• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a MachineCodeEmitter object that is used by the JIT to
11 // write machine code to memory and remember where relocatable values are.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "jit"
16 #include "JIT.h"
17 #include "JITDwarfEmitter.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/OwningPtr.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/ValueMap.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/MachineCodeInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/MachineRelocation.h"
31 #include "llvm/DebugInfo.h"
32 #include "llvm/ExecutionEngine/GenericValue.h"
33 #include "llvm/ExecutionEngine/JITEventListener.h"
34 #include "llvm/ExecutionEngine/JITMemoryManager.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Disassembler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/ManagedStatic.h"
43 #include "llvm/Support/Memory.h"
44 #include "llvm/Support/MutexGuard.h"
45 #include "llvm/Support/ValueHandle.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetJITInfo.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include <algorithm>
52 #ifndef NDEBUG
53 #include <iomanip>
54 #endif
55 using namespace llvm;
56 
57 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
58 STATISTIC(NumRelos, "Number of relocations applied");
59 STATISTIC(NumRetries, "Number of retries with more memory");
60 
61 
62 // A declaration may stop being a declaration once it's fully read from bitcode.
63 // This function returns true if F is fully read and is still a declaration.
isNonGhostDeclaration(const Function * F)64 static bool isNonGhostDeclaration(const Function *F) {
65   return F->isDeclaration() && !F->isMaterializable();
66 }
67 
68 //===----------------------------------------------------------------------===//
69 // JIT lazy compilation code.
70 //
71 namespace {
72   class JITEmitter;
73   class JITResolverState;
74 
75   template<typename ValueTy>
76   struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
77     typedef JITResolverState *ExtraData;
onRAUW__anon51408e480111::NoRAUWValueMapConfig78     static void onRAUW(JITResolverState *, Value *Old, Value *New) {
79       llvm_unreachable("The JIT doesn't know how to handle a"
80                        " RAUW on a value it has emitted.");
81     }
82   };
83 
84   struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
85     typedef JITResolverState *ExtraData;
86     static void onDelete(JITResolverState *JRS, Function *F);
87   };
88 
89   class JITResolverState {
90   public:
91     typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
92       FunctionToLazyStubMapTy;
93     typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
94     typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
95                      CallSiteValueMapConfig> FunctionToCallSitesMapTy;
96     typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
97   private:
98     /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
99     /// particular function so that we can reuse them if necessary.
100     FunctionToLazyStubMapTy FunctionToLazyStubMap;
101 
102     /// CallSiteToFunctionMap - Keep track of the function that each lazy call
103     /// site corresponds to, and vice versa.
104     CallSiteToFunctionMapTy CallSiteToFunctionMap;
105     FunctionToCallSitesMapTy FunctionToCallSitesMap;
106 
107     /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
108     /// particular GlobalVariable so that we can reuse them if necessary.
109     GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
110 
111 #ifndef NDEBUG
112     /// Instance of the JIT this ResolverState serves.
113     JIT *TheJIT;
114 #endif
115 
116   public:
JITResolverState(JIT * jit)117     JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
118                                  FunctionToCallSitesMap(this) {
119 #ifndef NDEBUG
120       TheJIT = jit;
121 #endif
122     }
123 
getFunctionToLazyStubMap(const MutexGuard & locked)124     FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
125       const MutexGuard& locked) {
126       assert(locked.holds(TheJIT->lock));
127       return FunctionToLazyStubMap;
128     }
129 
getGlobalToIndirectSymMap(const MutexGuard & lck)130     GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
131       assert(lck.holds(TheJIT->lock));
132       return GlobalToIndirectSymMap;
133     }
134 
LookupFunctionFromCallSite(const MutexGuard & locked,void * CallSite) const135     std::pair<void *, Function *> LookupFunctionFromCallSite(
136         const MutexGuard &locked, void *CallSite) const {
137       assert(locked.holds(TheJIT->lock));
138 
139       // The address given to us for the stub may not be exactly right, it
140       // might be a little bit after the stub.  As such, use upper_bound to
141       // find it.
142       CallSiteToFunctionMapTy::const_iterator I =
143         CallSiteToFunctionMap.upper_bound(CallSite);
144       assert(I != CallSiteToFunctionMap.begin() &&
145              "This is not a known call site!");
146       --I;
147       return *I;
148     }
149 
AddCallSite(const MutexGuard & locked,void * CallSite,Function * F)150     void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
151       assert(locked.holds(TheJIT->lock));
152 
153       bool Inserted = CallSiteToFunctionMap.insert(
154           std::make_pair(CallSite, F)).second;
155       (void)Inserted;
156       assert(Inserted && "Pair was already in CallSiteToFunctionMap");
157       FunctionToCallSitesMap[F].insert(CallSite);
158     }
159 
160     void EraseAllCallSitesForPrelocked(Function *F);
161 
162     // Erases _all_ call sites regardless of their function.  This is used to
163     // unregister the stub addresses from the StubToResolverMap in
164     // ~JITResolver().
165     void EraseAllCallSitesPrelocked();
166   };
167 
168   /// JITResolver - Keep track of, and resolve, call sites for functions that
169   /// have not yet been compiled.
170   class JITResolver {
171     typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
172     typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
173     typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
174 
175     /// LazyResolverFn - The target lazy resolver function that we actually
176     /// rewrite instructions to use.
177     TargetJITInfo::LazyResolverFn LazyResolverFn;
178 
179     JITResolverState state;
180 
181     /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
182     /// for external functions.  TODO: Of course, external functions don't need
183     /// a lazy stub.  It's actually here to make it more likely that far calls
184     /// succeed, but no single stub can guarantee that.  I'll remove this in a
185     /// subsequent checkin when I actually fix far calls.
