• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 //     function-scope locals)
17 //   - All functions/classes/etc reside in namespace __tsan, except for those
18 //     declared in tsan_interface.h.
19 //   - Platform-specific files should be used instead of ifdefs (*).
20 //   - No system headers included in header files (*).
21 //   - Platform specific headres included only into platform-specific files (*).
22 //
23 //  (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28 
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_common.h"
31 #include "sanitizer_common/sanitizer_thread_registry.h"
32 #include "tsan_clock.h"
33 #include "tsan_defs.h"
34 #include "tsan_flags.h"
35 #include "tsan_sync.h"
36 #include "tsan_trace.h"
37 #include "tsan_vector.h"
38 #include "tsan_report.h"
39 #include "tsan_platform.h"
40 #include "tsan_mutexset.h"
41 
42 #if SANITIZER_WORDSIZE != 64
43 # error "ThreadSanitizer is supported only on 64-bit platforms"
44 #endif
45 
46 namespace __tsan {
47 
48 // Descriptor of user's memory block.
49 struct MBlock {
50   /*
51   u64 mtx : 1;  // must be first
52   u64 lst : 44;
53   u64 stk : 31;  // on word boundary
54   u64 tid : kTidBits;
55   u64 siz : 128 - 1 - 31 - 44 - kTidBits;  // 39
56   */
57   u64 raw[2];
58 
InitMBlock59   void Init(uptr siz, u32 tid, u32 stk) {
60     raw[0] = raw[1] = 0;
61     raw[1] |= (u64)siz << ((1 + 44 + 31 + kTidBits) % 64);
62     raw[1] |= (u64)tid << ((1 + 44 + 31) % 64);
63     raw[0] |= (u64)stk << (1 + 44);
64     raw[1] |= (u64)stk >> (64 - 44 - 1);
65     DCHECK_EQ(Size(), siz);
66     DCHECK_EQ(Tid(), tid);
67     DCHECK_EQ(StackId(), stk);
68   }
69 
TidMBlock70   u32 Tid() const {
71     return GetLsb(raw[1] >> ((1 + 44 + 31) % 64), kTidBits);
72   }
73 
SizeMBlock74   uptr Size() const {
75     return raw[1] >> ((1 + 31 + 44 + kTidBits) % 64);
76   }
77 
StackIdMBlock78   u32 StackId() const {
79     return (raw[0] >> (1 + 44)) | GetLsb(raw[1] << (64 - 44 - 1), 31);
80   }
81 
ListHeadMBlock82   SyncVar *ListHead() const {
83     return (SyncVar*)(GetLsb(raw[0] >> 1, 44) << 3);
84   }
85 
ListPushMBlock86   void ListPush(SyncVar *v) {
87     SyncVar *lst = ListHead();
88     v->next = lst;
89     u64 x = (u64)v ^ (u64)lst;
90     x = (x >> 3) << 1;
91     raw[0] ^= x;
92     DCHECK_EQ(ListHead(), v);
93   }
94 
ListPopMBlock95   SyncVar *ListPop() {
96     SyncVar *lst = ListHead();
97     SyncVar *nxt = lst->next;
98     lst->next = 0;
99     u64 x = (u64)lst ^ (u64)nxt;
100     x = (x >> 3) << 1;
101     raw[0] ^= x;
102     DCHECK_EQ(ListHead(), nxt);
103     return lst;
104   }
105 
ListResetMBlock106   void ListReset() {
107     SyncVar *lst = ListHead();
108     u64 x = (u64)lst;
109     x = (x >> 3) << 1;
110     raw[0] ^= x;
111     DCHECK_EQ(ListHead(), 0);
112   }
113 
114   void Lock();
115   void Unlock();
116   typedef GenericScopedLock<MBlock> ScopedLock;
117 };
118 
119 #ifndef TSAN_GO
120 #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
121 const uptr kAllocatorSpace = 0x7d0000000000ULL;
122 #else
123 const uptr kAllocatorSpace = 0x7d0000000000ULL;
124 #endif
125 const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
126 
127 struct MapUnmapCallback;
128 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
129     DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
130 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
131 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
132 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
133     SecondaryAllocator> Allocator;
134 Allocator *allocator();
135 #endif
136 
137 void TsanCheckFailed(const char *file, int line, const char *cond,
138                      u64 v1, u64 v2);
139 
140 // FastState (from most significant bit):
141 //   ignore          : 1
142 //   tid             : kTidBits
143 //   epoch           : kClkBits
144 //   unused          : -
145 //   history_size    : 3
146 class FastState {
147  public:
FastState(u64 tid,u64 epoch)148   FastState(u64 tid, u64 epoch) {
149     x_ = tid << kTidShift;
150     x_ |= epoch << kClkShift;
151     DCHECK_EQ(tid, this->tid());
152     DCHECK_EQ(epoch, this->epoch());
153     DCHECK_EQ(GetIgnoreBit(), false);
154   }
155 
