1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "Dalvik.h"
18 #include "native/InternalNativePriv.h"
19
20 #include <stdlib.h>
21 #include <stdint.h>
22 #include <assert.h>
23
24 /*
25 * The VM makes guarantees about the atomicity of accesses to primitive
26 * variables. These guarantees also apply to elements of arrays.
27 * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and
28 * must not cause "word tearing". Accesses to 64-bit array elements must
29 * either be atomic or treated as two 32-bit operations. References are
30 * always read and written atomically, regardless of the number of bits
31 * used to represent them.
32 *
33 * We can't rely on standard libc functions like memcpy() and memmove()
34 * in our implementation of System.arraycopy(), because they may copy
35 * byte-by-byte (either for the full run or for "unaligned" parts at the
36 * start or end). We need to use functions that guarantee 16-bit or 32-bit
37 * atomicity as appropriate.
38 *
39 * System.arraycopy() is heavily used, so having an efficient implementation
40 * is important. The bionic libc provides a platform-optimized memory move
41 * function that should be used when possible. If it's not available,
42 * the trivial "reference implementation" versions below can be used until
43 * a proper version can be written.
44 *
45 * For these functions, The caller must guarantee that dest/src are aligned
46 * appropriately for the element type, and that n is a multiple of the
47 * element size.
48 */
49
50 /*
51 * Works like memmove(), except:
52 * - if all arguments are at least 32-bit aligned, we guarantee that we
53 * will use operations that preserve atomicity of 32-bit values
54 * - if not, we guarantee atomicity of 16-bit values
55 *
56 * If all three arguments are not at least 16-bit aligned, the behavior
57 * of this function is undefined. (We could remove this restriction by
58 * testing for unaligned values and punting to memmove(), but that's
59 * not currently useful.)
60 *
61 * TODO: add loop for 64-bit alignment
62 * TODO: use __builtin_prefetch
63 * TODO: write an ARM-optimized version
64 */
memmove_words(void * dest,const void * src,size_t n)65 static void memmove_words(void* dest, const void* src, size_t n) {
66 assert((((uintptr_t) dest | (uintptr_t) src | n) & 0x01) == 0);
67
68 char* d = (char*) dest;
69 const char* s = (const char*) src;
70 size_t copyCount;
71
72 /*
73 * If the source and destination pointers are the same, this is
74 * an expensive no-op. Testing for an empty move now allows us
75 * to skip a check later.
76 */
77 if (n == 0 || d == s)
78 return;
79
80 /*
81 * Determine if the source and destination buffers will overlap if
82 * we copy data forward (i.e. *dest++ = *src++).
83 *
84 * It's okay if the destination buffer starts before the source and
85 * there is some overlap, because the reader is always ahead of the
86 * writer.
87 */
88 if (__builtin_expect((d < s) || ((size_t)(d - s) >= n), 1)) {
89 /*
90 * Copy forward. We prefer 32-bit loads and stores even for 16-bit
91 * data, so sort that out.
92 */
93 if ((((uintptr_t) d | (uintptr_t) s) & 0x03) != 0) {
94 /*
95 * Not 32-bit aligned. Two possibilities:
96 * (1) Congruent, we can align to 32-bit by copying one 16-bit val
97 * (2) Non-congruent, we can do one of:
98 * a. copy whole buffer as a series of 16-bit values
99 * b. load/store 32 bits, using shifts to ensure alignment
100 * c. just copy the as 32-bit values and assume the CPU
101 * will do a reasonable job
102 *
103 * We're currently using (a), which is suboptimal.
104 */
105 if ((((uintptr_t) d ^ (uintptr_t) s) & 0x03) != 0) {
106 copyCount = n;
107 } else {
108 copyCount = 2;
109 }
110 n -= copyCount;
111 copyCount /= sizeof(uint16_t);
112
113 while (copyCount--) {
114 *(uint16_t*)d = *(uint16_t*)s;
115 d += sizeof(uint16_t);
116 s += sizeof(uint16_t);
117 }
118 }
119
120 /*
121 * Copy 32-bit aligned words.