186     std::map<void*, void*> ExternalFnToStubMap;
187 
188     /// revGOTMap - map addresses to indexes in the GOT
189     std::map<void*, unsigned> revGOTMap;
190     unsigned nextGOTIndex;
191 
192     JITEmitter &JE;
193 
194     /// Instance of JIT corresponding to this Resolver.
195     JIT *TheJIT;
196 
197   public:
JITResolver(JIT & jit,JITEmitter & je)198     explicit JITResolver(JIT &jit, JITEmitter &je)
199       : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
200       LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
201     }
202 
203     ~JITResolver();
204 
205     /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
206     /// lazy-compilation stub if it has already been created.
207     void *getLazyFunctionStubIfAvailable(Function *F);
208 
209     /// getLazyFunctionStub - This returns a pointer to a function's
210     /// lazy-compilation stub, creating one on demand as needed.
211     void *getLazyFunctionStub(Function *F);
212 
213     /// getExternalFunctionStub - Return a stub for the function at the
214     /// specified address, created lazily on demand.
215     void *getExternalFunctionStub(void *FnAddr);
216 
217     /// getGlobalValueIndirectSym - Return an indirect symbol containing the
218     /// specified GV address.
219     void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
220 
221     /// getGOTIndexForAddress - Return a new or existing index in the GOT for
222     /// an address.  This function only manages slots, it does not manage the
223     /// contents of the slots or the memory associated with the GOT.
224     unsigned getGOTIndexForAddr(void *addr);
225 
226     /// JITCompilerFn - This function is called to resolve a stub to a compiled
227     /// address.  If the LLVM Function corresponding to the stub has not yet
228     /// been compiled, this function compiles it first.
229     static void *JITCompilerFn(void *Stub);
230   };
231 
232   class StubToResolverMapTy {
233     /// Map a stub address to a specific instance of a JITResolver so that
234     /// lazily-compiled functions can find the right resolver to use.
235     ///
236     /// Guarded by Lock.
237     std::map<void*, JITResolver*> Map;
238 
239     /// Guards Map from concurrent accesses.
240     mutable sys::Mutex Lock;
241 
242   public:
243     /// Registers a Stub to be resolved by Resolver.
RegisterStubResolver(void * Stub,JITResolver * Resolver)244     void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
245       MutexGuard guard(Lock);
246       Map.insert(std::make_pair(Stub, Resolver));
247     }
248     /// Unregisters the Stub when it's invalidated.
UnregisterStubResolver(void * Stub)249     void UnregisterStubResolver(void *Stub) {
250       MutexGuard guard(Lock);
251       Map.erase(Stub);
252     }
253     /// Returns the JITResolver instance that owns the Stub.
getResolverFromStub(void * Stub) const254     JITResolver *getResolverFromStub(void *Stub) const {
255       MutexGuard guard(Lock);
256       // The address given to us for the stub may not be exactly right, it might
257       // be a little bit after the stub.  As such, use upper_bound to find it.
258       // This is the same trick as in LookupFunctionFromCallSite from
259       // JITResolverState.
260       std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
261       assert(I != Map.begin() && "This is not a known stub!");
262       --I;
263       return I->second;
264     }
265     /// True if any stubs refer to the given resolver. Only used in an assert().
266     /// O(N)
ResolverHasStubs(JITResolver * Resolver) const267     bool ResolverHasStubs(JITResolver* Resolver) const {
268       MutexGuard guard(Lock);
269       for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
270              E = Map.end(); I != E; ++I) {
271         if (I->second == Resolver)
272           return true;
273       }
274       return false;
275     }
276   };
277   /// This needs to be static so that a lazy call stub can access it with no
278   /// context except the address of the stub.
279   ManagedStatic<StubToResolverMapTy> StubToResolverMap;
280 
281   /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
282   /// used to output functions to memory for execution.
283   class JITEmitter : public JITCodeEmitter {
284     JITMemoryManager *MemMgr;
285 
286     // When outputting a function stub in the context of some other function, we
287     // save BufferBegin/BufferEnd/CurBufferPtr here.
288     uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
289 
290     // When reattempting to JIT a function after running out of space, we store
291     // the estimated size of the function we're trying to JIT here, so we can
292     // ask the memory manager for at least this much space.  When we
293     // successfully emit the function, we reset this back to zero.
294     uintptr_t SizeEstimate;
295 
296     /// Relocations - These are the relocations that the function needs, as
297     /// emitted.
298     std::vector<MachineRelocation> Relocations;
299 
300     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
301     /// It is filled in by the StartMachineBasicBlock callback and queried by
302     /// the getMachineBasicBlockAddress callback.
303     std::vector<uintptr_t> MBBLocations;
304 
305     /// ConstantPool - The constant pool for the current function.
306     ///
307     MachineConstantPool *ConstantPool;
308 
309     /// ConstantPoolBase - A pointer to the first entry in the constant pool.
310     ///
311     void *ConstantPoolBase;
312 
313     /// ConstPoolAddresses - Addresses of individual constant pool entries.
314     ///
315     SmallVector<uintptr_t, 8> ConstPoolAddresses;
316 
317     /// JumpTable - The jump tables for the current function.
318     ///
319     MachineJumpTableInfo *JumpTable;
320 
321     /// JumpTableBase - A pointer to the first entry in the jump table.
322     ///
323     void *JumpTableBase;
324 
325     /// Resolver - This contains info about the currently resolved functions.
326     JITResolver Resolver;
327 
328     /// DE - The dwarf emitter for the jit.
