• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 
18 using namespace clang;
19 using namespace ento;
20 
21 namespace {
22 class SimpleSValBuilder : public SValBuilder {
23 protected:
24   virtual SVal dispatchCast(SVal val, QualType castTy);
25   virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
26   virtual SVal evalCastFromLoc(Loc val, QualType castTy);
27 
28 public:
SimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)29   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
30                     ProgramStateManager &stateMgr)
31                     : SValBuilder(alloc, context, stateMgr) {}
~SimpleSValBuilder()32   virtual ~SimpleSValBuilder() {}
33 
34   virtual SVal evalMinus(NonLoc val);
35   virtual SVal evalComplement(NonLoc val);
36   virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
37                            NonLoc lhs, NonLoc rhs, QualType resultTy);
38   virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
39                            Loc lhs, Loc rhs, QualType resultTy);
40   virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
41                            Loc lhs, NonLoc rhs, QualType resultTy);
42 
43   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
44   ///  (integer) value, that value is returned. Otherwise, returns NULL.
45   virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
46 
47   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48                      const llvm::APSInt &RHS, QualType resultTy);
49 };
50 } // end anonymous namespace
51 
createSimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53                                            ASTContext &context,
54                                            ProgramStateManager &stateMgr) {
55   return new SimpleSValBuilder(alloc, context, stateMgr);
56 }
57 
58 //===----------------------------------------------------------------------===//
59 // Transfer function for Casts.
60 //===----------------------------------------------------------------------===//
61 
dispatchCast(SVal Val,QualType CastTy)62 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
63   assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
64   return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
65                            : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
66 }
67 
evalCastFromNonLoc(NonLoc val,QualType castTy)68 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
69 
70   bool isLocType = Loc::isLocType(castTy);
71 
72   if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
73     if (isLocType)
74       return LI->getLoc();
75 
76     // FIXME: Correctly support promotions/truncations.
77     unsigned castSize = Context.getTypeSize(castTy);
78     if (castSize == LI->getNumBits())
79       return val;
80     return makeLocAsInteger(LI->getLoc(), castSize);
81   }
82 
83   if (const SymExpr *se = val.getAsSymbolicExpression()) {
84     QualType T = Context.getCanonicalType(se->getType());
85     // If types are the same or both are integers, ignore the cast.
86     // FIXME: Remove this hack when we support symbolic truncation/extension.
87     // HACK: If both castTy and T are integers, ignore the cast.  This is
88     // not a permanent solution.  Eventually we want to precisely handle
89     // extension/truncation of symbolic integers.  This prevents us from losing
90     // precision when we assign 'x = y' and 'y' is symbolic and x and y are
91     // different integer types.
92    if (haveSameType(T, castTy))
93       return val;
94 
95     if (!isLocType)
96       return makeNonLoc(se, T, castTy);
97     return UnknownVal();
98   }
99 
100   // If value is a non integer constant, produce unknown.
101   if (!val.getAs<nonloc::ConcreteInt>())
102     return UnknownVal();
103 
104   // Handle casts to a boolean type.
105   if (castTy->isBooleanType()) {
106     bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
107     return makeTruthVal(b, castTy);
108   }
109 
110   // Only handle casts from integers to integers - if val is an integer constant
111   // being cast to a non integer type, produce unknown.
112   if (!isLocType && !castTy->isIntegerType())
113     return UnknownVal();
114 
115   llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
116   BasicVals.getAPSIntType(castTy).apply(i);
117 
118   if (isLocType)
119     return makeIntLocVal(i);
120   else
121     return makeIntVal(i);
122 }
123 
evalCastFromLoc(Loc val,QualType castTy)124 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
125 
126   // Casts from pointers -> pointers, just return the lval.
127   //
128   // Casts from pointers -> references, just return the lval.  These
129   //   can be introduced by the frontend for corner cases, e.g
130   //   casting from va_list* to __builtin_va_list&.
131   //
132   if (Loc::isLocType(castTy) || castTy->isReferenceType())
133     return val;
134 
135   // FIXME: Handle transparent unions where a value can be "transparently"
136   //  lifted into a union type.
