• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "early-cse"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/RecyclingAllocator.h"
27 #include "llvm/Target/TargetLibraryInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include <deque>
30 using namespace llvm;
31 
32 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
33 STATISTIC(NumCSE,      "Number of instructions CSE'd");
34 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
35 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
36 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
37 
getHash(const void * V)38 static unsigned getHash(const void *V) {
39   return DenseMapInfo<const void*>::getHashValue(V);
40 }
41 
42 //===----------------------------------------------------------------------===//
43 // SimpleValue
44 //===----------------------------------------------------------------------===//
45 
46 namespace {
47   /// SimpleValue - Instances of this struct represent available values in the
48   /// scoped hash table.
49   struct SimpleValue {
50     Instruction *Inst;
51 
SimpleValue__anonc8dc09530111::SimpleValue52     SimpleValue(Instruction *I) : Inst(I) {
53       assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
54     }
55 
isSentinel__anonc8dc09530111::SimpleValue56     bool isSentinel() const {
57       return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
58              Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
59     }
60 
canHandle__anonc8dc09530111::SimpleValue61     static bool canHandle(Instruction *Inst) {
62       // This can only handle non-void readnone functions.
63       if (CallInst *CI = dyn_cast<CallInst>(Inst))
64         return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
65       return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
66              isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
67              isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
68              isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
69              isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
70     }
71   };
72 }
73 
74 namespace llvm {
75 // SimpleValue is POD.
76 template<> struct isPodLike<SimpleValue> {
77   static const bool value = true;
78 };
79 
80 template<> struct DenseMapInfo<SimpleValue> {
getEmptyKeyllvm::DenseMapInfo81   static inline SimpleValue getEmptyKey() {
82     return DenseMapInfo<Instruction*>::getEmptyKey();
83   }
getTombstoneKeyllvm::DenseMapInfo84   static inline SimpleValue getTombstoneKey() {
85     return DenseMapInfo<Instruction*>::getTombstoneKey();
86   }
87   static unsigned getHashValue(SimpleValue Val);
88   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
89 };
90 }
91 
getHashValue(SimpleValue Val)92 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
93   Instruction *Inst = Val.Inst;
94   // Hash in all of the operands as pointers.
95   if (BinaryOperator* BinOp = dyn_cast<BinaryOperator>(Inst)) {
96     Value *LHS = BinOp->getOperand(0);
97     Value *RHS = BinOp->getOperand(1);
98     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
99       std::swap(LHS, RHS);
100 
101     if (isa<OverflowingBinaryOperator>(BinOp)) {
102       // Hash the overflow behavior
103       unsigned Overflow =
104         BinOp->hasNoSignedWrap()   * OverflowingBinaryOperator::NoSignedWrap |
105         BinOp->hasNoUnsignedWrap() * OverflowingBinaryOperator::NoUnsignedWrap;
106       return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
107     }
108 
109     return hash_combine(BinOp->getOpcode(), LHS, RHS);
110   }
111 
112   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
113     Value *LHS = CI->getOperand(0);
114     Value *RHS = CI->getOperand(1);
115     CmpInst::Predicate Pred = CI->getPredicate();
116     if (Inst->getOperand(0) > Inst->getOperand(1)) {
117       std::swap(LHS, RHS);
118       Pred = CI->getSwappedPredicate();
119     }
120     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
121   }
122 
123   if (CastInst *CI = dyn_cast<CastInst>(Inst))
124     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
125 
126   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
127     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
128                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
129 
130   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
131     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
132                         IVI->getOperand(1),
133                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
134 
135   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
136           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
137           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
138           isa<ShuffleVectorInst>(Inst)) && "Invalid/unknown instruction");
139 
140   // Mix in the opcode.
