1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 // function-scope locals)
17 // - All functions/classes/etc reside in namespace __tsan, except for those
18 // declared in tsan_interface.h.
19 // - Platform-specific files should be used instead of ifdefs (*).
20 // - No system headers included in header files (*).
21 // - Platform specific headres included only into platform-specific files (*).
22 //
23 // (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_common.h"
31 #include "sanitizer_common/sanitizer_thread_registry.h"
32 #include "tsan_clock.h"
33 #include "tsan_defs.h"
34 #include "tsan_flags.h"
35 #include "tsan_sync.h"
36 #include "tsan_trace.h"
37 #include "tsan_vector.h"
38 #include "tsan_report.h"
39 #include "tsan_platform.h"
40 #include "tsan_mutexset.h"
41
42 #if SANITIZER_WORDSIZE != 64
43 # error "ThreadSanitizer is supported only on 64-bit platforms"
44 #endif
45
46 namespace __tsan {
47
48 // Descriptor of user's memory block.
49 struct MBlock {
50 /*
51 u64 mtx : 1; // must be first
52 u64 lst : 44;
53 u64 stk : 31; // on word boundary
54 u64 tid : kTidBits;
55 u64 siz : 128 - 1 - 31 - 44 - kTidBits; // 39
56 */
57 u64 raw[2];
58
InitMBlock59 void Init(uptr siz, u32 tid, u32 stk) {
60 raw[0] = raw[1] = 0;
61 raw[1] |= (u64)siz << ((1 + 44 + 31 + kTidBits) % 64);
62 raw[1] |= (u64)tid << ((1 + 44 + 31) % 64);
63 raw[0] |= (u64)stk << (1 + 44);
64 raw[1] |= (u64)stk >> (64 - 44 - 1);
65 DCHECK_EQ(Size(), siz);
66 DCHECK_EQ(Tid(), tid);
67 DCHECK_EQ(StackId(), stk);
68 }
69
TidMBlock70 u32 Tid() const {
71 return GetLsb(raw[1] >> ((1 + 44 + 31) % 64), kTidBits);
72 }
73
SizeMBlock74 uptr Size() const {
75 return raw[1] >> ((1 + 31 + 44 + kTidBits) % 64);
76 }
77
StackIdMBlock78 u32 StackId() const {
79 return (raw[0] >> (1 + 44)) | GetLsb(raw[1] << (64 - 44 - 1), 31);
80 }
81
ListHeadMBlock82 SyncVar *ListHead() const {
83 return (SyncVar*)(GetLsb(raw[0] >> 1, 44) << 3);
84 }
85
ListPushMBlock86 void ListPush(SyncVar *v) {
87 SyncVar *lst = ListHead();
88 v->next = lst;
89 u64 x = (u64)v ^ (u64)lst;
90 x = (x >> 3) << 1;
91 raw[0] ^= x;
92 DCHECK_EQ(ListHead(), v);
93 }
94
ListPopMBlock95 SyncVar *ListPop() {
96 SyncVar *lst = ListHead();
97 SyncVar *nxt = lst->next;
98 lst->next = 0;
99 u64 x = (u64)lst ^ (u64)nxt;
100 x = (x >> 3) << 1;
101 raw[0] ^= x;
102 DCHECK_EQ(ListHead(), nxt);
103 return lst;
104 }
105
ListResetMBlock106 void ListReset() {
107 SyncVar *lst = ListHead();
108 u64 x = (u64)lst;
109 x = (x >> 3) << 1;
110 raw[0] ^= x;
111 DCHECK_EQ(ListHead(), 0);
112 }
113
114 void Lock();
115 void Unlock();
116 typedef GenericScopedLock<MBlock> ScopedLock;
117 };
118
119 #ifndef TSAN_GO
120 #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
121 const uptr kAllocatorSpace = 0x7d0000000000ULL;
122 #else
123 const uptr kAllocatorSpace = 0x7d0000000000ULL;
124 #endif
125 const uptr kAllocatorSize = 0x10000000000ULL; // 1T.