137   if (castTy->isUnionType())
138     return UnknownVal();
139 
140   if (castTy->isIntegerType()) {
141     unsigned BitWidth = Context.getTypeSize(castTy);
142 
143     if (!val.getAs<loc::ConcreteInt>())
144       return makeLocAsInteger(val, BitWidth);
145 
146     llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
147     BasicVals.getAPSIntType(castTy).apply(i);
148     return makeIntVal(i);
149   }
150 
151   // All other cases: return 'UnknownVal'.  This includes casting pointers
152   // to floats, which is probably badness it itself, but this is a good
153   // intermediate solution until we do something better.
154   return UnknownVal();
155 }
156 
157 //===----------------------------------------------------------------------===//
158 // Transfer function for unary operators.
159 //===----------------------------------------------------------------------===//
160 
evalMinus(NonLoc val)161 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
162   switch (val.getSubKind()) {
163   case nonloc::ConcreteIntKind:
164     return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
165   default:
166     return UnknownVal();
167   }
168 }
169 
evalComplement(NonLoc X)170 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
171   switch (X.getSubKind()) {
172   case nonloc::ConcreteIntKind:
173     return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
174   default:
175     return UnknownVal();
176   }
177 }
178 
179 //===----------------------------------------------------------------------===//
180 // Transfer function for binary operators.
181 //===----------------------------------------------------------------------===//
182 
NegateComparison(BinaryOperator::Opcode op)183 static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
184   switch (op) {
185   default:
186     llvm_unreachable("Invalid opcode.");
187   case BO_LT: return BO_GE;
188   case BO_GT: return BO_LE;
189   case BO_LE: return BO_GT;
190   case BO_GE: return BO_LT;
191   case BO_EQ: return BO_NE;
192   case BO_NE: return BO_EQ;
193   }
194 }
195 
ReverseComparison(BinaryOperator::Opcode op)196 static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
197   switch (op) {
198   default:
199     llvm_unreachable("Invalid opcode.");
200   case BO_LT: return BO_GT;
201   case BO_GT: return BO_LT;
202   case BO_LE: return BO_GE;
203   case BO_GE: return BO_LE;
204   case BO_EQ:
205   case BO_NE:
206     return op;
207   }
208 }
209 
MakeSymIntVal(const SymExpr * LHS,BinaryOperator::Opcode op,const llvm::APSInt & RHS,QualType resultTy)210 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
211                                     BinaryOperator::Opcode op,
212                                     const llvm::APSInt &RHS,
213                                     QualType resultTy) {
214   bool isIdempotent = false;
215 
216   // Check for a few special cases with known reductions first.
217   switch (op) {
218   default:
219     // We can't reduce this case; just treat it normally.
220     break;
221   case BO_Mul:
222     // a*0 and a*1
223     if (RHS == 0)
224       return makeIntVal(0, resultTy);
225     else if (RHS == 1)
226       isIdempotent = true;
227     break;
228   case BO_Div:
229     // a/0 and a/1
230     if (RHS == 0)
231       // This is also handled elsewhere.
232       return UndefinedVal();
233     else if (RHS == 1)
234       isIdempotent = true;
235     break;
236   case BO_Rem:
237     // a%0 and a%1
238     if (RHS == 0)
239       // This is also handled elsewhere.
240       return UndefinedVal();
241     else if (RHS == 1)
242       return makeIntVal(0, resultTy);
243     break;
244   case BO_Add:
245   case BO_Sub:
246   case BO_Shl:
247   case BO_Shr:
248   case BO_Xor:
249     // a+0, a-0, a<<0, a>>0, a^0
250     if (RHS == 0)
251       isIdempotent = true;
252     break;
253   case BO_And:
254     // a&0 and a&(~0)
255     if (RHS == 0)
256       return makeIntVal(0, resultTy);
257     else if (RHS.isAllOnesValue())
258       isIdempotent = true;
259     break;
260   case BO_Or:
261     // a|0 and a|(~0)
262     if (RHS == 0)
263       isIdempotent = true;
264     else if (RHS.isAllOnesValue()) {
265       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
266       return nonloc::ConcreteInt(Result);
267     }
268     break;
269   }
270 
271   // Idempotent ops (like a*1) can still change the type of an expression.
272   // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
273   // dirty work.
274   if (isIdempotent)
275       return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
276 
277   // If we reach this point, the expression cannot be simplified.
278   // Make a SymbolVal for the entire expression, after converting the RHS.
279   const llvm::APSInt *ConvertedRHS = &RHS;
280   if (BinaryOperator::isComparisonOp(op)) {
281     // We're looking for a type big enough to compare the symbolic value
282     // with the given constant.
