex *X = A->addComposite(B, this);
62 if (X)
63 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
64 }
65
66 std::vector<Record*> Parts =
67 TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
68 if (!Parts.empty()) {
69 if (Parts.size() < 2)
70 PrintFatalError(TheDef->getLoc(),
71 "CoveredBySubRegs must have two or more entries");
72 SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
73 for (unsigned i = 0, e = Parts.size(); i != e; ++i)
74 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
75 RegBank.addConcatSubRegIndex(IdxParts, this);
76 }
77 }
78
computeLaneMask()79 unsigned CodeGenSubRegIndex::computeLaneMask() {
80 // Already computed?
81 if (LaneMask)
82 return LaneMask;
83
84 // Recursion guard, shouldn't be required.
85 LaneMask = ~0u;
86
87 // The lane mask is simply the union of all sub-indices.
88 unsigned M = 0;
89 for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I)
90 M |= I->second->computeLaneMask();
91 assert(M && "Missing lane mask, sub-register cycle?");
92 LaneMask = M;
93 return LaneMask;
94 }
95
96 //===----------------------------------------------------------------------===//
97 // CodeGenRegister
98 //===----------------------------------------------------------------------===//
99
CodeGenRegister(Record * R,unsigned Enum)100 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
101 : TheDef(R),
102 EnumValue(Enum),
103 CostPerUse(R->getValueAsInt("CostPerUse")),
104 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
105 NumNativeRegUnits(0),
106 SubRegsComplete(false),
107 SuperRegsComplete(false),
108 TopoSig(~0u)
109 {}
110
buildObjectGraph(CodeGenRegBank & RegBank)111 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
112 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
113 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
114
115 if (SRIs.size() != SRs.size())
116 PrintFatalError(TheDef->getLoc(),
117 "SubRegs and SubRegIndices must have the same size");
118
119 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
120 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
121 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
122 }
123
124 // Also compute leading super-registers. Each register has a list of
125 // covered-by-subregs super-registers where it appears as the first explicit
126 // sub-register.
127 //
128 // This is used by computeSecondarySubRegs() to find candidates.
129 if (CoveredBySubRegs && !ExplicitSubRegs.empty())
130 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
131
132 // Add ad hoc alias links. This is a symmetric relationship between two
133 // registers, so build a symmetric graph by adding links in both ends.
134 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
135 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
136 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
137 ExplicitAliases.push_back(Reg);
138 Reg->ExplicitAliases.push_back(this);
139 }
140 }
141
getName() const142 const std::string &CodeGenRegister::getName() const {
143 return TheDef->getName();
144 }
145
146 namespace {
147 // Iterate over all register units in a set of registers.
148 class RegUnitIterator {
149 CodeGenRegister::Set::const_iterator RegI, RegE;
150 CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
151
152 public:
RegUnitIterator(const CodeGenRegister::Set & Regs)153 RegUnitIterator(const CodeGenRegister::Set &Regs):
154 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
155
156 if (RegI != RegE) {
157 UnitI = (*RegI)->getRegUnits().begin();
158 UnitE = (*RegI)->getRegUnits().end();
159 advance();
160 }
161 }
162
isValid() const163 bool isValid() const { return UnitI != UnitE; }
164
operator *() const165 unsigned operator* () const { assert(isValid()); return *UnitI; }
166
getReg() const167 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
168
169 /// Preincrement. Move to the next unit.
operator ++()170 void operator++() {
171 assert(isValid() && "Cannot advance beyond the last operand");
172 ++UnitI;
173 advance();
174 }
175
176 protected:
advance()177 void advance() {
178 while (UnitI == UnitE) {
179 if (++RegI == RegE)
180 break;
181 UnitI = (*RegI)->getRegUnits().begin();
182 UnitE = (*RegI)->getRegUnits().end();
183 }
184 }
185 };
186 } // namespace
187
188 // Merge two RegUnitLists maintaining the order and removing duplicates.
189 // Overwrites MergedRU in the process.
mergeRegUnits(CodeGenRegister::RegUnitList & MergedRU,const CodeGenRegister::RegUnitList & RRU)190 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
191 const CodeGenRegister::RegUnitList &RRU) {
192 CodeGenRegister::RegUnitList LRU = MergedRU;
193 MergedRU.clear();
194 std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
195 std::back_inserter(MergedRU));
196 }
197
198 // Return true of this unit appears in RegUnits.
hasRegUnit(CodeGenRegister::RegUnitList & RegUnits,unsigned Unit)199 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
200 return std::count(RegUnits.begin(), RegUnits.end(), Unit);
201 }
202
203 // Inherit register units from subregisters.
204 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)205 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
206 unsigned OldNumUnits = RegUnits.size();
207 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
208 I != E; ++I) {
209 CodeGenRegister *SR = I->second;
210 // Merge the subregister's units into this register's RegUnits.
211 mergeRegUnits(RegUnits, SR->RegUnits);
212 }
213 return OldNumUnits != RegUnits.size();
214 }
215
216 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)217 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
218 // Only compute this map once.
219 if (SubRegsComplete)
220 return SubRegs;
221 SubRegsComplete = true;
222
223 // First insert the explicit subregs and make sure they are fully indexed.
224 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
225 CodeGenRegister *SR = ExplicitSubRegs[i];
226 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
227 if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
228 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
229 " appears twice in Register " + getName());
230 // Map explicit sub-registers first, so the names take precedence.
231 // The inherited sub-registers are mapped below.
232 SubReg2Idx.insert(std::make_pair(SR, Idx));
233 }
234
235 // Keep track of inherited subregs and how they can be reached.
236 SmallPtrSet<CodeGenRegister*, 8> Orphans;
237
238 // Clone inherited subregs and place duplicate entries in Orphans.
239 // Here the order is important - earlier subregs take precedence.
240 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
241 CodeGenRegister *SR = ExplicitSubRegs[i];
242 const SubRegMap &Map = SR->computeSubRegs(RegBank);
243
244 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
245 ++SI) {
246 if (!SubRegs.insert(*SI).second)
247 Orphans.insert(SI->second);
248 }
249 }
250
251 // Expand any composed subreg indices.
252 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
253 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
254 // expanded subreg indices recursively.
255 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
256 for (unsigned i = 0; i != Indices.size(); ++i) {
257 CodeGenSubRegIndex *Idx = Indices[i];
258 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
259 CodeGenRegister *SR = SubRegs[Idx];
260 const SubRegMap &Map = SR->computeSubRegs(RegBank);
261
262 // Look at the possible compositions of Idx.
263 // They may not all be supported by SR.
264 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
265 E = Comps.end(); I != E; ++I) {
266 SubRegMap::const_iterator SRI = Map.find(I->first);
267 if (SRI == Map.end())
268 continue; // Idx + I->first doesn't exist in SR.
269 // Add I->second as a name for the subreg SRI->second, assuming it is
270 // orphaned, and the name isn't already used for something else.
271 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
272 continue;
273 // We found a new name for the orphaned sub-register.
274 SubRegs.insert(std::make_pair(I->second, SRI->second));
275 Indices.push_back(I->second);
276 }
277 }
278
279 // Now Orphans contains the inherited subregisters without a direct index.
280 // Create inferred indexes for all missing entries.
281 // Work backwards in the Indices vector in order to compose subregs bottom-up.
282 // Consider this subreg sequence:
283 //
284 // qsub_1 -> dsub_0 -> ssub_0
285 //
286 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
287 // can be reached in two different ways:
288 //
289 // qsub_1 -> ssub_0
290 // dsub_2 -> ssub_0
291 //
292 // We pick the latter composition because another register may have [dsub_0,
293 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
294 // dsub_2 -> ssub_0 composition can be shared.
295 while (!Indices.empty() && !Orphans.empty()) {
296 CodeGenSubRegIndex *Idx = Indices.pop_back_val();
297 CodeGenRegister *SR = SubRegs[Idx];
298 const SubRegMap &Map = SR->computeSubRegs(RegBank);
299 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
300 ++SI)
301 if (Orphans.erase(SI->second))
302 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
303 }
304
305 // Compute the inverse SubReg -> Idx map.
