• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements NewValueJump pass in Hexagon.
11 // Ideally, we should merge this as a Peephole pass prior to register
12 // allocation, but because we have a spill in between the feeder and new value
13 // jump instructions, we are forced to write after register allocation.
14 // Having said that, we should re-attempt to pull this earlier at some point
15 // in future.
16 
17 // The basic approach looks for sequence of predicated jump, compare instruciton
18 // that genereates the predicate and, the feeder to the predicate. Once it finds
19 // all, it collapses compare and jump instruction into a new valu jump
20 // intstructions.
21 //
22 //
23 //===----------------------------------------------------------------------===//
24 #define DEBUG_TYPE "hexagon-nvj"
25 #include "Hexagon.h"
26 #include "HexagonInstrInfo.h"
27 #include "HexagonMachineFunctionInfo.h"
28 #include "HexagonRegisterInfo.h"
29 #include "HexagonSubtarget.h"
30 #include "HexagonTargetMachine.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/PassSupport.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include <map>
48 using namespace llvm;
49 
50 STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
51 
52 static cl::opt<int>
53 DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc(
54   "Maximum number of predicated jumps to be converted to New Value Jump"));
55 
56 static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
57     cl::ZeroOrMore, cl::init(false),
58     cl::desc("Disable New Value Jumps"));
59 
60 namespace {
61   struct HexagonNewValueJump : public MachineFunctionPass {
62     const HexagonInstrInfo    *QII;
63     const HexagonRegisterInfo *QRI;
64 
65   public:
66     static char ID;
67 
HexagonNewValueJump__anond6da2cb40111::HexagonNewValueJump68     HexagonNewValueJump() : MachineFunctionPass(ID) { }
69 
getAnalysisUsage__anond6da2cb40111::HexagonNewValueJump70     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71       MachineFunctionPass::getAnalysisUsage(AU);
72     }
73 
getPassName__anond6da2cb40111::HexagonNewValueJump74     const char *getPassName() const {
75       return "Hexagon NewValueJump";
76     }
77 
78     virtual bool runOnMachineFunction(MachineFunction &Fn);
79 
80   private:
81 
82   };
83 
84 } // end of anonymous namespace
85 
86 char HexagonNewValueJump::ID = 0;
87 
88 // We have identified this II could be feeder to NVJ,
89 // verify that it can be.
canBeFeederToNewValueJump(const HexagonInstrInfo * QII,const TargetRegisterInfo * TRI,MachineBasicBlock::iterator II,MachineBasicBlock::iterator end,MachineBasicBlock::iterator skip,MachineFunction & MF)90 static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
91                                       const TargetRegisterInfo *TRI,
92                                       MachineBasicBlock::iterator II,
93                                       MachineBasicBlock::iterator end,
94                                       MachineBasicBlock::iterator skip,
95                                       MachineFunction &MF) {
96 
97   // Predicated instruction can not be feeder to NVJ.
98   if (QII->isPredicated(II))
99     return false;
100 
101   // Bail out if feederReg is a paired register (double regs in
102   // our case). One would think that we can check to see if a given
103   // register cmpReg1 or cmpReg2 is a sub register of feederReg
104   // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
105   // before the callsite of this function
106   // But we can not as it comes in the following fashion.
107   //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
108   //    %R0<def> = KILL %R0, %D0<imp-use,kill>
109   //    %P0<def> = CMPEQri %R0<kill>, 0
110   // Hence, we need to check if it's a KILL instruction.
111   if (II->getOpcode() == TargetOpcode::KILL)
112     return false;
113 
114 
115   // Make sure there there is no 'def' or 'use' of any of the uses of
116   // feeder insn between it's definition, this MI and jump, jmpInst
117   // skipping compare, cmpInst.
118   // Here's the example.
119   //    r21=memub(r22+r24<<#0)
120   //    p0 = cmp.eq(r21, #0)
121   //    r4=memub(r3+r21<<#0)
122   //    if (p0.new) jump:t .LBB29_45
123   // Without this check, it will be converted into
124   //    r4=memub(r3+r21<<#0)
125   //    r21=memub(r22+r24<<#0)
126   //    p0 = cmp.eq(r21, #0)
127   //    if (p0.new) jump:t .LBB29_45
128   // and result WAR hazards if converted to New Value Jump.