283     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
284     ASTContext &Ctx = getContext();
285     QualType SymbolType = LHS->getType();
286     uint64_t ValWidth = RHS.getBitWidth();
287     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
288 
289     if (ValWidth < TypeWidth) {
290       // If the value is too small, extend it.
291       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
292     } else if (ValWidth == TypeWidth) {
293       // If the value is signed but the symbol is unsigned, do the comparison
294       // in unsigned space. [C99 6.3.1.8]
295       // (For the opposite case, the value is already unsigned.)
296       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
297         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
298     }
299   } else
300     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
301 
302   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
303 }
304 
evalBinOpNN(ProgramStateRef state,BinaryOperator::Opcode op,NonLoc lhs,NonLoc rhs,QualType resultTy)305 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
306                                   BinaryOperator::Opcode op,
307                                   NonLoc lhs, NonLoc rhs,
308                                   QualType resultTy)  {
309   NonLoc InputLHS = lhs;
310   NonLoc InputRHS = rhs;
311 
312   // Handle trivial case where left-side and right-side are the same.
313   if (lhs == rhs)
314     switch (op) {
315       default:
316         break;
317       case BO_EQ:
318       case BO_LE:
319       case BO_GE:
320         return makeTruthVal(true, resultTy);
321       case BO_LT:
322       case BO_GT:
323       case BO_NE:
324         return makeTruthVal(false, resultTy);
325       case BO_Xor:
326       case BO_Sub:
327         if (resultTy->isIntegralOrEnumerationType())
328           return makeIntVal(0, resultTy);
329         return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
330       case BO_Or:
331       case BO_And:
332         return evalCastFromNonLoc(lhs, resultTy);
333     }
334 
335   while (1) {
336     switch (lhs.getSubKind()) {
337     default:
338       return makeSymExprValNN(state, op, lhs, rhs, resultTy);
339     case nonloc::LocAsIntegerKind: {
340       Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
341       switch (rhs.getSubKind()) {
342         case nonloc::LocAsIntegerKind:
343           return evalBinOpLL(state, op, lhsL,
344                              rhs.castAs<nonloc::LocAsInteger>().getLoc(),
345                              resultTy);
346         case nonloc::ConcreteIntKind: {
347           // Transform the integer into a location and compare.
348           llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
349           BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
350           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
351         }
352         default:
353           switch (op) {
354             case BO_EQ:
355               return makeTruthVal(false, resultTy);
356             case BO_NE:
357               return makeTruthVal(true, resultTy);
358             default:
359               // This case also handles pointer arithmetic.
360               return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
361           }
362       }
363     }
364     case nonloc::ConcreteIntKind: {
365       llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
366 
367       // If we're dealing with two known constants, just perform the operation.
368       if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
369         llvm::APSInt RHSValue = *KnownRHSValue;
370         if (BinaryOperator::isComparisonOp(op)) {
371           // We're looking for a type big enough to compare the two values.
372           // FIXME: This is not correct. char + short will result in a promotion
373           // to int. Unfortunately we have lost types by this point.
374           APSIntType CompareType = std::max(APSIntType(LHSValue),
375                                             APSIntType(RHSValue));
376           CompareType.apply(LHSValue);
377           CompareType.apply(RHSValue);
378         } else if (!BinaryOperator::isShiftOp(op)) {
379           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
380           IntType.apply(LHSValue);
381           IntType.apply(RHSValue);
382         }
383 
384         const llvm::APSInt *Result =
385           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
386         if (!Result)
387           return UndefinedVal();
388 
389         return nonloc::ConcreteInt(*Result);
390       }
391 
392       // Swap the left and right sides and flip the operator if doing so
393       // allows us to better reason about the expression (this is a form
394       // of expression canonicalization).
395       // While we're at it, catch some special cases for non-commutative ops.
396       switch (op) {
397       case BO_LT:
398       case BO_GT:
399       case BO_LE:
400       case BO_GE:
401         op = ReverseComparison(op);
402         // FALL-THROUGH
403       case BO_EQ:
404       case BO_NE:
405       case BO_Add:
406       case BO_Mul:
407       case BO_And:
408       case BO_Xor:
409       case BO_Or:
410         std::swap(lhs, rhs);
411         continue;
412       case BO_Shr:
413         // (~0)>>a
414         if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
415           return evalCastFromNonLoc(lhs, resultTy);
416         // FALL-THROUGH
417       case BO_Shl:
418         // 0<<a and 0>>a
419         if (LHSValue == 0)
420           return evalCastFromNonLoc(lhs, resultTy);
421         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
422       default:
423         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
424       }
425     }
426     case nonloc::SymbolValKind: {
427       // We only handle LHS as simple symbols or SymIntExprs.