122 */
123 copyCount = n / sizeof(uint32_t);
124 while (copyCount--) {
125 *(uint32_t*)d = *(uint32_t*)s;
126 d += sizeof(uint32_t);
127 s += sizeof(uint32_t);
128 }
129
130 /*
131 * Check for leftovers. Either we finished exactly, or we have
132 * one remaining 16-bit chunk.
133 */
134 if ((n & 0x02) != 0) {
135 *(uint16_t*)d = *(uint16_t*)s;
136 }
137 } else {
138 /*
139 * Copy backward, starting at the end.
140 */
141 d += n;
142 s += n;
143
144 if ((((uintptr_t) d | (uintptr_t) s) & 0x03) != 0) {
145 /* try for 32-bit alignment */
146 if ((((uintptr_t) d ^ (uintptr_t) s) & 0x03) != 0) {
147 copyCount = n;
148 } else {
149 copyCount = 2;
150 }
151 n -= copyCount;
152 copyCount /= sizeof(uint16_t);
153
154 while (copyCount--) {
155 d -= sizeof(uint16_t);
156 s -= sizeof(uint16_t);
157 *(uint16_t*)d = *(uint16_t*)s;
158 }
159 }
160
161 /* copy 32-bit aligned words */
162 copyCount = n / sizeof(uint32_t);
163 while (copyCount--) {
164 d -= sizeof(uint32_t);
165 s -= sizeof(uint32_t);
166 *(uint32_t*)d = *(uint32_t*)s;
167 }
168
169 /* copy leftovers */
170 if ((n & 0x02) != 0) {
171 d -= sizeof(uint16_t);
172 s -= sizeof(uint16_t);
173 *(uint16_t*)d = *(uint16_t*)s;
174 }
175 }
176 }
177
178 #define move16 memmove_words
179 #define move32 memmove_words
180
181 /*
182 * public static void arraycopy(Object src, int srcPos, Object dest,
183 * int destPos, int length)
184 *
185 * The description of this function is long, and describes a multitude
186 * of checks and exceptions.
187 */
Dalvik_java_lang_System_arraycopy(const u4 * args,JValue * pResult)188 static void Dalvik_java_lang_System_arraycopy(const u4* args, JValue* pResult)
189 {
190 ArrayObject* srcArray = (ArrayObject*) args[0];
191 int srcPos = args[1];
192 ArrayObject* dstArray = (ArrayObject*) args[2];
193 int dstPos = args[3];
194 int length = args[4];
195
196 /* Check for null pointers. */
197 if (srcArray == NULL) {
198 dvmThrowNullPointerException("src == null");
199 RETURN_VOID();
200 }
201 if (dstArray == NULL) {
202 dvmThrowNullPointerException("dst == null");
203 RETURN_VOID();
204 }
205
206 /* Make sure source and destination are arrays. */
207 if (!dvmIsArray(srcArray)) {
208 dvmThrowArrayStoreExceptionNotArray(((Object*)srcArray)->clazz, "source");
209 RETURN_VOID();
210 }
211 if (!dvmIsArray(dstArray)) {
212 dvmThrowArrayStoreExceptionNotArray(((Object*)dstArray)->clazz, "destination");
213 RETURN_VOID();
214 }
215
216 /* avoid int overflow */
217 if (srcPos < 0 || dstPos < 0 || length < 0 ||
218 srcPos > (int) srcArray->length - length ||
219 dstPos > (int) dstArray->length - length)
220 {
221 dvmThrowExceptionFmt(gDvm.exArrayIndexOutOfBoundsException,
222 "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d",
223 srcArray->length, srcPos, dstArray->length, dstPos, length);
224 RETURN_VOID();
225 }
226
227 ClassObject* srcClass = srcArray->clazz;
228 ClassObject* dstClass = dstArray->clazz;
229 char srcType = srcClass->descriptor[1];
230 char dstType = dstClass->descriptor[1];
231
232 /*
233 * If one of the arrays holds a primitive type, the other array must
234 * hold the same type.
