• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/MDBuilder.h"
28 #include "llvm/IR/Operator.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
33   : CodeGenTypeCache(cgm), CGM(cgm),
34     Target(CGM.getContext().getTargetInfo()),
35     Builder(cgm.getModule().getContext()),
36     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
37                              CGM.getSanOpts().Alignment |
38                              CGM.getSanOpts().ObjectSize |
39                              CGM.getSanOpts().Vptr),
40     SanOpts(&CGM.getSanOpts()),
41     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
42     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
43     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
44     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
45     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
46     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
47     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
48     OutermostConditional(0), TerminateLandingPad(0),
49     TerminateHandler(0), TrapBB(0) {
50   if (!suppressNewContext)
51     CGM.getCXXABI().getMangleContext().startNewFunction();
52 
53   llvm::FastMathFlags FMF;
54   if (CGM.getLangOpts().FastMath)
55     FMF.setUnsafeAlgebra();
56   if (CGM.getLangOpts().FiniteMathOnly) {
57     FMF.setNoNaNs();
58     FMF.setNoInfs();
59   }
60   Builder.SetFastMathFlags(FMF);
61 }
62 
~CodeGenFunction()63 CodeGenFunction::~CodeGenFunction() {
64   // If there are any unclaimed block infos, go ahead and destroy them
65   // now.  This can happen if IR-gen gets clever and skips evaluating
66   // something.
67   if (FirstBlockInfo)
68     destroyBlockInfos(FirstBlockInfo);
69 }
70 
71 
ConvertTypeForMem(QualType T)72 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
73   return CGM.getTypes().ConvertTypeForMem(T);
74 }
75 
ConvertType(QualType T)76 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
77   return CGM.getTypes().ConvertType(T);
78 }
79 
getEvaluationKind(QualType type)80 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
81   type = type.getCanonicalType();
82   while (true) {
83     switch (type->getTypeClass()) {
84 #define TYPE(name, parent)
85 #define ABSTRACT_TYPE(name, parent)
86 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
87 #define DEPENDENT_TYPE(name, parent) case Type::name:
88 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
89 #include "clang/AST/TypeNodes.def"
90       llvm_unreachable("non-canonical or dependent type in IR-generation");
91 
92     // Various scalar types.
93     case Type::Builtin:
94     case Type::Pointer:
95     case Type::BlockPointer:
96     case Type::LValueReference:
97     case Type::RValueReference:
98     case Type::MemberPointer:
99     case Type::Vector:
100     case Type::ExtVector:
101     case Type::FunctionProto:
102     case Type::FunctionNoProto:
103     case Type::Enum:
104     case Type::ObjCObjectPointer:
105       return TEK_Scalar;
106 
107     // Complexes.
108     case Type::Complex:
109       return TEK_Complex;
110 
111     // Arrays, records, and Objective-C objects.
112     case Type::ConstantArray:
113     case Type::IncompleteArray:
114     case Type::VariableArray:
115     case Type::Record:
116     case Type::ObjCObject:
117     case Type::ObjCInterface:
118       return TEK_Aggregate;
119 
120     // We operate on atomic values according to their underlying type.
121     case Type::Atomic:
122       type = cast<AtomicType>(type)->getValueType();
123       continue;
124     }
125     llvm_unreachable("unknown type kind!");
126   }
127 }
128 
EmitReturnBlock()129 void CodeGenFunction::EmitReturnBlock() {
130   // For cleanliness, we try to avoid emitting the return block for
131   // simple cases.
132   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
133 
134   if (CurBB) {
135     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
136 
137     // We have a valid insert point, reuse it if it is empty or there are no
138     // explicit jumps to the return block.
139     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
140       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
141       delete ReturnBlock.getBlock();
142     } else
143       EmitBlock(ReturnBlock.getBlock());
144     return;
145   }
146 
147   // Otherwise, if the return block is the target of a single direct
148   // branch then we can just put the code in that block instead. This
149   // cleans up functions which started with a unified return block.
150   if (ReturnBlock.getBlock()->hasOneUse()) {
151     llvm::BranchInst *BI =
152       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
153     if (BI && BI->isUnconditional() &&
154         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
155       // Reset insertion point, including debug location, and delete the
156       // branch.  This is really subtle and only works because the next change
157       // in location will hit the caching in CGDebugInfo::EmitLocation and not
158       // override this.
159       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
160       Builder.SetInsertPoint(BI->getParent());
161       BI->eraseFromParent();
162       delete ReturnBlock.getBlock();
163       return;
164     }
165   }
166 
167   // FIXME: We are at an unreachable point, there is no reason to emit the block
168   // unless it has uses. However, we still need a place to put the debug
169   // region.end for now.
170 
171   EmitBlock(ReturnBlock.getBlock());
172 }
173 
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)174 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
175   if (!BB) return;
176   if (!BB->use_empty())
177     return CGF.CurFn->getBasicBlockList().push_back(BB);
178   delete BB;
179 }
180 
FinishFunction(SourceLocation EndLoc)181 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
182   assert(BreakContinueStack.empty() &&
183          "mismatched push/pop in break/continue stack!");
184 
185   if (CGDebugInfo *DI = getDebugInfo())
186     DI->EmitLocation(Builder, EndLoc);
187 
188   // Pop any cleanups that might have been associated with the
189   // parameters.  Do this in whatever block we're currently in; it's
190   // important to do this before we enter the return block or return
191   // edges will be *really* confused.