428       SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
429 
430       // LHS is a symbolic expression.
431       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
432 
433         // Is this a logical not? (!x is represented as x == 0.)
434         if (op == BO_EQ && rhs.isZeroConstant()) {
435           // We know how to negate certain expressions. Simplify them here.
436 
437           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
438           switch (opc) {
439           default:
440             // We don't know how to negate this operation.
441             // Just handle it as if it were a normal comparison to 0.
442             break;
443           case BO_LAnd:
444           case BO_LOr:
445             llvm_unreachable("Logical operators handled by branching logic.");
446           case BO_Assign:
447           case BO_MulAssign:
448           case BO_DivAssign:
449           case BO_RemAssign:
450           case BO_AddAssign:
451           case BO_SubAssign:
452           case BO_ShlAssign:
453           case BO_ShrAssign:
454           case BO_AndAssign:
455           case BO_XorAssign:
456           case BO_OrAssign:
457           case BO_Comma:
458             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
459           case BO_PtrMemD:
460           case BO_PtrMemI:
461             llvm_unreachable("Pointer arithmetic not handled here.");
462           case BO_LT:
463           case BO_GT:
464           case BO_LE:
465           case BO_GE:
466           case BO_EQ:
467           case BO_NE:
468             // Negate the comparison and make a value.
469             opc = NegateComparison(opc);
470             assert(symIntExpr->getType() == resultTy);
471             return makeNonLoc(symIntExpr->getLHS(), opc,
472                 symIntExpr->getRHS(), resultTy);
473           }
474         }
475 
476         // For now, only handle expressions whose RHS is a constant.
477         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
478           // If both the LHS and the current expression are additive,
479           // fold their constants and try again.
480           if (BinaryOperator::isAdditiveOp(op)) {
481             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
482             if (BinaryOperator::isAdditiveOp(lop)) {
483               // Convert the two constants to a common type, then combine them.
484 
485               // resultTy may not be the best type to convert to, but it's
486               // probably the best choice in expressions with mixed type
487               // (such as x+1U+2LL). The rules for implicit conversions should
488               // choose a reasonable type to preserve the expression, and will
489               // at least match how the value is going to be used.
490               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
491               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
492               const llvm::APSInt &second = IntType.convert(*RHSValue);
493 
494               const llvm::APSInt *newRHS;
495               if (lop == op)
496                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
497               else
498                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
499 
500               assert(newRHS && "Invalid operation despite common type!");
501               rhs = nonloc::ConcreteInt(*newRHS);
502               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
503               op = lop;
504               continue;
505             }
506           }
507 
508           // Otherwise, make a SymIntExpr out of the expression.
509           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
510         }
511 
512 
513       } else if (isa<SymbolData>(Sym)) {
514         // Does the symbol simplify to a constant?  If so, "fold" the constant
515         // by setting 'lhs' to a ConcreteInt and try again.
516         if (const llvm::APSInt *Constant = state->getConstraintManager()
517                                                   .getSymVal(state, Sym)) {
518           lhs = nonloc::ConcreteInt(*Constant);
519           continue;
520         }
521 
522         // Is the RHS a constant?
523         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
524           return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
525       }
526 
527       // Give up -- this is not a symbolic expression we can handle.
528       return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
529     }
530     }
531   }
532 }
533 
534 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
evalBinOpLL(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,Loc rhs,QualType resultTy)535 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
536                                   BinaryOperator::Opcode op,
537                                   Loc lhs, Loc rhs,
538                                   QualType resultTy) {
539   // Only comparisons and subtractions are valid operations on two pointers.
540   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
541   // However, if a pointer is casted to an integer, evalBinOpNN may end up
542   // calling this function with another operation (PR7527). We don't attempt to
543   // model this for now, but it could be useful, particularly when the
544   // "location" is actually an integer value that's been passed through a void*.
545   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
546     return UnknownVal();
547 
548   // Special cases for when both sides are identical.
