1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/OwningPtr.h"
14 #include "llvm/ADT/edit_distance.h"
15 #include <bitset>
16
17 using namespace llvm;
18
19 // MSVC emits references to this into the translation units which reference it.
20 #ifndef _MSC_VER
21 const size_t StringRef::npos;
22 #endif
23
ascii_tolower(char x)24 static char ascii_tolower(char x) {
25 if (x >= 'A' && x <= 'Z')
26 return x - 'A' + 'a';
27 return x;
28 }
29
ascii_toupper(char x)30 static char ascii_toupper(char x) {
31 if (x >= 'a' && x <= 'z')
32 return x - 'a' + 'A';
33 return x;
34 }
35
ascii_isdigit(char x)36 static bool ascii_isdigit(char x) {
37 return x >= '0' && x <= '9';
38 }
39
40 /// compare_lower - Compare strings, ignoring case.
compare_lower(StringRef RHS) const41 int StringRef::compare_lower(StringRef RHS) const {
42 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
43 unsigned char LHC = ascii_tolower(Data[I]);
44 unsigned char RHC = ascii_tolower(RHS.Data[I]);
45 if (LHC != RHC)
46 return LHC < RHC ? -1 : 1;
47 }
48
49 if (Length == RHS.Length)
50 return 0;
51 return Length < RHS.Length ? -1 : 1;
52 }
53
54 /// compare_numeric - Compare strings, handle embedded numbers.
compare_numeric(StringRef RHS) const55 int StringRef::compare_numeric(StringRef RHS) const {
56 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
57 // Check for sequences of digits.
58 if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
59 // The longer sequence of numbers is considered larger.
60 // This doesn't really handle prefixed zeros well.
61 size_t J;
62 for (J = I + 1; J != E + 1; ++J) {
63 bool ld = J < Length && ascii_isdigit(Data[J]);
64 bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
65 if (ld != rd)
66 return rd ? -1 : 1;
67 if (!rd)
68 break;
69 }
70 // The two number sequences have the same length (J-I), just memcmp them.
71 if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
72 return Res < 0 ? -1 : 1;
73 // Identical number sequences, continue search after the numbers.
74 I = J - 1;
75 continue;
76 }
77 if (Data[I] != RHS.Data[I])
78 return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
79 }
80 if (Length == RHS.Length)
81 return 0;
82 return Length < RHS.Length ? -1 : 1;
83 }
84
85 // Compute the edit distance between the two given strings.
edit_distance(llvm::StringRef Other,bool AllowReplacements,unsigned MaxEditDistance)86 unsigned StringRef::edit_distance(llvm::StringRef Other,
87 bool AllowReplacements,
88 unsigned MaxEditDistance) {
89 return llvm::ComputeEditDistance(
90 llvm::ArrayRef<char>(data(), size()),
91 llvm::ArrayRef<char>(Other.data(), Other.size()),
92 AllowReplacements, MaxEditDistance);
93 }
94
95 //===----------------------------------------------------------------------===//
96 // String Operations
97 //===----------------------------------------------------------------------===//
98
lower() const99 std::string StringRef::lower() const {
100 std::string Result(size(), char());
101 for (size_type i = 0, e = size(); i != e; ++i) {
102 Result[i] = ascii_tolower(Data[i]);
103 }
104 return Result;
105 }
106
upper() const107 std::string StringRef::upper() const {
108 std::string Result(size(), char());
109 for (size_type i = 0, e = size(); i != e; ++i) {
110 Result[i] = ascii_toupper(Data[i]);
111 }
112 return Result;
113 }
114
115 //===----------------------------------------------------------------------===//
116 // String Searching
117 //===----------------------------------------------------------------------===//
118
119
120 /// find - Search for the first string \arg Str in the string.