192   if (EHStack.stable_begin() != PrologueCleanupDepth)
193     PopCleanupBlocks(PrologueCleanupDepth);
194 
195   // Emit function epilog (to return).
196   EmitReturnBlock();
197 
198   if (ShouldInstrumentFunction())
199     EmitFunctionInstrumentation("__cyg_profile_func_exit");
200 
201   // Emit debug descriptor for function end.
202   if (CGDebugInfo *DI = getDebugInfo()) {
203     DI->EmitFunctionEnd(Builder);
204   }
205 
206   EmitFunctionEpilog(*CurFnInfo);
207   EmitEndEHSpec(CurCodeDecl);
208 
209   assert(EHStack.empty() &&
210          "did not remove all scopes from cleanup stack!");
211 
212   // If someone did an indirect goto, emit the indirect goto block at the end of
213   // the function.
214   if (IndirectBranch) {
215     EmitBlock(IndirectBranch->getParent());
216     Builder.ClearInsertionPoint();
217   }
218 
219   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
220   llvm::Instruction *Ptr = AllocaInsertPt;
221   AllocaInsertPt = 0;
222   Ptr->eraseFromParent();
223 
224   // If someone took the address of a label but never did an indirect goto, we
225   // made a zero entry PHI node, which is illegal, zap it now.
226   if (IndirectBranch) {
227     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
228     if (PN->getNumIncomingValues() == 0) {
229       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
230       PN->eraseFromParent();
231     }
232   }
233 
234   EmitIfUsed(*this, EHResumeBlock);
235   EmitIfUsed(*this, TerminateLandingPad);
236   EmitIfUsed(*this, TerminateHandler);
237   EmitIfUsed(*this, UnreachableBlock);
238 
239   if (CGM.getCodeGenOpts().EmitDeclMetadata)
240     EmitDeclMetadata();
241 }
242 
243 /// ShouldInstrumentFunction - Return true if the current function should be
244 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()245 bool CodeGenFunction::ShouldInstrumentFunction() {
246   if (!CGM.getCodeGenOpts().InstrumentFunctions)
247     return false;
248   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
249     return false;
250   return true;
251 }
252 
253 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
254 /// instrumentation function with the current function and the call site, if
255 /// function instrumentation is enabled.
EmitFunctionInstrumentation(const char * Fn)256 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
257   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
258   llvm::PointerType *PointerTy = Int8PtrTy;
259   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
260   llvm::FunctionType *FunctionTy =
261     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
262 
263   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
264   llvm::CallInst *CallSite = Builder.CreateCall(
265     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
266     llvm::ConstantInt::get(Int32Ty, 0),
267     "callsite");
268 
269   llvm::Value *args[] = {
270     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
271     CallSite
272   };
273 
274   EmitNounwindRuntimeCall(F, args);
275 }
276 
EmitMCountInstrumentation()277 void CodeGenFunction::EmitMCountInstrumentation() {
278   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
279 
280   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
281                                                        Target.getMCountName());
282   EmitNounwindRuntimeCall(MCountFn);
283 }
284 
285 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
286 // information in the program executable. The argument information stored
287 // includes the argument name, its type, the address and access qualifiers used.
288 // FIXME: Add type, address, and access qualifiers.
GenOpenCLArgMetadata(const FunctionDecl * FD,llvm::Function * Fn,CodeGenModule & CGM,llvm::LLVMContext & Context,SmallVector<llvm::Value *,5> & kernelMDArgs)289 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
290                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
291                                  SmallVector <llvm::Value*, 5> &kernelMDArgs) {
292 
293   // Create MDNodes that represents the kernel arg metadata.
294   // Each MDNode is a list in the form of "key", N number of values which is
295   // the same number of values as their are kernel arguments.
296 
297   // MDNode for the kernel argument names.
298   SmallVector<llvm::Value*, 8> argNames;
299   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
300 
301   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
302     const ParmVarDecl *parm = FD->getParamDecl(i);
303 
304     // Get argument name.
305     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
306 
307   }
308   // Add MDNode to the list of all metadata.