329     OwningPtr<JITDwarfEmitter> DE;
330 
331     /// LabelLocations - This vector is a mapping from Label ID's to their
332     /// address.
333     DenseMap<MCSymbol*, uintptr_t> LabelLocations;
334 
335     /// MMI - Machine module info for exception informations
336     MachineModuleInfo* MMI;
337 
338     // CurFn - The llvm function being emitted.  Only valid during
339     // finishFunction().
340     const Function *CurFn;
341 
342     /// Information about emitted code, which is passed to the
343     /// JITEventListeners.  This is reset in startFunction and used in
344     /// finishFunction.
345     JITEvent_EmittedFunctionDetails EmissionDetails;
346 
347     struct EmittedCode {
348       void *FunctionBody;  // Beginning of the function's allocation.
349       void *Code;  // The address the function's code actually starts at.
350       void *ExceptionTable;
EmittedCode__anon51408e480111::JITEmitter::EmittedCode351       EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
352     };
353     struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
354       typedef JITEmitter *ExtraData;
355       static void onDelete(JITEmitter *, const Function*);
356       static void onRAUW(JITEmitter *, const Function*, const Function*);
357     };
358     ValueMap<const Function *, EmittedCode,
359              EmittedFunctionConfig> EmittedFunctions;
360 
361     DebugLoc PrevDL;
362 
363     /// Instance of the JIT
364     JIT *TheJIT;
365 
366     bool JITExceptionHandling;
367 
368   public:
JITEmitter(JIT & jit,JITMemoryManager * JMM,TargetMachine & TM)369     JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
370       : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
371         EmittedFunctions(this), TheJIT(&jit),
372         JITExceptionHandling(TM.Options.JITExceptionHandling) {
373       MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
374       if (jit.getJITInfo().needsGOT()) {
375         MemMgr->AllocateGOT();
376         DEBUG(dbgs() << "JIT is managing a GOT\n");
377       }
378 
379       if (JITExceptionHandling) {
380         DE.reset(new JITDwarfEmitter(jit));
381       }
382     }
~JITEmitter()383     ~JITEmitter() {
384       delete MemMgr;
385     }
386 
getJITResolver()387     JITResolver &getJITResolver() { return Resolver; }
388 
389     virtual void startFunction(MachineFunction &F);
390     virtual bool finishFunction(MachineFunction &F);
391 
392     void emitConstantPool(MachineConstantPool *MCP);
393     void initJumpTableInfo(MachineJumpTableInfo *MJTI);
394     void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
395 
396     void startGVStub(const GlobalValue* GV,
397                      unsigned StubSize, unsigned Alignment = 1);
398     void startGVStub(void *Buffer, unsigned StubSize);
399     void finishGVStub();
400     virtual void *allocIndirectGV(const GlobalValue *GV,
401                                   const uint8_t *Buffer, size_t Size,
402                                   unsigned Alignment);
403 
404     /// allocateSpace - Reserves space in the current block if any, or
405     /// allocate a new one of the given size.
406     virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
407 
408     /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
409     /// this method does not allocate memory in the current output buffer,
410     /// because a global may live longer than the current function.
411     virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
412 
addRelocation(const MachineRelocation & MR)413     virtual void addRelocation(const MachineRelocation &MR) {
414       Relocations.push_back(MR);
415     }
416 
StartMachineBasicBlock(MachineBasicBlock * MBB)417     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
418       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
419         MBBLocations.resize((MBB->getNumber()+1)*2);
420       MBBLocations[MBB->getNumber()] = getCurrentPCValue();
421       if (MBB->hasAddressTaken())
422         TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
423                                        (void*)getCurrentPCValue());
424       DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
425                    << (void*) getCurrentPCValue() << "]\n");
426     }
427 
428     virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
429     virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
430 
getMachineBasicBlockAddress(MachineBasicBlock * MBB) const431     virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
432       assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
433              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
434       return MBBLocations[MBB->getNumber()];
435     }
436 
437     /// retryWithMoreMemory - Log a retry and deallocate all memory for the
438     /// given function.  Increase the minimum allocation size so that we get
439     /// more memory next time.
440     void retryWithMoreMemory(MachineFunction &F);
441 
442     /// deallocateMemForFunction - Deallocate all memory for the specified
443     /// function body.
444     void deallocateMemForFunction(const Function *F);
445 
446     virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
447 
emitLabel(MCSymbol * Label)448     virtual void emitLabel(MCSymbol *Label) {
449       LabelLocations[Label] = getCurrentPCValue();
450     }
451 
getLabelLocations()452     virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
453       return &LabelLocations;
454     }
455 
getLabelAddress(MCSymbol * Label) const456     virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
457       assert(LabelLocations.count(Label) && "Label not emitted!");
458       return LabelLocations.find(Label)->second;
459     }
460 
setModuleInfo(MachineModuleInfo * Info)461     virtual void setModuleInfo(MachineModuleInfo* Info) {
462       MMI = Info;
463       if (DE.get()) DE->setModuleInfo(Info);
464     }
465 
466   private:
467     void *getPointerToGlobal(GlobalValue *GV, void *Reference,
468                              bool MayNeedFarStub);
469     void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
470   };
471 }
472 
onDelete(JITResolverState * JRS,Function * F)473 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
474   JRS->EraseAllCallSitesForPrelocked(F);
475 }
476 
EraseAllCallSitesForPrelocked(Function * F)477 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
478   FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
479   if (F2C == FunctionToCallSitesMap.end())
480     return;
481   StubToResolverMapTy &S2RMap = *StubToResolverMap;
482   for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
483          E = F2C->second.end(); I != E; ++I) {
484     S2RMap.UnregisterStubResolver(*I);
485     bool Erased = CallSiteToFunctionMap.erase(*I);
486     (void)Erased;
487     assert(Erased && "Missing call site->function mapping");
488   }
489   FunctionToCallSitesMap.erase(F2C);
490 }
491 
EraseAllCallSitesPrelocked()492 void JITResolverState::EraseAllCallSitesPrelocked() {
493   StubToResolverMapTy &S2RMap = *StubToResolverMap;
494   for (CallSiteToFunctionMapTy::const_iterator
495          I = CallSiteToFunctionMap.begin(),
496          E = CallSiteToFunctionMap.end(); I != E; ++I) {
497     S2RMap.UnregisterStubResolver(I->first);
498   }
499   CallSiteToFunctionMap.clear();
500   FunctionToCallSitesMap.clear();
501 }
502 
~JITResolver()503 JITResolver::~JITResolver() {
504   // No need to lock because we're in the destructor, and state isn't shared.
