1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18
19 /*
20 * Garbage-collecting memory allocator.
21 */
22 #include "Dalvik.h"
23 #include "alloc/HeapBitmap.h"
24 #include "alloc/Verify.h"
25 #include "alloc/Heap.h"
26 #include "alloc/HeapInternal.h"
27 #include "alloc/DdmHeap.h"
28 #include "alloc/HeapSource.h"
29 #include "alloc/MarkSweep.h"
30 #include "os/os.h"
31
32 #include <sys/time.h>
33 #include <sys/resource.h>
34 #include <limits.h>
35 #include <errno.h>
36
37 #include <cutils/trace.h>
38
39 static const GcSpec kGcForMallocSpec = {
40 true, /* isPartial */
41 false, /* isConcurrent */
42 true, /* doPreserve */
43 "GC_FOR_ALLOC"
44 };
45
46 const GcSpec *GC_FOR_MALLOC = &kGcForMallocSpec;
47
48 static const GcSpec kGcConcurrentSpec = {
49 true, /* isPartial */
50 true, /* isConcurrent */
51 true, /* doPreserve */
52 "GC_CONCURRENT"
53 };
54
55 const GcSpec *GC_CONCURRENT = &kGcConcurrentSpec;
56
57 static const GcSpec kGcExplicitSpec = {
58 false, /* isPartial */
59 true, /* isConcurrent */
60 true, /* doPreserve */
61 "GC_EXPLICIT"
62 };
63
64 const GcSpec *GC_EXPLICIT = &kGcExplicitSpec;
65
66 static const GcSpec kGcBeforeOomSpec = {
67 false, /* isPartial */
68 false, /* isConcurrent */
69 false, /* doPreserve */
70 "GC_BEFORE_OOM"
71 };
72
73 const GcSpec *GC_BEFORE_OOM = &kGcBeforeOomSpec;
74
75 /*
76 * Initialize the GC heap.
77 *
78 * Returns true if successful, false otherwise.
79 */
dvmHeapStartup()80 bool dvmHeapStartup()
81 {
82 GcHeap *gcHeap;
83
84 if (gDvm.heapGrowthLimit == 0) {
85 gDvm.heapGrowthLimit = gDvm.heapMaximumSize;
86 }
87
88 gcHeap = dvmHeapSourceStartup(gDvm.heapStartingSize,
89 gDvm.heapMaximumSize,
90 gDvm.heapGrowthLimit);
91 if (gcHeap == NULL) {
92 return false;
93 }
94 gcHeap->ddmHpifWhen = 0;
95 gcHeap->ddmHpsgWhen = 0;
96 gcHeap->ddmHpsgWhat = 0;
97 gcHeap->ddmNhsgWhen = 0;
98 gcHeap->ddmNhsgWhat = 0;
99 gDvm.gcHeap = gcHeap;
100
101 /* Set up the lists we'll use for cleared reference objects.
102 */
103 gcHeap->clearedReferences = NULL;
104
105 if (!dvmCardTableStartup(gDvm.heapMaximumSize, gDvm.heapGrowthLimit)) {
106 LOGE_HEAP("card table startup failed.");
107 return false;
108 }
109
110 return true;
111 }
112
dvmHeapStartupAfterZygote()113 bool dvmHeapStartupAfterZygote()
114 {
115 return dvmHeapSourceStartupAfterZygote();
116 }
117
dvmHeapShutdown()118 void dvmHeapShutdown()
119 {
120 //TODO: make sure we're locked
121 if (gDvm.gcHeap != NULL) {
122 dvmCardTableShutdown();
123 /* Destroy the heap. Any outstanding pointers will point to
124 * unmapped memory (unless/until someone else maps it). This
125 * frees gDvm.gcHeap as a side-effect.
126 */
127 dvmHeapSourceShutdown(&gDvm.gcHeap);
128 }
129 }
130
131 /*
132 * Shutdown any threads internal to the heap.
133 */
dvmHeapThreadShutdown()134 void dvmHeapThreadShutdown()
135 {
136 dvmHeapSourceThreadShutdown();
137 }
138
139 /*
140 * Grab the lock, but put ourselves into THREAD_VMWAIT if it looks like
141 * we're going to have to wait on the mutex.