126
127 struct MapUnmapCallback;
128 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
129 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
130 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
131 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
132 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
133 SecondaryAllocator> Allocator;
134 Allocator *allocator();
135 #endif
136
137 void TsanCheckFailed(const char *file, int line, const char *cond,
138 u64 v1, u64 v2);
139
140 // FastState (from most significant bit):
141 // ignore : 1
142 // tid : kTidBits
143 // epoch : kClkBits
144 // unused : -
145 // history_size : 3
146 class FastState {
147 public:
FastState(u64 tid,u64 epoch)148 FastState(u64 tid, u64 epoch) {
149 x_ = tid << kTidShift;
150 x_ |= epoch << kClkShift;
151 DCHECK_EQ(tid, this->tid());
152 DCHECK_EQ(epoch, this->epoch());
153 DCHECK_EQ(GetIgnoreBit(), false);
154 }
155
FastState(u64 x)156 explicit FastState(u64 x)
157 : x_(x) {
158 }
159
raw()160 u64 raw() const {
161 return x_;
162 }
163
tid()164 u64 tid() const {
165 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
166 return res;
167 }
168
TidWithIgnore()169 u64 TidWithIgnore() const {
170 u64 res = x_ >> kTidShift;
171 return res;
172 }
173
epoch()174 u64 epoch() const {
175 u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
176 return res;
177 }
178
IncrementEpoch()179 void IncrementEpoch() {
180 u64 old_epoch = epoch();
181 x_ += 1 << kClkShift;
182 DCHECK_EQ(old_epoch + 1, epoch());
183 (void)old_epoch;
184 }
185
SetIgnoreBit()186 void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()187 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()188 bool GetIgnoreBit() const { return (s64)x_ < 0; }
189
SetHistorySize(int hs)190 void SetHistorySize(int hs) {
191 CHECK_GE(hs, 0);
192 CHECK_LE(hs, 7);
193 x_ = (x_ & ~7) | hs;
194 }
195
GetHistorySize()196 int GetHistorySize() const {
197 return (int)(x_ & 7);
198 }
199
ClearHistorySize()200 void ClearHistorySize() {
201 x_ &= ~7;
202 }
203
GetTracePos()204 u64 GetTracePos() const {
205 const int hs = GetHistorySize();
206 // When hs == 0, the trace consists of 2 parts.
207 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
208 return epoch() & mask;
209 }
210
211 private:
212 friend class Shadow;
213 static const int kTidShift = 64 - kTidBits - 1;
214 static const int kClkShift = kTidShift - kClkBits;
215 static const u64 kIgnoreBit = 1ull << 63;
216 static const u64 kFreedBit = 1ull << 63;
217 u64 x_;
218 };
219
220 // Shadow (from most significant bit):
221 // freed : 1
222 // tid : kTidBits
223 // epoch : kClkBits
224 // is_atomic : 1
225 // is_read : 1
226 // size_log : 2
227 // addr0 : 3
228 class Shadow : public FastState {
229 public:
Shadow(u64 x)230 explicit Shadow(u64 x)
231 : FastState(x) {
232 }
233
Shadow(const FastState & s)234 explicit Shadow(const FastState &s)
235 : FastState(s.x_) {
236 ClearHistorySize();
237 }
238
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)239 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
240 DCHECK_EQ(x_ & 31, 0);
241 DCHECK_LE(addr0, 7);
242 DCHECK_LE(kAccessSizeLog, 3);
243 x_ |= (kAccessSizeLog << 3) | addr0;
244 DCHECK_EQ(kAccessSizeLog, size_log());
245 DCHECK_EQ(addr0, this->addr0());
246 }
247
SetWrite(unsigned kAccessIsWrite)248 void SetWrite(unsigned kAccessIsWrite) {
249 DCHECK_EQ(x_ & kReadBit, 0);
250 if (!kAccessIsWrite)
251 x_ |= kReadBit;
252 DCHECK_EQ(kAccessIsWrite, IsWrite());
253 }
254
SetAtomic(bool kIsAtomic)255 void SetAtomic(bool kIsAtomic) {
256 DCHECK(!IsAtomic());
257 if (kIsAtomic)
258 x_ |= kAtomicBit;
259 DCHECK_EQ(IsAtomic(), kIsAtomic);
260 }
261
IsAtomic()262 bool IsAtomic() const {
263 return x_ & kAtomicBit;
264 }
265
IsZero()266 bool IsZero() const {
267 return x_ == 0;
268 }
269
TidsAreEqual(const Shadow s1,const Shadow s2)270 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
271 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
272 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
273 return shifted_xor == 0;
274 }
275
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)276 static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
277 u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
278 return masked_xor == 0;
279 }
280
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)281 static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