505   state.EraseAllCallSitesPrelocked();
506   assert(!StubToResolverMap->ResolverHasStubs(this) &&
507          "Resolver destroyed with stubs still alive.");
508 }
509 
510 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
511 /// if it has already been created.
getLazyFunctionStubIfAvailable(Function * F)512 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
513   MutexGuard locked(TheJIT->lock);
514 
515   // If we already have a stub for this function, recycle it.
516   return state.getFunctionToLazyStubMap(locked).lookup(F);
517 }
518 
519 /// getFunctionStub - This returns a pointer to a function stub, creating
520 /// one on demand as needed.
getLazyFunctionStub(Function * F)521 void *JITResolver::getLazyFunctionStub(Function *F) {
522   MutexGuard locked(TheJIT->lock);
523 
524   // If we already have a lazy stub for this function, recycle it.
525   void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
526   if (Stub) return Stub;
527 
528   // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
529   // must resolve the symbol now.
530   void *Actual = TheJIT->isCompilingLazily()
531     ? (void *)(intptr_t)LazyResolverFn : (void *)0;
532 
533   // If this is an external declaration, attempt to resolve the address now
534   // to place in the stub.
535   if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
536     Actual = TheJIT->getPointerToFunction(F);
537 
538     // If we resolved the symbol to a null address (eg. a weak external)
539     // don't emit a stub. Return a null pointer to the application.
540     if (!Actual) return 0;
541   }
542 
543   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
544   JE.startGVStub(F, SL.Size, SL.Alignment);
545   // Codegen a new stub, calling the lazy resolver or the actual address of the
546   // external function, if it was resolved.
547   Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
548   JE.finishGVStub();
549 
550   if (Actual != (void*)(intptr_t)LazyResolverFn) {
551     // If we are getting the stub for an external function, we really want the
552     // address of the stub in the GlobalAddressMap for the JIT, not the address
553     // of the external function.
554     TheJIT->updateGlobalMapping(F, Stub);
555   }
556 
557   DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
558         << F->getName() << "'\n");
559 
560   if (TheJIT->isCompilingLazily()) {
561     // Register this JITResolver as the one corresponding to this call site so
562     // JITCompilerFn will be able to find it.
563     StubToResolverMap->RegisterStubResolver(Stub, this);
564 
565     // Finally, keep track of the stub-to-Function mapping so that the
566     // JITCompilerFn knows which function to compile!
567     state.AddCallSite(locked, Stub, F);
568   } else if (!Actual) {
569     // If we are JIT'ing non-lazily but need to call a function that does not
570     // exist yet, add it to the JIT's work list so that we can fill in the
571     // stub address later.
572     assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
573            "'Actual' should have been set above.");
574     TheJIT->addPendingFunction(F);
575   }
576 
577   return Stub;
578 }
579 
580 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
581 /// GV address.
getGlobalValueIndirectSym(GlobalValue * GV,void * GVAddress)582 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
583   MutexGuard locked(TheJIT->lock);
584 
585   // If we already have a stub for this global variable, recycle it.
586   void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
587   if (IndirectSym) return IndirectSym;
588 
589   // Otherwise, codegen a new indirect symbol.
590   IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
591                                                                 JE);
592 
593   DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
594         << "] for GV '" << GV->getName() << "'\n");
595 
596   return IndirectSym;
597 }
598 
599 /// getExternalFunctionStub - Return a stub for the function at the
600 /// specified address, created lazily on demand.
getExternalFunctionStub(void * FnAddr)601 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
602   // If we already have a stub for this function, recycle it.
603   void *&Stub = ExternalFnToStubMap[FnAddr];
604   if (Stub) return Stub;
605 
606   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
607   JE.startGVStub(0, SL.Size, SL.Alignment);
608   Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
609   JE.finishGVStub();
610 
611   DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
612                << "] for external function at '" << FnAddr << "'\n");
613   return Stub;
614 }
615 
getGOTIndexForAddr(void * addr)616 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
617   unsigned idx = revGOTMap[addr];
618   if (!idx) {
619     idx = ++nextGOTIndex;
620     revGOTMap[addr] = idx;
621     DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
622                  << addr << "]\n");
623   }
624   return idx;
625 }
626 
627 /// JITCompilerFn - This function is called when a lazy compilation stub has
628 /// been entered.  It looks up which function this stub corresponds to, compiles
629 /// it if necessary, then returns the resultant function pointer.
JITCompilerFn(void * Stub)630 void *JITResolver::JITCompilerFn(void *Stub) {
631   JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
632   assert(JR && "Unable to find the corresponding JITResolver to the call site");
633 
634   Function* F = 0;
635   void* ActualPtr = 0;
636 
637   {
638     // Only lock for getting the Function. The call getPointerToFunction made
639     // in this function might trigger function materializing, which requires
640     // JIT lock to be unlocked.