306 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
307 SI != SE; ++SI) {
308 if (SI->second == this) {
309 ArrayRef<SMLoc> Loc;
310 if (TheDef)
311 Loc = TheDef->getLoc();
312 PrintFatalError(Loc, "Register " + getName() +
313 " has itself as a sub-register");
314 }
315 // Ensure that every sub-register has a unique name.
316 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
317 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
318 if (Ins->second == SI->first)
319 continue;
320 // Trouble: Two different names for SI->second.
321 ArrayRef<SMLoc> Loc;
322 if (TheDef)
323 Loc = TheDef->getLoc();
324 PrintFatalError(Loc, "Sub-register can't have two names: " +
325 SI->second->getName() + " available as " +
326 SI->first->getName() + " and " + Ins->second->getName());
327 }
328
329 // Derive possible names for sub-register concatenations from any explicit
330 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
331 // that getConcatSubRegIndex() won't invent any concatenated indices that the
332 // user already specified.
333 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
334 CodeGenRegister *SR = ExplicitSubRegs[i];
335 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
336 continue;
337
338 // SR is composed of multiple sub-regs. Find their names in this register.
339 SmallVector<CodeGenSubRegIndex*, 8> Parts;
340 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
341 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
342
343 // Offer this as an existing spelling for the concatenation of Parts.
344 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
345 }
346
347 // Initialize RegUnitList. Because getSubRegs is called recursively, this
348 // processes the register hierarchy in postorder.
349 //
350 // Inherit all sub-register units. It is good enough to look at the explicit
351 // sub-registers, the other registers won't contribute any more units.
352 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
353 CodeGenRegister *SR = ExplicitSubRegs[i];
354 // Explicit sub-registers are usually disjoint, so this is a good way of
355 // computing the union. We may pick up a few duplicates that will be
356 // eliminated below.
357 unsigned N = RegUnits.size();
358 RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
359 std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
360 }
361 RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
362
363 // Absent any ad hoc aliasing, we create one register unit per leaf register.
364 // These units correspond to the maximal cliques in the register overlap
365 // graph which is optimal.
366 //
367 // When there is ad hoc aliasing, we simply create one unit per edge in the
368 // undirected ad hoc aliasing graph. Technically, we could do better by
369 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
370 // are extremely rare anyway (I've never seen one), so we don't bother with
371 // the added complexity.
372 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
373 CodeGenRegister *AR = ExplicitAliases[i];
374 // Only visit each edge once.
375 if (AR->SubRegsComplete)
376 continue;
377 // Create a RegUnit representing this alias edge, and add it to both
378 // registers.
379 unsigned Unit = RegBank.newRegUnit(this, AR);
380 RegUnits.push_back(Unit);
381 AR->RegUnits.push_back(Unit);
382 }
383
384 // Finally, create units for leaf registers without ad hoc aliases. Note that
385 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
386 // necessary. This means the aliasing leaf registers can share a single unit.
387 if (RegUnits.empty())
388 RegUnits.push_back(RegBank.newRegUnit(this));
389
390 // We have now computed the native register units. More may be adopted later
391 // for balancing purposes.
392 NumNativeRegUnits = RegUnits.size();
393
394 return SubRegs;
395 }
396
397 // In a register that is covered by its sub-registers, try to find redundant
398 // sub-registers. For example:
399 //
400 // QQ0 = {Q0, Q1}
401 // Q0 = {D0, D1}
402 // Q1 = {D2, D3}
403 //
404 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
405 // the register definition.
406 //
407 // The explicitly specified registers form a tree. This function discovers
408 // sub-register relationships that would force a DAG.
409 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)410 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
411 // Collect new sub-registers first, add them later.
412 SmallVector<SubRegMap::value_type, 8> NewSubRegs;
413
414 // Look at the leading super-registers of each sub-register. Those are the
415 // candidates for new sub-registers, assuming they are fully contained in
416 // this register.
417 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
418 const CodeGenRegister *SubReg = I->second;
419 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
420 for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
421 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
422 // Already got this sub-register?
423 if (Cand == this || getSubRegIndex(Cand))
424 continue;
425 // Check if each component of Cand is already a sub-register.
426 // We know that the first component is I->second, and is present with the
427 // name I->first.
428 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
429 assert(!Cand->ExplicitSubRegs.empty() &&
430 "Super-register has no sub-registers");
431 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
432 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
433 Parts.push_back(Idx);
434 else {
435 // Sub-register doesn't exist.
436 Parts.clear();
437 break;
438 }
439 }
440 // If some Cand sub-register is not part of this register, or if Cand only
441 // has one sub-register, there is nothing to do.
442 if (Parts.size() <= 1)
443 continue;
444
445 // Each part of Cand is a sub-register of this. Make the full Cand also
446 // a sub-register with a concatenated sub-register index.
447 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
448 NewSubRegs.push_back(std::make_pair(Concat, Cand));
449 }
450 }
451
452 // Now add all the new sub-registers.
453 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
454 // Don't add Cand if another sub-register is already using the index.
455 if (!SubRegs.insert(NewSubRegs[i]).second)
456 continue;
457
458 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
459 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
460 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
461 }
462
463 // Create sub-register index composition maps for the synthesized indices.
464 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
466 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
467 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
468 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
469 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
470 if (!SubIdx)
471 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
472 SI->second->getName() + " in " + getName());
473 NewIdx->addComposite(SI->first, SubIdx);
474 }
475 }
476 }
477
computeSuperRegs(CodeGenRegBank & RegBank)478 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
479 // Only visit each register once.
480 if (SuperRegsComplete)
481 return;
482 SuperRegsComplete = true;
483
484 // Make sure all sub-registers have been visited first, so the super-reg
485 // lists will be topologically ordered.
486 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
487 I != E; ++I)
488 I->second->computeSuperRegs(RegBank);
489
490 // Now add this as a super-register on all sub-registers.
491 // Also compute the TopoSigId in post-order.
492 TopoSigId Id;
493 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
494 I != E; ++I) {
495 // Topological signature computed from SubIdx, TopoId(SubReg).
496 // Loops and idempotent indices have TopoSig = ~0u.
497 Id.push_back(I->first->EnumValue);
498 Id.push_back(I->second->TopoSig);
499
500 // Don't add duplicate entries.
501 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
502 continue;
503 I->second->SuperRegs.push_back(this);
504 }
505 TopoSig = RegBank.getTopoSig(Id);
506 }
507
508 void
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const509 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
510 CodeGenRegBank &RegBank) const {
511 assert(SubRegsComplete && "Must precompute sub-registers");
512 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
513 CodeGenRegister *SR = ExplicitSubRegs[i];
514 if (OSet.insert(SR))
515 SR->addSubRegsPreOrder(OSet, RegBank);
516 }
517 // Add any secondary sub-registers that weren't part of the explicit tree.
518 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
519 I != E; ++I)
520 OSet.insert(I->second);
521 }
522
523 // Compute overlapping registers.
524 //
525 // The standard set is all super-registers and all sub-registers, but the
526 // target description can add arbitrary overlapping registers via the 'Aliases'
527 // field. This complicates things, but we can compute overlapping sets using
528 // the following rules:
529 //
530 // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
531 //
532 // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
533 //
534 // Alternatively:
535 //
536 // overlap(A, B) iff there exists:
537 // A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
538 // A' = B' or A' in aliases(B') or B' in aliases(A').
539 //
540 // Here subregs(A) is the full flattened sub-register set returned by
541 // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
542 // description of register A.
543 //
544 // This also implies that registers with a common sub-register are considered
545 // overlapping. This can happen when forming register pairs:
546 //
547 // P0 = (R0, R1)
548 // P1 = (R1, R2)
549 // P2 = (R2, R3)
550 //
551 // In this case, we will infer an overlap between P0 and P1 because of the
552 // shared sub-register R1. There is no overlap between P0 and P2.