282 unsigned kS2AccessSize) {
283 bool res = false;
284 u64 diff = s1.addr0() - s2.addr0();
285 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
286 // if (s1.addr0() + size1) > s2.addr0()) return true;
287 if (s1.size() > -diff) res = true;
288 } else {
289 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
290 if (kS2AccessSize > diff) res = true;
291 }
292 DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
293 DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
294 return res;
295 }
296
297 // The idea behind the offset is as follows.
298 // Consider that we have 8 bool's contained within a single 8-byte block
299 // (mapped to a single shadow "cell"). Now consider that we write to the bools
300 // from a single thread (which we consider the common case).
301 // W/o offsetting each access will have to scan 4 shadow values at average
302 // to find the corresponding shadow value for the bool.
303 // With offsetting we start scanning shadow with the offset so that
304 // each access hits necessary shadow straight off (at least in an expected
305 // optimistic case).
306 // This logic works seamlessly for any layout of user data. For example,
307 // if user data is {int, short, char, char}, then accesses to the int are
308 // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
309 // from a single thread won't need to scan all 8 shadow values.
ComputeSearchOffset()310 unsigned ComputeSearchOffset() {
311 return x_ & 7;
312 }
addr0()313 u64 addr0() const { return x_ & 7; }
size()314 u64 size() const { return 1ull << size_log(); }
IsWrite()315 bool IsWrite() const { return !IsRead(); }
IsRead()316 bool IsRead() const { return x_ & kReadBit; }
317
318 // The idea behind the freed bit is as follows.
319 // When the memory is freed (or otherwise unaccessible) we write to the shadow
320 // values with tid/epoch related to the free and the freed bit set.
321 // During memory accesses processing the freed bit is considered
322 // as msb of tid. So any access races with shadow with freed bit set
323 // (it is as if write from a thread with which we never synchronized before).
324 // This allows us to detect accesses to freed memory w/o additional
325 // overheads in memory access processing and at the same time restore
326 // tid/epoch of free.
MarkAsFreed()327 void MarkAsFreed() {
328 x_ |= kFreedBit;
329 }
330
IsFreed()331 bool IsFreed() const {
332 return x_ & kFreedBit;
333 }
334
GetFreedAndReset()335 bool GetFreedAndReset() {
336 bool res = x_ & kFreedBit;
337 x_ &= ~kFreedBit;
338 return res;
339 }
340
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)341 bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
342 // analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
343 bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
344 | (kIsAtomic << kAtomicShift));
345 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
346 return v;
347 }
348
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)349 bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
350 bool v = ((x_ >> kReadShift) & 3)
351 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
352 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
353 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
354 return v;
355 }
356
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)357 bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
358 bool v = ((x_ >> kReadShift) & 3)
359 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
360 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
361 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
362 return v;
363 }
364
365 private:
366 static const u64 kReadShift = 5;
367 static const u64 kReadBit = 1ull << kReadShift;
368 static const u64 kAtomicShift = 6;
369 static const u64 kAtomicBit = 1ull << kAtomicShift;
370
size_log()371 u64 size_log() const { return (x_ >> 3) & 3; }
372
TwoRangesIntersectSLOW(const Shadow s1,const Shadow s2)373 static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
374 if (s1.addr0() == s2.addr0()) return true;
375 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
376 return true;
377 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
378 return true;
379 return false;
380 }
381 };
382
383 struct SignalContext;
384
385 // This struct is stored in TLS.