641     MutexGuard locked(JR->TheJIT->lock);
642 
643     // The address given to us for the stub may not be exactly right, it might
644     // be a little bit after the stub.  As such, use upper_bound to find it.
645     std::pair<void*, Function*> I =
646       JR->state.LookupFunctionFromCallSite(locked, Stub);
647     F = I.second;
648     ActualPtr = I.first;
649   }
650 
651   // If we have already code generated the function, just return the address.
652   void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
653 
654   if (!Result) {
655     // Otherwise we don't have it, do lazy compilation now.
656 
657     // If lazy compilation is disabled, emit a useful error message and abort.
658     if (!JR->TheJIT->isCompilingLazily()) {
659       report_fatal_error("LLVM JIT requested to do lazy compilation of"
660                          " function '"
661                         + F->getName() + "' when lazy compiles are disabled!");
662     }
663 
664     DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
665           << "' In stub ptr = " << Stub << " actual ptr = "
666           << ActualPtr << "\n");
667     (void)ActualPtr;
668 
669     Result = JR->TheJIT->getPointerToFunction(F);
670   }
671 
672   // Reacquire the lock to update the GOT map.
673   MutexGuard locked(JR->TheJIT->lock);
674 
675   // We might like to remove the call site from the CallSiteToFunction map, but
676   // we can't do that! Multiple threads could be stuck, waiting to acquire the
677   // lock above. As soon as the 1st function finishes compiling the function,
678   // the next one will be released, and needs to be able to find the function it
679   // needs to call.
680 
681   // FIXME: We could rewrite all references to this stub if we knew them.
682 
683   // What we will do is set the compiled function address to map to the
684   // same GOT entry as the stub so that later clients may update the GOT
685   // if they see it still using the stub address.
686   // Note: this is done so the Resolver doesn't have to manage GOT memory
687   // Do this without allocating map space if the target isn't using a GOT
688   if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
689     JR->revGOTMap[Result] = JR->revGOTMap[Stub];
690 
691   return Result;
692 }
693 
694 //===----------------------------------------------------------------------===//
695 // JITEmitter code.
696 //
getPointerToGlobal(GlobalValue * V,void * Reference,bool MayNeedFarStub)697 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
698                                      bool MayNeedFarStub) {
699   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
700     return TheJIT->getOrEmitGlobalVariable(GV);
701 
702   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
703     return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
704 
705   // If we have already compiled the function, return a pointer to its body.
706   Function *F = cast<Function>(V);
707 
708   void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
709   if (FnStub) {
710     // Return the function stub if it's already created.  We do this first so
711     // that we're returning the same address for the function as any previous
712     // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
713     // close enough to call.
714     return FnStub;
715   }
716 
717   // If we know the target can handle arbitrary-distance calls, try to
718   // return a direct pointer.
719   if (!MayNeedFarStub) {
720     // If we have code, go ahead and return that.
721     void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
722     if (ResultPtr) return ResultPtr;
723 
724     // If this is an external function pointer, we can force the JIT to
725     // 'compile' it, which really just adds it to the map.
726     if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
727       return TheJIT->getPointerToFunction(F);
728   }
729 
730   // Otherwise, we may need a to emit a stub, and, conservatively, we always do
731   // so.  Note that it's possible to return null from getLazyFunctionStub in the
732   // case of a weak extern that fails to resolve.
733   return Resolver.getLazyFunctionStub(F);
734 }
735 
getPointerToGVIndirectSym(GlobalValue * V,void * Reference)736 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
737   // Make sure GV is emitted first, and create a stub containing the fully
738   // resolved address.
739   void *GVAddress = getPointerToGlobal(V, Reference, false);
740   void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
741   return StubAddr;
742 }
743 
processDebugLoc(DebugLoc DL,bool BeforePrintingInsn)744 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
745   if (DL.isUnknown()) return;
746   if (!BeforePrintingInsn) return;
747 
748   const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
749 
750   if (DL.getScope(Context) != 0 && PrevDL != DL) {
751     JITEvent_EmittedFunctionDetails::LineStart NextLine;
752     NextLine.Address = getCurrentPCValue();
753     NextLine.Loc = DL;
754     EmissionDetails.LineStarts.push_back(NextLine);
755   }
756 
757   PrevDL = DL;
758 }
759 
GetConstantPoolSizeInBytes(MachineConstantPool * MCP,const DataLayout * TD)760 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
761                                            const DataLayout *TD) {
762   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
763   if (Constants.empty()) return 0;
764 
765   unsigned Size = 0;
766   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
767     MachineConstantPoolEntry CPE = Constants[i];
768     unsigned AlignMask = CPE.getAlignment() - 1;
769     Size = (Size + AlignMask) & ~AlignMask;
770     Type *Ty = CPE.getType();
771     Size += TD->getTypeAllocSize(Ty);
772   }
773   return Size;
774 }
775 
startFunction(MachineFunction & F)776 void JITEmitter::startFunction(MachineFunction &F) {
777   DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
778         << F.getName() << "\n");
779 
780   uintptr_t ActualSize = 0;
781   // Set the memory writable, if it's not already
782   MemMgr->setMemoryWritable();
783 
784   if (SizeEstimate > 0) {
785     // SizeEstimate will be non-zero on reallocation attempts.
786     ActualSize = SizeEstimate;
787   }
788 
789   BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
790                                                          ActualSize);
791   BufferEnd = BufferBegin+ActualSize;
792   EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
793 
794   // Ensure the constant pool/jump table info is at least 4-byte aligned.