309   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
310 }
311 
EmitOpenCLKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)312 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
313                                                llvm::Function *Fn)
314 {
315   if (!FD->hasAttr<OpenCLKernelAttr>())
316     return;
317 
318   llvm::LLVMContext &Context = getLLVMContext();
319 
320   SmallVector <llvm::Value*, 5> kernelMDArgs;
321   kernelMDArgs.push_back(Fn);
322 
323   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
324     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs);
325 
326   if (FD->hasAttr<VecTypeHintAttr>()) {
327     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
328     QualType hintQTy = attr->getTypeHint();
329     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
330     bool isSignedInteger =
331         hintQTy->isSignedIntegerType() ||
332         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
333     llvm::Value *attrMDArgs[] = {
334       llvm::MDString::get(Context, "vec_type_hint"),
335       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
336       llvm::ConstantInt::get(
337           llvm::IntegerType::get(Context, 32),
338           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
339     };
340     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
341   }
342 
343   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
344     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
345     llvm::Value *attrMDArgs[] = {
346       llvm::MDString::get(Context, "work_group_size_hint"),
347       Builder.getInt32(attr->getXDim()),
348       Builder.getInt32(attr->getYDim()),
349       Builder.getInt32(attr->getZDim())
350     };
351     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
352   }
353 
354   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
355     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
356     llvm::Value *attrMDArgs[] = {
357       llvm::MDString::get(Context, "reqd_work_group_size"),
358       Builder.getInt32(attr->getXDim()),
359       Builder.getInt32(attr->getYDim()),
360       Builder.getInt32(attr->getZDim())
361     };
362     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
363   }
364 
365   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
366   llvm::NamedMDNode *OpenCLKernelMetadata =
367     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
368   OpenCLKernelMetadata->addOperand(kernelMDNode);
369 }
370 
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation StartLoc)371 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
372                                     llvm::Function *Fn,
373                                     const CGFunctionInfo &FnInfo,
374                                     const FunctionArgList &Args,
375                                     SourceLocation StartLoc) {
376   const Decl *D = GD.getDecl();
377 
378   DidCallStackSave = false;
379   CurCodeDecl = CurFuncDecl = D;
380   FnRetTy = RetTy;
381   CurFn = Fn;
382   CurFnInfo = &FnInfo;
383   assert(CurFn->isDeclaration() && "Function already has body?");
384 
385   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
386     SanOpts = &SanitizerOptions::Disabled;
387     SanitizePerformTypeCheck = false;
388   }
389 
390   // Pass inline keyword to optimizer if it appears explicitly on any
391   // declaration.
392   if (!CGM.getCodeGenOpts().NoInline)
393     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
394       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
395              RE = FD->redecls_end(); RI != RE; ++RI)
396         if (RI->isInlineSpecified()) {
397           Fn->addFnAttr(llvm::Attribute::InlineHint);
398           break;
399         }
400 
401   if (getLangOpts().OpenCL) {
402     // Add metadata for a kernel function.
403     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
404       EmitOpenCLKernelMetadata(FD, Fn);
405   }
406 
407   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
408 
409   // Create a marker to make it easy to insert allocas into the entryblock
410   // later.  Don't create this with the builder, because we don't want it
411   // folded.
412   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
413   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
414   if (Builder.isNamePreserving())
415     AllocaInsertPt->setName("allocapt");
416 
417   ReturnBlock = getJumpDestInCurrentScope("return");
418 
419   Builder.SetInsertPoint(EntryBB);
420 
421   // Emit subprogram debug descriptor.
422   if (CGDebugInfo *DI = getDebugInfo()) {
423     SmallVector<QualType, 16> ArgTypes;
424     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
425 	 i != e; ++i) {
426       ArgTypes.push_back((*i)->getType());
427     }
428 
429     QualType FnType =
430       getContext().getFunctionType(RetTy, ArgTypes,
431                                    FunctionProtoType::ExtProtoInfo());
432 
433     DI->setLocation(StartLoc);
434     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
435   }
436 
437   if (ShouldInstrumentFunction())
438     EmitFunctionInstrumentation("__cyg_profile_func_enter");
439 
440   if (CGM.getCodeGenOpts().InstrumentForProfiling)
441     EmitMCountInstrumentation();
442 
443   if (RetTy->isVoidType()) {
444     // Void type; nothing to return.
445     ReturnValue = 0;
446   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
447              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
448     // Indirect aggregate return; emit returned value directly into sret slot.
449     // This reduces code size, and affects correctness in C++.
450     ReturnValue = CurFn->arg_begin();
451   } else {
452     ReturnValue = CreateIRTemp(RetTy, "retval");
453 
454     // Tell the epilog emitter to autorelease the result.  We do this
455     // now so that various specialized functions can suppress it
456     // during their IR-generation.
457     if (getLangOpts().ObjCAutoRefCount &&
458         !CurFnInfo->isReturnsRetained() &&
459         RetTy->isObjCRetainableType())
460       AutoreleaseResult = true;
461   }
462 
463   EmitStartEHSpec(CurCodeDecl);
464 
465   PrologueCleanupDepth = EHStack.stable_begin();
466   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
467 
468   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
469     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
470     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
471     if (MD->getParent()->isLambda() &&
472         MD->getOverloadedOperator() == OO_Call) {
473       // We're in a lambda; figure out the captures.
474       MD->getParent()->getCaptureFields(LambdaCaptureFields,
475                                         LambdaThisCaptureField);
476       if (LambdaThisCaptureField) {
477         // If this lambda captures this, load it.
478         QualType LambdaTagType =
479             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
480         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
481                                                      LambdaTagType);
482         LValue ThisLValue = EmitLValueForField(LambdaLV,
483                                                LambdaThisCaptureField);
484         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
485       }
486     } else {
487       // Not in a lambda; just use 'this' from the method.
488       // FIXME: Should we generate a new load for each use of 'this'?  The
489       // fast register allocator would be happier...
490       CXXThisValue = CXXABIThisValue;
491     }
492   }
493 
494   // If any of the arguments have a variably modified type, make sure to
495   // emit the type size.
496   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
497        i != e; ++i) {
498     const VarDecl *VD = *i;
499 
500     // Dig out the type as written from ParmVarDecls; it's unclear whether
501     // the standard (C99 6.9.1p10) requires this, but we're following the
502     // precedent set by gcc.
