• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "dyld"
15 #include "llvm/ExecutionEngine/RuntimeDyld.h"
16 #include "ObjectImageCommon.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/Path.h"
22 
23 using namespace llvm;
24 using namespace llvm::object;
25 
26 // Empty out-of-line virtual destructor as the key function.
~RTDyldMemoryManager()27 RTDyldMemoryManager::~RTDyldMemoryManager() {}
~RuntimeDyldImpl()28 RuntimeDyldImpl::~RuntimeDyldImpl() {}
29 
30 namespace llvm {
31 
32 // Resolve the relocations for all symbols we currently know about.
resolveRelocations()33 void RuntimeDyldImpl::resolveRelocations() {
34   // First, resolve relocations associated with external symbols.
35   resolveExternalSymbols();
36 
37   // Just iterate over the sections we have and resolve all the relocations
38   // in them. Gross overkill, but it gets the job done.
39   for (int i = 0, e = Sections.size(); i != e; ++i) {
40     uint64_t Addr = Sections[i].LoadAddress;
41     DEBUG(dbgs() << "Resolving relocations Section #" << i
42             << "\t" << format("%p", (uint8_t *)Addr)
43             << "\n");
44     resolveRelocationList(Relocations[i], Addr);
45   }
46 }
47 
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)48 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
49                                         uint64_t TargetAddress) {
50   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
51     if (Sections[i].Address == LocalAddress) {
52       reassignSectionAddress(i, TargetAddress);
53       return;
54     }
55   }
56   llvm_unreachable("Attempting to remap address of unknown section!");
57 }
58 
59 // Subclasses can implement this method to create specialized image instances.
60 // The caller owns the pointer that is returned.
createObjectImage(ObjectBuffer * InputBuffer)61 ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
62   return new ObjectImageCommon(InputBuffer);
63 }
64 
loadObject(ObjectBuffer * InputBuffer)65 ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
66   OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
67   if (!obj)
68     report_fatal_error("Unable to create object image from memory buffer!");
69 
70   Arch = (Triple::ArchType)obj->getArch();
71 
72   // Symbols found in this object
73   StringMap<SymbolLoc> LocalSymbols;
74   // Used sections from the object file
75   ObjSectionToIDMap LocalSections;
76 
77   // Common symbols requiring allocation, with their sizes and alignments
78   CommonSymbolMap CommonSymbols;
79   // Maximum required total memory to allocate all common symbols
80   uint64_t CommonSize = 0;
81 
82   error_code err;
83   // Parse symbols
84   DEBUG(dbgs() << "Parse symbols:\n");
85   for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
86        i != e; i.increment(err)) {
87     Check(err);
88     object::SymbolRef::Type SymType;
89     StringRef Name;
90     Check(i->getType(SymType));
91     Check(i->getName(Name));
92 
93     uint32_t flags;
94     Check(i->getFlags(flags));
95 
96     bool isCommon = flags & SymbolRef::SF_Common;
97     if (isCommon) {
98       // Add the common symbols to a list.  We'll allocate them all below.
99       uint64_t Align = getCommonSymbolAlignment(*i);
100       uint64_t Size = 0;
101       Check(i->getSize(Size));
102       CommonSize += Size + Align;
103       CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
104     } else {
105       if (SymType == object::SymbolRef::ST_Function ||
106           SymType == object::SymbolRef::ST_Data ||
107           SymType == object::SymbolRef::ST_Unknown) {
108         uint64_t FileOffset;
109         StringRef SectionData;
110         bool IsCode;
111         section_iterator si = obj->end_sections();
112         Check(i->getFileOffset(FileOffset));
113         Check(i->getSection(si));
114         if (si == obj->end_sections()) continue;
115         Check(si->getContents(SectionData));
116         Check(si->isText(IsCode));
117         const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
118                                 (uintptr_t)FileOffset;
119         uintptr_t SectOffset = (uintptr_t)(SymPtr -
120                                            (const uint8_t*)SectionData.begin());
121         unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
122         LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
123         DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
124                      << " flags: " << flags
125                      << " SID: " << SectionID
126                      << " Offset: " << format("%p", SectOffset));
127         GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
128       }
129     }
130     DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
131   }
132 
133   // Allocate common symbols
134   if (CommonSize != 0)
135     emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
136 
137   // Parse and process relocations
138   DEBUG(dbgs() << "Parse relocations:\n");
139   for (section_iterator si = obj->begin_sections(),
140        se = obj->end_sections(); si != se; si.increment(err)) {
141     Check(err);
142     bool isFirstRelocation = true;
143     unsigned SectionID = 0;
144     StubMap Stubs;
145 
146     for (relocation_iterator i = si->begin_relocations(),
147          e = si->end_relocations(); i != e; i.increment(err)) {
148       Check(err);
149 
150       // If it's the first relocation in this section, find its SectionID
151       if (isFirstRelocation) {