553 //
computeOverlaps(CodeGenRegister::Set & Overlaps,const CodeGenRegBank & RegBank) const554 void CodeGenRegister::computeOverlaps(CodeGenRegister::Set &Overlaps,
555 const CodeGenRegBank &RegBank) const {
556 assert(!RegUnits.empty() && "Compute register units before overlaps.");
557
558 // Register units are assigned such that the overlapping registers are the
559 // super-registers of the root registers of the register units.
560 for (unsigned rui = 0, rue = RegUnits.size(); rui != rue; ++rui) {
561 const RegUnit &RU = RegBank.getRegUnit(RegUnits[rui]);
562 ArrayRef<const CodeGenRegister*> Roots = RU.getRoots();
563 for (unsigned ri = 0, re = Roots.size(); ri != re; ++ri) {
564 const CodeGenRegister *Root = Roots[ri];
565 Overlaps.insert(Root);
566 ArrayRef<const CodeGenRegister*> Supers = Root->getSuperRegs();
567 Overlaps.insert(Supers.begin(), Supers.end());
568 }
569 }
570 }
571
572 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const573 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
574 unsigned Weight = 0;
575 for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
576 I != E; ++I) {
577 Weight += RegBank.getRegUnit(*I).Weight;
578 }
579 return Weight;
580 }
581
582 //===----------------------------------------------------------------------===//
583 // RegisterTuples
584 //===----------------------------------------------------------------------===//
585
586 // A RegisterTuples def is used to generate pseudo-registers from lists of
587 // sub-registers. We provide a SetTheory expander class that returns the new
588 // registers.
589 namespace {
590 struct TupleExpander : SetTheory::Expander {
expand__anonc0de99300211::TupleExpander591 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
592 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
593 unsigned Dim = Indices.size();
594 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
595 if (Dim != SubRegs->getSize())
596 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
597 if (Dim < 2)
598 PrintFatalError(Def->getLoc(),
599 "Tuples must have at least 2 sub-registers");
600
601 // Evaluate the sub-register lists to be zipped.
602 unsigned Length = ~0u;
603 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
604 for (unsigned i = 0; i != Dim; ++i) {
605 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
606 Length = std::min(Length, unsigned(Lists[i].size()));
607 }
608
609 if (Length == 0)
610 return;
611
612 // Precompute some types.
613 Record *RegisterCl = Def->getRecords().getClass("Register");
614 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
615 StringInit *BlankName = StringInit::get("");
616
617 // Zip them up.
618 for (unsigned n = 0; n != Length; ++n) {
619 std::string Name;
620 Record *Proto = Lists[0][n];
621 std::vector<Init*> Tuple;
622 unsigned CostPerUse = 0;
623 for (unsigned i = 0; i != Dim; ++i) {
624 Record *Reg = Lists[i][n];
625 if (i) Name += '_';
626 Name += Reg->getName();
627 Tuple.push_back(DefInit::get(Reg));
628 CostPerUse = std::max(CostPerUse,
629 unsigned(Reg->getValueAsInt("CostPerUse")));
630 }
631
632 // Create a new Record representing the synthesized register. This record
633 // is only for consumption by CodeGenRegister, it is not added to the
634 // RecordKeeper.
635 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
636 Elts.insert(NewReg);
637
638 // Copy Proto super-classes.
639 ArrayRef<Record *> Supers = Proto->getSuperClasses();
640 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
641 for (unsigned i = 0, e = Supers.size(); i != e; ++i)
642 NewReg->addSuperClass(Supers[i], Ranges[i]);
643
644 // Copy Proto fields.
645 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
646 RecordVal RV = Proto->getValues()[i];
647
648 // Skip existing fields, like NAME.
649 if (NewReg->getValue(RV.getNameInit()))
650 continue;
651
652 StringRef Field = RV.getName();
653
654 // Replace the sub-register list with Tuple.
655 if (Field == "SubRegs")
656 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
657
658 // Provide a blank AsmName. MC hacks are required anyway.
659 if (Field == "AsmName")
660 RV.setValue(BlankName);
661
662 // CostPerUse is aggregated from all Tuple members.
663 if (Field == "CostPerUse")
664 RV.setValue(IntInit::get(CostPerUse));
665
666 // Composite registers are always covered by sub-registers.
667 if (Field == "CoveredBySubRegs")
668 RV.setValue(BitInit::get(true));
669
670 // Copy fields from the RegisterTuples def.
671 if (Field == "SubRegIndices" ||
672 Field == "CompositeIndices") {
673 NewReg->addValue(*Def->getValue(Field));
674 continue;
675 }
676
677 // Some fields get their default uninitialized value.
678 if (Field == "DwarfNumbers" ||
679 Field == "DwarfAlias" ||
680 Field == "Aliases") {
681 if (const RecordVal *DefRV = RegisterCl->getValue(Field))
682 NewReg->addValue(*DefRV);
683 continue;
684 }
685
686 // Everything else is copied from Proto.
687 NewReg->addValue(RV);
688 }
689 }
690 }
691 };
692 }
693
694 //===----------------------------------------------------------------------===//
695 // CodeGenRegisterClass
696 //===----------------------------------------------------------------------===//
697
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)698 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
699 : TheDef(R),
700 Name(R->getName()),
701 TopoSigs(RegBank.getNumTopoSigs()),
702 EnumValue(-1) {
703 // Rename anonymous register classes.
704 if (R->getName().size() > 9 && R->getName()[9] == '.') {
705 static unsigned AnonCounter = 0;
706 R->setName("AnonRegClass_" + utostr(AnonCounter));
707 // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr.
708 ++AnonCounter;
709 }
710
711 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
712 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
713 Record *Type = TypeList[i];
714 if (!Type->isSubClassOf("ValueType"))
715 PrintFatalError("RegTypes list member '" + Type->getName() +
716 "' does not derive from the ValueType class!");
717 VTs.push_back(getValueType(Type));
718 }
719 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
720
721 // Allocation order 0 is the full set. AltOrders provides others.
722 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
723 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
724 Orders.resize(1 + AltOrders->size());
725
726 // Default allocation order always contains all registers.
727 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
728 Orders[0].push_back((*Elements)[i]);
729 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
730 Members.insert(Reg);
731 TopoSigs.set(Reg->getTopoSig());
732 }
733
734 // Alternative allocation orders may be subsets.
735 SetTheory::RecSet Order;
736 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
737 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
738 Orders[1 + i].append(Order.begin(), Order.end());
739 // Verify that all altorder members are regclass members.
740 while (!Order.empty()) {
741 CodeGenRegister *Reg = RegBank.getReg(Order.back());
742 Order.pop_back();
743 if (!contains(Reg))
744 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
745 " is not a class member");
746 }
747 }
748
749 // Allow targets to override the size in bits of the RegisterClass.
750 unsigned Size = R->getValueAsInt("Size");
751
752 Namespace = R->getValueAsString("Namespace");
753 SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
754 SpillAlignment = R->getValueAsInt("Alignment");
755 CopyCost = R->getValueAsInt("CopyCost");
756 Allocatable = R->getValueAsBit("isAllocatable");
757 AltOrderSelect = R->getValueAsString("AltOrderSelect");
758 }
759
760 // Create an inferred register class that was missing from the .td files.
761 // Most properties will be inherited from the closest super-class after the
762 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)763 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
764 StringRef Name, Key Props)
765 : Members(*Props.Members),
766 TheDef(0),
767 Name(Name),
768 TopoSigs(RegBank.getNumTopoSigs()),
769 EnumValue(-1),
770 SpillSize(Props.SpillSize),
771 SpillAlignment(Props.SpillAlignment),
772 CopyCost(0),
773 Allocatable(true) {
774 for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
775 I != E; ++I)
776 TopoSigs.set((*I)->getTopoSig());
777 }
778
779 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)780 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
781 assert(!getDef() && "Only synthesized classes can inherit properties");
782 assert(!SuperClasses.empty() && "Synthesized class without super class");
783
784 // The last super-class is the smallest one.