129 
130   for (unsigned i = 0; i < II->getNumOperands(); ++i) {
131     if (II->getOperand(i).isReg() &&
132         (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
133       MachineBasicBlock::iterator localII = II;
134       ++localII;
135       unsigned Reg = II->getOperand(i).getReg();
136       for (MachineBasicBlock::iterator localBegin = localII;
137                         localBegin != end; ++localBegin) {
138         if (localBegin == skip ) continue;
139         // Check for Subregisters too.
140         if (localBegin->modifiesRegister(Reg, TRI) ||
141             localBegin->readsRegister(Reg, TRI))
142           return false;
143       }
144     }
145   }
146   return true;
147 }
148 
149 // These are the common checks that need to performed
150 // to determine if
151 // 1. compare instruction can be moved before jump.
152 // 2. feeder to the compare instruction can be moved before jump.
commonChecksToProhibitNewValueJump(bool afterRA,MachineBasicBlock::iterator MII)153 static bool commonChecksToProhibitNewValueJump(bool afterRA,
154                           MachineBasicBlock::iterator MII) {
155 
156   // If store in path, bail out.
157   if (MII->getDesc().mayStore())
158     return false;
159 
160   // if call in path, bail out.
161   if (MII->getOpcode() == Hexagon::CALLv3)
162     return false;
163 
164   // if NVJ is running prior to RA, do the following checks.
165   if (!afterRA) {
166     // The following Target Opcode instructions are spurious
167     // to new value jump. If they are in the path, bail out.
168     // KILL sets kill flag on the opcode. It also sets up a
169     // single register, out of pair.
170     //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
171     //    %R0<def> = KILL %R0, %D0<imp-use,kill>
172     //    %P0<def> = CMPEQri %R0<kill>, 0
173     // PHI can be anything after RA.
174     // COPY can remateriaze things in between feeder, compare and nvj.
175     if (MII->getOpcode() == TargetOpcode::KILL ||
176         MII->getOpcode() == TargetOpcode::PHI  ||
177         MII->getOpcode() == TargetOpcode::COPY)
178       return false;
179 
180     // The following pseudo Hexagon instructions sets "use" and "def"
181     // of registers by individual passes in the backend. At this time,
182     // we don't know the scope of usage and definitions of these
183     // instructions.
184     if (MII->getOpcode() == Hexagon::TFR_condset_rr ||
185         MII->getOpcode() == Hexagon::TFR_condset_ii ||
186         MII->getOpcode() == Hexagon::TFR_condset_ri ||
187         MII->getOpcode() == Hexagon::TFR_condset_ir ||
188         MII->getOpcode() == Hexagon::LDriw_pred     ||
189         MII->getOpcode() == Hexagon::STriw_pred)
190       return false;
191   }
192 
193   return true;
194 }
195 
canCompareBeNewValueJump(const HexagonInstrInfo * QII,const TargetRegisterInfo * TRI,MachineBasicBlock::iterator II,unsigned pReg,bool secondReg,bool optLocation,MachineBasicBlock::iterator end,MachineFunction & MF)196 static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
197                                      const TargetRegisterInfo *TRI,
198                                      MachineBasicBlock::iterator II,
199                                      unsigned pReg,
200                                      bool secondReg,
201                                      bool optLocation,
202                                      MachineBasicBlock::iterator end,
203                                      MachineFunction &MF) {
204 
205   MachineInstr *MI = II;
206 
207   // If the second operand of the compare is an imm, make sure it's in the
208   // range specified by the arch.