141   return hash_combine(Inst->getOpcode(),
142                       hash_combine_range(Inst->value_op_begin(),
143                                          Inst->value_op_end()));
144 }
145 
isEqual(SimpleValue LHS,SimpleValue RHS)146 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
147   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
148 
149   if (LHS.isSentinel() || RHS.isSentinel())
150     return LHSI == RHSI;
151 
152   if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
153   if (LHSI->isIdenticalTo(RHSI)) return true;
154 
155   // If we're not strictly identical, we still might be a commutable instruction
156   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
157     if (!LHSBinOp->isCommutative())
158       return false;
159 
160     assert(isa<BinaryOperator>(RHSI)
161            && "same opcode, but different instruction type?");
162     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
163 
164     // Check overflow attributes
165     if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
166       assert(isa<OverflowingBinaryOperator>(RHSBinOp)
167              && "same opcode, but different operator type?");
168       if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
169           LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
170         return false;
171     }
172 
173     // Commuted equality
174     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
175       LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
176   }
177   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
178     assert(isa<CmpInst>(RHSI)
179            && "same opcode, but different instruction type?");
180     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
181     // Commuted equality
182     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
183       LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
184       LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
185   }
186 
187   return false;
188 }
189 
190 //===----------------------------------------------------------------------===//
191 // CallValue
192 //===----------------------------------------------------------------------===//
193 
194 namespace {
195   /// CallValue - Instances of this struct represent available call values in
196   /// the scoped hash table.
197   struct CallValue {
198     Instruction *Inst;
199 
CallValue__anonc8dc09530211::CallValue200     CallValue(Instruction *I) : Inst(I) {
201       assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
202     }
203 
isSentinel__anonc8dc09530211::CallValue204     bool isSentinel() const {
205       return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
206              Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
207     }
208 
canHandle__anonc8dc09530211::CallValue209     static bool canHandle(Instruction *Inst) {
210       // Don't value number anything that returns void.
211       if (Inst->getType()->isVoidTy())
212         return false;
213 
214       CallInst *CI = dyn_cast<CallInst>(Inst);
215       if (CI == 0 || !CI->onlyReadsMemory())
216         return false;
217       return true;
218     }
219   };
220 }
221 
222 namespace llvm {
223   // CallValue is POD.
224   template<> struct isPodLike<CallValue> {
225     static const bool value = true;
226   };
227 
228   template<> struct DenseMapInfo<CallValue> {
getEmptyKeyllvm::DenseMapInfo229     static inline CallValue getEmptyKey() {
230       return DenseMapInfo<Instruction*>::getEmptyKey();
231     }
getTombstoneKeyllvm::DenseMapInfo232     static inline CallValue getTombstoneKey() {
233       return DenseMapInfo<Instruction*>::getTombstoneKey();
234     }
235     static unsigned getHashValue(CallValue Val);
236     static bool isEqual(CallValue LHS, CallValue RHS);
237   };
238 }
getHashValue(CallValue Val)239 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
240   Instruction *Inst = Val.Inst;
241   // Hash in all of the operands as pointers.
242   unsigned Res = 0;
243   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
244     assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
245            "Cannot value number calls with metadata operands");
246     Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
247   }
248 
249   // Mix in the opcode.
250   return (Res << 1) ^ Inst->getOpcode();
251 }
252 
isEqual(CallValue LHS,CallValue RHS)253 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
254   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
255   if (LHS.isSentinel() || RHS.isSentinel())
256     return LHSI == RHSI;
257   return LHSI->isIdenticalTo(RHSI);
258 }
259 
260 
261 //===----------------------------------------------------------------------===//
262 // EarlyCSE pass.
263 //===----------------------------------------------------------------------===//
264 
265 namespace {
266 
267 /// EarlyCSE - This pass does a simple depth-first walk over the dominator
268 /// tree, eliminating trivially redundant instructions and using instsimplify
269 /// to canonicalize things as it goes.  It is intended to be fast and catch
270 /// obvious cases so that instcombine and other passes are more effective.  It
271 /// is expected that a later pass of GVN will catch the interesting/hard
272 /// cases.
273 class EarlyCSE : public FunctionPass {
274 public:
275   const DataLayout *TD;
276   const TargetLibraryInfo *TLI;
277   DominatorTree *DT;
278   typedef RecyclingAllocator<BumpPtrAllocator,
279                       ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
280   typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
281                           AllocatorTy> ScopedHTType;
282 
283   /// AvailableValues - This scoped hash table contains the current values of
284   /// all of our simple scalar expressions.  As we walk down the domtree, we
285   /// look to see if instructions are in this: if so, we replace them with what
286   /// we find, otherwise we insert them so that dominated values can succeed in
287   /// their lookup.