795   emitAlignment(16);
796 
797   emitConstantPool(F.getConstantPool());
798   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
799     initJumpTableInfo(MJTI);
800 
801   // About to start emitting the machine code for the function.
802   emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
803   TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
804   EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
805 
806   MBBLocations.clear();
807 
808   EmissionDetails.MF = &F;
809   EmissionDetails.LineStarts.clear();
810 }
811 
finishFunction(MachineFunction & F)812 bool JITEmitter::finishFunction(MachineFunction &F) {
813   if (CurBufferPtr == BufferEnd) {
814     // We must call endFunctionBody before retrying, because
815     // deallocateMemForFunction requires it.
816     MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
817     retryWithMoreMemory(F);
818     return true;
819   }
820 
821   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
822     emitJumpTableInfo(MJTI);
823 
824   // FnStart is the start of the text, not the start of the constant pool and
825   // other per-function data.
826   uint8_t *FnStart =
827     (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
828 
829   // FnEnd is the end of the function's machine code.
830   uint8_t *FnEnd = CurBufferPtr;
831 
832   if (!Relocations.empty()) {
833     CurFn = F.getFunction();
834     NumRelos += Relocations.size();
835 
836     // Resolve the relocations to concrete pointers.
837     for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
838       MachineRelocation &MR = Relocations[i];
839       void *ResultPtr = 0;
840       if (!MR.letTargetResolve()) {
841         if (MR.isExternalSymbol()) {
842           ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
843                                                         false);
844           DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
845                        << ResultPtr << "]\n");
846 
847           // If the target REALLY wants a stub for this function, emit it now.
848           if (MR.mayNeedFarStub()) {
849             ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
850           }
851         } else if (MR.isGlobalValue()) {
852           ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
853                                          BufferBegin+MR.getMachineCodeOffset(),
854                                          MR.mayNeedFarStub());
855         } else if (MR.isIndirectSymbol()) {
856           ResultPtr = getPointerToGVIndirectSym(
857               MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
858         } else if (MR.isBasicBlock()) {
859           ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
860         } else if (MR.isConstantPoolIndex()) {
861           ResultPtr =
862             (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
863         } else {
864           assert(MR.isJumpTableIndex());
865           ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
866         }
867 
868         MR.setResultPointer(ResultPtr);
869       }
870 
871       // if we are managing the GOT and the relocation wants an index,
872       // give it one
873       if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
874         unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
875         MR.setGOTIndex(idx);
876         if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
877           DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
878                        << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
879                        << "\n");
880           ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
881         }
882       }
883     }
884 
885     CurFn = 0;
886     TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
887                                   Relocations.size(), MemMgr->getGOTBase());
888   }
889 
890   // Update the GOT entry for F to point to the new code.
891   if (MemMgr->isManagingGOT()) {
892     unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
893     if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
894       DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
895                    << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
896                    << "\n");
897       ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
898     }
899   }
900 
901   // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
902   // global variables that were referenced in the relocations.
903   MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
904 
905   if (CurBufferPtr == BufferEnd) {
906     retryWithMoreMemory(F);
907     return true;
908   } else {
909     // Now that we've succeeded in emitting the function, reset the
910     // SizeEstimate back down to zero.
911     SizeEstimate = 0;
912   }
913 
914   BufferBegin = CurBufferPtr = 0;
915   NumBytes += FnEnd-FnStart;
916 
917   // Invalidate the icache if necessary.
918   sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
919 
920   TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
921                                 EmissionDetails);
922 
923   // Reset the previous debug location.
924   PrevDL = DebugLoc();
925 
926   DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
927         << "] Function: " << F.getName()
928         << ": " << (FnEnd-FnStart) << " bytes of text, "
929         << Relocations.size() << " relocations\n");
930 
931   Relocations.clear();
932   ConstPoolAddresses.clear();
933 
934   // Mark code region readable and executable if it's not so already.
935   MemMgr->setMemoryExecutable();
936 
937   DEBUG({
938       if (sys::hasDisassembler()) {
939         dbgs() << "JIT: Disassembled code:\n";
940         dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
941                                          (uintptr_t)FnStart);
942       } else {
943         dbgs() << "JIT: Binary code:\n";
944         uint8_t* q = FnStart;
945         for (int i = 0; q < FnEnd; q += 4, ++i) {
946           if (i == 4)
947             i = 0;
948           if (i == 0)
949             dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
950           bool Done = false;
951           for (int j = 3; j >= 0; --j) {
952             if (q + j >= FnEnd)
953               Done = true;
954             else
955               dbgs() << (unsigned short)q[j];
956           }
957           if (Done)
958             break;
959           dbgs() << ' ';
960           if (i == 3)
961             dbgs() << '\n';
962         }
963         dbgs()<< '\n';
964       }
965     });
966 
967   if (JITExceptionHandling) {
968     uintptr_t ActualSize = 0;
969     SavedBufferBegin = BufferBegin;
970     SavedBufferEnd = BufferEnd;
971     SavedCurBufferPtr = CurBufferPtr;
972     uint8_t *FrameRegister;
973 
974     while (true) {
975       BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
976                                                                ActualSize);
977       BufferEnd = BufferBegin+ActualSize;
978       EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
979       uint8_t *EhStart;
980       FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, EhStart);
981 
982       // If the buffer was large enough to hold the table then we are done.
983       if (CurBufferPtr != BufferEnd)
984         break;
985 
986       // Try again with twice as much space.