FastState(u64 x)156   explicit FastState(u64 x)
157       : x_(x) {
158   }
159 
raw()160   u64 raw() const {
161     return x_;
162   }
163 
tid()164   u64 tid() const {
165     u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
166     return res;
167   }
168 
TidWithIgnore()169   u64 TidWithIgnore() const {
170     u64 res = x_ >> kTidShift;
171     return res;
172   }
173 
epoch()174   u64 epoch() const {
175     u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
176     return res;
177   }
178 
IncrementEpoch()179   void IncrementEpoch() {
180     u64 old_epoch = epoch();
181     x_ += 1 << kClkShift;
182     DCHECK_EQ(old_epoch + 1, epoch());
183     (void)old_epoch;
184   }
185 
SetIgnoreBit()186   void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()187   void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()188   bool GetIgnoreBit() const { return (s64)x_ < 0; }
189 
SetHistorySize(int hs)190   void SetHistorySize(int hs) {
191     CHECK_GE(hs, 0);
192     CHECK_LE(hs, 7);
193     x_ = (x_ & ~7) | hs;
194   }
195 
GetHistorySize()196   int GetHistorySize() const {
197     return (int)(x_ & 7);
198   }
199 
ClearHistorySize()200   void ClearHistorySize() {
201     x_ &= ~7;
202   }
203 
GetTracePos()204   u64 GetTracePos() const {
205     const int hs = GetHistorySize();
206     // When hs == 0, the trace consists of 2 parts.
207     const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
208     return epoch() & mask;
209   }
210 
211  private:
212   friend class Shadow;
213   static const int kTidShift = 64 - kTidBits - 1;
214   static const int kClkShift = kTidShift - kClkBits;
215   static const u64 kIgnoreBit = 1ull << 63;
216   static const u64 kFreedBit = 1ull << 63;
217   u64 x_;
218 };
219 
220 // Shadow (from most significant bit):
221 //   freed           : 1
222 //   tid             : kTidBits
223 //   epoch           : kClkBits
224 //   is_atomic       : 1
225 //   is_read         : 1
226 //   size_log        : 2
227 //   addr0           : 3
228 class Shadow : public FastState {
229  public:
Shadow(u64 x)230   explicit Shadow(u64 x)
231       : FastState(x) {
232   }
233 
Shadow(const FastState & s)234   explicit Shadow(const FastState &s)
235       : FastState(s.x_) {
236     ClearHistorySize();
237   }
238 
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)239   void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
240     DCHECK_EQ(x_ & 31, 0);
241     DCHECK_LE(addr0, 7);
242     DCHECK_LE(kAccessSizeLog, 3);
243     x_ |= (kAccessSizeLog << 3) | addr0;
244     DCHECK_EQ(kAccessSizeLog, size_log());
245     DCHECK_EQ(addr0, this->addr0());
246   }
247 
SetWrite(unsigned kAccessIsWrite)248   void SetWrite(unsigned kAccessIsWrite) {
249     DCHECK_EQ(x_ & kReadBit, 0);
250     if (!kAccessIsWrite)
251       x_ |= kReadBit;
252     DCHECK_EQ(kAccessIsWrite, IsWrite());
253   }
254 
SetAtomic(bool kIsAtomic)255   void SetAtomic(bool kIsAtomic) {
256     DCHECK(!IsAtomic());
257     if (kIsAtomic)
258       x_ |= kAtomicBit;
259     DCHECK_EQ(IsAtomic(), kIsAtomic);
260   }
261 
IsAtomic()262   bool IsAtomic() const {
263     return x_ & kAtomicBit;
264   }
265 
IsZero()266   bool IsZero() const {
267     return x_ == 0;
268   }
269 
TidsAreEqual(const Shadow s1,const Shadow s2)270   static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
271     u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
272     DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
273     return shifted_xor == 0;
274   }
275 
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)276   static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
277     u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
278     return masked_xor == 0;
279   }
280 
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)281   static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
282       unsigned kS2AccessSize) {
283     bool res = false;
284     u64 diff = s1.addr0() - s2.addr0();
285     if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
286       // if (s1.addr0() + size1) > s2.addr0()) return true;
287       if (s1.size() > -diff)  res = true;
288     } else {
289       // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