142 */
dvmLockHeap()143 bool dvmLockHeap()
144 {
145 if (dvmTryLockMutex(&gDvm.gcHeapLock) != 0) {
146 Thread *self;
147 ThreadStatus oldStatus;
148
149 self = dvmThreadSelf();
150 oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
151 dvmLockMutex(&gDvm.gcHeapLock);
152 dvmChangeStatus(self, oldStatus);
153 }
154
155 return true;
156 }
157
dvmUnlockHeap()158 void dvmUnlockHeap()
159 {
160 dvmUnlockMutex(&gDvm.gcHeapLock);
161 }
162
163 /* Do a full garbage collection, which may grow the
164 * heap as a side-effect if the live set is large.
165 */
gcForMalloc(bool clearSoftReferences)166 static void gcForMalloc(bool clearSoftReferences)
167 {
168 if (gDvm.allocProf.enabled) {
169 Thread* self = dvmThreadSelf();
170 gDvm.allocProf.gcCount++;
171 if (self != NULL) {
172 self->allocProf.gcCount++;
173 }
174 }
175 /* This may adjust the soft limit as a side-effect.
176 */
177 const GcSpec *spec = clearSoftReferences ? GC_BEFORE_OOM : GC_FOR_MALLOC;
178 dvmCollectGarbageInternal(spec);
179 }
180
181 /* Try as hard as possible to allocate some memory.
182 */
tryMalloc(size_t size)183 static void *tryMalloc(size_t size)
184 {
185 void *ptr;
186
187 //TODO: figure out better heuristics
188 // There will be a lot of churn if someone allocates a bunch of
189 // big objects in a row, and we hit the frag case each time.
190 // A full GC for each.
191 // Maybe we grow the heap in bigger leaps
192 // Maybe we skip the GC if the size is large and we did one recently
193 // (number of allocations ago) (watch for thread effects)
194 // DeflateTest allocs a bunch of ~128k buffers w/in 0-5 allocs of each other
195 // (or, at least, there are only 0-5 objects swept each time)
196
197 ptr = dvmHeapSourceAlloc(size);
198 if (ptr != NULL) {
199 return ptr;
200 }
201
202 /*
203 * The allocation failed. If the GC is running, block until it
204 * completes and retry.
205 */
206 if (gDvm.gcHeap->gcRunning) {
207 /*
208 * The GC is concurrently tracing the heap. Release the heap
209 * lock, wait for the GC to complete, and retrying allocating.
210 */
211 dvmWaitForConcurrentGcToComplete();
212 } else {
213 /*
214 * Try a foreground GC since a concurrent GC is not currently running.
215 */
216 gcForMalloc(false);
217 }
218
219 ptr = dvmHeapSourceAlloc(size);
220 if (ptr != NULL) {
221 return ptr;
222 }
223
224 /* Even that didn't work; this is an exceptional state.
225 * Try harder, growing the heap if necessary.
226 */
227 ptr = dvmHeapSourceAllocAndGrow(size);
228 if (ptr != NULL) {
229 size_t newHeapSize;
230
231 newHeapSize = dvmHeapSourceGetIdealFootprint();
232 //TODO: may want to grow a little bit more so that the amount of free
233 // space is equal to the old free space + the utilization slop for
234 // the new allocation.
235 LOGI_HEAP("Grow heap (frag case) to "
236 "%zu.%03zuMB for %zu-byte allocation",
237 FRACTIONAL_MB(newHeapSize), size);
238 return ptr;
239 }
240
241 /* Most allocations should have succeeded by now, so the heap
242 * is really full, really fragmented, or the requested size is
243 * really big. Do another GC, collecting SoftReferences this
244 * time. The VM spec requires that all SoftReferences have
245 * been collected and cleared before throwing an OOME.
246 */
247 //TODO: wait for the finalizers from the previous GC to finish
248 LOGI_HEAP("Forcing collection of SoftReferences for %zu-byte allocation",
249 size);
250 gcForMalloc(true);
251 ptr = dvmHeapSourceAllocAndGrow(size);
252 if (ptr != NULL) {
253 return ptr;
254 }
255 //TODO: maybe wait for finalizers and try one last time
256
257 LOGE_HEAP("Out of memory on a %zd-byte allocation.", size);
258 //TODO: tell the HeapSource to dump its state
259 dvmDumpThread(dvmThreadSelf(), false);
260
261 return NULL;
262 }
263
264 /* Throw an OutOfMemoryError if there's a thread to attach it to.
265 * Avoid recursing.
266 *
267 * The caller must not be holding the heap lock, or else the allocations
268 * in dvmThrowException() will deadlock.