549   if (lhs == rhs) {
550     switch (op) {
551     default:
552       llvm_unreachable("Unimplemented operation for two identical values");
553     case BO_Sub:
554       return makeZeroVal(resultTy);
555     case BO_EQ:
556     case BO_LE:
557     case BO_GE:
558       return makeTruthVal(true, resultTy);
559     case BO_NE:
560     case BO_LT:
561     case BO_GT:
562       return makeTruthVal(false, resultTy);
563     }
564   }
565 
566   switch (lhs.getSubKind()) {
567   default:
568     llvm_unreachable("Ordering not implemented for this Loc.");
569 
570   case loc::GotoLabelKind:
571     // The only thing we know about labels is that they're non-null.
572     if (rhs.isZeroConstant()) {
573       switch (op) {
574       default:
575         break;
576       case BO_Sub:
577         return evalCastFromLoc(lhs, resultTy);
578       case BO_EQ:
579       case BO_LE:
580       case BO_LT:
581         return makeTruthVal(false, resultTy);
582       case BO_NE:
583       case BO_GT:
584       case BO_GE:
585         return makeTruthVal(true, resultTy);
586       }
587     }
588     // There may be two labels for the same location, and a function region may
589     // have the same address as a label at the start of the function (depending
590     // on the ABI).
591     // FIXME: we can probably do a comparison against other MemRegions, though.
592     // FIXME: is there a way to tell if two labels refer to the same location?
593     return UnknownVal();
594 
595   case loc::ConcreteIntKind: {
596     // If one of the operands is a symbol and the other is a constant,
597     // build an expression for use by the constraint manager.
598     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
599       // We can only build expressions with symbols on the left,
600       // so we need a reversible operator.
601       if (!BinaryOperator::isComparisonOp(op))
602         return UnknownVal();
603 
604       const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
605       return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
606     }
607 
608     // If both operands are constants, just perform the operation.
609     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
610       SVal ResultVal =
611           lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
612       if (Optional<Loc> Result = ResultVal.getAs<Loc>())
613         return evalCastFromLoc(*Result, resultTy);
614       else
615         return UnknownVal();
616     }
617 
618     // Special case comparisons against NULL.
619     // This must come after the test if the RHS is a symbol, which is used to
620     // build constraints. The address of any non-symbolic region is guaranteed
621     // to be non-NULL, as is any label.
622     assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
623     if (lhs.isZeroConstant()) {
624       switch (op) {
625       default:
626         break;
627       case BO_EQ:
628       case BO_GT:
629       case BO_GE:
630         return makeTruthVal(false, resultTy);
631       case BO_NE:
632       case BO_LT:
633       case BO_LE:
634         return makeTruthVal(true, resultTy);
635       }
636     }
637 
638     // Comparing an arbitrary integer to a region or label address is
639     // completely unknowable.
640     return UnknownVal();
641   }
642   case loc::MemRegionKind: {
643     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
644       // If one of the operands is a symbol and the other is a constant,
645       // build an expression for use by the constraint manager.
646       if (SymbolRef lSym = lhs.getAsLocSymbol())
647         return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
648 
649       // Special case comparisons to NULL.
650       // This must come after the test if the LHS is a symbol, which is used to
651       // build constraints. The address of any non-symbolic region is guaranteed
652       // to be non-NULL.
653       if (rInt->isZeroConstant()) {
654         switch (op) {
655         default:
656           break;
657         case BO_Sub:
658           return evalCastFromLoc(lhs, resultTy);
659         case BO_EQ:
660         case BO_LT:
661         case BO_LE:
662           return makeTruthVal(false, resultTy);
663         case BO_NE:
664         case BO_GT:
665         case BO_GE:
666           return makeTruthVal(true, resultTy);
667         }
668       }
669 
670       // Comparing a region to an arbitrary integer is completely unknowable.
671       return UnknownVal();
672     }
673 
674     // Get both values as regions, if possible.
675     const MemRegion *LeftMR = lhs.getAsRegion();
676     assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
677 
678     const MemRegion *RightMR = rhs.getAsRegion();
679     if (!RightMR)
680       // The RHS is probably a label, which in theory could address a region.
681       // FIXME: we can probably make a more useful statement about non-code
682       // regions, though.
683       return UnknownVal();
684 
685     const MemSpaceRegion *LeftMS = LeftMR->getMemorySpace();
686     const MemSpaceRegion *RightMS = RightMR->getMemorySpace();
687     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
688     const MemRegion *LeftBase = LeftMR->getBaseRegion();
689     const MemRegion *RightBase = RightMR->getBaseRegion();
690 
691     // If the two regions are from different known memory spaces they cannot be
692     // equal. Also, assume that no symbolic region (whose memory space is
693     // unknown) is on the stack.