785 CodeGenRegisterClass &Super = *SuperClasses.back();
786
787 // Most properties are copied directly.
788 // Exceptions are members, size, and alignment
789 Namespace = Super.Namespace;
790 VTs = Super.VTs;
791 CopyCost = Super.CopyCost;
792 Allocatable = Super.Allocatable;
793 AltOrderSelect = Super.AltOrderSelect;
794
795 // Copy all allocation orders, filter out foreign registers from the larger
796 // super-class.
797 Orders.resize(Super.Orders.size());
798 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
799 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
800 if (contains(RegBank.getReg(Super.Orders[i][j])))
801 Orders[i].push_back(Super.Orders[i][j]);
802 }
803
contains(const CodeGenRegister * Reg) const804 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
805 return Members.count(Reg);
806 }
807
808 namespace llvm {
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)809 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
810 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
811 for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
812 E = K.Members->end(); I != E; ++I)
813 OS << ", " << (*I)->getName();
814 return OS << " }";
815 }
816 }
817
818 // This is a simple lexicographical order that can be used to search for sets.
819 // It is not the same as the topological order provided by TopoOrderRC.
820 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const821 operator<(const CodeGenRegisterClass::Key &B) const {
822 assert(Members && B.Members);
823 if (*Members != *B.Members)
824 return *Members < *B.Members;
825 if (SpillSize != B.SpillSize)
826 return SpillSize < B.SpillSize;
827 return SpillAlignment < B.SpillAlignment;
828 }
829
830 // Returns true if RC is a strict subclass.
831 // RC is a sub-class of this class if it is a valid replacement for any
832 // instruction operand where a register of this classis required. It must
833 // satisfy these conditions:
834 //
835 // 1. All RC registers are also in this.
836 // 2. The RC spill size must not be smaller than our spill size.
837 // 3. RC spill alignment must be compatible with ours.
838 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)839 static bool testSubClass(const CodeGenRegisterClass *A,
840 const CodeGenRegisterClass *B) {
841 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
842 A->SpillSize <= B->SpillSize &&
843 std::includes(A->getMembers().begin(), A->getMembers().end(),
844 B->getMembers().begin(), B->getMembers().end(),
845 CodeGenRegister::Less());
846 }
847
848 /// Sorting predicate for register classes. This provides a topological
849 /// ordering that arranges all register classes before their sub-classes.
850 ///
851 /// Register classes with the same registers, spill size, and alignment form a
852 /// clique. They will be ordered alphabetically.
853 ///
TopoOrderRC(const void * PA,const void * PB)854 static int TopoOrderRC(const void *PA, const void *PB) {
855 const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
856 const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
857 if (A == B)
858 return 0;
859
860 // Order by ascending spill size.
861 if (A->SpillSize < B->SpillSize)
862 return -1;
863 if (A->SpillSize > B->SpillSize)
864 return 1;
865
866 // Order by ascending spill alignment.
867 if (A->SpillAlignment < B->SpillAlignment)
868 return -1;
869 if (A->SpillAlignment > B->SpillAlignment)
870 return 1;
871
872 // Order by descending set size. Note that the classes' allocation order may
873 // not have been computed yet. The Members set is always vaild.
874 if (A->getMembers().size() > B->getMembers().size())
875 return -1;
876 if (A->getMembers().size() < B->getMembers().size())
877 return 1;
878
879 // Finally order by name as a tie breaker.
880 return StringRef(A->getName()).compare(B->getName());
881 }
882
getQualifiedName() const883 std::string CodeGenRegisterClass::getQualifiedName() const {
884 if (Namespace.empty())
885 return getName();
886 else
887 return Namespace + "::" + getName();
888 }
889
890 // Compute sub-classes of all register classes.
891 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)892 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
893 ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
894
895 // Visit backwards so sub-classes are seen first.
896 for (unsigned rci = RegClasses.size(); rci; --rci) {
897 CodeGenRegisterClass &RC = *RegClasses[rci - 1];
898 RC.SubClasses.resize(RegClasses.size());
899 RC.SubClasses.set(RC.EnumValue);
900
901 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
902 for (unsigned s = rci; s != RegClasses.size(); ++s) {
903 if (RC.SubClasses.test(s))
904 continue;
905 CodeGenRegisterClass *SubRC = RegClasses[s];
906 if (!testSubClass(&RC, SubRC))
907 continue;
908 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
909 // check them again.
910 RC.SubClasses |= SubRC->SubClasses;
911 }
912
913 // Sweep up missed clique members. They will be immediately preceding RC.
914 for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
915 RC.SubClasses.set(s - 1);
916 }
917
918 // Compute the SuperClasses lists from the SubClasses vectors.
919 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
920 const BitVector &SC = RegClasses[rci]->getSubClasses();
921 for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
922 if (unsigned(s) == rci)
923 continue;
924 RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
925 }
926 }
927
928 // With the class hierarchy in place, let synthesized register classes inherit
929 // properties from their closest super-class. The iteration order here can
930 // propagate properties down multiple levels.
931 for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
932 if (!RegClasses[rci]->getDef())
933 RegClasses[rci]->inheritProperties(RegBank);
934 }
935
936 void
getSuperRegClasses(CodeGenSubRegIndex * SubIdx,BitVector & Out) const937 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
938 BitVector &Out) const {
939 DenseMap<CodeGenSubRegIndex*,
940 SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
941 FindI = SuperRegClasses.find(SubIdx);
942 if (FindI == SuperRegClasses.end())
943 return;
944 for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
945 FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
946 Out.set((*I)->EnumValue);
947 }
948
949 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(std::vector<unsigned> & RegUnits) const950 void CodeGenRegisterClass::buildRegUnitSet(
951 std::vector<unsigned> &RegUnits) const {
952 std::vector<unsigned> TmpUnits;
953 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
954 TmpUnits.push_back(*UnitI);
955 std::sort(TmpUnits.begin(), TmpUnits.end());
956 std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
957 std::back_inserter(RegUnits));
958 }
959
960 //===----------------------------------------------------------------------===//
961 // CodeGenRegBank
962 //===----------------------------------------------------------------------===//
963
CodeGenRegBank(RecordKeeper & Records)964 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
965 // Configure register Sets to understand register classes and tuples.
966 Sets.addFieldExpander("RegisterClass", "MemberList");
967 Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
968 Sets.addExpander("RegisterTuples", new TupleExpander());
969
970 // Read in the user-defined (named) sub-register indices.
971 // More indices will be synthesized later.
972 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
973 std::sort(SRIs.begin(), SRIs.end(), LessRecord());
974 for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
975 getSubRegIdx(SRIs[i]);
976 // Build composite maps from ComposedOf fields.
977 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
978 SubRegIndices[i]->updateComponents(*this);
979
980 // Read in the register definitions.
981 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
982 std::sort(Regs.begin(), Regs.end(), LessRecord());
983 Registers.reserve(Regs.size());
984 // Assign the enumeration values.
985 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
986 getReg(Regs[i]);
987
988 // Expand tuples and number the new registers.
989 std::vector<Record*> Tups =
990 Records.getAllDerivedDefinitions("RegisterTuples");
991 for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
992 const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
993 for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
994 getReg((*TupRegs)[j]);
995 }
996
997 // Now all the registers are known. Build the object graph of explicit
998 // register-register references.
999 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1000 Registers[i]->buildObjectGraph(*this);
1001
1002 // Compute register name map.
1003 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1004 RegistersByName.GetOrCreateValue(
1005 Registers[i]->TheDef->getValueAsString("AsmName"),
1006 Registers[i]);
1007
1008 // Precompute all sub-register maps.
1009 // This will create Composite entries for all inferred sub-register indices.
1010 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1011 Registers[i]->computeSubRegs(*this);
1012
1013 // Infer even more sub-registers by combining leading super-registers.