503     QualType Ty;
504     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
505       Ty = PVD->getOriginalType();
506     else
507       Ty = VD->getType();
508 
509     if (Ty->isVariablyModifiedType())
510       EmitVariablyModifiedType(Ty);
511   }
512   // Emit a location at the end of the prologue.
513   if (CGDebugInfo *DI = getDebugInfo())
514     DI->EmitLocation(Builder, StartLoc);
515 }
516 
EmitFunctionBody(FunctionArgList & Args)517 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
518   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
519   assert(FD->getBody());
520   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
521     EmitCompoundStmtWithoutScope(*S);
522   else
523     EmitStmt(FD->getBody());
524 }
525 
526 /// Tries to mark the given function nounwind based on the
527 /// non-existence of any throwing calls within it.  We believe this is
528 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)529 static void TryMarkNoThrow(llvm::Function *F) {
530   // LLVM treats 'nounwind' on a function as part of the type, so we
531   // can't do this on functions that can be overwritten.
532   if (F->mayBeOverridden()) return;
533 
534   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
535     for (llvm::BasicBlock::iterator
536            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
537       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
538         if (!Call->doesNotThrow())
539           return;
540       } else if (isa<llvm::ResumeInst>(&*BI)) {
541         return;
542       }
543   F->setDoesNotThrow();
544 }
545 
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)546 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
547                                    const CGFunctionInfo &FnInfo) {
548   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
549 
550   // Check if we should generate debug info for this function.
551   if (!FD->hasAttr<NoDebugAttr>())
552     maybeInitializeDebugInfo();
553 
554   FunctionArgList Args;
555   QualType ResTy = FD->getResultType();
556 
557   CurGD = GD;
558   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
559     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
560 
561   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
562     Args.push_back(FD->getParamDecl(i));
563 
564   SourceRange BodyRange;
565   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
566 
567   // Emit the standard function prologue.
568   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
569 
570   // Generate the body of the function.
571   if (isa<CXXDestructorDecl>(FD))
572     EmitDestructorBody(Args);
573   else if (isa<CXXConstructorDecl>(FD))
574     EmitConstructorBody(Args);
575   else if (getLangOpts().CUDA &&
576            !CGM.getCodeGenOpts().CUDAIsDevice &&
577            FD->hasAttr<CUDAGlobalAttr>())
578     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
579   else if (isa<CXXConversionDecl>(FD) &&
580            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
581     // The lambda conversion to block pointer is special; the semantics can't be
582     // expressed in the AST, so IRGen needs to special-case it.
583     EmitLambdaToBlockPointerBody(Args);
584   } else if (isa<CXXMethodDecl>(FD) &&
585              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
586     // The lambda "__invoke" function is special, because it forwards or
587     // clones the body of the function call operator (but is actually static).
588     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
589   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
590              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
591     // Implicit copy-assignment gets the same special treatment as implicit
592     // copy-constructors.
593     emitImplicitAssignmentOperatorBody(Args);
594   }
595   else
596     EmitFunctionBody(Args);
597 
598   // C++11 [stmt.return]p2:
599   //   Flowing off the end of a function [...] results in undefined behavior in
600   //   a value-returning function.
601   // C11 6.9.1p12:
602   //   If the '}' that terminates a function is reached, and the value of the
603   //   function call is used by the caller, the behavior is undefined.
604   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
605       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
606     if (SanOpts->Return)
607       EmitCheck(Builder.getFalse(), "missing_return",
608                 EmitCheckSourceLocation(FD->getLocation()),
609                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
610     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
611       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
612     Builder.CreateUnreachable();
613     Builder.ClearInsertionPoint();
614   }
615 
616   // Emit the standard function epilogue.
617   FinishFunction(BodyRange.getEnd());
618 
619   // If we haven't marked the function nothrow through other means, do
620   // a quick pass now to see if we can.
621   if (!CurFn->doesNotThrow())
622     TryMarkNoThrow(CurFn);
623 }
624 
625 /// ContainsLabel - Return true if the statement contains a label in it.  If
626 /// this statement is not executed normally, it not containing a label means
627 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)628 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
629   // Null statement, not a label!
630   if (S == 0) return false;
631 
632   // If this is a label, we have to emit the code, consider something like:
633   // if (0) {  ...  foo:  bar(); }  goto foo;
634   //
635   // TODO: If anyone cared, we could track __label__'s, since we know that you
636   // can't jump to one from outside their declared region.
637   if (isa<LabelStmt>(S))
638     return true;
639 
640   // If this is a case/default statement, and we haven't seen a switch, we have
641   // to emit the code.
642   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
643     return true;
644 
645   // If this is a switch statement, we want to ignore cases below it.
646   if (isa<SwitchStmt>(S))
647     IgnoreCaseStmts = true;
648 
649   // Scan subexpressions for verboten labels.
650   for (Stmt::const_child_range I = S->children(); I; ++I)
651     if (ContainsLabel(*I, IgnoreCaseStmts))
652       return true;
653 
654   return false;
655 }
656 
657 /// containsBreak - Return true if the statement contains a break out of it.
658 /// If the statement (recursively) contains a switch or loop with a break
659 /// inside of it, this is fine.
containsBreak(const Stmt * S)660 bool CodeGenFunction::containsBreak(const Stmt *S) {
661   // Null statement, not a label!
662   if (S == 0) return false;
663 
664   // If this is a switch or loop that defines its own break scope, then we can
665   // include it and anything inside of it.