288   ScopedHTType *AvailableValues;
289 
290   /// AvailableLoads - This scoped hash table contains the current values
291   /// of loads.  This allows us to get efficient access to dominating loads when
292   /// we have a fully redundant load.  In addition to the most recent load, we
293   /// keep track of a generation count of the read, which is compared against
294   /// the current generation count.  The current generation count is
295   /// incremented after every possibly writing memory operation, which ensures
296   /// that we only CSE loads with other loads that have no intervening store.
297   typedef RecyclingAllocator<BumpPtrAllocator,
298     ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
299   typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
300                           DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
301   LoadHTType *AvailableLoads;
302 
303   /// AvailableCalls - This scoped hash table contains the current values
304   /// of read-only call values.  It uses the same generation count as loads.
305   typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
306   CallHTType *AvailableCalls;
307 
308   /// CurrentGeneration - This is the current generation of the memory value.
309   unsigned CurrentGeneration;
310 
311   static char ID;
EarlyCSE()312   explicit EarlyCSE() : FunctionPass(ID) {
313     initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
314   }
315 
316   bool runOnFunction(Function &F);
317 
318 private:
319 
320   // NodeScope - almost a POD, but needs to call the constructors for the
321   // scoped hash tables so that a new scope gets pushed on. These are RAII so
322   // that the scope gets popped when the NodeScope is destroyed.
323   class NodeScope {
324    public:
NodeScope(ScopedHTType * availableValues,LoadHTType * availableLoads,CallHTType * availableCalls)325     NodeScope(ScopedHTType *availableValues,
326               LoadHTType *availableLoads,
327               CallHTType *availableCalls) :
328         Scope(*availableValues),
329         LoadScope(*availableLoads),
330         CallScope(*availableCalls) {}
331 
332    private:
333     NodeScope(const NodeScope&) LLVM_DELETED_FUNCTION;
334     void operator=(const NodeScope&) LLVM_DELETED_FUNCTION;
335 
336     ScopedHTType::ScopeTy Scope;
337     LoadHTType::ScopeTy LoadScope;
338     CallHTType::ScopeTy CallScope;
339   };
340 
341   // StackNode - contains all the needed information to create a stack for
342   // doing a depth first tranversal of the tree. This includes scopes for
343   // values, loads, and calls as well as the generation. There is a child
344   // iterator so that the children do not need to be store spearately.
345   class StackNode {
346    public:
StackNode(ScopedHTType * availableValues,LoadHTType * availableLoads,CallHTType * availableCalls,unsigned cg,DomTreeNode * n,DomTreeNode::iterator child,DomTreeNode::iterator end)347     StackNode(ScopedHTType *availableValues,
348               LoadHTType *availableLoads,
349               CallHTType *availableCalls,
350               unsigned cg, DomTreeNode *n,
351               DomTreeNode::iterator child, DomTreeNode::iterator end) :
352         CurrentGeneration(cg), ChildGeneration(cg), Node(n),
353         ChildIter(child), EndIter(end),
354         Scopes(availableValues, availableLoads, availableCalls),
355         Processed(false) {}
356 
357     // Accessors.
currentGeneration()358     unsigned currentGeneration() { return CurrentGeneration; }
childGeneration()359     unsigned childGeneration() { return ChildGeneration; }
childGeneration(unsigned generation)360     void childGeneration(unsigned generation) { ChildGeneration = generation; }
node()361     DomTreeNode *node() { return Node; }
childIter()362     DomTreeNode::iterator childIter() { return ChildIter; }
nextChild()363     DomTreeNode *nextChild() {
364       DomTreeNode *child = *ChildIter;
365       ++ChildIter;
366       return child;
367     }
end()368     DomTreeNode::iterator end() { return EndIter; }
isProcessed()369     bool isProcessed() { return Processed; }
process()370     void process() { Processed = true; }
371 
372    private:
373     StackNode(const StackNode&) LLVM_DELETED_FUNCTION;
374     void operator=(const StackNode&) LLVM_DELETED_FUNCTION;
375 
376     // Members.