152         SectionID = findOrEmitSection(*obj, *si, true, LocalSections);
153         DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
154         isFirstRelocation = false;
155       }
156 
157       ObjRelocationInfo RI;
158       RI.SectionID = SectionID;
159       Check(i->getAdditionalInfo(RI.AdditionalInfo));
160       Check(i->getOffset(RI.Offset));
161       Check(i->getSymbol(RI.Symbol));
162       Check(i->getType(RI.Type));
163 
164       DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
165                    << " Offset: " << format("%p", (uintptr_t)RI.Offset)
166                    << " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
167                    << "\n");
168       processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
169     }
170   }
171 
172   return obj.take();
173 }
174 
emitCommonSymbols(ObjectImage & Obj,const CommonSymbolMap & CommonSymbols,uint64_t TotalSize,SymbolTableMap & SymbolTable)175 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
176                                         const CommonSymbolMap &CommonSymbols,
177                                         uint64_t TotalSize,
178                                         SymbolTableMap &SymbolTable) {
179   // Allocate memory for the section
180   unsigned SectionID = Sections.size();
181   uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
182                                               SectionID, false);
183   if (!Addr)
184     report_fatal_error("Unable to allocate memory for common symbols!");
185   uint64_t Offset = 0;
186   Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, TotalSize, 0));
187   memset(Addr, 0, TotalSize);
188 
189   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
190                << " new addr: " << format("%p", Addr)
191                << " DataSize: " << TotalSize
192                << "\n");
193 
194   // Assign the address of each symbol
195   for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
196        itEnd = CommonSymbols.end(); it != itEnd; it++) {
197     uint64_t Size = it->second.first;
198     uint64_t Align = it->second.second;
199     StringRef Name;
200     it->first.getName(Name);
201     if (Align) {
202       // This symbol has an alignment requirement.
203       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
204       Addr += AlignOffset;
205       Offset += AlignOffset;
206       DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
207                       format("%p\n", Addr));
208     }
209     Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
210     SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
211     Offset += Size;
212     Addr += Size;
213   }
214 }
215 
emitSection(ObjectImage & Obj,const SectionRef & Section,bool IsCode)216 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
217                                       const SectionRef &Section,
218                                       bool IsCode) {
219 
220   unsigned StubBufSize = 0,
221            StubSize = getMaxStubSize();
222   error_code err;
223   if (StubSize > 0) {
224     for (relocation_iterator i = Section.begin_relocations(),
225          e = Section.end_relocations(); i != e; i.increment(err), Check(err))
226       StubBufSize += StubSize;
227   }
228   StringRef data;
229   uint64_t Alignment64;
230   Check(Section.getContents(data));
231   Check(Section.getAlignment(Alignment64));
232 
233   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
234   bool IsRequired;
235   bool IsVirtual;
236   bool IsZeroInit;
237   bool IsReadOnly;
238   uint64_t DataSize;
239   StringRef Name;
240   Check(Section.isRequiredForExecution(IsRequired));
241   Check(Section.isVirtual(IsVirtual));
242   Check(Section.isZeroInit(IsZeroInit));
243   Check(Section.isReadOnlyData(IsReadOnly));
244   Check(Section.getSize(DataSize));
245   Check(Section.getName(Name));
246 
247   unsigned Allocate;
248   unsigned SectionID = Sections.size();
249   uint8_t *Addr;
250   const char *pData = 0;
251 
252   // Some sections, such as debug info, don't need to be loaded for execution.
253   // Leave those where they are.
254   if (IsRequired) {
255     Allocate = DataSize + StubBufSize;
256     Addr = IsCode
257       ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
258       : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
259     if (!Addr)
260       report_fatal_error("Unable to allocate section memory!");
261 
262     // Virtual sections have no data in the object image, so leave pData = 0
263     if (!IsVirtual)
264       pData = data.data();
265 
266     // Zero-initialize or copy the data from the image
267     if (IsZeroInit || IsVirtual)
268       memset(Addr, 0, DataSize);
269     else
270       memcpy(Addr, pData, DataSize);
271 
272     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
273                  << " Name: " << Name
274                  << " obj addr: " << format("%p", pData)
275                  << " new addr: " << format("%p", Addr)
276                  << " DataSize: " << DataSize
277                  << " StubBufSize: " << StubBufSize
278                  << " Allocate: " << Allocate
279                  << "\n");
280     Obj.updateSectionAddress(Section, (uint64_t)Addr);
281   }
282   else {
283     // Even if we didn't load the section, we need to record an entry for it
284     // to handle later processing (and by 'handle' I mean don't do anything
285     // with these sections).