694     if (LeftMS != RightMS &&
695         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
696          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
697       switch (op) {
698       default:
699         return UnknownVal();
700       case BO_EQ:
701         return makeTruthVal(false, resultTy);
702       case BO_NE:
703         return makeTruthVal(true, resultTy);
704       }
705     }
706 
707     // If both values wrap regions, see if they're from different base regions.
708     // Note, heap base symbolic regions are assumed to not alias with
709     // each other; for example, we assume that malloc returns different address
710     // on each invocation.
711     if (LeftBase != RightBase &&
712         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
713          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
714       switch (op) {
715       default:
716         return UnknownVal();
717       case BO_EQ:
718         return makeTruthVal(false, resultTy);
719       case BO_NE:
720         return makeTruthVal(true, resultTy);
721       }
722     }
723 
724     // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
725     // ElementRegion path and the FieldRegion path below should be unified.
726     if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
727       // First see if the right region is also an ElementRegion.
728       const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
729       if (!RightER)
730         return UnknownVal();
731 
732       // Next, see if the two ERs have the same super-region and matching types.
733       // FIXME: This should do something useful even if the types don't match,
734       // though if both indexes are constant the RegionRawOffset path will
735       // give the correct answer.
736       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
737           LeftER->getElementType() == RightER->getElementType()) {
738         // Get the left index and cast it to the correct type.
739         // If the index is unknown or undefined, bail out here.
740         SVal LeftIndexVal = LeftER->getIndex();
741         Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
742         if (!LeftIndex)
743           return UnknownVal();
744         LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
745         LeftIndex = LeftIndexVal.getAs<NonLoc>();
746         if (!LeftIndex)
747           return UnknownVal();
748 
749         // Do the same for the right index.
750         SVal RightIndexVal = RightER->getIndex();
751         Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
752         if (!RightIndex)
753           return UnknownVal();
754         RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
755         RightIndex = RightIndexVal.getAs<NonLoc>();
756         if (!RightIndex)
757           return UnknownVal();
758 
759         // Actually perform the operation.
760         // evalBinOpNN expects the two indexes to already be the right type.
761         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
762       }
763 
764       // If the element indexes aren't comparable, see if the raw offsets are.
765       RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
766       RegionRawOffset RightOffset = RightER->getAsArrayOffset();
767 
768       if (LeftOffset.getRegion() != NULL &&
769           LeftOffset.getRegion() == RightOffset.getRegion()) {
770         CharUnits left = LeftOffset.getOffset();
771         CharUnits right = RightOffset.getOffset();
772 
773         switch (op) {
774         default:
775           return UnknownVal();
776         case BO_LT:
777           return makeTruthVal(left < right, resultTy);
778         case BO_GT:
779           return makeTruthVal(left > right, resultTy);
780         case BO_LE:
781           return makeTruthVal(left <= right, resultTy);
782         case BO_GE:
783           return makeTruthVal(left >= right, resultTy);
784         case BO_EQ:
785           return makeTruthVal(left == right, resultTy);
786         case BO_NE:
787           return makeTruthVal(left != right, resultTy);
788         }
789       }
790 
791       // If we get here, we have no way of comparing the ElementRegions.
792       return UnknownVal();
793     }
794 
795     // See if both regions are fields of the same structure.
796     // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
797     if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
798       // Only comparisons are meaningful here!
799       if (!BinaryOperator::isComparisonOp(op))
800         return UnknownVal();
801 
802       // First see if the right region is also a FieldRegion.
803       const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
804       if (!RightFR)
805         return UnknownVal();
806 
807       // Next, see if the two FRs have the same super-region.
808       // FIXME: This doesn't handle casts yet, and simply stripping the casts
809       // doesn't help.
810       if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
811         return UnknownVal();
812 
813       const FieldDecl *LeftFD = LeftFR->getDecl();
814       const FieldDecl *RightFD = RightFR->getDecl();
815       const RecordDecl *RD = LeftFD->getParent();
816 
817       // Make sure the two FRs are from the same kind of record. Just in case!
818       // FIXME: This is probably where inheritance would be a problem.