121 ///
122 /// \return - The index of the first occurrence of \arg Str, or npos if not
123 /// found.
find(StringRef Str,size_t From) const124 size_t StringRef::find(StringRef Str, size_t From) const {
125 size_t N = Str.size();
126 if (N > Length)
127 return npos;
128
129 // For short haystacks or unsupported needles fall back to the naive algorithm
130 if (Length < 16 || N > 255 || N == 0) {
131 for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
132 if (substr(i, N).equals(Str))
133 return i;
134 return npos;
135 }
136
137 if (From >= Length)
138 return npos;
139
140 // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
141 uint8_t BadCharSkip[256];
142 std::memset(BadCharSkip, N, 256);
143 for (unsigned i = 0; i != N-1; ++i)
144 BadCharSkip[(uint8_t)Str[i]] = N-1-i;
145
146 unsigned Len = Length-From, Pos = From;
147 while (Len >= N) {
148 if (substr(Pos, N).equals(Str)) // See if this is the correct substring.
149 return Pos;
150
151 // Otherwise skip the appropriate number of bytes.
152 uint8_t Skip = BadCharSkip[(uint8_t)(*this)[Pos+N-1]];
153 Len -= Skip;
154 Pos += Skip;
155 }
156
157 return npos;
158 }
159
160 /// rfind - Search for the last string \arg Str in the string.
161 ///
162 /// \return - The index of the last occurrence of \arg Str, or npos if not
163 /// found.
rfind(StringRef Str) const164 size_t StringRef::rfind(StringRef Str) const {
165 size_t N = Str.size();
166 if (N > Length)
167 return npos;
168 for (size_t i = Length - N + 1, e = 0; i != e;) {
169 --i;
170 if (substr(i, N).equals(Str))
171 return i;
172 }
173 return npos;
174 }
175
176 /// find_first_of - Find the first character in the string that is in \arg
177 /// Chars, or npos if not found.
178 ///
179 /// Note: O(size() + Chars.size())
find_first_of(StringRef Chars,size_t From) const180 StringRef::size_type StringRef::find_first_of(StringRef Chars,
181 size_t From) const {
182 std::bitset<1 << CHAR_BIT> CharBits;
183 for (size_type i = 0; i != Chars.size(); ++i)
184 CharBits.set((unsigned char)Chars[i]);
185
186 for (size_type i = min(From, Length), e = Length; i != e; ++i)
187 if (CharBits.test((unsigned char)Data[i]))
188 return i;
189 return npos;
190 }
191
192 /// find_first_not_of - Find the first character in the string that is not
193 /// \arg C or npos if not found.
find_first_not_of(char C,size_t From) const194 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
195 for (size_type i = min(From, Length), e = Length; i != e; ++i)
196 if (Data[i] != C)
197 return i;
198 return npos;
199 }
200
201 /// find_first_not_of - Find the first character in the string that is not
202 /// in the string \arg Chars, or npos if not found.
203 ///
204 /// Note: O(size() + Chars.size())
find_first_not_of(StringRef Chars,size_t From) const205 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
206 size_t From) const {
207 std::bitset<1 << CHAR_BIT> CharBits;
208 for (size_type i = 0; i != Chars.size(); ++i)
209 CharBits.set((unsigned char)Chars[i]);
210
211 for (size_type i = min(From, Length), e = Length; i != e; ++i)
212 if (!CharBits.test((unsigned char)Data[i]))
213 return i;
214 return npos;
215 }
216
217 /// find_last_of - Find the last character in the string that is in \arg C,
218 /// or npos if not found.
219 ///
220 /// Note: O(size() + Chars.size())
find_last_of(StringRef Chars,size_t From) const221 StringRef::size_type StringRef::find_last_of(StringRef Chars,
222 size_t From) const {
223 std::bitset<1 << CHAR_BIT> CharBits;
224 for (size_type i = 0; i != Chars.size(); ++i)
225 CharBits.set((unsigned char)Chars[i]);
226
227 for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
228 if (CharBits.test((unsigned char)Data[i]))
229 return i;
230 return npos;
231 }
232
233 /// find_last_not_of - Find the last character in the string that is not
234 /// \arg C, or npos if not found.
find_last_not_of(char C,size_t From) const235 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
236 for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
237 if (Data[i] != C)
238 return i;
239 return npos;
240 }
241
242 /// find_last_not_of - Find the last character in the string that is not in
243 /// \arg Chars, or npos if not found.