1014 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1015 if (Registers[i]->CoveredBySubRegs)
1016 Registers[i]->computeSecondarySubRegs(*this);
1017
1018 // After the sub-register graph is complete, compute the topologically
1019 // ordered SuperRegs list.
1020 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1021 Registers[i]->computeSuperRegs(*this);
1022
1023 // Native register units are associated with a leaf register. They've all been
1024 // discovered now.
1025 NumNativeRegUnits = RegUnits.size();
1026
1027 // Read in register class definitions.
1028 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1029 if (RCs.empty())
1030 PrintFatalError(std::string("No 'RegisterClass' subclasses defined!"));
1031
1032 // Allocate user-defined register classes.
1033 RegClasses.reserve(RCs.size());
1034 for (unsigned i = 0, e = RCs.size(); i != e; ++i)
1035 addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
1036
1037 // Infer missing classes to create a full algebra.
1038 computeInferredRegisterClasses();
1039
1040 // Order register classes topologically and assign enum values.
1041 array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
1042 for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
1043 RegClasses[i]->EnumValue = i;
1044 CodeGenRegisterClass::computeSubClasses(*this);
1045 }
1046
1047 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1048 CodeGenSubRegIndex*
createSubRegIndex(StringRef Name,StringRef Namespace)1049 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1050 CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
1051 SubRegIndices.size() + 1);
1052 SubRegIndices.push_back(Idx);
1053 return Idx;
1054 }
1055
getSubRegIdx(Record * Def)1056 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1057 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1058 if (Idx)
1059 return Idx;
1060 Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
1061 SubRegIndices.push_back(Idx);
1062 return Idx;
1063 }
1064
getReg(Record * Def)1065 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1066 CodeGenRegister *&Reg = Def2Reg[Def];
1067 if (Reg)
1068 return Reg;
1069 Reg = new CodeGenRegister(Def, Registers.size() + 1);
1070 Registers.push_back(Reg);
1071 return Reg;
1072 }
1073
addToMaps(CodeGenRegisterClass * RC)1074 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1075 RegClasses.push_back(RC);
1076
1077 if (Record *Def = RC->getDef())
1078 Def2RC.insert(std::make_pair(Def, RC));
1079
1080 // Duplicate classes are rejected by insert().
1081 // That's OK, we only care about the properties handled by CGRC::Key.
1082 CodeGenRegisterClass::Key K(*RC);
1083 Key2RC.insert(std::make_pair(K, RC));
1084 }
1085
1086 // Create a synthetic sub-class if it is missing.
1087 CodeGenRegisterClass*
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Set * Members,StringRef Name)1088 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1089 const CodeGenRegister::Set *Members,
1090 StringRef Name) {
1091 // Synthetic sub-class has the same size and alignment as RC.
1092 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1093 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1094 if (FoundI != Key2RC.end())
1095 return FoundI->second;
1096
1097 // Sub-class doesn't exist, create a new one.
1098 CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
1099 addToMaps(NewRC);
1100 return NewRC;
1101 }
1102
getRegClass(Record * Def)1103 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1104 if (CodeGenRegisterClass *RC = Def2RC[Def])
1105 return RC;
1106
1107 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1108 }
1109
1110 CodeGenSubRegIndex*
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1111 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1112 CodeGenSubRegIndex *B) {
1113 // Look for an existing entry.
1114 CodeGenSubRegIndex *Comp = A->compose(B);
1115 if (Comp)
1116 return Comp;
1117
1118 // None exists, synthesize one.
1119 std::string Name = A->getName() + "_then_" + B->getName();
1120 Comp = createSubRegIndex(Name, A->getNamespace());
1121 A->addComposite(B, Comp);
1122 return Comp;
1123 }
1124
1125 CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts)1126 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) {
1127 assert(Parts.size() > 1 && "Need two parts to concatenate");
1128
1129 // Look for an existing entry.
1130 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1131 if (Idx)
1132 return Idx;
1133
1134 // None exists, synthesize one.
1135 std::string Name = Parts.front()->getName();
1136 for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1137 Name += '_';
1138 Name += Parts[i]->getName();
1139 }
1140 return Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1141 }
1142
computeComposites()1143 void CodeGenRegBank::computeComposites() {
1144 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1145 // and many registers will share TopoSigs on regular architectures.
1146 BitVector TopoSigs(getNumTopoSigs());
1147
1148 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1149 CodeGenRegister *Reg1 = Registers[i];
1150
1151 // Skip identical subreg structures already processed.
1152 if (TopoSigs.test(Reg1->getTopoSig()))
1153 continue;
1154 TopoSigs.set(Reg1->getTopoSig());
1155
1156 const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
1157 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1158 e1 = SRM1.end(); i1 != e1; ++i1) {
1159 CodeGenSubRegIndex *Idx1 = i1->first;
1160 CodeGenRegister *Reg2 = i1->second;
1161 // Ignore identity compositions.
1162 if (Reg1 == Reg2)
1163 continue;
1164 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1165 // Try composing Idx1 with another SubRegIndex.
1166 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1167 e2 = SRM2.end(); i2 != e2; ++i2) {
1168 CodeGenSubRegIndex *Idx2 = i2->first;
1169 CodeGenRegister *Reg3 = i2->second;
1170 // Ignore identity compositions.
1171 if (Reg2 == Reg3)
1172 continue;
1173 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1174 CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
1175 assert(Idx3 && "Sub-register doesn't have an index");
1176
1177 // Conflicting composition? Emit a warning but allow it.
1178 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1179 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1180 " and " + Idx2->getQualifiedName() +
1181 " compose ambiguously as " + Prev->getQualifiedName() +
1182 " or " + Idx3->getQualifiedName());
1183 }
1184 }
1185 }
1186 }
1187
1188 // Compute lane masks. This is similar to register units, but at the
1189 // sub-register index level. Each bit in the lane mask is like a register unit
1190 // class, and two lane masks will have a bit in common if two sub-register
1191 // indices overlap in some register.
1192 //
1193 // Conservatively share a lane mask bit if two sub-register indices overlap in
1194 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegIndexLaneMasks()1195 void CodeGenRegBank::computeSubRegIndexLaneMasks() {
1196 // First assign individual bits to all the leaf indices.
1197 unsigned Bit = 0;
1198 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
1199 CodeGenSubRegIndex *Idx = SubRegIndices[i];
1200 if (Idx->getComposites().empty()) {
1201 Idx->LaneMask = 1u << Bit;
1202 // Share bit 31 in the unlikely case there are more than 32 leafs.
1203 //
1204 // Sharing bits is harmless; it allows graceful degradation in targets
1205 // with more than 32 vector lanes. They simply get a limited resolution
1206 // view of lanes beyond the 32nd.
1207 //
1208 // See also the comment for getSubRegIndexLaneMask().
1209 if (Bit < 31) ++Bit;
1210 } else {
1211 Idx->LaneMask = 0;
1212 }
1213 }
1214
1215 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1216 // by the sub-register graph? This doesn't occur in any known targets.
1217
1218 // Inherit lanes from composites.
1219 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
1220 SubRegIndices[i]->computeLaneMask();
1221 }
1222
1223 namespace {
1224 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1225 // the transitive closure of the union of overlapping register
1226 // classes. Together, the UberRegSets form a partition of the registers. If we
1227 // consider overlapping register classes to be connected, then each UberRegSet
1228 // is a set of connected components.
1229 //
1230 // An UberRegSet will likely be a horizontal slice of register names of
1231 // the same width. Nontrivial subregisters should then be in a separate
1232 // UberRegSet. But this property isn't required for valid computation of
1233 // register unit weights.
1234 //
1235 // A Weight field caches the max per-register unit weight in each UberRegSet.
1236 //
1237 // A set of SingularDeterminants flags single units of some register in this set
1238 // for which the unit weight equals the set weight. These units should not have
1239 // their weight increased.