386 struct ThreadState {
387 FastState fast_state;
388 // Synch epoch represents the threads's epoch before the last synchronization
389 // action. It allows to reduce number of shadow state updates.
390 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
391 // if we are processing write to X from the same thread at epoch=200,
392 // we do nothing, because both writes happen in the same 'synch epoch'.
393 // That is, if another memory access does not race with the former write,
394 // it does not race with the latter as well.
395 // QUESTION: can we can squeeze this into ThreadState::Fast?
396 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
397 // taken by epoch between synchs.
398 // This way we can save one load from tls.
399 u64 fast_synch_epoch;
400 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
401 // We do not distinguish beteween ignoring reads and writes
402 // for better performance.
403 int ignore_reads_and_writes;
404 uptr *shadow_stack_pos;
405 u64 *racy_shadow_addr;
406 u64 racy_state[2];
407 Trace trace;
408 #ifndef TSAN_GO
409 // C/C++ uses embed shadow stack of fixed size.
410 uptr shadow_stack[kShadowStackSize];
411 #else
412 // Go uses satellite shadow stack with dynamic size.
413 uptr *shadow_stack;
414 uptr *shadow_stack_end;
415 #endif
416 MutexSet mset;
417 ThreadClock clock;
418 #ifndef TSAN_GO
419 AllocatorCache alloc_cache;
420 #endif
421 u64 stat[StatCnt];
422 const int tid;
423 const int unique_id;
424 int in_rtl;
425 bool in_symbolizer;
426 bool is_alive;
427 bool is_freeing;
428 const uptr stk_addr;
429 const uptr stk_size;
430 const uptr tls_addr;
431 const uptr tls_size;
432
433 DeadlockDetector deadlock_detector;
434
435 bool in_signal_handler;
436 SignalContext *signal_ctx;
437
438 #ifndef TSAN_GO
439 u32 last_sleep_stack_id;
440 ThreadClock last_sleep_clock;
441 #endif
442
443 // Set in regions of runtime that must be signal-safe and fork-safe.
444 // If set, malloc must not be called.
445 int nomalloc;
446
447 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
448 uptr stk_addr, uptr stk_size,
449 uptr tls_addr, uptr tls_size);
450 };
451
452 Context *CTX();
453
454 #ifndef TSAN_GO
455 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()456 INLINE ThreadState *cur_thread() {
457 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
458 }
459 #endif
460
461 // An info about a thread that is hold for some time after its termination.
462 struct ThreadDeadInfo {
463 Trace trace;
464 };
465
466 class ThreadContext : public ThreadContextBase {
467 public:
468 explicit ThreadContext(int tid);
469 ~ThreadContext();
470 ThreadState *thr;
471 #ifdef TSAN_GO
472 StackTrace creation_stack;
473 #else
474 u32 creation_stack_id;
475 #endif
476 SyncClock sync;
477 // Epoch at which the thread had started.
478 // If we see an event from the thread stamped by an older epoch,
479 // the event is from a dead thread that shared tid with this thread.
480 u64 epoch0;
481 u64 epoch1;
482 ThreadDeadInfo *dead_info;
483
484 // Override superclass callbacks.
