• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "Dalvik.h"
18 #include "native/InternalNativePriv.h"
19 
20 #include <stdlib.h>
21 #include <stdint.h>
22 #include <assert.h>
23 
24 /*
25  * The VM makes guarantees about the atomicity of accesses to primitive
26  * variables.  These guarantees also apply to elements of arrays.
27  * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and
28  * must not cause "word tearing".  Accesses to 64-bit array elements must
29  * either be atomic or treated as two 32-bit operations.  References are
30  * always read and written atomically, regardless of the number of bits
31  * used to represent them.
32  *
33  * We can't rely on standard libc functions like memcpy() and memmove()
34  * in our implementation of System.arraycopy(), because they may copy
35  * byte-by-byte (either for the full run or for "unaligned" parts at the
36  * start or end).  We need to use functions that guarantee 16-bit or 32-bit
37  * atomicity as appropriate.
38  *
39  * System.arraycopy() is heavily used, so having an efficient implementation
40  * is important.  The bionic libc provides a platform-optimized memory move
41  * function that should be used when possible.  If it's not available,
42  * the trivial "reference implementation" versions below can be used until
43  * a proper version can be written.
44  *
45  * For these functions, The caller must guarantee that dest/src are aligned
46  * appropriately for the element type, and that n is a multiple of the
47  * element size.
48  */
49 
50 /*
51  * Works like memmove(), except:
52  * - if all arguments are at least 32-bit aligned, we guarantee that we
53  *   will use operations that preserve atomicity of 32-bit values
54  * - if not, we guarantee atomicity of 16-bit values
55  *
56  * If all three arguments are not at least 16-bit aligned, the behavior
57  * of this function is undefined.  (We could remove this restriction by
58  * testing for unaligned values and punting to memmove(), but that's
59  * not currently useful.)
60  *
61  * TODO: add loop for 64-bit alignment
62  * TODO: use __builtin_prefetch
63  * TODO: write an ARM-optimized version
64  */
memmove_words(void * dest,const void * src,size_t n)65 static void memmove_words(void* dest, const void* src, size_t n) {
66     assert((((uintptr_t) dest | (uintptr_t) src | n) & 0x01) == 0);
67 
68     char* d = (char*) dest;
69     const char* s = (const char*) src;
70     size_t copyCount;
71 
72     /*
73      * If the source and destination pointers are the same, this is
74      * an expensive no-op.  Testing for an empty move now allows us
75      * to skip a check later.
76      */
77     if (n == 0 || d == s)
78         return;
79 
80     /*
81      * Determine if the source and destination buffers will overlap if
82      * we copy data forward (i.e. *dest++ = *src++).
83      *
84      * It's okay if the destination buffer starts before the source and
85      * there is some overlap, because the reader is always ahead of the
86      * writer.
87      */
88     if (__builtin_expect((d < s) || ((size_t)(d - s) >= n), 1)) {
89         /*
90          * Copy forward.  We prefer 32-bit loads and stores even for 16-bit
91          * data, so sort that out.
92          */
93         if ((((uintptr_t) d | (uintptr_t) s) & 0x03) != 0) {
94             /*
95              * Not 32-bit aligned.  Two possibilities:
96              * (1) Congruent, we can align to 32-bit by copying one 16-bit val
97              * (2) Non-congruent, we can do one of:
98              *   a. copy whole buffer as a series of 16-bit values
99              *   b. load/store 32 bits, using shifts to ensure alignment
100              *   c. just copy the as 32-bit values and assume the CPU
101              *      will do a reasonable job
102              *
103              * We're currently using (a), which is suboptimal.
104              */
105             if ((((uintptr_t) d ^ (uintptr_t) s) & 0x03) != 0) {
106                 copyCount = n;
107             } else {
108                 copyCount = 2;
109             }
110             n -= copyCount;
111             copyCount /= sizeof(uint16_t);
112 
113             while (copyCount--) {
114                 *(uint16_t*)d = *(uint16_t*)s;
115                 d += sizeof(uint16_t);
116                 s += sizeof(uint16_t);
117             }
118         }
119 
120         /*
121          * Copy 32-bit aligned words.