666   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
667       isa<ForStmt>(S))
668     return false;
669 
670   if (isa<BreakStmt>(S))
671     return true;
672 
673   // Scan subexpressions for verboten breaks.
674   for (Stmt::const_child_range I = S->children(); I; ++I)
675     if (containsBreak(*I))
676       return true;
677 
678   return false;
679 }
680 
681 
682 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
683 /// to a constant, or if it does but contains a label, return false.  If it
684 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool)685 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
686                                                    bool &ResultBool) {
687   llvm::APSInt ResultInt;
688   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
689     return false;
690 
691   ResultBool = ResultInt.getBoolValue();
692   return true;
693 }
694 
695 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
696 /// to a constant, or if it does but contains a label, return false.  If it
697 /// constant folds return true and set the folded value.
698 bool CodeGenFunction::
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt)699 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
700   // FIXME: Rename and handle conversion of other evaluatable things
701   // to bool.
702   llvm::APSInt Int;
703   if (!Cond->EvaluateAsInt(Int, getContext()))
704     return false;  // Not foldable, not integer or not fully evaluatable.
705 
706   if (CodeGenFunction::ContainsLabel(Cond))
707     return false;  // Contains a label.
708 
709   ResultInt = Int;
710   return true;
711 }
712 
713 
714 
715 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
716 /// statement) to the specified blocks.  Based on the condition, this might try
717 /// to simplify the codegen of the conditional based on the branch.
718 ///
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock)719 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
720                                            llvm::BasicBlock *TrueBlock,
721                                            llvm::BasicBlock *FalseBlock) {
722   Cond = Cond->IgnoreParens();
723 
724   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
725     // Handle X && Y in a condition.
726     if (CondBOp->getOpcode() == BO_LAnd) {
727       // If we have "1 && X", simplify the code.  "0 && X" would have constant
728       // folded if the case was simple enough.
729       bool ConstantBool = false;
730       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
731           ConstantBool) {
732         // br(1 && X) -> br(X).
733         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
734       }
735 
736       // If we have "X && 1", simplify the code to use an uncond branch.
737       // "X && 0" would have been constant folded to 0.
738       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
739           ConstantBool) {
740         // br(X && 1) -> br(X).
741         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
742       }
743 
744       // Emit the LHS as a conditional.  If the LHS conditional is false, we
745       // want to jump to the FalseBlock.
746       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
747 
748       ConditionalEvaluation eval(*this);
749       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
750       EmitBlock(LHSTrue);
751 
752       // Any temporaries created here are conditional.
753       eval.begin(*this);
754       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
755       eval.end(*this);
756 
757       return;
758     }
759 
760     if (CondBOp->getOpcode() == BO_LOr) {
761       // If we have "0 || X", simplify the code.  "1 || X" would have constant
762       // folded if the case was simple enough.
763       bool ConstantBool = false;
764       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
765           !ConstantBool) {
766         // br(0 || X) -> br(X).
767         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
768       }
769 
770       // If we have "X || 0", simplify the code to use an uncond branch.
771       // "X || 1" would have been constant folded to 1.
772       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
773           !ConstantBool) {
774         // br(X || 0) -> br(X).
775         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
776       }
777 
778       // Emit the LHS as a conditional.  If the LHS conditional is true, we
779       // want to jump to the TrueBlock.
780       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
781 
782       ConditionalEvaluation eval(*this);
783       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
784       EmitBlock(LHSFalse);
785 
786       // Any temporaries created here are conditional.
787       eval.begin(*this);
788       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
789       eval.end(*this);
790 
791       return;
792     }
793   }
794 
795   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
796     // br(!x, t, f) -> br(x, f, t)
797     if (CondUOp->getOpcode() == UO_LNot)
798       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
799   }
800 
801   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
802     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
803     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
804     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
805 
806     ConditionalEvaluation cond(*this);
807     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
808 
809     cond.begin(*this);
810     EmitBlock(LHSBlock);
811     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
812     cond.end(*this);
813 
814     cond.begin(*this);
815     EmitBlock(RHSBlock);
816     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
817     cond.end(*this);
818 
819     return;
820   }
821 
822   // Emit the code with the fully general case.
823   llvm::Value *CondV = EvaluateExprAsBool(Cond);
824   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
825 }
826 
827 /// ErrorUnsupported - Print out an error that codegen doesn't support the
828 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type,bool OmitOnError)829 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
830                                        bool OmitOnError) {
831   CGM.ErrorUnsupported(S, Type, OmitOnError);
832 }
833 
834 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
835 /// variable-length array whose elements have a non-zero bit-pattern.
836 ///
837 /// \param baseType the inner-most element type of the array
838 /// \param src - a char* pointing to the bit-pattern for a single
839 /// base element of the array
840 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,llvm::Value * dest,llvm::Value * src,llvm::Value * sizeInChars)841 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
842                                llvm::Value *dest, llvm::Value *src,
843                                llvm::Value *sizeInChars) {
844   std::pair<CharUnits,CharUnits> baseSizeAndAlign
845     = CGF.getContext().getTypeInfoInChars(baseType);
846 
847   CGBuilderTy &Builder = CGF.Builder;
848 
849   llvm::Value *baseSizeInChars
850     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
851 
852   llvm::Type *i8p = Builder.getInt8PtrTy();
853 
854   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
855   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
856 
857   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
858   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
859   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
860 
861   // Make a loop over the VLA.  C99 guarantees that the VLA element
862   // count must be nonzero.