377     unsigned CurrentGeneration;
378     unsigned ChildGeneration;
379     DomTreeNode *Node;
380     DomTreeNode::iterator ChildIter;
381     DomTreeNode::iterator EndIter;
382     NodeScope Scopes;
383     bool Processed;
384   };
385 
386   bool processNode(DomTreeNode *Node);
387 
388   // This transformation requires dominator postdominator info
getAnalysisUsage(AnalysisUsage & AU) const389   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
390     AU.addRequired<DominatorTree>();
391     AU.addRequired<TargetLibraryInfo>();
392     AU.setPreservesCFG();
393   }
394 };
395 }
396 
397 char EarlyCSE::ID = 0;
398 
399 // createEarlyCSEPass - The public interface to this file.
createEarlyCSEPass()400 FunctionPass *llvm::createEarlyCSEPass() {
401   return new EarlyCSE();
402 }
403 
404 INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)405 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
406 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
407 INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
408 
409 bool EarlyCSE::processNode(DomTreeNode *Node) {
410   BasicBlock *BB = Node->getBlock();
411 
412   // If this block has a single predecessor, then the predecessor is the parent
413   // of the domtree node and all of the live out memory values are still current
414   // in this block.  If this block has multiple predecessors, then they could
415   // have invalidated the live-out memory values of our parent value.  For now,
416   // just be conservative and invalidate memory if this block has multiple
417   // predecessors.
418   if (BB->getSinglePredecessor() == 0)
419     ++CurrentGeneration;
420 
421   /// LastStore - Keep track of the last non-volatile store that we saw... for
422   /// as long as there in no instruction that reads memory.  If we see a store
423   /// to the same location, we delete the dead store.  This zaps trivial dead
424   /// stores which can occur in bitfield code among other things.
425   StoreInst *LastStore = 0;
426 
427   bool Changed = false;
428 
429   // See if any instructions in the block can be eliminated.  If so, do it.  If
430   // not, add them to AvailableValues.
431   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
432     Instruction *Inst = I++;
433 
434     // Dead instructions should just be removed.
435     if (isInstructionTriviallyDead(Inst, TLI)) {
436       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
437       Inst->eraseFromParent();
438       Changed = true;
439       ++NumSimplify;
440       continue;
441     }
442 
443     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
444     // its simpler value.
445     if (Value *V = SimplifyInstruction(Inst, TD, TLI, DT)) {
446       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
447       Inst->replaceAllUsesWith(V);
448       Inst->eraseFromParent();
449       Changed = true;
450       ++NumSimplify;
451       continue;
452     }
453 
454     // If this is a simple instruction that we can value number, process it.
455     if (SimpleValue::canHandle(Inst)) {
456       // See if the instruction has an available value.  If so, use it.
457       if (Value *V = AvailableValues->lookup(Inst)) {
458         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
459         Inst->replaceAllUsesWith(V);
460         Inst->eraseFromParent();
461         Changed = true;
462         ++NumCSE;
463         continue;
464       }
465 
466       // Otherwise, just remember that this value is available.
467       AvailableValues->insert(Inst, Inst);
468       continue;
469     }
470 
471     // If this is a non-volatile load, process it.
472     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
473       // Ignore volatile loads.
474       if (!LI->isSimple()) {
475         LastStore = 0;
476         continue;
477       }
478 
479       // If we have an available version of this load, and if it is the right
480       // generation, replace this instruction.
481       std::pair<Value*, unsigned> InVal =
482         AvailableLoads->lookup(Inst->getOperand(0));
483       if (InVal.first != 0 && InVal.second == CurrentGeneration) {
484         DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << "  to: "
485               << *InVal.first << '\n');
486         if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
487         Inst->eraseFromParent();
488         Changed = true;
489         ++NumCSELoad;
490         continue;
491       }
492 
493       // Otherwise, remember that we have this instruction.
494       AvailableLoads->insert(Inst->getOperand(0),
495                           std::pair<Value*, unsigned>(Inst, CurrentGeneration));
496       LastStore = 0;
497       continue;
498     }
499 
500     // If this instruction may read from memory, forget LastStore.
501     if (Inst->mayReadFromMemory())
502       LastStore = 0;
503 
504     // If this is a read-only call, process it.
505     if (CallValue::canHandle(Inst)) {
506       // If we have an available version of this call, and if it is the right
507       // generation, replace this instruction.