122          */
123         copyCount = n / sizeof(uint32_t);
124         while (copyCount--) {
125             *(uint32_t*)d = *(uint32_t*)s;
126             d += sizeof(uint32_t);
127             s += sizeof(uint32_t);
128         }
129 
130         /*
131          * Check for leftovers.  Either we finished exactly, or we have
132          * one remaining 16-bit chunk.
133          */
134         if ((n & 0x02) != 0) {
135             *(uint16_t*)d = *(uint16_t*)s;
136         }
137     } else {
138         /*
139          * Copy backward, starting at the end.
140          */
141         d += n;
142         s += n;
143 
144         if ((((uintptr_t) d | (uintptr_t) s) & 0x03) != 0) {
145             /* try for 32-bit alignment */
146             if ((((uintptr_t) d ^ (uintptr_t) s) & 0x03) != 0) {
147                 copyCount = n;
148             } else {
149                 copyCount = 2;
150             }
151             n -= copyCount;
152             copyCount /= sizeof(uint16_t);
153 
154             while (copyCount--) {
155                 d -= sizeof(uint16_t);
156                 s -= sizeof(uint16_t);
157                 *(uint16_t*)d = *(uint16_t*)s;
158             }
159         }
160 
161         /* copy 32-bit aligned words */
162         copyCount = n / sizeof(uint32_t);
163         while (copyCount--) {
164             d -= sizeof(uint32_t);
165             s -= sizeof(uint32_t);
166             *(uint32_t*)d = *(uint32_t*)s;
167         }
168 
169         /* copy leftovers */
170         if ((n & 0x02) != 0) {
171             d -= sizeof(uint16_t);
172             s -= sizeof(uint16_t);
173             *(uint16_t*)d = *(uint16_t*)s;
174         }
175     }
176 }
177 
178 #define move16 memmove_words
179 #define move32 memmove_words
180 
181 /*
182  * public static void arraycopy(Object src, int srcPos, Object dest,
183  *      int destPos, int length)
184  *
185  * The description of this function is long, and describes a multitude
186  * of checks and exceptions.
187  */
Dalvik_java_lang_System_arraycopy(const u4 * args,JValue * pResult)188 static void Dalvik_java_lang_System_arraycopy(const u4* args, JValue* pResult)
189 {
190     ArrayObject* srcArray = (ArrayObject*) args[0];
191     int srcPos = args[1];
192     ArrayObject* dstArray = (ArrayObject*) args[2];
193     int dstPos = args[3];
194     int length = args[4];
195 
196     /* Check for null pointers. */
197     if (srcArray == NULL) {
198         dvmThrowNullPointerException("src == null");
199         RETURN_VOID();
200     }
201     if (dstArray == NULL) {
202         dvmThrowNullPointerException("dst == null");
203         RETURN_VOID();
204     }
205 
206     /* Make sure source and destination are arrays. */
207     if (!dvmIsArray(srcArray)) {
208         dvmThrowArrayStoreExceptionNotArray(((Object*)srcArray)->clazz, "source");
209         RETURN_VOID();
210     }
211     if (!dvmIsArray(dstArray)) {
212         dvmThrowArrayStoreExceptionNotArray(((Object*)dstArray)->clazz, "destination");
213         RETURN_VOID();
214     }
215 
216     /* avoid int overflow */
217     if (srcPos < 0 || dstPos < 0 || length < 0 ||
218         srcPos > (int) srcArray->length - length ||
219         dstPos > (int) dstArray->length - length)
220     {
221         dvmThrowExceptionFmt(gDvm.exArrayIndexOutOfBoundsException,
222             "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d",
223             srcArray->length, srcPos, dstArray->length, dstPos, length);
224         RETURN_VOID();
225     }
226 
227     ClassObject* srcClass = srcArray->clazz;
228     ClassObject* dstClass = dstArray->clazz;
229     char srcType = srcClass->descriptor[1];
230     char dstType = dstClass->descriptor[1];
231 
232     /*
233      * If one of the arrays holds a primitive type, the other array must
234      * hold the same type.