286     Allocate = 0;
287     Addr = 0;
288     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
289                  << " Name: " << Name
290                  << " obj addr: " << format("%p", data.data())
291                  << " new addr: 0"
292                  << " DataSize: " << DataSize
293                  << " StubBufSize: " << StubBufSize
294                  << " Allocate: " << Allocate
295                  << "\n");
296   }
297 
298   Sections.push_back(SectionEntry(Name, Addr, Allocate, DataSize,
299 				  (uintptr_t)pData));
300   return SectionID;
301 }
302 
findOrEmitSection(ObjectImage & Obj,const SectionRef & Section,bool IsCode,ObjSectionToIDMap & LocalSections)303 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
304                                             const SectionRef &Section,
305                                             bool IsCode,
306                                             ObjSectionToIDMap &LocalSections) {
307 
308   unsigned SectionID = 0;
309   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
310   if (i != LocalSections.end())
311     SectionID = i->second;
312   else {
313     SectionID = emitSection(Obj, Section, IsCode);
314     LocalSections[Section] = SectionID;
315   }
316   return SectionID;
317 }
318 
addRelocationForSection(const RelocationEntry & RE,unsigned SectionID)319 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
320                                               unsigned SectionID) {
321   Relocations[SectionID].push_back(RE);
322 }
323 
addRelocationForSymbol(const RelocationEntry & RE,StringRef SymbolName)324 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
325                                              StringRef SymbolName) {
326   // Relocation by symbol.  If the symbol is found in the global symbol table,
327   // create an appropriate section relocation.  Otherwise, add it to
328   // ExternalSymbolRelocations.
329   SymbolTableMap::const_iterator Loc =
330       GlobalSymbolTable.find(SymbolName);
331   if (Loc == GlobalSymbolTable.end()) {
332     ExternalSymbolRelocations[SymbolName].push_back(RE);
333   } else {
334     // Copy the RE since we want to modify its addend.
335     RelocationEntry RECopy = RE;
336     RECopy.Addend += Loc->second.second;
337     Relocations[Loc->second.first].push_back(RECopy);
338   }
339 }
340 
createStubFunction(uint8_t * Addr)341 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
342   if (Arch == Triple::arm) {
343     // TODO: There is only ARM far stub now. We should add the Thumb stub,
344     // and stubs for branches Thumb - ARM and ARM - Thumb.
345     uint32_t *StubAddr = (uint32_t*)Addr;
346     *StubAddr = 0xe51ff004; // ldr pc,<label>
347     return (uint8_t*)++StubAddr;
348   } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
349     uint32_t *StubAddr = (uint32_t*)Addr;
350     // 0:   3c190000        lui     t9,%hi(addr).
351     // 4:   27390000        addiu   t9,t9,%lo(addr).
352     // 8:   03200008        jr      t9.
353     // c:   00000000        nop.
354     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
355     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
356 
357     *StubAddr = LuiT9Instr;
358     StubAddr++;
359     *StubAddr = AdduiT9Instr;
360     StubAddr++;
361     *StubAddr = JrT9Instr;
362     StubAddr++;
363     *StubAddr = NopInstr;
364     return Addr;
365   } else if (Arch == Triple::ppc64) {
366     // PowerPC64 stub: the address points to a function descriptor
367     // instead of the function itself. Load the function address
368     // on r11 and sets it to control register. Also loads the function
369     // TOC in r2 and environment pointer to r11.
370     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
371     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
372     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
373     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
374     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
375     writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
376     writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
377     writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
378     writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
379     writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
380     writeInt32BE(Addr+40, 0x4E800420); // bctr
381 
382     return Addr;
383   }
384   return Addr;
385 }
386 
387 // Assign an address to a symbol name and resolve all the relocations
388 // associated with it.
reassignSectionAddress(unsigned SectionID,uint64_t Addr)389 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
390                                              uint64_t Addr) {
391   // The address to use for relocation resolution is not
392   // the address of the local section buffer. We must be doing
393   // a remote execution environment of some sort. Relocations can't
394   // be applied until all the sections have been moved.  The client must
395   // trigger this with a call to MCJIT::finalize() or
396   // RuntimeDyld::resolveRelocations().
397   //
398   // Addr is a uint64_t because we can't assume the pointer width
399   // of the target is the same as that of the host. Just use a generic
400   // "big enough" type.