987       ActualSize = (CurBufferPtr - BufferBegin) * 2;
988       MemMgr->deallocateExceptionTable(BufferBegin);
989     }
990     MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
991                               FrameRegister);
992     BufferBegin = SavedBufferBegin;
993     BufferEnd = SavedBufferEnd;
994     CurBufferPtr = SavedCurBufferPtr;
995 
996     if (JITExceptionHandling) {
997       TheJIT->RegisterTable(F.getFunction(), FrameRegister);
998     }
999   }
1000 
1001   if (MMI)
1002     MMI->EndFunction();
1003 
1004   return false;
1005 }
1006 
retryWithMoreMemory(MachineFunction & F)1007 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1008   DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
1009   Relocations.clear();  // Clear the old relocations or we'll reapply them.
1010   ConstPoolAddresses.clear();
1011   ++NumRetries;
1012   deallocateMemForFunction(F.getFunction());
1013   // Try again with at least twice as much free space.
1014   SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1015 
1016   for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
1017     if (MBB->hasAddressTaken())
1018       TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
1019   }
1020 }
1021 
1022 /// deallocateMemForFunction - Deallocate all memory for the specified
1023 /// function body.  Also drop any references the function has to stubs.
1024 /// May be called while the Function is being destroyed inside ~Value().
deallocateMemForFunction(const Function * F)1025 void JITEmitter::deallocateMemForFunction(const Function *F) {
1026   ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1027     Emitted = EmittedFunctions.find(F);
1028   if (Emitted != EmittedFunctions.end()) {
1029     MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1030     MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1031     TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1032 
1033     EmittedFunctions.erase(Emitted);
1034   }
1035 
1036   if (JITExceptionHandling) {
1037     TheJIT->DeregisterTable(F);
1038   }
1039 }
1040 
1041 
allocateSpace(uintptr_t Size,unsigned Alignment)1042 void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1043   if (BufferBegin)
1044     return JITCodeEmitter::allocateSpace(Size, Alignment);
1045 
1046   // create a new memory block if there is no active one.
1047   // care must be taken so that BufferBegin is invalidated when a
1048   // block is trimmed
1049   BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1050   BufferEnd = BufferBegin+Size;
1051   return CurBufferPtr;
1052 }
1053 
allocateGlobal(uintptr_t Size,unsigned Alignment)1054 void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1055   // Delegate this call through the memory manager.
1056   return MemMgr->allocateGlobal(Size, Alignment);
1057 }
1058 
emitConstantPool(MachineConstantPool * MCP)1059 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1060   if (TheJIT->getJITInfo().hasCustomConstantPool())
1061     return;
1062 
1063   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1064   if (Constants.empty()) return;
1065 
1066   unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
1067   unsigned Align = MCP->getConstantPoolAlignment();
1068   ConstantPoolBase = allocateSpace(Size, Align);
1069   ConstantPool = MCP;
1070 
1071   if (ConstantPoolBase == 0) return;  // Buffer overflow.
1072 
1073   DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1074                << "] (size: " << Size << ", alignment: " << Align << ")\n");
1075 
1076   // Initialize the memory for all of the constant pool entries.
1077   unsigned Offset = 0;
1078   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1079     MachineConstantPoolEntry CPE = Constants[i];
1080     unsigned AlignMask = CPE.getAlignment() - 1;
1081     Offset = (Offset + AlignMask) & ~AlignMask;
1082 
1083     uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1084     ConstPoolAddresses.push_back(CAddr);
1085     if (CPE.isMachineConstantPoolEntry()) {
1086       // FIXME: add support to lower machine constant pool values into bytes!
1087       report_fatal_error("Initialize memory with machine specific constant pool"
1088                         "entry has not been implemented!");
1089     }
1090     TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1091     DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
1092           dbgs().write_hex(CAddr) << "]\n");
1093 
1094     Type *Ty = CPE.Val.ConstVal->getType();
1095     Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
1096   }
1097 }
1098 
initJumpTableInfo(MachineJumpTableInfo * MJTI)1099 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1100   if (TheJIT->getJITInfo().hasCustomJumpTables())
1101     return;
1102   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1103     return;
1104 
1105   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1106   if (JT.empty()) return;
1107 
1108   unsigned NumEntries = 0;
1109   for (unsigned i = 0, e = JT.size(); i != e; ++i)
1110     NumEntries += JT[i].MBBs.size();
1111 
1112   unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
1113 
1114   // Just allocate space for all the jump tables now.  We will fix up the actual
1115   // MBB entries in the tables after we emit the code for each block, since then
1116   // we will know the final locations of the MBBs in memory.
1117   JumpTable = MJTI;
1118   JumpTableBase = allocateSpace(NumEntries * EntrySize,
1119                              MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
1120 }
1121 
emitJumpTableInfo(MachineJumpTableInfo * MJTI)1122 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1123   if (TheJIT->getJITInfo().hasCustomJumpTables())
1124     return;
1125 
1126   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1127   if (JT.empty() || JumpTableBase == 0) return;
1128 
1129 
1130   switch (MJTI->getEntryKind()) {
1131   case MachineJumpTableInfo::EK_Inline:
1132     return;
1133   case MachineJumpTableInfo::EK_BlockAddress: {
1134     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1135     //     .word LBB123
1136     assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
1137            "Cross JIT'ing?");
1138 
1139     // For each jump table, map each target in the jump table to the address of
1140     // an emitted MachineBasicBlock.
1141     intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1142 
1143     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1144       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1145       // Store the address of the basic block for this jump table slot in the
1146       // memory we allocated for the jump table in 'initJumpTableInfo'
1147       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1148         *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1149     }
1150     break;
1151   }
1152 
1153   case MachineJumpTableInfo::EK_Custom32:
1154   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1155   case MachineJumpTableInfo::EK_LabelDifference32: {
1156     assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
1157     // For each jump table, place the offset from the beginning of the table
1158     // to the target address.