863   CGF.EmitBlock(loopBB);
864 
865   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
866   cur->addIncoming(begin, originBB);
867 
868   // memcpy the individual element bit-pattern.
869   Builder.CreateMemCpy(cur, src, baseSizeInChars,
870                        baseSizeAndAlign.second.getQuantity(),
871                        /*volatile*/ false);
872 
873   // Go to the next element.
874   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
875 
876   // Leave if that's the end of the VLA.
877   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
878   Builder.CreateCondBr(done, contBB, loopBB);
879   cur->addIncoming(next, loopBB);
880 
881   CGF.EmitBlock(contBB);
882 }
883 
884 void
EmitNullInitialization(llvm::Value * DestPtr,QualType Ty)885 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
886   // Ignore empty classes in C++.
887   if (getLangOpts().CPlusPlus) {
888     if (const RecordType *RT = Ty->getAs<RecordType>()) {
889       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
890         return;
891     }
892   }
893 
894   // Cast the dest ptr to the appropriate i8 pointer type.
895   unsigned DestAS =
896     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
897   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
898   if (DestPtr->getType() != BP)
899     DestPtr = Builder.CreateBitCast(DestPtr, BP);
900 
901   // Get size and alignment info for this aggregate.
902   std::pair<CharUnits, CharUnits> TypeInfo =
903     getContext().getTypeInfoInChars(Ty);
904   CharUnits Size = TypeInfo.first;
905   CharUnits Align = TypeInfo.second;
906 
907   llvm::Value *SizeVal;
908   const VariableArrayType *vla;
909 
910   // Don't bother emitting a zero-byte memset.
911   if (Size.isZero()) {
912     // But note that getTypeInfo returns 0 for a VLA.
913     if (const VariableArrayType *vlaType =
914           dyn_cast_or_null<VariableArrayType>(
915                                           getContext().getAsArrayType(Ty))) {
916       QualType eltType;
917       llvm::Value *numElts;
918       llvm::tie(numElts, eltType) = getVLASize(vlaType);
919 
920       SizeVal = numElts;
921       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
922       if (!eltSize.isOne())
923         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
924       vla = vlaType;
925     } else {
926       return;
927     }
928   } else {
929     SizeVal = CGM.getSize(Size);
930     vla = 0;
931   }
932 
933   // If the type contains a pointer to data member we can't memset it to zero.
934   // Instead, create a null constant and copy it to the destination.
935   // TODO: there are other patterns besides zero that we can usefully memset,
936   // like -1, which happens to be the pattern used by member-pointers.
937   if (!CGM.getTypes().isZeroInitializable(Ty)) {
938     // For a VLA, emit a single element, then splat that over the VLA.
939     if (vla) Ty = getContext().getBaseElementType(vla);
940 
941     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
942 
943     llvm::GlobalVariable *NullVariable =
944       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
945                                /*isConstant=*/true,
946                                llvm::GlobalVariable::PrivateLinkage,
947                                NullConstant, Twine());
948     llvm::Value *SrcPtr =
949       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
950 
951     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
952 
953     // Get and call the appropriate llvm.memcpy overload.
954     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
955     return;
956   }
957 
958   // Otherwise, just memset the whole thing to zero.  This is legal
959   // because in LLVM, all default initializers (other than the ones we just
960   // handled above) are guaranteed to have a bit pattern of all zeros.
961   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
962                        Align.getQuantity(), false);
963 }
964 
GetAddrOfLabel(const LabelDecl * L)965 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
966   // Make sure that there is a block for the indirect goto.
967   if (IndirectBranch == 0)
968     GetIndirectGotoBlock();
969 
970   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
971 
972   // Make sure the indirect branch includes all of the address-taken blocks.
973   IndirectBranch->addDestination(BB);
974   return llvm::BlockAddress::get(CurFn, BB);
975 }
976 
GetIndirectGotoBlock()977 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
978   // If we already made the indirect branch for indirect goto, return its block.
979   if (IndirectBranch) return IndirectBranch->getParent();
980 
981   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
982 
983   // Create the PHI node that indirect gotos will add entries to.
984   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
985                                               "indirect.goto.dest");
986 
987   // Create the indirect branch instruction.
988   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
989   return IndirectBranch->getParent();
990 }
991 
992 /// Computes the length of an array in elements, as well as the base
993 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,llvm::Value * & addr)994 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
995                                               QualType &baseType,
996                                               llvm::Value *&addr) {
997   const ArrayType *arrayType = origArrayType;
998 
999   // If it's a VLA, we have to load the stored size.  Note that
1000   // this is the size of the VLA in bytes, not its size in elements.
1001   llvm::Value *numVLAElements = 0;
1002   if (isa<VariableArrayType>(arrayType)) {
1003     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1004 
1005     // Walk into all VLAs.  This doesn't require changes to addr,
1006     // which has type T* where T is the first non-VLA element type.
1007     do {
1008       QualType elementType = arrayType->getElementType();
1009       arrayType = getContext().getAsArrayType(elementType);
1010 
1011       // If we only have VLA components, 'addr' requires no adjustment.