290       if (kS2AccessSize > diff) res = true;
291     }
292     DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
293     DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
294     return res;
295   }
296 
297   // The idea behind the offset is as follows.
298   // Consider that we have 8 bool's contained within a single 8-byte block
299   // (mapped to a single shadow "cell"). Now consider that we write to the bools
300   // from a single thread (which we consider the common case).
301   // W/o offsetting each access will have to scan 4 shadow values at average
302   // to find the corresponding shadow value for the bool.
303   // With offsetting we start scanning shadow with the offset so that
304   // each access hits necessary shadow straight off (at least in an expected
305   // optimistic case).
306   // This logic works seamlessly for any layout of user data. For example,
307   // if user data is {int, short, char, char}, then accesses to the int are
308   // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
309   // from a single thread won't need to scan all 8 shadow values.
ComputeSearchOffset()310   unsigned ComputeSearchOffset() {
311     return x_ & 7;
312   }
addr0()313   u64 addr0() const { return x_ & 7; }
size()314   u64 size() const { return 1ull << size_log(); }
IsWrite()315   bool IsWrite() const { return !IsRead(); }
IsRead()316   bool IsRead() const { return x_ & kReadBit; }
317 
318   // The idea behind the freed bit is as follows.
319   // When the memory is freed (or otherwise unaccessible) we write to the shadow
320   // values with tid/epoch related to the free and the freed bit set.
321   // During memory accesses processing the freed bit is considered
322   // as msb of tid. So any access races with shadow with freed bit set
323   // (it is as if write from a thread with which we never synchronized before).
324   // This allows us to detect accesses to freed memory w/o additional
325   // overheads in memory access processing and at the same time restore
326   // tid/epoch of free.
MarkAsFreed()327   void MarkAsFreed() {
328      x_ |= kFreedBit;
329   }
330 
IsFreed()331   bool IsFreed() const {
332     return x_ & kFreedBit;
333   }
334 
GetFreedAndReset()335   bool GetFreedAndReset() {
336     bool res = x_ & kFreedBit;
337     x_ &= ~kFreedBit;
338     return res;
339   }
340 
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)341   bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
342     // analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
343     bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
344         | (kIsAtomic << kAtomicShift));
345     DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
346     return v;
347   }
348 
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)349   bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
350     bool v = ((x_ >> kReadShift) & 3)
351         <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
352     DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
353         (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
354     return v;
355   }
356 
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)357   bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
358     bool v = ((x_ >> kReadShift) & 3)
359         >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
360     DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
361         (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
362     return v;
363   }
364 
365  private:
366   static const u64 kReadShift   = 5;
367   static const u64 kReadBit     = 1ull << kReadShift;
368   static const u64 kAtomicShift = 6;
369   static const u64 kAtomicBit   = 1ull << kAtomicShift;
370 
size_log()371   u64 size_log() const { return (x_ >> 3) & 3; }
372 
TwoRangesIntersectSLOW(const Shadow s1,const Shadow s2)373   static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
374     if (s1.addr0() == s2.addr0()) return true;
375     if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
376       return true;
377     if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
378       return true;
379     return false;
380   }
381 };
382 
383 struct SignalContext;
384 
385 // This struct is stored in TLS.