401   Sections[SectionID].LoadAddress = Addr;
402 }
403 
resolveRelocationEntry(const RelocationEntry & RE,uint64_t Value)404 void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
405                                              uint64_t Value) {
406   // Ignore relocations for sections that were not loaded
407   if (Sections[RE.SectionID].Address != 0) {
408     DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
409           << " + " << RE.Offset << " ("
410           << format("%p", Sections[RE.SectionID].Address + RE.Offset) << ")"
411           << " RelType: " << RE.RelType
412           << " Addend: " << RE.Addend
413           << "\n");
414 
415     resolveRelocation(Sections[RE.SectionID], RE.Offset,
416                       Value, RE.RelType, RE.Addend);
417   }
418 }
419 
resolveRelocationList(const RelocationList & Relocs,uint64_t Value)420 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
421                                             uint64_t Value) {
422   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
423     resolveRelocationEntry(Relocs[i], Value);
424   }
425 }
426 
resolveExternalSymbols()427 void RuntimeDyldImpl::resolveExternalSymbols() {
428   StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
429                                       e = ExternalSymbolRelocations.end();
430   for (; i != e; i++) {
431     StringRef Name = i->first();
432     RelocationList &Relocs = i->second;
433     SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
434     if (Loc == GlobalSymbolTable.end()) {
435       if (Name.size() == 0) {
436         // This is an absolute symbol, use an address of zero.
437         DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
438         resolveRelocationList(Relocs, 0);
439       } else {
440         // This is an external symbol, try to get its address from
441         // MemoryManager.
442         uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
443                                                                    true);
444         DEBUG(dbgs() << "Resolving relocations Name: " << Name
445                 << "\t" << format("%p", Addr)
446                 << "\n");
447         resolveRelocationList(Relocs, (uintptr_t)Addr);
448       }
449     } else {
450       report_fatal_error("Expected external symbol");
451     }
452   }
453 }
454 
455 
456 //===----------------------------------------------------------------------===//
457 // RuntimeDyld class implementation
RuntimeDyld(RTDyldMemoryManager * mm)458 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
459   // FIXME: There's a potential issue lurking here if a single instance of
460   // RuntimeDyld is used to load multiple objects.  The current implementation
461   // associates a single memory manager with a RuntimeDyld instance.  Even
462   // though the public class spawns a new 'impl' instance for each load,
463   // they share a single memory manager.  This can become a problem when page
464   // permissions are applied.
465   Dyld = 0;
466   MM = mm;
467 }
468 
~RuntimeDyld()469 RuntimeDyld::~RuntimeDyld() {
470   delete Dyld;
471 }
472 
loadObject(ObjectBuffer * InputBuffer)473 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
474   if (!Dyld) {
475     sys::LLVMFileType type = sys::IdentifyFileType(
476             InputBuffer->getBufferStart(),
477             static_cast<unsigned>(InputBuffer->getBufferSize()));
478     switch (type) {
479       case sys::ELF_Relocatable_FileType:
480       case sys::ELF_Executable_FileType:
481       case sys::ELF_SharedObject_FileType:
482       case sys::ELF_Core_FileType:
483         Dyld = new RuntimeDyldELF(MM);
484         break;
485       case sys::Mach_O_Object_FileType:
486       case sys::Mach_O_Executable_FileType:
487       case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
488       case sys::Mach_O_Core_FileType:
489       case sys::Mach_O_PreloadExecutable_FileType:
490       case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
491       case sys::Mach_O_DynamicLinker_FileType:
492       case sys::Mach_O_Bundle_FileType:
493       case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
494       case sys::Mach_O_DSYMCompanion_FileType:
495         Dyld = new RuntimeDyldMachO(MM);
496         break;
497       case sys::Unknown_FileType:
498       case sys::Bitcode_FileType:
499       case sys::Archive_FileType:
500       case sys::COFF_FileType:
501         report_fatal_error("Incompatible object format!");
502     }
503   } else {
504     if (!Dyld->isCompatibleFormat(InputBuffer))
505       report_fatal_error("Incompatible object format!");
506   }
507 
508   return Dyld->loadObject(InputBuffer);
509 }
510 
getSymbolAddress(StringRef Name)511 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
512   return Dyld->getSymbolAddress(Name);
513 }
514 
getSymbolLoadAddress(StringRef Name)515 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
516   return Dyld->getSymbolLoadAddress(Name);
517 }
518 
resolveRelocations()519 void RuntimeDyld::resolveRelocations() {
520   Dyld->resolveRelocations();
521 }
522 
reassignSectionAddress(unsigned SectionID,uint64_t Addr)523 void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
524                                          uint64_t Addr) {
525   Dyld->reassignSectionAddress(SectionID, Addr);
526 }
527 
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)528 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
529                                     uint64_t TargetAddress) {
530   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
531 }
532 
getErrorString()533 StringRef RuntimeDyld::getErrorString() {
534   return Dyld->getErrorString();
535 }
536 
537 } // end namespace llvm
538