1012       if (!arrayType) {
1013         baseType = elementType;
1014         return numVLAElements;
1015       }
1016     } while (isa<VariableArrayType>(arrayType));
1017 
1018     // We get out here only if we find a constant array type
1019     // inside the VLA.
1020   }
1021 
1022   // We have some number of constant-length arrays, so addr should
1023   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1024   // down to the first element of addr.
1025   SmallVector<llvm::Value*, 8> gepIndices;
1026 
1027   // GEP down to the array type.
1028   llvm::ConstantInt *zero = Builder.getInt32(0);
1029   gepIndices.push_back(zero);
1030 
1031   uint64_t countFromCLAs = 1;
1032   QualType eltType;
1033 
1034   llvm::ArrayType *llvmArrayType =
1035     dyn_cast<llvm::ArrayType>(
1036       cast<llvm::PointerType>(addr->getType())->getElementType());
1037   while (llvmArrayType) {
1038     assert(isa<ConstantArrayType>(arrayType));
1039     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1040              == llvmArrayType->getNumElements());
1041 
1042     gepIndices.push_back(zero);
1043     countFromCLAs *= llvmArrayType->getNumElements();
1044     eltType = arrayType->getElementType();
1045 
1046     llvmArrayType =
1047       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1048     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1049     assert((!llvmArrayType || arrayType) &&
1050            "LLVM and Clang types are out-of-synch");
1051   }
1052 
1053   if (arrayType) {
1054     // From this point onwards, the Clang array type has been emitted
1055     // as some other type (probably a packed struct). Compute the array
1056     // size, and just emit the 'begin' expression as a bitcast.
1057     while (arrayType) {
1058       countFromCLAs *=
1059           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1060       eltType = arrayType->getElementType();
1061       arrayType = getContext().getAsArrayType(eltType);
1062     }
1063 
1064     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1065     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1066     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1067   } else {
1068     // Create the actual GEP.
1069     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1070   }
1071 
1072   baseType = eltType;
1073 
1074   llvm::Value *numElements
1075     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1076 
1077   // If we had any VLA dimensions, factor them in.
1078   if (numVLAElements)
1079     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1080 
1081   return numElements;
1082 }
1083 
1084 std::pair<llvm::Value*, QualType>
getVLASize(QualType type)1085 CodeGenFunction::getVLASize(QualType type) {
1086   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1087   assert(vla && "type was not a variable array type!");
1088   return getVLASize(vla);
1089 }
1090 
1091 std::pair<llvm::Value*, QualType>
getVLASize(const VariableArrayType * type)1092 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1093   // The number of elements so far; always size_t.
1094   llvm::Value *numElements = 0;
1095 
1096   QualType elementType;
1097   do {
1098     elementType = type->getElementType();
1099     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1100     assert(vlaSize && "no size for VLA!");
1101     assert(vlaSize->getType() == SizeTy);
1102 
1103     if (!numElements) {
1104       numElements = vlaSize;
1105     } else {
1106       // It's undefined behavior if this wraps around, so mark it that way.
1107       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1108       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1109     }
1110   } while ((type = getContext().getAsVariableArrayType(elementType)));
1111 
1112   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1113 }
1114 
EmitVariablyModifiedType(QualType type)1115 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1116   assert(type->isVariablyModifiedType() &&
1117          "Must pass variably modified type to EmitVLASizes!");
1118 
1119   EnsureInsertPoint();
1120 
1121   // We're going to walk down into the type and look for VLA
1122   // expressions.
1123   do {
1124     assert(type->isVariablyModifiedType());
1125 
1126     const Type *ty = type.getTypePtr();
1127     switch (ty->getTypeClass()) {
1128 
1129 #define TYPE(Class, Base)
1130 #define ABSTRACT_TYPE(Class, Base)
1131 #define NON_CANONICAL_TYPE(Class, Base)
1132 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1133 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1134 #include "clang/AST/TypeNodes.def"
1135       llvm_unreachable("unexpected dependent type!");
1136 
1137     // These types are never variably-modified.
1138     case Type::Builtin:
1139     case Type::Complex:
1140     case Type::Vector:
1141     case Type::ExtVector:
1142     case Type::Record:
1143     case Type::Enum:
1144     case Type::Elaborated:
1145     case Type::TemplateSpecialization:
1146     case Type::ObjCObject:
1147     case Type::ObjCInterface:
1148     case Type::ObjCObjectPointer:
1149       llvm_unreachable("type class is never variably-modified!");
1150 
1151     case Type::Pointer:
1152       type = cast<PointerType>(ty)->getPointeeType();
1153       break;
1154 
1155     case Type::BlockPointer:
1156       type = cast<BlockPointerType>(ty)->getPointeeType();
1157       break;
1158 
1159     case Type::LValueReference:
1160     case Type::RValueReference:
1161       type = cast<ReferenceType>(ty)->getPointeeType();
1162       break;
1163 
1164     case Type::MemberPointer:
1165       type = cast<MemberPointerType>(ty)->getPointeeType();
1166       break;
1167 
1168     case Type::ConstantArray:
1169     case Type::IncompleteArray:
1170       // Losing element qualification here is fine.
1171       type = cast<ArrayType>(ty)->getElementType();
1172       break;
1173 
1174     case Type::VariableArray: {
1175       // Losing element qualification here is fine.