819       if (RD != RightFD->getParent())
820         return UnknownVal();
821 
822       // We know for sure that the two fields are not the same, since that
823       // would have given us the same SVal.
824       if (op == BO_EQ)
825         return makeTruthVal(false, resultTy);
826       if (op == BO_NE)
827         return makeTruthVal(true, resultTy);
828 
829       // Iterate through the fields and see which one comes first.
830       // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
831       // members and the units in which bit-fields reside have addresses that
832       // increase in the order in which they are declared."
833       bool leftFirst = (op == BO_LT || op == BO_LE);
834       for (RecordDecl::field_iterator I = RD->field_begin(),
835            E = RD->field_end(); I!=E; ++I) {
836         if (*I == LeftFD)
837           return makeTruthVal(leftFirst, resultTy);
838         if (*I == RightFD)
839           return makeTruthVal(!leftFirst, resultTy);
840       }
841 
842       llvm_unreachable("Fields not found in parent record's definition");
843     }
844 
845     // If we get here, we have no way of comparing the regions.
846     return UnknownVal();
847   }
848   }
849 }
850 
evalBinOpLN(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,NonLoc rhs,QualType resultTy)851 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
852                                   BinaryOperator::Opcode op,
853                                   Loc lhs, NonLoc rhs, QualType resultTy) {
854 
855   // Special case: rhs is a zero constant.
856   if (rhs.isZeroConstant())
857     return lhs;
858 
859   // Special case: 'rhs' is an integer that has the same width as a pointer and
860   // we are using the integer location in a comparison.  Normally this cannot be
861   // triggered, but transfer functions like those for OSCompareAndSwapBarrier32
862   // can generate comparisons that trigger this code.
863   // FIXME: Are all locations guaranteed to have pointer width?
864   if (BinaryOperator::isComparisonOp(op)) {
865     if (Optional<nonloc::ConcreteInt> rhsInt =
866             rhs.getAs<nonloc::ConcreteInt>()) {
867       const llvm::APSInt *x = &rhsInt->getValue();
868       ASTContext &ctx = Context;
869       if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
870         // Convert the signedness of the integer (if necessary).
871         if (x->isSigned())
872           x = &getBasicValueFactory().getValue(*x, true);
873 
874         return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
875       }
876     }
877     return UnknownVal();
878   }
879 
880   // We are dealing with pointer arithmetic.
881 
882   // Handle pointer arithmetic on constant values.
883   if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
884     if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
885       const llvm::APSInt &leftI = lhsInt->getValue();
886       assert(leftI.isUnsigned());
887       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
888 
889       // Convert the bitwidth of rightI.  This should deal with overflow
890       // since we are dealing with concrete values.
891       rightI = rightI.extOrTrunc(leftI.getBitWidth());
892 
893       // Offset the increment by the pointer size.
894       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
895       rightI *= Multiplicand;
896 
897       // Compute the adjusted pointer.
898       switch (op) {
899         case BO_Add:
900           rightI = leftI + rightI;
901           break;
902         case BO_Sub:
903           rightI = leftI - rightI;
904           break;
905         default:
906           llvm_unreachable("Invalid pointer arithmetic operation");
907       }
908       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
909     }
910   }
911 
912   // Handle cases where 'lhs' is a region.
913   if (const MemRegion *region = lhs.getAsRegion()) {
914     rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
915     SVal index = UnknownVal();
916     const MemRegion *superR = 0;
917     QualType elementType;
918 
919     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
920       assert(op == BO_Add || op == BO_Sub);
921       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
922                           getArrayIndexType());
923       superR = elemReg->getSuperRegion();
924       elementType = elemReg->getElementType();
925     }
926     else if (isa<SubRegion>(region)) {
927       superR = region;
928       index = rhs;
929       if (resultTy->isAnyPointerType())
930         elementType = resultTy->getPointeeType();
931     }
932 
933     if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
934       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
935                                                        superR, getContext()));
936     }
937   }
938   return UnknownVal();
939 }
940 
getKnownValue(ProgramStateRef state,SVal V)941 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
942                                                    SVal V) {
943   if (V.isUnknownOrUndef())
944     return NULL;
945 
946   if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
947     return &X->getValue();
948 
949   if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
950     return &X->getValue();
951 
952   if (SymbolRef Sym = V.getAsSymbol())
953     return state->getConstraintManager().getSymVal(state, Sym);
954 
955   // FIXME: Add support for SymExprs.
956   return NULL;
957 }
958