• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * from: @(#)fdlibm.h 5.1 93/09/24
14  * $FreeBSD$
15  */
16 
17 #ifndef _MATH_PRIVATE_H_
18 #define	_MATH_PRIVATE_H_
19 
20 #include <sys/types.h>
21 #include <machine/endian.h>
22 
23 /*
24  * The original fdlibm code used statements like:
25  *	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
26  *	ix0 = *(n0+(int*)&x);			* high word of x *
27  *	ix1 = *((1-n0)+(int*)&x);		* low word of x *
28  * to dig two 32 bit words out of the 64 bit IEEE floating point
29  * value.  That is non-ANSI, and, moreover, the gcc instruction
30  * scheduler gets it wrong.  We instead use the following macros.
31  * Unlike the original code, we determine the endianness at compile
32  * time, not at run time; I don't see much benefit to selecting
33  * endianness at run time.
34  */
35 
36 /*
37  * A union which permits us to convert between a double and two 32 bit
38  * ints.
39  */
40 
41 #ifdef __arm__
42 #if defined(__VFP_FP__)
43 #define	IEEE_WORD_ORDER	BYTE_ORDER
44 #else
45 #define	IEEE_WORD_ORDER	BIG_ENDIAN
46 #endif
47 #else /* __arm__ */
48 #define	IEEE_WORD_ORDER	BYTE_ORDER
49 #endif
50 
51 #if IEEE_WORD_ORDER == BIG_ENDIAN
52 
53 typedef union
54 {
55   double value;
56   struct
57   {
58     u_int32_t msw;
59     u_int32_t lsw;
60   } parts;
61   struct
62   {
63     u_int64_t w;
64   } xparts;
65 } ieee_double_shape_type;
66 
67 #endif
68 
69 #if IEEE_WORD_ORDER == LITTLE_ENDIAN
70 
71 typedef union
72 {
73   double value;
74   struct
75   {
76     u_int32_t lsw;
77     u_int32_t msw;
78   } parts;
79   struct
80   {
81     u_int64_t w;
82   } xparts;
83 } ieee_double_shape_type;
84 
85 #endif
86 
87 /* Get two 32 bit ints from a double.  */
88 
89 #define EXTRACT_WORDS(ix0,ix1,d)				\
90 do {								\
91   ieee_double_shape_type ew_u;					\
92   ew_u.value = (d);						\
93   (ix0) = ew_u.parts.msw;					\
94   (ix1) = ew_u.parts.lsw;					\
95 } while (0)
96 
97 /* Get a 64-bit int from a double. */
98 #define EXTRACT_WORD64(ix,d)					\
99 do {								\
100   ieee_double_shape_type ew_u;					\
101   ew_u.value = (d);						\
102   (ix) = ew_u.xparts.w;						\
103 } while (0)
104 
105 /* Get the more significant 32 bit int from a double.  */
106 
107 #define GET_HIGH_WORD(i,d)					\
108 do {								\
109   ieee_double_shape_type gh_u;					\
110   gh_u.value = (d);						\
111   (i) = gh_u.parts.msw;						\
112 } while (0)
113 
114 /* Get the less significant 32 bit int from a double.  */
115 
116 #define GET_LOW_WORD(i,d)					\
117 do {								\
118   ieee_double_shape_type gl_u;					\
119   gl_u.value = (d);						\
120   (i) = gl_u.parts.lsw;						\
121 } while (0)
122 
123 /* Set a double from two 32 bit ints.  */
124 
125 #define INSERT_WORDS(d,ix0,ix1)					\
126 do {								\
127   ieee_double_shape_type iw_u;					\
128   iw_u.parts.msw = (ix0);					\
129   iw_u.parts.lsw = (ix1);					\
130   (d) = iw_u.value;						\
131 } while (0)
132 
133 /* Set a double from a 64-bit int. */
134 #define INSERT_WORD64(d,ix)					\
135 do {								\
136   ieee_double_shape_type iw_u;					\
137   iw_u.xparts.w = (ix);						\
138   (d) = iw_u.value;						\
139 } while (0)
140 
141 /* Set the more significant 32 bits of a double from an int.  */
142 
143 #define SET_HIGH_WORD(d,v)					\
144 do {								\
145   ieee_double_shape_type sh_u;					\
146   sh_u.value = (d);						\
147   sh_u.parts.msw = (v);						\
148   (d) = sh_u.value;						\
149 } while (0)
150 
151 /* Set the less significant 32 bits of a double from an int.  */
152 
153 #define SET_LOW_WORD(d,v)					\
154 do {								\
155   ieee_double_shape_type sl_u;					\
156   sl_u.value = (d);						\
157   sl_u.parts.lsw = (v);						\
158   (d) = sl_u.value;						\
159 } while (0)
160 
161 /*
162  * A union which permits us to convert between a float and a 32 bit
163  * int.