269 */
throwOOME()270 static void throwOOME()
271 {
272 Thread *self;
273
274 if ((self = dvmThreadSelf()) != NULL) {
275 /* If the current (failing) dvmMalloc() happened as part of thread
276 * creation/attachment before the thread became part of the root set,
277 * we can't rely on the thread-local trackedAlloc table, so
278 * we can't keep track of a real allocated OOME object. But, since
279 * the thread is in the process of being created, it won't have
280 * a useful stack anyway, so we may as well make things easier
281 * by throwing the (stackless) pre-built OOME.
282 */
283 if (dvmIsOnThreadList(self) && !self->throwingOOME) {
284 /* Let ourselves know that we tried to throw an OOM
285 * error in the normal way in case we run out of
286 * memory trying to allocate it inside dvmThrowException().
287 */
288 self->throwingOOME = true;
289
290 /* Don't include a description string;
291 * one fewer allocation.
292 */
293 dvmThrowOutOfMemoryError(NULL);
294 } else {
295 /*
296 * This thread has already tried to throw an OutOfMemoryError,
297 * which probably means that we're running out of memory
298 * while recursively trying to throw.
299 *
300 * To avoid any more allocation attempts, "throw" a pre-built
301 * OutOfMemoryError object (which won't have a useful stack trace).
302 *
303 * Note that since this call can't possibly allocate anything,
304 * we don't care about the state of self->throwingOOME
305 * (which will usually already be set).
306 */
307 dvmSetException(self, gDvm.outOfMemoryObj);
308 }
309 /* We're done with the possible recursion.
310 */
311 self->throwingOOME = false;
312 }
313 }
314
315 /*
316 * Allocate storage on the GC heap. We guarantee 8-byte alignment.
317 *
318 * The new storage is zeroed out.
319 *
320 * Note that, in rare cases, this could get called while a GC is in
321 * progress. If a non-VM thread tries to attach itself through JNI,
322 * it will need to allocate some objects. If this becomes annoying to
323 * deal with, we can block it at the source, but holding the allocation
324 * mutex should be enough.
325 *
326 * In rare circumstances (JNI AttachCurrentThread) we can be called
327 * from a non-VM thread.
328 *
329 * Use ALLOC_DONT_TRACK when we either don't want to track an allocation
330 * (because it's being done for the interpreter "new" operation and will
331 * be part of the root set immediately) or we can't (because this allocation
332 * is for a brand new thread).
333 *
334 * Returns NULL and throws an exception on failure.
335 *
336 * TODO: don't do a GC if the debugger thinks all threads are suspended
337 */
dvmMalloc(size_t size,int flags)338 void* dvmMalloc(size_t size, int flags)
339 {
340 void *ptr;
341
342 dvmLockHeap();
343
344 /* Try as hard as possible to allocate some memory.
345 */
346 ptr = tryMalloc(size);
347 if (ptr != NULL) {
348 /* We've got the memory.
349 */
350 if (gDvm.allocProf.enabled) {
351 Thread* self = dvmThreadSelf();
352 gDvm.allocProf.allocCount++;
353 gDvm.allocProf.allocSize += size;
354 if (self != NULL) {
355 self->allocProf.allocCount++;
356 self->allocProf.allocSize += size;
357 }
358 }
359 } else {
360 /* The allocation failed.
361 */
362
363 if (gDvm.allocProf.enabled) {
364 Thread* self = dvmThreadSelf();
365 gDvm.allocProf.failedAllocCount++;
366 gDvm.allocProf.failedAllocSize += size;
367 if (self != NULL) {
368 self->allocProf.failedAllocCount++;
369 self->allocProf.failedAllocSize += size;
370 }
371 }
372 }
373
374 dvmUnlockHeap();
375
376 if (ptr != NULL) {
377 /*
378 * If caller hasn't asked us not to track it, add it to the
379 * internal tracking list.
380 */
381 if ((flags & ALLOC_DONT_TRACK) == 0) {
382 dvmAddTrackedAlloc((Object*)ptr, NULL);
383 }
384 } else {
385 /*
386 * The allocation failed; throw an OutOfMemoryError.
387 */
388 throwOOME();
389 }
390
391 return ptr;
392 }
393
394 /*
395 * Returns true iff <obj> points to a valid allocated object.
396 */
dvmIsValidObject(const Object * obj)397 bool dvmIsValidObject(const Object* obj)
398 {
399 /* Don't bother if it's NULL or not 8-byte aligned.