209   if (!secondReg) {
210     int64_t v = MI->getOperand(2).getImm();
211     if (MI->getOpcode() == Hexagon::CMPGEri ||
212        (MI->getOpcode() == Hexagon::CMPGEUri && v > 0))
213       --v;
214 
215     if (!(isUInt<5>(v) ||
216          ((MI->getOpcode() == Hexagon::CMPEQri ||
217            MI->getOpcode() == Hexagon::CMPGTri ||
218            MI->getOpcode() == Hexagon::CMPGEri) &&
219           (v == -1))))
220       return false;
221   }
222 
223   unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
224   cmpReg1 = MI->getOperand(1).getReg();
225 
226   if (secondReg) {
227     cmpOp2 = MI->getOperand(2).getReg();
228 
229     // Make sure that that second register is not from COPY
230     // At machine code level, we don't need this, but if we decide
231     // to move new value jump prior to RA, we would be needing this.
232     MachineRegisterInfo &MRI = MF.getRegInfo();
233     if (secondReg && !TargetRegisterInfo::isPhysicalRegister(cmpOp2)) {
234       MachineInstr *def = MRI.getVRegDef(cmpOp2);
235       if (def->getOpcode() == TargetOpcode::COPY)
236         return false;
237     }
238   }
239 
240   // Walk the instructions after the compare (predicate def) to the jump,
241   // and satisfy the following conditions.
242   ++II ;
243   for (MachineBasicBlock::iterator localII = II; localII != end;
244        ++localII) {
245 
246     // Check 1.
247     // If "common" checks fail, bail out.
248     if (!commonChecksToProhibitNewValueJump(optLocation, localII))
249       return false;
250 
251     // Check 2.
252     // If there is a def or use of predicate (result of compare), bail out.
253     if (localII->modifiesRegister(pReg, TRI) ||
254         localII->readsRegister(pReg, TRI))
255       return false;
256 
257     // Check 3.
258     // If there is a def of any of the use of the compare (operands of compare),
259     // bail out.
260     // Eg.
261     //    p0 = cmp.eq(r2, r0)
262     //    r2 = r4
263     //    if (p0.new) jump:t .LBB28_3
264     if (localII->modifiesRegister(cmpReg1, TRI) ||
265         (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
266       return false;
267   }
268   return true;
269 }
270 
271 // Given a compare operator, return a matching New Value Jump
272 // compare operator. Make sure that MI here is included in
273 // HexagonInstrInfo.cpp::isNewValueJumpCandidate
getNewValueJumpOpcode(const MachineInstr * MI,int reg,bool secondRegNewified)274 static unsigned getNewValueJumpOpcode(const MachineInstr *MI, int reg,
275                                       bool secondRegNewified) {
276   switch (MI->getOpcode()) {
277     case Hexagon::CMPEQrr:
278       return Hexagon::JMP_EQrrPt_nv_V4;
279 
280     case Hexagon::CMPEQri: {
281       if (reg >= 0)
282         return Hexagon::JMP_EQriPt_nv_V4;
283       else
284         return Hexagon::JMP_EQriPtneg_nv_V4;
285     }
286 
287     case Hexagon::CMPLTrr:
288     case Hexagon::CMPGTrr: {
289       if (secondRegNewified)
290         return Hexagon::JMP_GTrrdnPt_nv_V4;
291       else
292         return Hexagon::JMP_GTrrPt_nv_V4;
293     }
294 
295     case Hexagon::CMPGEri: {
296       if (reg >= 1)
297         return Hexagon::JMP_GTriPt_nv_V4;
298       else
299         return Hexagon::JMP_GTriPtneg_nv_V4;
300     }
301 
302     case Hexagon::CMPGTri: {
303       if (reg >= 0)
304         return Hexagon::JMP_GTriPt_nv_V4;
305       else
306         return Hexagon::JMP_GTriPtneg_nv_V4;
307     }
308 
309     case Hexagon::CMPLTUrr:
310     case Hexagon::CMPGTUrr: {
311       if (secondRegNewified)
312         return Hexagon::JMP_GTUrrdnPt_nv_V4;
313       else
314         return Hexagon::JMP_GTUrrPt_nv_V4;
315     }
316 
317     case Hexagon::CMPGTUri:
318       return Hexagon::JMP_GTUriPt_nv_V4;
319 
320     case Hexagon::CMPGEUri: {
321       if (reg == 0)
322         return Hexagon::JMP_EQrrPt_nv_V4;
323       else
324         return Hexagon::JMP_GTUriPt_nv_V4;
325     }
326 
327     default:
328        llvm_unreachable("Could not find matching New Value Jump instruction.");
329   }
330   // return *some value* to avoid compiler warning
331   return 0;
332 }
333 
runOnMachineFunction(MachineFunction & MF)334 bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
335 
336   DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
337                << "********** Function: "
338                << MF.getName() << "\n");
339 
340 #if 0
341   // for now disable this, if we move NewValueJump before register
342   // allocation we need this information.