485 void OnDead();
486 void OnJoined(void *arg);
487 void OnFinished();
488 void OnStarted(void *arg);
489 void OnCreated(void *arg);
490 void OnReset(void *arg);
491 };
492
493 struct RacyStacks {
494 MD5Hash hash[2];
495 bool operator==(const RacyStacks &other) const {
496 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
497 return true;
498 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
499 return true;
500 return false;
501 }
502 };
503
504 struct RacyAddress {
505 uptr addr_min;
506 uptr addr_max;
507 };
508
509 struct FiredSuppression {
510 ReportType type;
511 uptr pc;
512 };
513
514 struct Context {
515 Context();
516
517 bool initialized;
518
519 SyncTab synctab;
520
521 Mutex report_mtx;
522 int nreported;
523 int nmissed_expected;
524
525 ThreadRegistry *thread_registry;
526
527 Vector<RacyStacks> racy_stacks;
528 Vector<RacyAddress> racy_addresses;
529 Vector<FiredSuppression> fired_suppressions;
530
531 Flags flags;
532
533 u64 stat[StatCnt];
534 u64 int_alloc_cnt[MBlockTypeCount];
535 u64 int_alloc_siz[MBlockTypeCount];
536 };
537
538 class ScopedInRtl {
539 public:
540 ScopedInRtl();
541 ~ScopedInRtl();
542 private:
543 ThreadState*thr_;
544 int in_rtl_;
545 int errno_;
546 };
547
548 class ScopedReport {
549 public:
550 explicit ScopedReport(ReportType typ);
551 ~ScopedReport();
552
553 void AddStack(const StackTrace *stack);
554 void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
555 const MutexSet *mset);
556 void AddThread(const ThreadContext *tctx);
557 void AddMutex(const SyncVar *s);
558 void AddLocation(uptr addr, uptr size);
559 void AddSleep(u32 stack_id);
560
561 const ReportDesc *GetReport() const;
562
563 private:
564 Context *ctx_;
565 ReportDesc *rep_;
566
567 void AddMutex(u64 id);
568
569 ScopedReport(const ScopedReport&);
570 void operator = (const ScopedReport&);
571 };
572
573 void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
574
575 void StatAggregate(u64 *dst, u64 *src);
576 void StatOutput(u64 *stat);
577 void ALWAYS_INLINE INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
578 if (kCollectStats)
579 thr->stat[typ] += n;
580 }
StatSet(ThreadState * thr,StatType typ,u64 n)581 void ALWAYS_INLINE INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
582 if (kCollectStats)
583 thr->stat[typ] = n;
584 }
585
586 void MapShadow(uptr addr, uptr size);
587 void MapThreadTrace(uptr addr, uptr size);
588 void DontNeedShadowFor(uptr addr, uptr size);
589 void InitializeShadowMemory();
590 void InitializeInterceptors();
591 void InitializeDynamicAnnotations();
592
593 void ReportRace(ThreadState *thr);
594 bool OutputReport(Context *ctx,
595 const ScopedReport &srep,
596 const ReportStack *suppress_stack1 = 0,
597 const ReportStack *suppress_stack2 = 0);
598 bool IsFiredSuppression(Context *ctx,
599 const ScopedReport &srep,
600 const StackTrace &trace);
601 bool IsExpectedReport(uptr addr, uptr size);
602 bool FrameIsInternal(const ReportStack *frame);
603 ReportStack *SkipTsanInternalFrames(ReportStack *ent);
604
605 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
606 # define DPrintf Printf
607 #else
608 # define DPrintf(...)
609 #endif
610
611 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
612 # define DPrintf2 Printf
613 #else
614 # define DPrintf2(...)