400 */
401 if (obj != NULL && ((uintptr_t)obj & (8-1)) == 0) {
402 /* Even if the heap isn't locked, this shouldn't return
403 * any false negatives. The only mutation that could
404 * be happening is allocation, which means that another
405 * thread could be in the middle of a read-modify-write
406 * to add a new bit for a new object. However, that
407 * RMW will have completed by the time any other thread
408 * could possibly see the new pointer, so there is no
409 * danger of dvmIsValidObject() being called on a valid
410 * pointer whose bit isn't set.
411 *
412 * Freeing will only happen during the sweep phase, which
413 * only happens while the heap is locked.
414 */
415 return dvmHeapSourceContains(obj);
416 }
417 return false;
418 }
419
dvmObjectSizeInHeap(const Object * obj)420 size_t dvmObjectSizeInHeap(const Object *obj)
421 {
422 return dvmHeapSourceChunkSize(obj);
423 }
424
verifyRootsAndHeap()425 static void verifyRootsAndHeap()
426 {
427 dvmVerifyRoots();
428 dvmVerifyBitmap(dvmHeapSourceGetLiveBits());
429 }
430
431 /*
432 * Initiate garbage collection.
433 *
434 * NOTES:
435 * - If we don't hold gDvm.threadListLock, it's possible for a thread to
436 * be added to the thread list while we work. The thread should NOT
437 * start executing, so this is only interesting when we start chasing
438 * thread stacks. (Before we do so, grab the lock.)
439 *
440 * We are not allowed to GC when the debugger has suspended the VM, which
441 * is awkward because debugger requests can cause allocations. The easiest
442 * way to enforce this is to refuse to GC on an allocation made by the
443 * JDWP thread -- we have to expand the heap or fail.
444 */
dvmCollectGarbageInternal(const GcSpec * spec)445 void dvmCollectGarbageInternal(const GcSpec* spec)
446 {
447 GcHeap *gcHeap = gDvm.gcHeap;
448 u4 gcEnd = 0;
449 u4 rootStart = 0 , rootEnd = 0;
450 u4 dirtyStart = 0, dirtyEnd = 0;
451 size_t numObjectsFreed, numBytesFreed;
452 size_t currAllocated, currFootprint;
453 size_t percentFree;
454 int oldThreadPriority = INT_MAX;
455
456 /* The heap lock must be held.
457 */
458
459 if (gcHeap->gcRunning) {
460 LOGW_HEAP("Attempted recursive GC");
461 return;
462 }
463
464 // Trace the beginning of the top-level GC.
465 if (spec == GC_FOR_MALLOC) {
466 ATRACE_BEGIN("GC (alloc)");
467 } else if (spec == GC_CONCURRENT) {
468 ATRACE_BEGIN("GC (concurrent)");
469 } else if (spec == GC_EXPLICIT) {
470 ATRACE_BEGIN("GC (explicit)");
471 } else if (spec == GC_BEFORE_OOM) {
472 ATRACE_BEGIN("GC (before OOM)");
473 } else {
474 ATRACE_BEGIN("GC (unknown)");
475 }
476
477 gcHeap->gcRunning = true;
478
479 rootStart = dvmGetRelativeTimeMsec();
480 ATRACE_BEGIN("GC: Threads Suspended"); // Suspend A
481 dvmSuspendAllThreads(SUSPEND_FOR_GC);
482
483 /*
484 * If we are not marking concurrently raise the priority of the
485 * thread performing the garbage collection.
486 */
487 if (!spec->isConcurrent) {
488 oldThreadPriority = os_raiseThreadPriority();
489 }
490 if (gDvm.preVerify) {
491 LOGV_HEAP("Verifying roots and heap before GC");
492 verifyRootsAndHeap();
493 }
494
495 dvmMethodTraceGCBegin();
496
497 /* Set up the marking context.
498 */
499 if (!dvmHeapBeginMarkStep(spec->isPartial)) {
500 ATRACE_END(); // Suspend A
501 ATRACE_END(); // Top-level GC
502 LOGE_HEAP("dvmHeapBeginMarkStep failed; aborting");
503 dvmAbort();
504 }
505
506 /* Mark the set of objects that are strongly reachable from the roots.
507 */
508 LOGD_HEAP("Marking...");
509 dvmHeapMarkRootSet();
510
511 /* dvmHeapScanMarkedObjects() will build the lists of known
512 * instances of the Reference classes.
513 */
514 assert(gcHeap->softReferences == NULL);
515 assert(gcHeap->weakReferences == NULL);
516 assert(gcHeap->finalizerReferences == NULL);
517 assert(gcHeap->phantomReferences == NULL);
518 assert(gcHeap->clearedReferences == NULL);
519
520 if (spec->isConcurrent) {
521 /*
522 * Resume threads while tracing from the roots. We unlock the
523 * heap to allow mutator threads to allocate from free space.