244 ///
245 /// Note: O(size() + Chars.size())
find_last_not_of(StringRef Chars,size_t From) const246 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
247 size_t From) const {
248 std::bitset<1 << CHAR_BIT> CharBits;
249 for (size_type i = 0, e = Chars.size(); i != e; ++i)
250 CharBits.set((unsigned char)Chars[i]);
251
252 for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
253 if (!CharBits.test((unsigned char)Data[i]))
254 return i;
255 return npos;
256 }
257
split(SmallVectorImpl<StringRef> & A,StringRef Separators,int MaxSplit,bool KeepEmpty) const258 void StringRef::split(SmallVectorImpl<StringRef> &A,
259 StringRef Separators, int MaxSplit,
260 bool KeepEmpty) const {
261 StringRef rest = *this;
262
263 // rest.data() is used to distinguish cases like "a," that splits into
264 // "a" + "" and "a" that splits into "a" + 0.
265 for (int splits = 0;
266 rest.data() != NULL && (MaxSplit < 0 || splits < MaxSplit);
267 ++splits) {
268 std::pair<StringRef, StringRef> p = rest.split(Separators);
269
270 if (KeepEmpty || p.first.size() != 0)
271 A.push_back(p.first);
272 rest = p.second;
273 }
274 // If we have a tail left, add it.
275 if (rest.data() != NULL && (rest.size() != 0 || KeepEmpty))
276 A.push_back(rest);
277 }
278
279 //===----------------------------------------------------------------------===//
280 // Helpful Algorithms
281 //===----------------------------------------------------------------------===//
282
283 /// count - Return the number of non-overlapped occurrences of \arg Str in
284 /// the string.
count(StringRef Str) const285 size_t StringRef::count(StringRef Str) const {
286 size_t Count = 0;
287 size_t N = Str.size();
288 if (N > Length)
289 return 0;
290 for (size_t i = 0, e = Length - N + 1; i != e; ++i)
291 if (substr(i, N).equals(Str))
292 ++Count;
293 return Count;
294 }
295
GetAutoSenseRadix(StringRef & Str)296 static unsigned GetAutoSenseRadix(StringRef &Str) {
297 if (Str.startswith("0x")) {
298 Str = Str.substr(2);
299 return 16;
300 }
301
302 if (Str.startswith("0b")) {
303 Str = Str.substr(2);
304 return 2;
305 }
306
307 if (Str.startswith("0o")) {
308 Str = Str.substr(2);
309 return 8;
310 }
311
312 if (Str.startswith("0"))
313 return 8;
314
315 return 10;
316 }
317
318
319 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
320 /// sequence of radix up to 36 to an unsigned long long value.
getAsUnsignedInteger(StringRef Str,unsigned Radix,unsigned long long & Result)321 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
322 unsigned long long &Result) {
323 // Autosense radix if not specified.
324 if (Radix == 0)
325 Radix = GetAutoSenseRadix(Str);
326
327 // Empty strings (after the radix autosense) are invalid.
328 if (Str.empty()) return true;
329
330 // Parse all the bytes of the string given this radix. Watch for overflow.
331 Result = 0;
332 while (!Str.empty()) {
333 unsigned CharVal;
334 if (Str[0] >= '0' && Str[0] <= '9')
335 CharVal = Str[0]-'0';
336 else if (Str[0] >= 'a' && Str[0] <= 'z')
337 CharVal = Str[0]-'a'+10;
338 else if (Str[0] >= 'A' && Str[0] <= 'Z')
339 CharVal = Str[0]-'A'+10;
340 else
341 return true;
342
343 // If the parsed value is larger than the integer radix, the string is
344 // invalid.