508       std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
509       if (InVal.first != 0 && InVal.second == CurrentGeneration) {
510         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << "  to: "
511                      << *InVal.first << '\n');
512         if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
513         Inst->eraseFromParent();
514         Changed = true;
515         ++NumCSECall;
516         continue;
517       }
518 
519       // Otherwise, remember that we have this instruction.
520       AvailableCalls->insert(Inst,
521                          std::pair<Value*, unsigned>(Inst, CurrentGeneration));
522       continue;
523     }
524 
525     // Okay, this isn't something we can CSE at all.  Check to see if it is
526     // something that could modify memory.  If so, our available memory values
527     // cannot be used so bump the generation count.
528     if (Inst->mayWriteToMemory()) {
529       ++CurrentGeneration;
530 
531       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
532         // We do a trivial form of DSE if there are two stores to the same
533         // location with no intervening loads.  Delete the earlier store.
534         if (LastStore &&
535             LastStore->getPointerOperand() == SI->getPointerOperand()) {
536           DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << "  due to: "
537                        << *Inst << '\n');
538           LastStore->eraseFromParent();
539           Changed = true;
540           ++NumDSE;
541           LastStore = 0;
542           continue;
543         }
544 
545         // Okay, we just invalidated anything we knew about loaded values.  Try
546         // to salvage *something* by remembering that the stored value is a live
547         // version of the pointer.  It is safe to forward from volatile stores
548         // to non-volatile loads, so we don't have to check for volatility of
549         // the store.
550         AvailableLoads->insert(SI->getPointerOperand(),
551          std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
552 
553         // Remember that this was the last store we saw for DSE.
554         if (SI->isSimple())
555           LastStore = SI;
556       }
557     }
558   }
559 
560   return Changed;
561 }
562 
563 
runOnFunction(Function & F)564 bool EarlyCSE::runOnFunction(Function &F) {
565   std::deque<StackNode *> nodesToProcess;
566 
567   TD = getAnalysisIfAvailable<DataLayout>();
568   TLI = &getAnalysis<TargetLibraryInfo>();
569   DT = &getAnalysis<DominatorTree>();
570 
571   // Tables that the pass uses when walking the domtree.
572   ScopedHTType AVTable;
573   AvailableValues = &AVTable;
574   LoadHTType LoadTable;
575   AvailableLoads = &LoadTable;
576   CallHTType CallTable;
577   AvailableCalls = &CallTable;
578 
579   CurrentGeneration = 0;
580   bool Changed = false;
581 
582   // Process the root node.
583   nodesToProcess.push_front(
584       new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
585                     CurrentGeneration, DT->getRootNode(),
586                     DT->getRootNode()->begin(),
587                     DT->getRootNode()->end()));
588 
589   // Save the current generation.
590   unsigned LiveOutGeneration = CurrentGeneration;
591 
592   // Process the stack.
593   while (!nodesToProcess.empty()) {
594     // Grab the first item off the stack. Set the current generation, remove
595     // the node from the stack, and process it.
596     StackNode *NodeToProcess = nodesToProcess.front();
597 
598     // Initialize class members.
599     CurrentGeneration = NodeToProcess->currentGeneration();
600 
601     // Check if the node needs to be processed.
602     if (!NodeToProcess->isProcessed()) {
603       // Process the node.
604       Changed |= processNode(NodeToProcess->node());
605       NodeToProcess->childGeneration(CurrentGeneration);
606       NodeToProcess->process();
607     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
608       // Push the next child onto the stack.
609       DomTreeNode *child = NodeToProcess->nextChild();
610       nodesToProcess.push_front(
611           new StackNode(AvailableValues,
612                         AvailableLoads,
613                         AvailableCalls,
614                         NodeToProcess->childGeneration(), child,
615                         child->begin(), child->end()));
616     } else {
617       // It has been processed, and there are no more children to process,
618       // so delete it and pop it off the stack.
619       delete NodeToProcess;
620       nodesToProcess.pop_front();
621     }
622   } // while (!nodes...)
623 
624   // Reset the current generation.
625   CurrentGeneration = LiveOutGeneration;
626 
627   return Changed;
628 }
629