524 */
525 dvmClearCardTable();
526 dvmUnlockHeap();
527 dvmResumeAllThreads(SUSPEND_FOR_GC);
528 ATRACE_END(); // Suspend A
529 rootEnd = dvmGetRelativeTimeMsec();
530 }
531
532 /* Recursively mark any objects that marked objects point to strongly.
533 * If we're not collecting soft references, soft-reachable
534 * objects will also be marked.
535 */
536 LOGD_HEAP("Recursing...");
537 dvmHeapScanMarkedObjects();
538
539 if (spec->isConcurrent) {
540 /*
541 * Re-acquire the heap lock and perform the final thread
542 * suspension.
543 */
544 dirtyStart = dvmGetRelativeTimeMsec();
545 dvmLockHeap();
546 ATRACE_BEGIN("GC: Threads Suspended"); // Suspend B
547 dvmSuspendAllThreads(SUSPEND_FOR_GC);
548 /*
549 * As no barrier intercepts root updates, we conservatively
550 * assume all roots may be gray and re-mark them.
551 */
552 dvmHeapReMarkRootSet();
553 /*
554 * With the exception of reference objects and weak interned
555 * strings, all gray objects should now be on dirty cards.
556 */
557 if (gDvm.verifyCardTable) {
558 dvmVerifyCardTable();
559 }
560 /*
561 * Recursively mark gray objects pointed to by the roots or by
562 * heap objects dirtied during the concurrent mark.
563 */
564 dvmHeapReScanMarkedObjects();
565 }
566
567 /*
568 * All strongly-reachable objects have now been marked. Process
569 * weakly-reachable objects discovered while tracing.
570 */
571 dvmHeapProcessReferences(&gcHeap->softReferences,
572 spec->doPreserve == false,
573 &gcHeap->weakReferences,
574 &gcHeap->finalizerReferences,
575 &gcHeap->phantomReferences);
576
577 #if defined(WITH_JIT)
578 /*
579 * Patching a chaining cell is very cheap as it only updates 4 words. It's
580 * the overhead of stopping all threads and synchronizing the I/D cache
581 * that makes it expensive.
582 *
583 * Therefore we batch those work orders in a queue and go through them
584 * when threads are suspended for GC.
585 */
586 dvmCompilerPerformSafePointChecks();
587 #endif
588
589 LOGD_HEAP("Sweeping...");
590
591 dvmHeapSweepSystemWeaks();
592
593 /*
594 * Live objects have a bit set in the mark bitmap, swap the mark
595 * and live bitmaps. The sweep can proceed concurrently viewing
596 * the new live bitmap as the old mark bitmap, and vice versa.
597 */
598 dvmHeapSourceSwapBitmaps();
599
600 if (gDvm.postVerify) {
601 LOGV_HEAP("Verifying roots and heap after GC");
602 verifyRootsAndHeap();
603 }
604
605 if (spec->isConcurrent) {
606 dvmUnlockHeap();
607 dvmResumeAllThreads(SUSPEND_FOR_GC);
608 ATRACE_END(); // Suspend B
609 dirtyEnd = dvmGetRelativeTimeMsec();
610 }
611 dvmHeapSweepUnmarkedObjects(spec->isPartial, spec->isConcurrent,
612 &numObjectsFreed, &numBytesFreed);
613 LOGD_HEAP("Cleaning up...");
614 dvmHeapFinishMarkStep();
615 if (spec->isConcurrent) {
616 dvmLockHeap();
617 }
618
619 LOGD_HEAP("Done.");
620
621 /* Now's a good time to adjust the heap size, since
622 * we know what our utilization is.
623 *
624 * This doesn't actually resize any memory;
625 * it just lets the heap grow more when necessary.
626 */
627 dvmHeapSourceGrowForUtilization();
628
629 currAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0);
630 currFootprint = dvmHeapSourceGetValue(HS_FOOTPRINT, NULL, 0);
631
632 dvmMethodTraceGCEnd();
633 LOGV_HEAP("GC finished");
634
635 gcHeap->gcRunning = false;
636
637 LOGV_HEAP("Resuming threads");
638
639 if (spec->isConcurrent) {
640 /*
641 * Wake-up any threads that blocked after a failed allocation
642 * request.