345 if (CharVal >= Radix)
346 return true;
347
348 // Add in this character.
349 unsigned long long PrevResult = Result;
350 Result = Result*Radix+CharVal;
351
352 // Check for overflow by shifting back and seeing if bits were lost.
353 if (Result/Radix < PrevResult)
354 return true;
355
356 Str = Str.substr(1);
357 }
358
359 return false;
360 }
361
getAsSignedInteger(StringRef Str,unsigned Radix,long long & Result)362 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
363 long long &Result) {
364 unsigned long long ULLVal;
365
366 // Handle positive strings first.
367 if (Str.empty() || Str.front() != '-') {
368 if (getAsUnsignedInteger(Str, Radix, ULLVal) ||
369 // Check for value so large it overflows a signed value.
370 (long long)ULLVal < 0)
371 return true;
372 Result = ULLVal;
373 return false;
374 }
375
376 // Get the positive part of the value.
377 if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) ||
378 // Reject values so large they'd overflow as negative signed, but allow
379 // "-0". This negates the unsigned so that the negative isn't undefined
380 // on signed overflow.
381 (long long)-ULLVal > 0)
382 return true;
383
384 Result = -ULLVal;
385 return false;
386 }
387
getAsInteger(unsigned Radix,APInt & Result) const388 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
389 StringRef Str = *this;
390
391 // Autosense radix if not specified.
392 if (Radix == 0)
393 Radix = GetAutoSenseRadix(Str);
394
395 assert(Radix > 1 && Radix <= 36);
396
397 // Empty strings (after the radix autosense) are invalid.
398 if (Str.empty()) return true;
399
400 // Skip leading zeroes. This can be a significant improvement if
401 // it means we don't need > 64 bits.
402 while (!Str.empty() && Str.front() == '0')
403 Str = Str.substr(1);
404
405 // If it was nothing but zeroes....
406 if (Str.empty()) {
407 Result = APInt(64, 0);
408 return false;
409 }
410
411 // (Over-)estimate the required number of bits.
412 unsigned Log2Radix = 0;
413 while ((1U << Log2Radix) < Radix) Log2Radix++;
414 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
415
416 unsigned BitWidth = Log2Radix * Str.size();
417 if (BitWidth < Result.getBitWidth())
418 BitWidth = Result.getBitWidth(); // don't shrink the result
419 else if (BitWidth > Result.getBitWidth())
420 Result = Result.zext(BitWidth);
421
422 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
423 if (!IsPowerOf2Radix) {
424 // These must have the same bit-width as Result.
425 RadixAP = APInt(BitWidth, Radix);
426 CharAP = APInt(BitWidth, 0);
427 }
428
429 // Parse all the bytes of the string given this radix.
430 Result = 0;
431 while (!Str.empty()) {
432 unsigned CharVal;
433 if (Str[0] >= '0' && Str[0] <= '9')
434 CharVal = Str[0]-'0';
435 else if (Str[0] >= 'a' && Str[0] <= 'z')
436 CharVal = Str[0]-'a'+10;
437 else if (Str[0] >= 'A' && Str[0] <= 'Z')
438 CharVal = Str[0]-'A'+10;
439 else
440 return true;
441
442 // If the parsed value is larger than the integer radix, the string is
443 // invalid.
444 if (CharVal >= Radix)
445 return true;
446
447 // Add in this character.
448 if (IsPowerOf2Radix) {
449 Result <<= Log2Radix;
450 Result |= CharVal;
451 } else {
452 Result *= RadixAP;
453 CharAP = CharVal;
454 Result += CharAP;
455 }
456
457 Str = Str.substr(1);
458 }
459
460 return false;
461 }
462
463
464 // Implementation of StringRef hashing.
hash_value(StringRef S)465 hash_code llvm::hash_value(StringRef S) {
466 return hash_combine_range(S.begin(), S.end());
467 }
468