235 */
236 bool srcPrim = (srcType != '[' && srcType != 'L');
237 bool dstPrim = (dstType != '[' && dstType != 'L');
238 if (srcPrim || dstPrim) {
239 if (srcPrim != dstPrim || srcType != dstType) {
240 dvmThrowArrayStoreExceptionIncompatibleArrays(srcClass, dstClass);
241 RETURN_VOID();
242 }
243
244 if (false) ALOGD("arraycopy prim[%c] dst=%p %d src=%p %d len=%d",
245 srcType, dstArray->contents, dstPos,
246 srcArray->contents, srcPos, length);
247
248 switch (srcType) {
249 case 'B':
250 case 'Z':
251 /* 1 byte per element */
252 memmove((u1*) dstArray->contents + dstPos,
253 (const u1*) srcArray->contents + srcPos,
254 length);
255 break;
256 case 'C':
257 case 'S':
258 /* 2 bytes per element */
259 move16((u1*) dstArray->contents + dstPos * 2,
260 (const u1*) srcArray->contents + srcPos * 2,
261 length * 2);
262 break;
263 case 'F':
264 case 'I':
265 /* 4 bytes per element */
266 move32((u1*) dstArray->contents + dstPos * 4,
267 (const u1*) srcArray->contents + srcPos * 4,
268 length * 4);
269 break;
270 case 'D':
271 case 'J':
272 /*
273 * 8 bytes per element. We don't need to guarantee atomicity
274 * of the entire 64-bit word, so we can use the 32-bit copier.
275 */
276 move32((u1*) dstArray->contents + dstPos * 8,
277 (const u1*) srcArray->contents + srcPos * 8,
278 length * 8);
279 break;
280 default: /* illegal array type */
281 ALOGE("Weird array type '%s'", srcClass->descriptor);
282 dvmAbort();
283 }
284 } else {
285 /*
286 * Neither class is primitive. See if elements in "src" are instances
287 * of elements in "dst" (e.g. copy String to String or String to
288 * Object).
289 */
290 const int width = sizeof(Object*);
291
292 if (srcClass->arrayDim == dstClass->arrayDim &&
293 dvmInstanceof(srcClass, dstClass))
294 {
295 /*
296 * "dst" can hold "src"; copy the whole thing.
297 */
298 if (false) ALOGD("arraycopy ref dst=%p %d src=%p %d len=%d",
299 dstArray->contents, dstPos * width,
300 srcArray->contents, srcPos * width,
301 length * width);
302 move32((u1*)dstArray->contents + dstPos * width,
303 (const u1*)srcArray->contents + srcPos * width,
304 length * width);
305 dvmWriteBarrierArray(dstArray, dstPos, dstPos+length);
306 } else {
307 /*
308 * The arrays are not fundamentally compatible. However, we
309 * may still be able to do this if the destination object is
310 * compatible (e.g. copy Object[] to String[], but the Object
311 * being copied is actually a String). We need to copy elements
312 * one by one until something goes wrong.
313 *
314 * Because of overlapping moves, what we really want to do
315 * is compare the types and count up how many we can move,
316 * then call move32() to shift the actual data. If we just
317 * start from the front we could do a smear rather than a move.
318 */
319 Object** srcObj;
320 int copyCount;
321 ClassObject* clazz = NULL;
322
323 srcObj = ((Object**)(void*)srcArray->contents) + srcPos;
324
325 if (length > 0 && srcObj[0] != NULL)
326 {
327 clazz = srcObj[0]->clazz;
328 if (!dvmCanPutArrayElement(clazz, dstClass))
329 clazz = NULL;
330 }
331
332 for (copyCount = 0; copyCount < length; copyCount++)
333 {
334 if (srcObj[copyCount] != NULL &&
335 srcObj[copyCount]->clazz != clazz &&
336 !dvmCanPutArrayElement(srcObj[copyCount]->clazz, dstClass))
337 {
338 /* can't put this element into the array */
339 break;
340 }
341 }
342
343 if (false) ALOGD("arraycopy iref dst=%p %d src=%p %d count=%d of %d",
344 dstArray->contents, dstPos * width,
345 srcArray->contents, srcPos * width,
346 copyCount, length);
347 move32((u1*)dstArray->contents + dstPos * width,
348 (const u1*)srcArray->contents + srcPos * width,
349 copyCount * width);
350 dvmWriteBarrierArray(dstArray, 0, copyCount);
351 if (copyCount != length) {
352 dvmThrowArrayStoreExceptionIncompatibleArrayElement(srcPos + copyCount,
353 srcObj[copyCount]->clazz, dstClass);
354 RETURN_VOID();
355 }
356 }
357 }
358
359 RETURN_VOID();
360 }
361
362 /*
363 * static long currentTimeMillis()
364 *
365 * Current time, in miliseconds. This doesn't need to be internal to the
366 * VM, but we're already handling java.lang.System here.