643 */
644 dvmBroadcastCond(&gDvm.gcHeapCond);
645 }
646
647 if (!spec->isConcurrent) {
648 dvmResumeAllThreads(SUSPEND_FOR_GC);
649 ATRACE_END(); // Suspend A
650 dirtyEnd = dvmGetRelativeTimeMsec();
651 /*
652 * Restore the original thread scheduling priority if it was
653 * changed at the start of the current garbage collection.
654 */
655 if (oldThreadPriority != INT_MAX) {
656 os_lowerThreadPriority(oldThreadPriority);
657 }
658 }
659
660 /*
661 * Move queue of pending references back into Java.
662 */
663 dvmEnqueueClearedReferences(&gDvm.gcHeap->clearedReferences);
664
665 gcEnd = dvmGetRelativeTimeMsec();
666 percentFree = 100 - (size_t)(100.0f * (float)currAllocated / currFootprint);
667 if (!spec->isConcurrent) {
668 u4 markSweepTime = dirtyEnd - rootStart;
669 u4 gcTime = gcEnd - rootStart;
670 bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
671 ALOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, paused %ums, total %ums",
672 spec->reason,
673 isSmall ? "<" : "",
674 numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
675 percentFree,
676 currAllocated / 1024, currFootprint / 1024,
677 markSweepTime, gcTime);
678 } else {
679 u4 rootTime = rootEnd - rootStart;
680 u4 dirtyTime = dirtyEnd - dirtyStart;
681 u4 gcTime = gcEnd - rootStart;
682 bool isSmall = numBytesFreed > 0 && numBytesFreed < 1024;
683 ALOGD("%s freed %s%zdK, %d%% free %zdK/%zdK, paused %ums+%ums, total %ums",
684 spec->reason,
685 isSmall ? "<" : "",
686 numBytesFreed ? MAX(numBytesFreed / 1024, 1) : 0,
687 percentFree,
688 currAllocated / 1024, currFootprint / 1024,
689 rootTime, dirtyTime, gcTime);
690 }
691 if (gcHeap->ddmHpifWhen != 0) {
692 LOGD_HEAP("Sending VM heap info to DDM");
693 dvmDdmSendHeapInfo(gcHeap->ddmHpifWhen, false);
694 }
695 if (gcHeap->ddmHpsgWhen != 0) {
696 LOGD_HEAP("Dumping VM heap to DDM");
697 dvmDdmSendHeapSegments(false, false);
698 }
699 if (gcHeap->ddmNhsgWhen != 0) {
700 LOGD_HEAP("Dumping native heap to DDM");
701 dvmDdmSendHeapSegments(false, true);
702 }
703
704 ATRACE_END(); // Top-level GC
705 }
706
707 /*
708 * If the concurrent GC is running, wait for it to finish. The caller
709 * must hold the heap lock.
710 *
711 * Note: the second dvmChangeStatus() could stall if we were in RUNNING
712 * on entry, and some other thread has asked us to suspend. In that
713 * case we will be suspended with the heap lock held, which can lead to
714 * deadlock if the other thread tries to do something with the managed heap.
715 * For example, the debugger might suspend us and then execute a method that
716 * allocates memory. We can avoid this situation by releasing the lock
717 * before self-suspending. (The developer can work around this specific
718 * situation by single-stepping the VM. Alternatively, we could disable
719 * concurrent GC when the debugger is attached, but that might change
720 * behavior more than is desirable.)
721 *
722 * This should not be a problem in production, because any GC-related
723 * activity will grab the lock before issuing a suspend-all. (We may briefly
724 * suspend when the GC thread calls dvmUnlockHeap before dvmResumeAllThreads,
725 * but there's no risk of deadlock.)
726 */
dvmWaitForConcurrentGcToComplete()727 bool dvmWaitForConcurrentGcToComplete()
728 {
729 ATRACE_BEGIN("GC: Wait For Concurrent");
730 bool waited = gDvm.gcHeap->gcRunning;
731 Thread *self = dvmThreadSelf();
732 assert(self != NULL);
733 u4 start = dvmGetRelativeTimeMsec();
734 while (gDvm.gcHeap->gcRunning) {
735 ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
736 dvmWaitCond(&gDvm.gcHeapCond, &gDvm.gcHeapLock);
737 dvmChangeStatus(self, oldStatus);
738 }
739 u4 end = dvmGetRelativeTimeMsec();
740 if (end - start > 0) {
741 ALOGD("WAIT_FOR_CONCURRENT_GC blocked %ums", end - start);
742 }
743 ATRACE_END();
744 return waited;
745 }
746