1159     int *SlotPtr = (int*)JumpTableBase;
1160 
1161     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1162       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1163       // Store the offset of the basic block for this jump table slot in the
1164       // memory we allocated for the jump table in 'initJumpTableInfo'
1165       uintptr_t Base = (uintptr_t)SlotPtr;
1166       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1167         uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1168         /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1169         *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1170       }
1171     }
1172     break;
1173   }
1174   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1175     llvm_unreachable(
1176            "JT Info emission not implemented for GPRel64BlockAddress yet.");
1177   }
1178 }
1179 
startGVStub(const GlobalValue * GV,unsigned StubSize,unsigned Alignment)1180 void JITEmitter::startGVStub(const GlobalValue* GV,
1181                              unsigned StubSize, unsigned Alignment) {
1182   SavedBufferBegin = BufferBegin;
1183   SavedBufferEnd = BufferEnd;
1184   SavedCurBufferPtr = CurBufferPtr;
1185 
1186   BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1187   BufferEnd = BufferBegin+StubSize+1;
1188 }
1189 
startGVStub(void * Buffer,unsigned StubSize)1190 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1191   SavedBufferBegin = BufferBegin;
1192   SavedBufferEnd = BufferEnd;
1193   SavedCurBufferPtr = CurBufferPtr;
1194 
1195   BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1196   BufferEnd = BufferBegin+StubSize+1;
1197 }
1198 
finishGVStub()1199 void JITEmitter::finishGVStub() {
1200   assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1201   NumBytes += getCurrentPCOffset();
1202   BufferBegin = SavedBufferBegin;
1203   BufferEnd = SavedBufferEnd;
1204   CurBufferPtr = SavedCurBufferPtr;
1205 }
1206 
allocIndirectGV(const GlobalValue * GV,const uint8_t * Buffer,size_t Size,unsigned Alignment)1207 void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1208                                   const uint8_t *Buffer, size_t Size,
1209                                   unsigned Alignment) {
1210   uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1211   memcpy(IndGV, Buffer, Size);
1212   return IndGV;
1213 }
1214 
1215 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1216 // in the constant pool that was last emitted with the 'emitConstantPool'
1217 // method.
1218 //
getConstantPoolEntryAddress(unsigned ConstantNum) const1219 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1220   assert(ConstantNum < ConstantPool->getConstants().size() &&
1221          "Invalid ConstantPoolIndex!");
1222   return ConstPoolAddresses[ConstantNum];
1223 }
1224 
1225 // getJumpTableEntryAddress - Return the address of the JumpTable with index
1226 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1227 //
getJumpTableEntryAddress(unsigned Index) const1228 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1229   const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1230   assert(Index < JT.size() && "Invalid jump table index!");
1231 
1232   unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
1233 
1234   unsigned Offset = 0;
1235   for (unsigned i = 0; i < Index; ++i)
1236     Offset += JT[i].MBBs.size();
1237 
1238    Offset *= EntrySize;
1239 
1240   return (uintptr_t)((char *)JumpTableBase + Offset);
1241 }
1242 
onDelete(JITEmitter * Emitter,const Function * F)1243 void JITEmitter::EmittedFunctionConfig::onDelete(
1244   JITEmitter *Emitter, const Function *F) {
1245   Emitter->deallocateMemForFunction(F);
1246 }
onRAUW(JITEmitter *,const Function *,const Function *)1247 void JITEmitter::EmittedFunctionConfig::onRAUW(
1248   JITEmitter *, const Function*, const Function*) {
1249   llvm_unreachable("The JIT doesn't know how to handle a"
1250                    " RAUW on a value it has emitted.");
1251 }
1252 
1253 
1254 //===----------------------------------------------------------------------===//
1255 //  Public interface to this file
1256 //===----------------------------------------------------------------------===//
1257 
createEmitter(JIT & jit,JITMemoryManager * JMM,TargetMachine & tm)1258 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1259                                    TargetMachine &tm) {
1260   return new JITEmitter(jit, JMM, tm);
1261 }
1262 
1263 // getPointerToFunctionOrStub - If the specified function has been
1264 // code-gen'd, return a pointer to the function.  If not, compile it, or use
1265 // a stub to implement lazy compilation if available.
1266 //
getPointerToFunctionOrStub(Function * F)1267 void *JIT::getPointerToFunctionOrStub(Function *F) {
1268   // If we have already code generated the function, just return the address.
1269   if (void *Addr = getPointerToGlobalIfAvailable(F))
1270     return Addr;
1271 
1272   // Get a stub if the target supports it.
1273   JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
1274   return JE->getJITResolver().getLazyFunctionStub(F);
1275 }
1276 
updateFunctionStub(Function * F)1277 void JIT::updateFunctionStub(Function *F) {
1278   // Get the empty stub we generated earlier.
1279   JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
1280   void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1281   void *Addr = getPointerToGlobalIfAvailable(F);
1282   assert(Addr != Stub && "Function must have non-stub address to be updated.");
1283 
1284   // Tell the target jit info to rewrite the stub at the specified address,
1285   // rather than creating a new one.
1286   TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1287   JE->startGVStub(Stub, layout.Size);
1288   getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1289   JE->finishGVStub();
1290 }
1291 
1292 /// freeMachineCodeForFunction - release machine code memory for given Function.
1293 ///
freeMachineCodeForFunction(Function * F)1294 void JIT::freeMachineCodeForFunction(Function *F) {
1295   // Delete translation for this from the ExecutionEngine, so it will get
1296   // retranslated next time it is used.
1297   updateGlobalMapping(F, 0);
1298 
1299   // Free the actual memory for the function body and related stuff.
1300   static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
1301 }
1302