386 struct ThreadState {
387   FastState fast_state;
388   // Synch epoch represents the threads's epoch before the last synchronization
389   // action. It allows to reduce number of shadow state updates.
390   // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
391   // if we are processing write to X from the same thread at epoch=200,
392   // we do nothing, because both writes happen in the same 'synch epoch'.
393   // That is, if another memory access does not race with the former write,
394   // it does not race with the latter as well.
395   // QUESTION: can we can squeeze this into ThreadState::Fast?
396   // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
397   // taken by epoch between synchs.
398   // This way we can save one load from tls.
399   u64 fast_synch_epoch;
400   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
401   // We do not distinguish beteween ignoring reads and writes
402   // for better performance.
403   int ignore_reads_and_writes;
404   uptr *shadow_stack_pos;
405   u64 *racy_shadow_addr;
406   u64 racy_state[2];
407   Trace trace;
408 #ifndef TSAN_GO
409   // C/C++ uses embed shadow stack of fixed size.
410   uptr shadow_stack[kShadowStackSize];
411 #else
412   // Go uses satellite shadow stack with dynamic size.
413   uptr *shadow_stack;
414   uptr *shadow_stack_end;
415 #endif
416   MutexSet mset;
417   ThreadClock clock;
418 #ifndef TSAN_GO
419   AllocatorCache alloc_cache;
420 #endif
421   u64 stat[StatCnt];
422   const int tid;
423   const int unique_id;
424   int in_rtl;
425   bool in_symbolizer;
426   bool is_alive;
427   bool is_freeing;
428   const uptr stk_addr;
429   const uptr stk_size;
430   const uptr tls_addr;
431   const uptr tls_size;
432 
433   DeadlockDetector deadlock_detector;
434 
435   bool in_signal_handler;
436   SignalContext *signal_ctx;
437 
438 #ifndef TSAN_GO
439   u32 last_sleep_stack_id;
440   ThreadClock last_sleep_clock;
441 #endif
442 
443   // Set in regions of runtime that must be signal-safe and fork-safe.
444   // If set, malloc must not be called.
445   int nomalloc;
446 
447   explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
448                        uptr stk_addr, uptr stk_size,
449                        uptr tls_addr, uptr tls_size);
450 };
451 
452 Context *CTX();
453 
454 #ifndef TSAN_GO
455 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()456 INLINE ThreadState *cur_thread() {
457   return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
458 }
459 #endif
460 
461 // An info about a thread that is hold for some time after its termination.
462 struct ThreadDeadInfo {
463   Trace trace;
464 };
465 
466 class ThreadContext : public ThreadContextBase {
467  public:
468   explicit ThreadContext(int tid);
469   ~ThreadContext();
470   ThreadState *thr;
471 #ifdef TSAN_GO
472   StackTrace creation_stack;
473 #else
474   u32 creation_stack_id;
475 #endif
476   SyncClock sync;
477   // Epoch at which the thread had started.
478   // If we see an event from the thread stamped by an older epoch,
479   // the event is from a dead thread that shared tid with this thread.
480   u64 epoch0;
481   u64 epoch1;
482   ThreadDeadInfo *dead_info;
483 
484   // Override superclass callbacks.