343   LiveVariables &LVs = getAnalysis<LiveVariables>();
344 #endif
345 
346   QII = static_cast<const HexagonInstrInfo *>(MF.getTarget().getInstrInfo());
347   QRI =
348     static_cast<const HexagonRegisterInfo *>(MF.getTarget().getRegisterInfo());
349 
350   if (!QRI->Subtarget.hasV4TOps() ||
351       DisableNewValueJumps) {
352     return false;
353   }
354 
355   int nvjCount = DbgNVJCount;
356   int nvjGenerated = 0;
357 
358   // Loop through all the bb's of the function
359   for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
360         MBBb != MBBe; ++MBBb) {
361     MachineBasicBlock* MBB = MBBb;
362 
363     DEBUG(dbgs() << "** dumping bb ** "
364                  << MBB->getNumber() << "\n");
365     DEBUG(MBB->dump());
366     DEBUG(dbgs() << "\n" << "********** dumping instr bottom up **********\n");
367     bool foundJump    = false;
368     bool foundCompare = false;
369     bool invertPredicate = false;
370     unsigned predReg = 0; // predicate reg of the jump.
371     unsigned cmpReg1 = 0;
372     int cmpOp2 = 0;
373     bool MO1IsKill = false;
374     bool MO2IsKill = false;
375     MachineBasicBlock::iterator jmpPos;
376     MachineBasicBlock::iterator cmpPos;
377     MachineInstr *cmpInstr = NULL, *jmpInstr = NULL;
378     MachineBasicBlock *jmpTarget = NULL;
379     bool afterRA = false;
380     bool isSecondOpReg = false;
381     bool isSecondOpNewified = false;
382     // Traverse the basic block - bottom up
383     for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
384              MII != E;) {
385       MachineInstr *MI = --MII;
386       if (MI->isDebugValue()) {
387         continue;
388       }
389 
390       if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
391         break;
392 
393       DEBUG(dbgs() << "Instr: "; MI->dump(); dbgs() << "\n");
394 
395       if (!foundJump &&
396          (MI->getOpcode() == Hexagon::JMP_c ||
397           MI->getOpcode() == Hexagon::JMP_cNot ||
398           MI->getOpcode() == Hexagon::JMP_cdnPt ||
399           MI->getOpcode() == Hexagon::JMP_cdnPnt ||
400           MI->getOpcode() == Hexagon::JMP_cdnNotPt ||
401           MI->getOpcode() == Hexagon::JMP_cdnNotPnt)) {
402         // This is where you would insert your compare and
403         // instr that feeds compare
404         jmpPos = MII;
405         jmpInstr = MI;
406         predReg = MI->getOperand(0).getReg();
407         afterRA = TargetRegisterInfo::isPhysicalRegister(predReg);
408 
409         // If ifconverter had not messed up with the kill flags of the
410         // operands, the following check on the kill flag would suffice.
411         // if(!jmpInstr->getOperand(0).isKill()) break;
412 
413         // This predicate register is live out out of BB
414         // this would only work if we can actually use Live
415         // variable analysis on phy regs - but LLVM does not
416         // provide LV analysis on phys regs.
417         //if(LVs.isLiveOut(predReg, *MBB)) break;
418 
419         // Get all the successors of this block - which will always
420         // be 2. Check if the predicate register is live in in those
421         // successor. If yes, we can not delete the predicate -
422         // I am doing this only because LLVM does not provide LiveOut
423         // at the BB level.