164  */
165 
166 typedef union
167 {
168   float value;
169   /* FIXME: Assumes 32 bit int.  */
170   unsigned int word;
171 } ieee_float_shape_type;
172 
173 /* Get a 32 bit int from a float.  */
174 
175 #define GET_FLOAT_WORD(i,d)					\
176 do {								\
177   ieee_float_shape_type gf_u;					\
178   gf_u.value = (d);						\
179   (i) = gf_u.word;						\
180 } while (0)
181 
182 /* Set a float from a 32 bit int.  */
183 
184 #define SET_FLOAT_WORD(d,i)					\
185 do {								\
186   ieee_float_shape_type sf_u;					\
187   sf_u.word = (i);						\
188   (d) = sf_u.value;						\
189 } while (0)
190 
191 /* Get expsign as a 16 bit int from a long double.  */
192 
193 #define	GET_LDBL_EXPSIGN(i,d)					\
194 do {								\
195   union IEEEl2bits ge_u;					\
196   ge_u.e = (d);							\
197   (i) = ge_u.xbits.expsign;					\
198 } while (0)
199 
200 /* Set expsign of a long double from a 16 bit int.  */
201 
202 #define	SET_LDBL_EXPSIGN(d,v)					\
203 do {								\
204   union IEEEl2bits se_u;					\
205   se_u.e = (d);							\
206   se_u.xbits.expsign = (v);					\
207   (d) = se_u.e;							\
208 } while (0)
209 
210 #ifdef __i386__
211 /* Long double constants are broken on i386. */
212 #define	LD80C(m, ex, v) {						\
213 	.xbits.man = __CONCAT(m, ULL),					\
214 	.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0),	\
215 }
216 #else
217 /* The above works on non-i386 too, but we use this to check v. */
218 #define	LD80C(m, ex, v)	{ .e = (v), }
219 #endif
220 
221 #ifdef FLT_EVAL_METHOD
222 /*
223  * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
224  */
225 #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
226 #define	STRICT_ASSIGN(type, lval, rval)	((lval) = (rval))
227 #else
228 #define	STRICT_ASSIGN(type, lval, rval) do {	\
229 	volatile type __lval;			\
230 						\
231 	if (sizeof(type) >= sizeof(long double))	\
232 		(lval) = (rval);		\
233 	else {					\
234 		__lval = (rval);		\
235 		(lval) = __lval;		\
236 	}					\
237 } while (0)
238 #endif
239 #endif /* FLT_EVAL_METHOD */
240 
241 /* Support switching the mode to FP_PE if necessary. */
242 #if defined(__i386__) && !defined(NO_FPSETPREC)
243 #define	ENTERI()				\
244 	long double __retval;			\
245 	fp_prec_t __oprec;			\
246 						\
247 	if ((__oprec = fpgetprec()) != FP_PE)	\
248 		fpsetprec(FP_PE)
249 #define	RETURNI(x) do {				\
250 	__retval = (x);				\
251 	if (__oprec != FP_PE)			\
252 		fpsetprec(__oprec);		\
253 	RETURNF(__retval);			\
254 } while (0)
255 #else
256 #define	ENTERI(x)
257 #define	RETURNI(x)	RETURNF(x)
258 #endif
259 
260 /* Default return statement if hack*_t() is not used. */
261 #define      RETURNF(v)      return (v)
262 
263 /*
264  * Common routine to process the arguments to nan(), nanf(), and nanl().
265  */
266 void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
267 
268 #ifdef _COMPLEX_H
269 
270 /*
271  * C99 specifies that complex numbers have the same representation as
272  * an array of two elements, where the first element is the real part
273  * and the second element is the imaginary part.
274  */
275 typedef union {
276 	float complex f;
277 	float a[2];
278 } float_complex;
279 typedef union {
280 	double complex f;
281 	double a[2];
282 } double_complex;
283 typedef union {
284 	long double complex f;
285 	long double a[2];
286 } long_double_complex;
287 #define	REALPART(z)	((z).a[0])
288 #define	IMAGPART(z)	((z).a[1])
289 
290 /*
291  * Inline functions that can be used to construct complex values.
292  *
293  * The C99 standard intends x+I*y to be used for this, but x+I*y is
294  * currently unusable in general since gcc introduces many overflow,
295  * underflow, sign and efficiency bugs by rewriting I*y as
296  * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
297  * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
298  * to -0.0+I*0.0.
299  */
300 static __inline float complex
cpackf(float x,float y)301 cpackf(float x, float y)
302 {
303 	float_complex z;
304 
305 	REALPART(z) = x;
306 	IMAGPART(z) = y;
307 	return (z.f);
308 }
309 
310 static __inline double complex
cpack(double x,double y)311 cpack(double x, double y)
312 {
313 	double_complex z;
314 
315 	REALPART(z) = x;
316 	IMAGPART(z) = y;
317 	return (z.f);
318 }
319 
320 static __inline long double complex
cpackl(long double x,long double y)321 cpackl(long double x, long double y)
322 {
323 	long_double_complex z;
324 
325 	REALPART(z) = x;
326 	IMAGPART(z) = y;
327 	return (z.f);
328 }
329 #endif /* _COMPLEX_H */
330 
331 #ifdef __GNUCLIKE_ASM
332 
333 /* Asm versions of some functions. */
334 
335 #ifdef __amd64__
336 static __inline int
irint(double x)337 irint(double x)
338 {
339 	int n;
340 
341 	asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
342 	return (n);
343 }
344 #define	HAVE_EFFICIENT_IRINT
345 #endif
346 
347 #ifdef __i386__
348 static __inline int
irint(double x)349 irint(double x)
350 {
351 	int n;
352 
353 	asm("fistl %0" : "=m" (n) : "t" (x));
354 	return (n);
355 }
356 #define	HAVE_EFFICIENT_IRINT
357 #endif
358 
359 #if defined(__amd64__) || defined(__i386__)
360 static __inline int
irintl(long double x)361 irintl(long double x)
362 {
363 	int n;
364 
365 	asm("fistl %0" : "=m" (n) : "t" (x));
366 	return (n);
367 }
368 #define	HAVE_EFFICIENT_IRINTL
369 #endif
370 
371 #endif /* __GNUCLIKE_ASM */
372 
373 /*
374  * ieee style elementary functions
375  *
376  * We rename functions here to improve other sources' diffability
377  * against fdlibm.