1240 struct UberRegSet {
1241 CodeGenRegister::Set Regs;
1242 unsigned Weight;
1243 CodeGenRegister::RegUnitList SingularDeterminants;
1244
UberRegSet__anonc0de99300311::UberRegSet1245 UberRegSet(): Weight(0) {}
1246 };
1247 } // namespace
1248
1249 // Partition registers into UberRegSets, where each set is the transitive
1250 // closure of the union of overlapping register classes.
1251 //
1252 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1253 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1254 std::vector<UberRegSet*> &RegSets,
1255 CodeGenRegBank &RegBank) {
1256
1257 const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
1258
1259 // The Register EnumValue is one greater than its index into Registers.
1260 assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
1261 "register enum value mismatch");
1262
1263 // For simplicitly make the SetID the same as EnumValue.
1264 IntEqClasses UberSetIDs(Registers.size()+1);
1265 std::set<unsigned> AllocatableRegs;
1266 for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
1267
1268 CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
1269 if (!RegClass->Allocatable)
1270 continue;
1271
1272 const CodeGenRegister::Set &Regs = RegClass->getMembers();
1273 if (Regs.empty())
1274 continue;
1275
1276 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1277 assert(USetID && "register number 0 is invalid");
1278
1279 AllocatableRegs.insert((*Regs.begin())->EnumValue);
1280 for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
1281 E = Regs.end(); I != E; ++I) {
1282 AllocatableRegs.insert((*I)->EnumValue);
1283 UberSetIDs.join(USetID, (*I)->EnumValue);
1284 }
1285 }
1286 // Combine non-allocatable regs.
1287 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1288 unsigned RegNum = Registers[i]->EnumValue;
1289 if (AllocatableRegs.count(RegNum))
1290 continue;
1291
1292 UberSetIDs.join(0, RegNum);
1293 }
1294 UberSetIDs.compress();
1295
1296 // Make the first UberSet a special unallocatable set.
1297 unsigned ZeroID = UberSetIDs[0];
1298
1299 // Insert Registers into the UberSets formed by union-find.
1300 // Do not resize after this.
1301 UberSets.resize(UberSetIDs.getNumClasses());
1302 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1303 const CodeGenRegister *Reg = Registers[i];
1304 unsigned USetID = UberSetIDs[Reg->EnumValue];
1305 if (!USetID)
1306 USetID = ZeroID;
1307 else if (USetID == ZeroID)
1308 USetID = 0;
1309
1310 UberRegSet *USet = &UberSets[USetID];
1311 USet->Regs.insert(Reg);
1312 RegSets[i] = USet;
1313 }
1314 }
1315
1316 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1317 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1318 CodeGenRegBank &RegBank) {
1319 // Skip the first unallocatable set.
1320 for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
1321 E = UberSets.end(); I != E; ++I) {
1322
1323 // Initialize all unit weights in this set, and remember the max units/reg.
1324 const CodeGenRegister *Reg = 0;
1325 unsigned MaxWeight = 0, Weight = 0;
1326 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1327 if (Reg != UnitI.getReg()) {
1328 if (Weight > MaxWeight)
1329 MaxWeight = Weight;
1330 Reg = UnitI.getReg();
1331 Weight = 0;
1332 }
1333 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1334 if (!UWeight) {
1335 UWeight = 1;
1336 RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1337 }
1338 Weight += UWeight;
1339 }
1340 if (Weight > MaxWeight)
1341 MaxWeight = Weight;
1342
1343 // Update the set weight.
1344 I->Weight = MaxWeight;
1345
1346 // Find singular determinants.
1347 for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1348 RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1349 if ((*RegI)->getRegUnits().size() == 1
1350 && (*RegI)->getWeight(RegBank) == I->Weight)
1351 mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1352 }
1353 }
1354 }
1355
1356 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1357 // a register and its subregisters so that they have the same weight as their
1358 // UberSet. Self-recursion processes the subregister tree in postorder so
1359 // subregisters are normalized first.
1360 //
1361 // Side effects:
1362 // - creates new adopted register units
1363 // - causes superregisters to inherit adopted units
1364 // - increases the weight of "singular" units
1365 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,std::set<unsigned> & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1366 static bool normalizeWeight(CodeGenRegister *Reg,
1367 std::vector<UberRegSet> &UberSets,
1368 std::vector<UberRegSet*> &RegSets,
1369 std::set<unsigned> &NormalRegs,
1370 CodeGenRegister::RegUnitList &NormalUnits,
1371 CodeGenRegBank &RegBank) {
1372 bool Changed = false;
1373 if (!NormalRegs.insert(Reg->EnumValue).second)
1374 return Changed;
1375
1376 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1377 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1378 SRE = SRM.end(); SRI != SRE; ++SRI) {
1379 if (SRI->second == Reg)
1380 continue; // self-cycles happen
1381
1382 Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1383 NormalRegs, NormalUnits, RegBank);
1384 }
1385 // Postorder register normalization.
1386
1387 // Inherit register units newly adopted by subregisters.
1388 if (Reg->inheritRegUnits(RegBank))
1389 computeUberWeights(UberSets, RegBank);
1390
1391 // Check if this register is too skinny for its UberRegSet.
1392 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1393
1394 unsigned RegWeight = Reg->getWeight(RegBank);
1395 if (UberSet->Weight > RegWeight) {
1396 // A register unit's weight can be adjusted only if it is the singular unit
1397 // for this register, has not been used to normalize a subregister's set,
1398 // and has not already been used to singularly determine this UberRegSet.
1399 unsigned AdjustUnit = Reg->getRegUnits().front();
1400 if (Reg->getRegUnits().size() != 1
1401 || hasRegUnit(NormalUnits, AdjustUnit)
1402 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1403 // We don't have an adjustable unit, so adopt a new one.
1404 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1405 Reg->adoptRegUnit(AdjustUnit);
1406 // Adopting a unit does not immediately require recomputing set weights.
1407 }
1408 else {
1409 // Adjust the existing single unit.
1410 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1411 // The unit may be shared among sets and registers within this set.
1412 computeUberWeights(UberSets, RegBank);
1413 }
1414 Changed = true;
1415 }
1416
1417 // Mark these units normalized so superregisters can't change their weights.
1418 mergeRegUnits(NormalUnits, Reg->getRegUnits());
1419
1420 return Changed;
1421 }
1422
1423 // Compute a weight for each register unit created during getSubRegs.
1424 //
1425 // The goal is that two registers in the same class will have the same weight,
1426 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1427 void CodeGenRegBank::computeRegUnitWeights() {
1428 std::vector<UberRegSet> UberSets;
1429 std::vector<UberRegSet*> RegSets(Registers.size());
1430 computeUberSets(UberSets, RegSets, *this);
1431 // UberSets and RegSets are now immutable.
1432
1433 computeUberWeights(UberSets, *this);
1434
1435 // Iterate over each Register, normalizing the unit weights until reaching
1436 // a fix point.
1437 unsigned NumIters = 0;
1438 for (bool Changed = true; Changed; ++NumIters) {
1439 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1440 Changed = false;
1441 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1442 CodeGenRegister::RegUnitList NormalUnits;
1443 std::set<unsigned> NormalRegs;
1444 Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
1445 NormalRegs, NormalUnits, *this);
1446 }
1447 }
1448 }
1449
1450 // Find a set in UniqueSets with the same elements as Set.
1451 // Return an iterator into UniqueSets.
1452 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1453 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1454 const RegUnitSet &Set) {
1455 std::vector<RegUnitSet>::const_iterator
1456 I = UniqueSets.begin(), E = UniqueSets.end();
1457 for(;I != E; ++I) {
1458 if (I->Units == Set.Units)
1459 break;
1460 }
1461 return I;
1462 }
1463
1464 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1465 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1466 const std::vector<unsigned> &RUSuperSet) {
1467 return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1468 RUSubSet.begin(), RUSubSet.end());
1469 }
1470
1471 // Iteratively prune unit sets.
pruneUnitSets()1472 void CodeGenRegBank::pruneUnitSets() {
1473 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1474
1475 // Form an equivalence class of UnitSets with no significant difference.