424         bool predLive = false;
425         for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
426                             SIE = MBB->succ_end(); SI != SIE; ++SI) {
427           MachineBasicBlock* succMBB = *SI;
428          if (succMBB->isLiveIn(predReg)) {
429             predLive = true;
430           }
431         }
432         if (predLive)
433           break;
434 
435         jmpTarget = MI->getOperand(1).getMBB();
436         foundJump = true;
437         if (MI->getOpcode() == Hexagon::JMP_cNot ||
438             MI->getOpcode() == Hexagon::JMP_cdnNotPt ||
439             MI->getOpcode() == Hexagon::JMP_cdnNotPnt) {
440           invertPredicate = true;
441         }
442         continue;
443       }
444 
445       // No new value jump if there is a barrier. A barrier has to be in its
446       // own packet. A barrier has zero operands. We conservatively bail out
447       // here if we see any instruction with zero operands.
448       if (foundJump && MI->getNumOperands() == 0)
449         break;
450 
451       if (foundJump &&
452          !foundCompare &&
453           MI->getOperand(0).isReg() &&
454           MI->getOperand(0).getReg() == predReg) {
455 
456         // Not all compares can be new value compare. Arch Spec: 7.6.1.1
457         if (QII->isNewValueJumpCandidate(MI)) {
458 
459           assert((MI->getDesc().isCompare()) &&
460               "Only compare instruction can be collapsed into New Value Jump");
461           isSecondOpReg = MI->getOperand(2).isReg();
462 
463           if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
464                                         afterRA, jmpPos, MF))
465             break;
466 
467           cmpInstr = MI;
468           cmpPos = MII;
469           foundCompare = true;
470 
471           // We need cmpReg1 and cmpOp2(imm or reg) while building
472           // new value jump instruction.
473           cmpReg1 = MI->getOperand(1).getReg();
474           if (MI->getOperand(1).isKill())
475             MO1IsKill = true;
476 
477           if (isSecondOpReg) {
478             cmpOp2 = MI->getOperand(2).getReg();
479             if (MI->getOperand(2).isKill())
480               MO2IsKill = true;
481           } else
482             cmpOp2 = MI->getOperand(2).getImm();
483           continue;
484         }
485       }
486 
487       if (foundCompare && foundJump) {
488 
489         // If "common" checks fail, bail out on this BB.
490         if (!commonChecksToProhibitNewValueJump(afterRA, MII))
491           break;
492 
493         bool foundFeeder = false;
494         MachineBasicBlock::iterator feederPos = MII;
495         if (MI->getOperand(0).isReg() &&
496             MI->getOperand(0).isDef() &&
497            (MI->getOperand(0).getReg() == cmpReg1 ||
498             (isSecondOpReg &&
499              MI->getOperand(0).getReg() == (unsigned) cmpOp2))) {
500 
501           unsigned feederReg = MI->getOperand(0).getReg();
502 
503           // First try to see if we can get the feeder from the first operand
504           // of the compare. If we can not, and if secondOpReg is true
505           // (second operand of the compare is also register), try that one.
506           // TODO: Try to come up with some heuristic to figure out which
507           // feeder would benefit.
508 
509           if (feederReg == cmpReg1) {
510             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
511               if (!isSecondOpReg)
512                 break;
513               else
514                 continue;
515             } else
516               foundFeeder = true;
517           }
518 
519           if (!foundFeeder &&
520                isSecondOpReg &&
521                feederReg == (unsigned) cmpOp2)
522             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
523               break;
524 
525           if (isSecondOpReg) {
526             // In case of CMPLT, or CMPLTU, or EQ with the second register
527             // to newify, swap the operands.
528             if (cmpInstr->getOpcode() == Hexagon::CMPLTrr  ||
529                 cmpInstr->getOpcode() == Hexagon::CMPLTUrr ||
530                 (cmpInstr->getOpcode() == Hexagon::CMPEQrr &&
531                                      feederReg == (unsigned) cmpOp2)) {
532               unsigned tmp = cmpReg1;
533               bool tmpIsKill = MO1IsKill;
534               cmpReg1 = cmpOp2;
535               MO1IsKill = MO2IsKill;
536               cmpOp2 = tmp;
537               MO2IsKill = tmpIsKill;
538             }
539 
540             // Now we have swapped the operands, all we need to check is,
541             // if the second operand (after swap) is the feeder.