378  */
379 #define	__ieee754_sqrt	sqrt
380 #define	__ieee754_acos	acos
381 #define	__ieee754_acosh	acosh
382 #define	__ieee754_log	log
383 #define	__ieee754_log2	log2
384 #define	__ieee754_atanh	atanh
385 #define	__ieee754_asin	asin
386 #define	__ieee754_atan2	atan2
387 #define	__ieee754_exp	exp
388 #define	__ieee754_cosh	cosh
389 #define	__ieee754_fmod	fmod
390 #define	__ieee754_pow	pow
391 #define	__ieee754_lgamma lgamma
392 #define	__ieee754_gamma	gamma
393 #define	__ieee754_lgamma_r lgamma_r
394 #define	__ieee754_gamma_r gamma_r
395 #define	__ieee754_log10	log10
396 #define	__ieee754_sinh	sinh
397 #define	__ieee754_hypot	hypot
398 #define	__ieee754_j0	j0
399 #define	__ieee754_j1	j1
400 #define	__ieee754_y0	y0
401 #define	__ieee754_y1	y1
402 #define	__ieee754_jn	jn
403 #define	__ieee754_yn	yn
404 #define	__ieee754_remainder remainder
405 #define	__ieee754_scalb	scalb
406 #define	__ieee754_sqrtf	sqrtf
407 #define	__ieee754_acosf	acosf
408 #define	__ieee754_acoshf acoshf
409 #define	__ieee754_logf	logf
410 #define	__ieee754_atanhf atanhf
411 #define	__ieee754_asinf	asinf
412 #define	__ieee754_atan2f atan2f
413 #define	__ieee754_expf	expf
414 #define	__ieee754_coshf	coshf
415 #define	__ieee754_fmodf	fmodf
416 #define	__ieee754_powf	powf
417 #define	__ieee754_lgammaf lgammaf
418 #define	__ieee754_gammaf gammaf
419 #define	__ieee754_lgammaf_r lgammaf_r
420 #define	__ieee754_gammaf_r gammaf_r
421 #define	__ieee754_log10f log10f
422 #define	__ieee754_log2f log2f
423 #define	__ieee754_sinhf	sinhf
424 #define	__ieee754_hypotf hypotf
425 #define	__ieee754_j0f	j0f
426 #define	__ieee754_j1f	j1f
427 #define	__ieee754_y0f	y0f
428 #define	__ieee754_y1f	y1f
429 #define	__ieee754_jnf	jnf
430 #define	__ieee754_ynf	ynf
431 #define	__ieee754_remainderf remainderf
432 #define	__ieee754_scalbf scalbf
433 
434 /* fdlibm kernel function */
435 int	__kernel_rem_pio2(double*,double*,int,int,int);
436 
437 /* double precision kernel functions */
438 #ifndef INLINE_REM_PIO2
439 int	__ieee754_rem_pio2(double,double*);
440 #endif
441 double	__kernel_sin(double,double,int);
442 double	__kernel_cos(double,double);
443 double	__kernel_tan(double,double,int);
444 double	__ldexp_exp(double,int);
445 #ifdef _COMPLEX_H
446 double complex __ldexp_cexp(double complex,int);
447 #endif
448 
449 /* float precision kernel functions */
450 #ifndef INLINE_REM_PIO2F
451 int	__ieee754_rem_pio2f(float,double*);
452 #endif
453 #ifndef INLINE_KERNEL_SINDF
454 float	__kernel_sindf(double);
455 #endif
456 #ifndef INLINE_KERNEL_COSDF
457 float	__kernel_cosdf(double);
458 #endif
459 #ifndef INLINE_KERNEL_TANDF
460 float	__kernel_tandf(double,int);
461 #endif
462 float	__ldexp_expf(float,int);
463 #ifdef _COMPLEX_H
464 float complex __ldexp_cexpf(float complex,int);
465 #endif
466 
467 /* long double precision kernel functions */
468 long double __kernel_sinl(long double, long double, int);
469 long double __kernel_cosl(long double, long double);
470 long double __kernel_tanl(long double, long double, int);
471 
472 #endif /* !_MATH_PRIVATE_H_ */
473