1476 std::vector<unsigned> SuperSetIDs;
1477 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1478 SubIdx != EndIdx; ++SubIdx) {
1479 const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1480 unsigned SuperIdx = 0;
1481 for (; SuperIdx != EndIdx; ++SuperIdx) {
1482 if (SuperIdx == SubIdx)
1483 continue;
1484
1485 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1486 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1487 && (SubSet.Units.size() + 3 > SuperSet.Units.size())) {
1488 break;
1489 }
1490 }
1491 if (SuperIdx == EndIdx)
1492 SuperSetIDs.push_back(SubIdx);
1493 }
1494 // Populate PrunedUnitSets with each equivalence class's superset.
1495 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1496 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1497 unsigned SuperIdx = SuperSetIDs[i];
1498 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1499 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1500 }
1501 RegUnitSets.swap(PrunedUnitSets);
1502 }
1503
1504 // Create a RegUnitSet for each RegClass that contains all units in the class
1505 // including adopted units that are necessary to model register pressure. Then
1506 // iteratively compute RegUnitSets such that the union of any two overlapping
1507 // RegUnitSets is repreresented.
1508 //
1509 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1510 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()1511 void CodeGenRegBank::computeRegUnitSets() {
1512
1513 // Compute a unique RegUnitSet for each RegClass.
1514 const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
1515 unsigned NumRegClasses = RegClasses.size();
1516 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1517 if (!RegClasses[RCIdx]->Allocatable)
1518 continue;
1519
1520 // Speculatively grow the RegUnitSets to hold the new set.
1521 RegUnitSets.resize(RegUnitSets.size() + 1);
1522 RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
1523
1524 // Compute a sorted list of units in this class.
1525 RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
1526
1527 // Find an existing RegUnitSet.
1528 std::vector<RegUnitSet>::const_iterator SetI =
1529 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1530 if (SetI != llvm::prior(RegUnitSets.end()))
1531 RegUnitSets.pop_back();
1532 }
1533
1534 // Iteratively prune unit sets.
1535 pruneUnitSets();
1536
1537 // Iterate over all unit sets, including new ones added by this loop.
1538 unsigned NumRegUnitSubSets = RegUnitSets.size();
1539 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1540 // In theory, this is combinatorial. In practice, it needs to be bounded
1541 // by a small number of sets for regpressure to be efficient.
1542 // If the assert is hit, we need to implement pruning.
1543 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1544
1545 // Compare new sets with all original classes.
1546 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1547 SearchIdx != EndIdx; ++SearchIdx) {
1548 std::set<unsigned> Intersection;
1549 std::set_intersection(RegUnitSets[Idx].Units.begin(),
1550 RegUnitSets[Idx].Units.end(),
1551 RegUnitSets[SearchIdx].Units.begin(),
1552 RegUnitSets[SearchIdx].Units.end(),
1553 std::inserter(Intersection, Intersection.begin()));
1554 if (Intersection.empty())
1555 continue;
1556
1557 // Speculatively grow the RegUnitSets to hold the new set.
1558 RegUnitSets.resize(RegUnitSets.size() + 1);
1559 RegUnitSets.back().Name =
1560 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1561
1562 std::set_union(RegUnitSets[Idx].Units.begin(),
1563 RegUnitSets[Idx].Units.end(),
1564 RegUnitSets[SearchIdx].Units.begin(),
1565 RegUnitSets[SearchIdx].Units.end(),
1566 std::inserter(RegUnitSets.back().Units,
1567 RegUnitSets.back().Units.begin()));
1568
1569 // Find an existing RegUnitSet, or add the union to the unique sets.
1570 std::vector<RegUnitSet>::const_iterator SetI =
1571 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1572 if (SetI != llvm::prior(RegUnitSets.end()))
1573 RegUnitSets.pop_back();
1574 }
1575 }
1576
1577 // Iteratively prune unit sets after inferring supersets.
1578 pruneUnitSets();
1579
1580 // For each register class, list the UnitSets that are supersets.
1581 RegClassUnitSets.resize(NumRegClasses);
1582 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1583 if (!RegClasses[RCIdx]->Allocatable)
1584 continue;
1585
1586 // Recompute the sorted list of units in this class.
1587 std::vector<unsigned> RegUnits;
1588 RegClasses[RCIdx]->buildRegUnitSet(RegUnits);
1589
1590 // Don't increase pressure for unallocatable regclasses.
1591 if (RegUnits.empty())
1592 continue;
1593
1594 // Find all supersets.
1595 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1596 USIdx != USEnd; ++USIdx) {
1597 if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units))
1598 RegClassUnitSets[RCIdx].push_back(USIdx);
1599 }
1600 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1601 }
1602
1603 // For each register unit, ensure that we have the list of UnitSets that
1604 // contain the unit. Normally, this matches an existing list of UnitSets for a
1605 // register class. If not, we create a new entry in RegClassUnitSets as a
1606 // "fake" register class.
1607 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1608 UnitIdx < UnitEnd; ++UnitIdx) {
1609 std::vector<unsigned> RUSets;
1610 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1611 RegUnitSet &RUSet = RegUnitSets[i];
1612 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1613 == RUSet.Units.end())
1614 continue;
1615 RUSets.push_back(i);
1616 }
1617 unsigned RCUnitSetsIdx = 0;
1618 for (unsigned e = RegClassUnitSets.size();
1619 RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1620 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1621 break;
1622 }
1623 }
1624 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1625 if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1626 // Create a new list of UnitSets as a "fake" register class.
1627 RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1628 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1629 }
1630 }
1631 }
1632
computeDerivedInfo()1633 void CodeGenRegBank::computeDerivedInfo() {
1634 computeComposites();
1635 computeSubRegIndexLaneMasks();
1636
1637 // Compute a weight for each register unit created during getSubRegs.
1638 // This may create adopted register units (with unit # >= NumNativeRegUnits).
1639 computeRegUnitWeights();
1640
1641 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1642 // supersets for the union of overlapping sets.
1643 computeRegUnitSets();
1644 }
1645
1646 //
1647 // Synthesize missing register class intersections.
1648 //
1649 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1650 // returns a maximal register class for all X.
1651 //
inferCommonSubClass(CodeGenRegisterClass * RC)1652 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1653 for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
1654 CodeGenRegisterClass *RC1 = RC;
1655 CodeGenRegisterClass *RC2 = RegClasses[rci];
1656 if (RC1 == RC2)
1657 continue;
1658
1659 // Compute the set intersection of RC1 and RC2.
1660 const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1661 const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1662 CodeGenRegister::Set Intersection;
1663 std::set_intersection(Memb1.begin(), Memb1.end(),
1664 Memb2.begin(), Memb2.end(),
1665 std::inserter(Intersection, Intersection.begin()),
1666 CodeGenRegister::Less());
1667
1668 // Skip disjoint class pairs.
1669 if (Intersection.empty())
1670 continue;
1671
1672 // If RC1 and RC2 have different spill sizes or alignments, use the
1673 // larger size for sub-classing. If they are equal, prefer RC1.
1674 if (RC2->SpillSize > RC1->SpillSize ||
1675 (RC2->SpillSize == RC1->SpillSize &&
1676 RC2->SpillAlignment > RC1->SpillAlignment))
1677 std::swap(RC1, RC2);
1678
1679 getOrCreateSubClass(RC1, &Intersection,
1680 RC1->getName() + "_and_" + RC2->getName());
1681 }
1682 }
1683
1684 //
1685 // Synthesize missing sub-classes for getSubClassWithSubReg().
1686 //
1687 // Make sure that the set of registers in RC with a given SubIdx sub-register
1688 // form a register class. Update RC->SubClassWithSubReg.
1689 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)1690 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1691 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1692 typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
1693 CodeGenSubRegIndex::Less> SubReg2SetMap;
1694
1695 // Compute the set of registers supporting each SubRegIndex.