485   void OnDead();
486   void OnJoined(void *arg);
487   void OnFinished();
488   void OnStarted(void *arg);
489   void OnCreated(void *arg);
490   void OnReset(void *arg);
491 };
492 
493 struct RacyStacks {
494   MD5Hash hash[2];
495   bool operator==(const RacyStacks &other) const {
496     if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
497       return true;
498     if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
499       return true;
500     return false;
501   }
502 };
503 
504 struct RacyAddress {
505   uptr addr_min;
506   uptr addr_max;
507 };
508 
509 struct FiredSuppression {
510   ReportType type;
511   uptr pc;
512 };
513 
514 struct Context {
515   Context();
516 
517   bool initialized;
518 
519   SyncTab synctab;
520 
521   Mutex report_mtx;
522   int nreported;
523   int nmissed_expected;
524 
525   ThreadRegistry *thread_registry;
526 
527   Vector<RacyStacks> racy_stacks;
528   Vector<RacyAddress> racy_addresses;
529   Vector<FiredSuppression> fired_suppressions;
530 
531   Flags flags;
532 
533   u64 stat[StatCnt];
534   u64 int_alloc_cnt[MBlockTypeCount];
535   u64 int_alloc_siz[MBlockTypeCount];
536 };
537 
538 class ScopedInRtl {
539  public:
540   ScopedInRtl();
541   ~ScopedInRtl();
542  private:
543   ThreadState*thr_;
544   int in_rtl_;
545   int errno_;
546 };
547 
548 class ScopedReport {
549  public:
550   explicit ScopedReport(ReportType typ);
551   ~ScopedReport();
552 
553   void AddStack(const StackTrace *stack);
554   void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
555                        const MutexSet *mset);
556   void AddThread(const ThreadContext *tctx);
557   void AddMutex(const SyncVar *s);
558   void AddLocation(uptr addr, uptr size);
559   void AddSleep(u32 stack_id);
560 
561   const ReportDesc *GetReport() const;
562 
563  private:
564   Context *ctx_;
565   ReportDesc *rep_;
566 
567   void AddMutex(u64 id);
568 
569   ScopedReport(const ScopedReport&);
570   void operator = (const ScopedReport&);
571 };
572 
573 void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
574 
575 void StatAggregate(u64 *dst, u64 *src);
576 void StatOutput(u64 *stat);
577 void ALWAYS_INLINE INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
578   if (kCollectStats)
579     thr->stat[typ] += n;
580 }
StatSet(ThreadState * thr,StatType typ,u64 n)581 void ALWAYS_INLINE INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
582   if (kCollectStats)
583     thr->stat[typ] = n;
584 }
585 
586 void MapShadow(uptr addr, uptr size);
587 void MapThreadTrace(uptr addr, uptr size);
588 void DontNeedShadowFor(uptr addr, uptr size);
589 void InitializeShadowMemory();
590 void InitializeInterceptors();
591 void InitializeDynamicAnnotations();
592 
593 void ReportRace(ThreadState *thr);
594 bool OutputReport(Context *ctx,
595                   const ScopedReport &srep,
596                   const ReportStack *suppress_stack1 = 0,
597                   const ReportStack *suppress_stack2 = 0);
598 bool IsFiredSuppression(Context *ctx,
599                         const ScopedReport &srep,
600                         const StackTrace &trace);
601 bool IsExpectedReport(uptr addr, uptr size);
602 bool FrameIsInternal(const ReportStack *frame);
603 ReportStack *SkipTsanInternalFrames(ReportStack *ent);
604 
605 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
606 # define DPrintf Printf
607 #else
608 # define DPrintf(...)
609 #endif
610 
611 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
612 # define DPrintf2 Printf
613 #else
614 # define DPrintf2(...)