1176       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1177 
1178       // Unknown size indication requires no size computation.
1179       // Otherwise, evaluate and record it.
1180       if (const Expr *size = vat->getSizeExpr()) {
1181         // It's possible that we might have emitted this already,
1182         // e.g. with a typedef and a pointer to it.
1183         llvm::Value *&entry = VLASizeMap[size];
1184         if (!entry) {
1185           llvm::Value *Size = EmitScalarExpr(size);
1186 
1187           // C11 6.7.6.2p5:
1188           //   If the size is an expression that is not an integer constant
1189           //   expression [...] each time it is evaluated it shall have a value
1190           //   greater than zero.
1191           if (SanOpts->VLABound &&
1192               size->getType()->isSignedIntegerType()) {
1193             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1194             llvm::Constant *StaticArgs[] = {
1195               EmitCheckSourceLocation(size->getLocStart()),
1196               EmitCheckTypeDescriptor(size->getType())
1197             };
1198             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1199                       "vla_bound_not_positive", StaticArgs, Size,
1200                       CRK_Recoverable);
1201           }
1202 
1203           // Always zexting here would be wrong if it weren't
1204           // undefined behavior to have a negative bound.
1205           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1206         }
1207       }
1208       type = vat->getElementType();
1209       break;
1210     }
1211 
1212     case Type::FunctionProto:
1213     case Type::FunctionNoProto:
1214       type = cast<FunctionType>(ty)->getResultType();
1215       break;
1216 
1217     case Type::Paren:
1218     case Type::TypeOf:
1219     case Type::UnaryTransform:
1220     case Type::Attributed:
1221     case Type::SubstTemplateTypeParm:
1222       // Keep walking after single level desugaring.
1223       type = type.getSingleStepDesugaredType(getContext());
1224       break;
1225 
1226     case Type::Typedef:
1227     case Type::Decltype:
1228     case Type::Auto:
1229       // Stop walking: nothing to do.
1230       return;
1231 
1232     case Type::TypeOfExpr:
1233       // Stop walking: emit typeof expression.
1234       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1235       return;
1236 
1237     case Type::Atomic:
1238       type = cast<AtomicType>(ty)->getValueType();
1239       break;
1240     }
1241   } while (type->isVariablyModifiedType());
1242 }
1243 
EmitVAListRef(const Expr * E)1244 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1245   if (getContext().getBuiltinVaListType()->isArrayType())
1246     return EmitScalarExpr(E);
1247   return EmitLValue(E).getAddress();
1248 }
1249 
EmitDeclRefExprDbgValue(const DeclRefExpr * E,llvm::Constant * Init)1250 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1251                                               llvm::Constant *Init) {
1252   assert (Init && "Invalid DeclRefExpr initializer!");
1253   if (CGDebugInfo *Dbg = getDebugInfo())
1254     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1255       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1256 }
1257 
1258 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)1259 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1260   // At the moment, the only aggressive peephole we do in IR gen
1261   // is trunc(zext) folding, but if we add more, we can easily
1262   // extend this protection.
1263 
1264   if (!rvalue.isScalar()) return PeepholeProtection();
1265   llvm::Value *value = rvalue.getScalarVal();
1266   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1267 
1268   // Just make an extra bitcast.
1269   assert(HaveInsertPoint());
1270   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1271                                                   Builder.GetInsertBlock());
1272 
1273   PeepholeProtection protection;
1274   protection.Inst = inst;
1275   return protection;
1276 }
1277 
unprotectFromPeepholes(PeepholeProtection protection)1278 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1279   if (!protection.Inst) return;
1280 
1281   // In theory, we could try to duplicate the peepholes now, but whatever.
1282   protection.Inst->eraseFromParent();
1283 }
1284 
EmitAnnotationCall(llvm::Value * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location)1285 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1286                                                  llvm::Value *AnnotatedVal,
1287                                                  StringRef AnnotationStr,
1288                                                  SourceLocation Location) {
1289   llvm::Value *Args[4] = {
1290     AnnotatedVal,
1291     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1292     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1293     CGM.EmitAnnotationLineNo(Location)
1294   };
1295   return Builder.CreateCall(AnnotationFn, Args);
1296 }
1297 
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)1298 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1299   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1300   // FIXME We create a new bitcast for every annotation because that's what
1301   // llvm-gcc was doing.
1302   for (specific_attr_iterator<AnnotateAttr>
1303        ai = D->specific_attr_begin<AnnotateAttr>(),
1304        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1305     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1306                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1307                        (*ai)->getAnnotation(), D->getLocation());
1308 }
1309 
EmitFieldAnnotations(const FieldDecl * D,llvm::Value * V)1310 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1311                                                    llvm::Value *V) {
1312   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1313   llvm::Type *VTy = V->getType();
1314   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1315                                     CGM.Int8PtrTy);
1316 
1317   for (specific_attr_iterator<AnnotateAttr>
1318        ai = D->specific_attr_begin<AnnotateAttr>(),
1319        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1320     // FIXME Always emit the cast inst so we can differentiate between
1321     // annotation on the first field of a struct and annotation on the struct
1322     // itself.
1323     if (VTy != CGM.Int8PtrTy)
1324       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1325     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1326     V = Builder.CreateBitCast(V, VTy);
1327   }
1328 
1329   return V;
1330 }
1331