1696 SubReg2SetMap SRSets;
1697 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1698 RE = RC->getMembers().end(); RI != RE; ++RI) {
1699 const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1700 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1701 E = SRM.end(); I != E; ++I)
1702 SRSets[I->first].insert(*RI);
1703 }
1704
1705 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
1706 // numerical order to visit synthetic indices last.
1707 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1708 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1709 SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
1710 // Unsupported SubRegIndex. Skip it.
1711 if (I == SRSets.end())
1712 continue;
1713 // In most cases, all RC registers support the SubRegIndex.
1714 if (I->second.size() == RC->getMembers().size()) {
1715 RC->setSubClassWithSubReg(SubIdx, RC);
1716 continue;
1717 }
1718 // This is a real subset. See if we have a matching class.
1719 CodeGenRegisterClass *SubRC =
1720 getOrCreateSubClass(RC, &I->second,
1721 RC->getName() + "_with_" + I->first->getName());
1722 RC->setSubClassWithSubReg(SubIdx, SubRC);
1723 }
1724 }
1725
1726 //
1727 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1728 //
1729 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1730 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1731 //
1732
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,unsigned FirstSubRegRC)1733 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1734 unsigned FirstSubRegRC) {
1735 SmallVector<std::pair<const CodeGenRegister*,
1736 const CodeGenRegister*>, 16> SSPairs;
1737 BitVector TopoSigs(getNumTopoSigs());
1738
1739 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1740 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1741 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1742 // Skip indexes that aren't fully supported by RC's registers. This was
1743 // computed by inferSubClassWithSubReg() above which should have been
1744 // called first.
1745 if (RC->getSubClassWithSubReg(SubIdx) != RC)
1746 continue;
1747
1748 // Build list of (Super, Sub) pairs for this SubIdx.
1749 SSPairs.clear();
1750 TopoSigs.reset();
1751 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1752 RE = RC->getMembers().end(); RI != RE; ++RI) {
1753 const CodeGenRegister *Super = *RI;
1754 const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
1755 assert(Sub && "Missing sub-register");
1756 SSPairs.push_back(std::make_pair(Super, Sub));
1757 TopoSigs.set(Sub->getTopoSig());
1758 }
1759
1760 // Iterate over sub-register class candidates. Ignore classes created by
1761 // this loop. They will never be useful.
1762 for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
1763 ++rci) {
1764 CodeGenRegisterClass *SubRC = RegClasses[rci];
1765 // Topological shortcut: SubRC members have the wrong shape.
1766 if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
1767 continue;
1768 // Compute the subset of RC that maps into SubRC.
1769 CodeGenRegister::Set SubSet;
1770 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1771 if (SubRC->contains(SSPairs[i].second))
1772 SubSet.insert(SSPairs[i].first);
1773 if (SubSet.empty())
1774 continue;
1775 // RC injects completely into SubRC.
1776 if (SubSet.size() == SSPairs.size()) {
1777 SubRC->addSuperRegClass(SubIdx, RC);
1778 continue;
1779 }
1780 // Only a subset of RC maps into SubRC. Make sure it is represented by a
1781 // class.
1782 getOrCreateSubClass(RC, &SubSet, RC->getName() +
1783 "_with_" + SubIdx->getName() +
1784 "_in_" + SubRC->getName());
1785 }
1786 }
1787 }
1788
1789
1790 //
1791 // Infer missing register classes.
1792 //
computeInferredRegisterClasses()1793 void CodeGenRegBank::computeInferredRegisterClasses() {
1794 // When this function is called, the register classes have not been sorted
1795 // and assigned EnumValues yet. That means getSubClasses(),
1796 // getSuperClasses(), and hasSubClass() functions are defunct.
1797 unsigned FirstNewRC = RegClasses.size();
1798
1799 // Visit all register classes, including the ones being added by the loop.
1800 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
1801 CodeGenRegisterClass *RC = RegClasses[rci];
1802
1803 // Synthesize answers for getSubClassWithSubReg().
1804 inferSubClassWithSubReg(RC);
1805
1806 // Synthesize answers for getCommonSubClass().
1807 inferCommonSubClass(RC);
1808
1809 // Synthesize answers for getMatchingSuperRegClass().
1810 inferMatchingSuperRegClass(RC);
1811
1812 // New register classes are created while this loop is running, and we need
1813 // to visit all of them. I particular, inferMatchingSuperRegClass needs
1814 // to match old super-register classes with sub-register classes created
1815 // after inferMatchingSuperRegClass was called. At this point,
1816 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
1817 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
1818 if (rci + 1 == FirstNewRC) {
1819 unsigned NextNewRC = RegClasses.size();
1820 for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
1821 inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
1822 FirstNewRC = NextNewRC;
1823 }
1824 }
1825 }
1826
1827 /// getRegisterClassForRegister - Find the register class that contains the
1828 /// specified physical register. If the register is not in a register class,
1829 /// return null. If the register is in multiple classes, and the classes have a
1830 /// superset-subset relationship and the same set of types, return the
1831 /// superclass. Otherwise return null.
1832 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)1833 CodeGenRegBank::getRegClassForRegister(Record *R) {
1834 const CodeGenRegister *Reg = getReg(R);
1835 ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
1836 const CodeGenRegisterClass *FoundRC = 0;
1837 for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
1838 const CodeGenRegisterClass &RC = *RCs[i];
1839 if (!RC.contains(Reg))
1840 continue;
1841
1842 // If this is the first class that contains the register,
1843 // make a note of it and go on to the next class.
1844 if (!FoundRC) {
1845 FoundRC = &RC;
1846 continue;
1847 }
1848
1849 // If a register's classes have different types, return null.
1850 if (RC.getValueTypes() != FoundRC->getValueTypes())
1851 return 0;
1852
1853 // Check to see if the previously found class that contains
1854 // the register is a subclass of the current class. If so,
1855 // prefer the superclass.
1856 if (RC.hasSubClass(FoundRC)) {
1857 FoundRC = &RC;
1858 continue;
1859 }
1860
1861 // Check to see if the previously found class that contains
1862 // the register is a superclass of the current class. If so,
1863 // prefer the superclass.
1864 if (FoundRC->hasSubClass(&RC))
1865 continue;
1866
1867 // Multiple classes, and neither is a superclass of the other.
1868 // Return null.
1869 return 0;
1870 }
1871 return FoundRC;
1872 }
1873
computeCoveredRegisters(ArrayRef<Record * > Regs)1874 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
1875 SetVector<const CodeGenRegister*> Set;
1876
1877 // First add Regs with all sub-registers.
1878 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1879 CodeGenRegister *Reg = getReg(Regs[i]);
1880 if (Set.insert(Reg))
1881 // Reg is new, add all sub-registers.
1882 // The pre-ordering is not important here.
1883 Reg->addSubRegsPreOrder(Set, *this);
1884 }
1885
1886 // Second, find all super-registers that are completely covered by the set.
1887 for (unsigned i = 0; i != Set.size(); ++i) {
1888 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
1889 for (unsigned j = 0, e = SR.size(); j != e; ++j) {
1890 const CodeGenRegister *Super = SR[j];
1891 if (!Super->CoveredBySubRegs || Set.count(Super))
1892 continue;
1893 // This new super-register is covered by its sub-registers.
1894 bool AllSubsInSet = true;
1895 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
1896 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1897 E = SRM.end(); I != E; ++I)
1898 if (!Set.count(I->second)) {
1899 AllSubsInSet = false;
1900 break;
1901 }
1902 // All sub-registers in Set, add Super as well.
1903 // We will visit Super later to recheck its super-registers.
1904 if (AllSubsInSet)
1905 Set.insert(Super);
1906 }
1907 }
1908
1909 // Convert to BitVector.
1910 BitVector BV(Registers.size() + 1);
1911 for (unsigned i = 0, e = Set.size(); i != e; ++i)
1912 BV.set(Set[i]->EnumValue);
1913 return BV;
1914 }
1915