615 #endif
616 
617 u32 CurrentStackId(ThreadState *thr, uptr pc);
618 void PrintCurrentStack(ThreadState *thr, uptr pc);
619 void PrintCurrentStackSlow();  // uses libunwind
620 
621 void Initialize(ThreadState *thr);
622 int Finalize(ThreadState *thr);
623 
624 SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
625                      bool write_lock, bool create);
626 SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
627 
628 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
629     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
630 void MemoryAccessImpl(ThreadState *thr, uptr addr,
631     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
632     u64 *shadow_mem, Shadow cur);
633 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
634     uptr size, bool is_write);
635 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
636     uptr size, uptr step, bool is_write);
637 
638 const int kSizeLog1 = 0;
639 const int kSizeLog2 = 1;
640 const int kSizeLog4 = 2;
641 const int kSizeLog8 = 3;
642 
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)643 void ALWAYS_INLINE INLINE MemoryRead(ThreadState *thr, uptr pc,
644                                      uptr addr, int kAccessSizeLog) {
645   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
646 }
647 
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)648 void ALWAYS_INLINE INLINE MemoryWrite(ThreadState *thr, uptr pc,
649                                       uptr addr, int kAccessSizeLog) {
650   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
651 }
652 
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)653 void ALWAYS_INLINE INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
654                                            uptr addr, int kAccessSizeLog) {
655   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
656 }
657 
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)658 void ALWAYS_INLINE INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
659                                             uptr addr, int kAccessSizeLog) {
660   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
661 }
662 
663 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
664 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
665 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
666 void IgnoreCtl(ThreadState *thr, bool write, bool begin);
667 
668 void FuncEntry(ThreadState *thr, uptr pc);
669 void FuncExit(ThreadState *thr);
670 
671 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
672 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
673 void ThreadFinish(ThreadState *thr);
674 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
675 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
676 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
677 void ThreadFinalize(ThreadState *thr);
678 void ThreadSetName(ThreadState *thr, const char *name);
679 int ThreadCount(ThreadState *thr);
680 void ProcessPendingSignals(ThreadState *thr);
681 
682 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
683                  bool rw, bool recursive, bool linker_init);
684 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
685 void MutexLock(ThreadState *thr, uptr pc, uptr addr);
686 void MutexUnlock(ThreadState *thr, uptr pc, uptr addr);
687 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr);
688 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
689 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
690 
691 void Acquire(ThreadState *thr, uptr pc, uptr addr);
692 void AcquireGlobal(ThreadState *thr, uptr pc);
693 void Release(ThreadState *thr, uptr pc, uptr addr);
694 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
695 void AfterSleep(ThreadState *thr, uptr pc);
696 
697 // The hacky call uses custom calling convention and an assembly thunk.
698 // It is considerably faster that a normal call for the caller
699 // if it is not executed (it is intended for slow paths from hot functions).
700 // The trick is that the call preserves all registers and the compiler
701 // does not treat it as a call.
702 // If it does not work for you, use normal call.
703 #if TSAN_DEBUG == 0
704 // The caller may not create the stack frame for itself at all,
705 // so we create a reserve stack frame for it (1024b must be enough).
706 #define HACKY_CALL(f) \
707   __asm__ __volatile__("sub $1024, %%rsp;" \
708                        "/*.cfi_adjust_cfa_offset 1024;*/" \
709                        ".hidden " #f "_thunk;" \
710                        "call " #f "_thunk;" \
711                        "add $1024, %%rsp;" \
712                        "/*.cfi_adjust_cfa_offset -1024;*/" \
713                        ::: "memory", "cc");
714 #else
715 #define HACKY_CALL(f) f()
716 #endif
717 
718 void TraceSwitch(ThreadState *thr);
719 uptr TraceTopPC(ThreadState *thr);
720 uptr TraceSize();
721 uptr TraceParts();
722 
723 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)724 void ALWAYS_INLINE INLINE TraceAddEvent(ThreadState *thr, FastState fs,
725                                         EventType typ, u64 addr) {
726   DCHECK_GE((int)typ, 0);
727   DCHECK_LE((int)typ, 7);
728   DCHECK_EQ(GetLsb(addr, 61), addr);
729   StatInc(thr, StatEvents);
730   u64 pos = fs.GetTracePos();
731   if (UNLIKELY((pos % kTracePartSize) == 0)) {
732 #ifndef TSAN_GO
733     HACKY_CALL(__tsan_trace_switch);
734 #else
735     TraceSwitch(thr);
736 #endif
737   }
738   Event *trace = (Event*)GetThreadTrace(fs.tid());
739   Event *evp = &trace[pos];
740   Event ev = (u64)addr | ((u64)typ << 61);
741   *evp = ev;
742 }
743 
744 }  // namespace __tsan
745 
746 #endif  // TSAN_RTL_H
747