615 #endif
616
617 u32 CurrentStackId(ThreadState *thr, uptr pc);
618 void PrintCurrentStack(ThreadState *thr, uptr pc);
619 void PrintCurrentStackSlow(); // uses libunwind
620
621 void Initialize(ThreadState *thr);
622 int Finalize(ThreadState *thr);
623
624 SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
625 bool write_lock, bool create);
626 SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
627
628 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
629 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
630 void MemoryAccessImpl(ThreadState *thr, uptr addr,
631 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
632 u64 *shadow_mem, Shadow cur);
633 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
634 uptr size, bool is_write);
635 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
636 uptr size, uptr step, bool is_write);
637
638 const int kSizeLog1 = 0;
639 const int kSizeLog2 = 1;
640 const int kSizeLog4 = 2;
641 const int kSizeLog8 = 3;
642
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)643 void ALWAYS_INLINE INLINE MemoryRead(ThreadState *thr, uptr pc,
644 uptr addr, int kAccessSizeLog) {
645 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
646 }
647
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)648 void ALWAYS_INLINE INLINE MemoryWrite(ThreadState *thr, uptr pc,
649 uptr addr, int kAccessSizeLog) {
650 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
651 }
652
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)653 void ALWAYS_INLINE INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
654 uptr addr, int kAccessSizeLog) {
655 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
656 }
657
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)658 void ALWAYS_INLINE INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
659 uptr addr, int kAccessSizeLog) {
660 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
661 }
662
663 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
664 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
665 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
666 void IgnoreCtl(ThreadState *thr, bool write, bool begin);
667
668 void FuncEntry(ThreadState *thr, uptr pc);
669 void FuncExit(ThreadState *thr);
670
671 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
672 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
673 void ThreadFinish(ThreadState *thr);
674 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
675 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
676 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
677 void ThreadFinalize(ThreadState *thr);
678 void ThreadSetName(ThreadState *thr, const char *name);
679 int ThreadCount(ThreadState *thr);
680 void ProcessPendingSignals(ThreadState *thr);
681
682 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
683 bool rw, bool recursive, bool linker_init);
684 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
685 void MutexLock(ThreadState *thr, uptr pc, uptr addr);
686 void MutexUnlock(ThreadState *thr, uptr pc, uptr addr);
687 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr);
688 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
689 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
690
691 void Acquire(ThreadState *thr, uptr pc, uptr addr);
692 void AcquireGlobal(ThreadState *thr, uptr pc);
693 void Release(ThreadState *thr, uptr pc, uptr addr);
694 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
695 void AfterSleep(ThreadState *thr, uptr pc);
696
697 // The hacky call uses custom calling convention and an assembly thunk.
698 // It is considerably faster that a normal call for the caller
699 // if it is not executed (it is intended for slow paths from hot functions).
700 // The trick is that the call preserves all registers and the compiler
701 // does not treat it as a call.
702 // If it does not work for you, use normal call.
703 #if TSAN_DEBUG == 0
704 // The caller may not create the stack frame for itself at all,
705 // so we create a reserve stack frame for it (1024b must be enough).
706 #define HACKY_CALL(f) \
707 __asm__ __volatile__("sub $1024, %%rsp;" \
708 "/*.cfi_adjust_cfa_offset 1024;*/" \
709 ".hidden " #f "_thunk;" \
710 "call " #f "_thunk;" \
711 "add $1024, %%rsp;" \
712 "/*.cfi_adjust_cfa_offset -1024;*/" \
713 ::: "memory", "cc");
714 #else
715 #define HACKY_CALL(f) f()
716 #endif
717
718 void TraceSwitch(ThreadState *thr);
719 uptr TraceTopPC(ThreadState *thr);
720 uptr TraceSize();
721 uptr TraceParts();
722
723 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)724 void ALWAYS_INLINE INLINE TraceAddEvent(ThreadState *thr, FastState fs,
725 EventType typ, u64 addr) {
726 DCHECK_GE((int)typ, 0);
727 DCHECK_LE((int)typ, 7);
728 DCHECK_EQ(GetLsb(addr, 61), addr);
729 StatInc(thr, StatEvents);
730 u64 pos = fs.GetTracePos();
731 if (UNLIKELY((pos % kTracePartSize) == 0)) {
732 #ifndef TSAN_GO
733 HACKY_CALL(__tsan_trace_switch);
734 #else
735 TraceSwitch(thr);
736 #endif
737 }
738 Event *trace = (Event*)GetThreadTrace(fs.tid());
739 Event *evp = &trace[pos];
740 Event ev = (u64)addr | ((u64)typ << 61);
741 *evp = ev;
742 }
743
744 } // namespace __tsan
745
746 #endif // TSAN_RTL_H
747