542             // And if it is, make a note.
543             if (feederReg == (unsigned)cmpOp2)
544               isSecondOpNewified = true;
545           }
546 
547           // Now that we are moving feeder close the jump,
548           // make sure we are respecting the kill values of
549           // the operands of the feeder.
550 
551           bool updatedIsKill = false;
552           for (unsigned i = 0; i < MI->getNumOperands(); i++) {
553             MachineOperand &MO = MI->getOperand(i);
554             if (MO.isReg() && MO.isUse()) {
555               unsigned feederReg = MO.getReg();
556               for (MachineBasicBlock::iterator localII = feederPos,
557                    end = jmpPos; localII != end; localII++) {
558                 MachineInstr *localMI = localII;
559                 for (unsigned j = 0; j < localMI->getNumOperands(); j++) {
560                   MachineOperand &localMO = localMI->getOperand(j);
561                   if (localMO.isReg() && localMO.isUse() &&
562                       localMO.isKill() && feederReg == localMO.getReg()) {
563                     // We found that there is kill of a use register
564                     // Set up a kill flag on the register
565                     localMO.setIsKill(false);
566                     MO.setIsKill();
567                     updatedIsKill = true;
568                     break;
569                   }
570                 }
571                 if (updatedIsKill) break;
572               }
573             }
574             if (updatedIsKill) break;
575           }
576 
577           MBB->splice(jmpPos, MI->getParent(), MI);
578           MBB->splice(jmpPos, MI->getParent(), cmpInstr);
579           DebugLoc dl = MI->getDebugLoc();
580           MachineInstr *NewMI;
581 
582            assert((QII->isNewValueJumpCandidate(cmpInstr)) &&
583                       "This compare is not a New Value Jump candidate.");
584           unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
585                                                isSecondOpNewified);
586           if (invertPredicate)
587             opc = QII->getInvertedPredicatedOpcode(opc);
588 
589           // Manage the conversions from CMPGEUri to either CMPEQrr
590           // or CMPGTUri properly. See Arch spec for CMPGEUri instructions.
591           // This has to be after the getNewValueJumpOpcode function call as
592           // second operand of the compare could be modified in this logic.
593           if (cmpInstr->getOpcode() == Hexagon::CMPGEUri) {
594             if (cmpOp2 == 0) {
595               cmpOp2 = cmpReg1;
596               MO2IsKill = MO1IsKill;
597               isSecondOpReg = true;
598             } else
599               --cmpOp2;
600           }
601 
602           // Manage the conversions from CMPGEri to CMPGTUri properly.
603           // See Arch spec for CMPGEri instructions.
604           if (cmpInstr->getOpcode() == Hexagon::CMPGEri)
605             --cmpOp2;
606 
607           if (isSecondOpReg) {
608             NewMI = BuildMI(*MBB, jmpPos, dl,
609                                   QII->get(opc))
610                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
611                                     .addReg(cmpOp2, getKillRegState(MO2IsKill))
612                                     .addMBB(jmpTarget);
613           }
614           else {
615             NewMI = BuildMI(*MBB, jmpPos, dl,
616                                   QII->get(opc))
617                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
618                                     .addImm(cmpOp2)
619                                     .addMBB(jmpTarget);
620           }
621 
622           assert(NewMI && "New Value Jump Instruction Not created!");
623           if (cmpInstr->getOperand(0).isReg() &&
624               cmpInstr->getOperand(0).isKill())
625             cmpInstr->getOperand(0).setIsKill(false);
626           if (cmpInstr->getOperand(1).isReg() &&
627               cmpInstr->getOperand(1).isKill())
628             cmpInstr->getOperand(1).setIsKill(false);
629           cmpInstr->eraseFromParent();
630           jmpInstr->eraseFromParent();
631           ++nvjGenerated;
632           ++NumNVJGenerated;
633           break;
634         }
635       }
636     }
637   }
638 
639   return true;
640 
641 }
642 
createHexagonNewValueJump()643 FunctionPass *llvm::createHexagonNewValueJump() {
644   return new HexagonNewValueJump();
645 }
646