367 */
Dalvik_java_lang_System_currentTimeMillis(const u4 * args,JValue * pResult)368 static void Dalvik_java_lang_System_currentTimeMillis(const u4* args,
369 JValue* pResult)
370 {
371 struct timeval tv;
372
373 UNUSED_PARAMETER(args);
374
375 gettimeofday(&tv, (struct timezone *) NULL);
376 long long when = tv.tv_sec * 1000LL + tv.tv_usec / 1000;
377
378 RETURN_LONG(when);
379 }
380
381 /*
382 * static long nanoTime()
383 *
384 * Current monotonically-increasing time, in nanoseconds. This doesn't
385 * need to be internal to the VM, but we're already handling
386 * java.lang.System here.
387 */
Dalvik_java_lang_System_nanoTime(const u4 * args,JValue * pResult)388 static void Dalvik_java_lang_System_nanoTime(const u4* args, JValue* pResult)
389 {
390 UNUSED_PARAMETER(args);
391
392 u8 when = dvmGetRelativeTimeNsec();
393 RETURN_LONG(when);
394 }
395
396 /*
397 * static int identityHashCode(Object x)
398 *
399 * Returns that hash code that the default hashCode()
400 * method would return for "x", even if "x"s class
401 * overrides hashCode().
402 */
Dalvik_java_lang_System_identityHashCode(const u4 * args,JValue * pResult)403 static void Dalvik_java_lang_System_identityHashCode(const u4* args,
404 JValue* pResult)
405 {
406 Object* thisPtr = (Object*) args[0];
407 RETURN_INT(dvmIdentityHashCode(thisPtr));
408 }
409
Dalvik_java_lang_System_mapLibraryName(const u4 * args,JValue * pResult)410 static void Dalvik_java_lang_System_mapLibraryName(const u4* args,
411 JValue* pResult)
412 {
413 StringObject* nameObj = (StringObject*) args[0];
414 StringObject* result = NULL;
415 char* name;
416 char* mappedName;
417
418 if (nameObj == NULL) {
419 dvmThrowNullPointerException("userLibName == null");
420 RETURN_VOID();
421 }
422
423 name = dvmCreateCstrFromString(nameObj);
424 mappedName = dvmCreateSystemLibraryName(name);
425 if (mappedName != NULL) {
426 result = dvmCreateStringFromCstr(mappedName);
427 dvmReleaseTrackedAlloc((Object*) result, NULL);
428 }
429
430 free(name);
431 free(mappedName);
432 RETURN_PTR(result);
433 }
434
435 const DalvikNativeMethod dvm_java_lang_System[] = {
436 { "arraycopy", "(Ljava/lang/Object;ILjava/lang/Object;II)V",
437 Dalvik_java_lang_System_arraycopy },
438 { "currentTimeMillis", "()J",
439 Dalvik_java_lang_System_currentTimeMillis },
440 { "identityHashCode", "(Ljava/lang/Object;)I",
441 Dalvik_java_lang_System_identityHashCode },
442 { "mapLibraryName", "(Ljava/lang/String;)Ljava/lang/String;",
443 Dalvik_java_lang_System_mapLibraryName },
444 { "nanoTime", "()J",
445 Dalvik_java_lang_System_nanoTime },
446 { NULL, NULL, NULL },
447 };
448