235      */
236     bool srcPrim = (srcType != '[' && srcType != 'L');
237     bool dstPrim = (dstType != '[' && dstType != 'L');
238     if (srcPrim || dstPrim) {
239         if (srcPrim != dstPrim || srcType != dstType) {
240             dvmThrowArrayStoreExceptionIncompatibleArrays(srcClass, dstClass);
241             RETURN_VOID();
242         }
243 
244         if (false) ALOGD("arraycopy prim[%c] dst=%p %d src=%p %d len=%d",
245             srcType, dstArray->contents, dstPos,
246             srcArray->contents, srcPos, length);
247 
248         switch (srcType) {
249         case 'B':
250         case 'Z':
251             /* 1 byte per element */
252             memmove((u1*) dstArray->contents + dstPos,
253                 (const u1*) srcArray->contents + srcPos,
254                 length);
255             break;
256         case 'C':
257         case 'S':
258             /* 2 bytes per element */
259             move16((u1*) dstArray->contents + dstPos * 2,
260                 (const u1*) srcArray->contents + srcPos * 2,
261                 length * 2);
262             break;
263         case 'F':
264         case 'I':
265             /* 4 bytes per element */
266             move32((u1*) dstArray->contents + dstPos * 4,
267                 (const u1*) srcArray->contents + srcPos * 4,
268                 length * 4);
269             break;
270         case 'D':
271         case 'J':
272             /*
273              * 8 bytes per element.  We don't need to guarantee atomicity
274              * of the entire 64-bit word, so we can use the 32-bit copier.
275              */
276             move32((u1*) dstArray->contents + dstPos * 8,
277                 (const u1*) srcArray->contents + srcPos * 8,
278                 length * 8);
279             break;
280         default:        /* illegal array type */
281             ALOGE("Weird array type '%s'", srcClass->descriptor);
282             dvmAbort();
283         }
284     } else {
285         /*
286          * Neither class is primitive.  See if elements in "src" are instances
287          * of elements in "dst" (e.g. copy String to String or String to
288          * Object).
289          */
290         const int width = sizeof(Object*);
291 
292         if (srcClass->arrayDim == dstClass->arrayDim &&
293             dvmInstanceof(srcClass, dstClass))
294         {
295             /*
296              * "dst" can hold "src"; copy the whole thing.
297              */
298             if (false) ALOGD("arraycopy ref dst=%p %d src=%p %d len=%d",
299                 dstArray->contents, dstPos * width,
300                 srcArray->contents, srcPos * width,
301                 length * width);
302             move32((u1*)dstArray->contents + dstPos * width,
303                 (const u1*)srcArray->contents + srcPos * width,
304                 length * width);
305             dvmWriteBarrierArray(dstArray, dstPos, dstPos+length);
306         } else {
307             /*
308              * The arrays are not fundamentally compatible.  However, we
309              * may still be able to do this if the destination object is
310              * compatible (e.g. copy Object[] to String[], but the Object
311              * being copied is actually a String).  We need to copy elements
312              * one by one until something goes wrong.
313              *
314              * Because of overlapping moves, what we really want to do
315              * is compare the types and count up how many we can move,
316              * then call move32() to shift the actual data.  If we just
317              * start from the front we could do a smear rather than a move.
318              */
319             Object** srcObj;
320             int copyCount;
321             ClassObject*   clazz = NULL;
322 
323             srcObj = ((Object**)(void*)srcArray->contents) + srcPos;
324 
325             if (length > 0 && srcObj[0] != NULL)
326             {
327                 clazz = srcObj[0]->clazz;
328                 if (!dvmCanPutArrayElement(clazz, dstClass))
329                     clazz = NULL;
330             }
331 
332             for (copyCount = 0; copyCount < length; copyCount++)
333             {
334                 if (srcObj[copyCount] != NULL &&
335                     srcObj[copyCount]->clazz != clazz &&
336                     !dvmCanPutArrayElement(srcObj[copyCount]->clazz, dstClass))
337                 {
338                     /* can't put this element into the array */
339                     break;
340                 }
341             }
342 
343             if (false) ALOGD("arraycopy iref dst=%p %d src=%p %d count=%d of %d",
344                 dstArray->contents, dstPos * width,
345                 srcArray->contents, srcPos * width,
346                 copyCount, length);
347             move32((u1*)dstArray->contents + dstPos * width,
348                 (const u1*)srcArray->contents + srcPos * width,
349                 copyCount * width);
350             dvmWriteBarrierArray(dstArray, 0, copyCount);
351             if (copyCount != length) {
352                 dvmThrowArrayStoreExceptionIncompatibleArrayElement(srcPos + copyCount,
353                         srcObj[copyCount]->clazz, dstClass);
354                 RETURN_VOID();
355             }
356         }
357     }
358 
359     RETURN_VOID();
360 }
361 
362 /*
363  * static long currentTimeMillis()
364  *
365  * Current time, in miliseconds.  This doesn't need to be internal to the
366  * VM, but we're already handling java.lang.System here.
367  */
Dalvik_java_lang_System_currentTimeMillis(const u4 * args,JValue * pResult)368 static void Dalvik_java_lang_System_currentTimeMillis(const u4* args,
369     JValue* pResult)
370 {
371     struct timeval tv;
372 
373     UNUSED_PARAMETER(args);
374 
375     gettimeofday(&tv, (struct timezone *) NULL);
376     long long when = tv.tv_sec * 1000LL + tv.tv_usec / 1000;
377 
378     RETURN_LONG(when);
379 }
380 
381 /*
382  * static long nanoTime()
383  *
384  * Current monotonically-increasing time, in nanoseconds.  This doesn't
385  * need to be internal to the VM, but we're already handling
386  * java.lang.System here.
387  */
Dalvik_java_lang_System_nanoTime(const u4 * args,JValue * pResult)388 static void Dalvik_java_lang_System_nanoTime(const u4* args, JValue* pResult)
389 {
390     UNUSED_PARAMETER(args);
391 
392     u8 when = dvmGetRelativeTimeNsec();
393     RETURN_LONG(when);
394 }
395 
396 /*
397  * static int identityHashCode(Object x)
398  *
399  * Returns that hash code that the default hashCode()
400  * method would return for "x", even if "x"s class
401  * overrides hashCode().
402  */
Dalvik_java_lang_System_identityHashCode(const u4 * args,JValue * pResult)403 static void Dalvik_java_lang_System_identityHashCode(const u4* args,
404     JValue* pResult)
405 {
406     Object* thisPtr = (Object*) args[0];
407     RETURN_INT(dvmIdentityHashCode(thisPtr));
408 }
409 
Dalvik_java_lang_System_mapLibraryName(const u4 * args,JValue * pResult)410 static void Dalvik_java_lang_System_mapLibraryName(const u4* args,
411     JValue* pResult)
412 {
413     StringObject* nameObj = (StringObject*) args[0];
414     StringObject* result = NULL;
415     char* name;
416     char* mappedName;
417 
418     if (nameObj == NULL) {
419         dvmThrowNullPointerException("userLibName == null");
420         RETURN_VOID();
421     }
422 
423     name = dvmCreateCstrFromString(nameObj);
424     mappedName = dvmCreateSystemLibraryName(name);
425     if (mappedName != NULL) {
426         result = dvmCreateStringFromCstr(mappedName);
427         dvmReleaseTrackedAlloc((Object*) result, NULL);
428     }
429 
430     free(name);
431     free(mappedName);
432     RETURN_PTR(result);
433 }
434 
435 const DalvikNativeMethod dvm_java_lang_System[] = {
436     { "arraycopy",          "(Ljava/lang/Object;ILjava/lang/Object;II)V",
437         Dalvik_java_lang_System_arraycopy },
438     { "currentTimeMillis",  "()J",
439         Dalvik_java_lang_System_currentTimeMillis },
440     { "identityHashCode",  "(Ljava/lang/Object;)I",
441         Dalvik_java_lang_System_identityHashCode },
442     { "mapLibraryName",     "(Ljava/lang/String;)Ljava/lang/String;",
443         Dalvik_java_lang_System_mapLibraryName },
444     { "nanoTime",  "()J",
445         Dalvik_java_lang_System_nanoTime },
446     { NULL, NULL, NULL },
447 };
448