• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Defines the clang::ASTContext interface.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16 #define LLVM_CLANG_AST_ASTCONTEXT_H
17 
18 #include "clang/AST/ASTTypeTraits.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/LambdaMangleContext.h"
23 #include "clang/AST/NestedNameSpecifier.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/RawCommentList.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/TemplateName.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Basic/AddressSpaces.h"
30 #include "clang/Basic/IdentifierTable.h"
31 #include "clang/Basic/LangOptions.h"
32 #include "clang/Basic/OperatorKinds.h"
33 #include "clang/Basic/PartialDiagnostic.h"
34 #include "clang/Basic/VersionTuple.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/FoldingSet.h"
37 #include "llvm/ADT/IntrusiveRefCntPtr.h"
38 #include "llvm/ADT/OwningPtr.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/Support/Allocator.h"
42 #include <vector>
43 
44 namespace llvm {
45   struct fltSemantics;
46 }
47 
48 namespace clang {
49   class FileManager;
50   class ASTRecordLayout;
51   class BlockExpr;
52   class CharUnits;
53   class DiagnosticsEngine;
54   class Expr;
55   class ExternalASTSource;
56   class ASTMutationListener;
57   class IdentifierTable;
58   class SelectorTable;
59   class TargetInfo;
60   class CXXABI;
61   // Decls
62   class MangleContext;
63   class ObjCIvarDecl;
64   class ObjCPropertyDecl;
65   class UnresolvedSetIterator;
66   class UsingDecl;
67   class UsingShadowDecl;
68 
69   namespace Builtin { class Context; }
70 
71   namespace comments {
72     class FullComment;
73   }
74 
75 /// \brief Holds long-lived AST nodes (such as types and decls) that can be
76 /// referred to throughout the semantic analysis of a file.
77 class ASTContext : public RefCountedBase<ASTContext> {
this_()78   ASTContext &this_() { return *this; }
79 
80   mutable SmallVector<Type *, 0> Types;
81   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
82   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
83   mutable llvm::FoldingSet<PointerType> PointerTypes;
84   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
85   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
86   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
87   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
88   mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
89   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
90   mutable std::vector<VariableArrayType*> VariableArrayTypes;
91   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
92   mutable llvm::FoldingSet<DependentSizedExtVectorType>
93     DependentSizedExtVectorTypes;
94   mutable llvm::FoldingSet<VectorType> VectorTypes;
95   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
96   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
97     FunctionProtoTypes;
98   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
99   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
100   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
101   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
102     SubstTemplateTypeParmTypes;
103   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
104     SubstTemplateTypeParmPackTypes;
105   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
106     TemplateSpecializationTypes;
107   mutable llvm::FoldingSet<ParenType> ParenTypes;
108   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
109   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
110   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
111                                      ASTContext&>
112     DependentTemplateSpecializationTypes;
113   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
114   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
115   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
116   mutable llvm::FoldingSet<AutoType> AutoTypes;
117   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
118   llvm::FoldingSet<AttributedType> AttributedTypes;
119 
120   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
121   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
122   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
123     SubstTemplateTemplateParms;
124   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
125                                      ASTContext&>
126     SubstTemplateTemplateParmPacks;
127 
128   /// \brief The set of nested name specifiers.
129   ///
130   /// This set is managed by the NestedNameSpecifier class.
131   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
132   mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
133   friend class NestedNameSpecifier;
134 
135   /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
136   ///
137   /// This is lazily created.  This is intentionally not serialized.
138   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
139     ASTRecordLayouts;
140   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
141     ObjCLayouts;
142 
143   /// \brief A cache from types to size and alignment information.
144   typedef llvm::DenseMap<const Type*,
145                          std::pair<uint64_t, unsigned> > TypeInfoMap;
146   mutable TypeInfoMap MemoizedTypeInfo;
147 
148   /// \brief A cache mapping from CXXRecordDecls to key functions.
149   llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
150 
151   /// \brief Mapping from ObjCContainers to their ObjCImplementations.
152   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
153 
154   /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
155   /// interface.
156   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
157 
158   /// \brief Mapping from __block VarDecls to their copy initialization expr.
159   llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
160 
161   /// \brief Mapping from class scope functions specialization to their
162   /// template patterns.
163   llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
164     ClassScopeSpecializationPattern;
165 
166   /// \brief Representation of a "canonical" template template parameter that
167   /// is used in canonical template names.
168   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
169     TemplateTemplateParmDecl *Parm;
170 
171   public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl * Parm)172     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
173       : Parm(Parm) { }
174 
getParam()175     TemplateTemplateParmDecl *getParam() const { return Parm; }
176 
Profile(llvm::FoldingSetNodeID & ID)177     void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
178 
179     static void Profile(llvm::FoldingSetNodeID &ID,
180                         TemplateTemplateParmDecl *Parm);
181   };
182   mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
183     CanonTemplateTemplateParms;
184 
185   TemplateTemplateParmDecl *
186     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
187 
188   /// \brief The typedef for the __int128_t type.
189   mutable TypedefDecl *Int128Decl;
190 
191   /// \brief The typedef for the __uint128_t type.
192   mutable TypedefDecl *UInt128Decl;
193 
194   /// \brief The typedef for the target specific predefined
195   /// __builtin_va_list type.
196   mutable TypedefDecl *BuiltinVaListDecl;
197 
198   /// \brief The typedef for the predefined \c id type.
199   mutable TypedefDecl *ObjCIdDecl;
200 
201   /// \brief The typedef for the predefined \c SEL type.
202   mutable TypedefDecl *ObjCSelDecl;
203 
204   /// \brief The typedef for the predefined \c Class type.
205   mutable TypedefDecl *ObjCClassDecl;
206 
207   /// \brief The typedef for the predefined \c Protocol class in Objective-C.
208   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
209 
210   /// \brief The typedef for the predefined 'BOOL' type.
211   mutable TypedefDecl *BOOLDecl;
212 
213   // Typedefs which may be provided defining the structure of Objective-C
214   // pseudo-builtins
215   QualType ObjCIdRedefinitionType;
216   QualType ObjCClassRedefinitionType;
217   QualType ObjCSelRedefinitionType;
218 
219   QualType ObjCConstantStringType;
220   mutable RecordDecl *CFConstantStringTypeDecl;
221 
222   mutable QualType ObjCSuperType;
223 
224   QualType ObjCNSStringType;
225 
226   /// \brief The typedef declaration for the Objective-C "instancetype" type.
227   TypedefDecl *ObjCInstanceTypeDecl;
228 
229   /// \brief The type for the C FILE type.
230   TypeDecl *FILEDecl;
231 
232   /// \brief The type for the C jmp_buf type.
233   TypeDecl *jmp_bufDecl;
234 
235   /// \brief The type for the C sigjmp_buf type.
236   TypeDecl *sigjmp_bufDecl;
237 
238   /// \brief The type for the C ucontext_t type.
239   TypeDecl *ucontext_tDecl;
240 
241   /// \brief Type for the Block descriptor for Blocks CodeGen.
242   ///
243   /// Since this is only used for generation of debug info, it is not
244   /// serialized.
245   mutable RecordDecl *BlockDescriptorType;
246 
247   /// \brief Type for the Block descriptor for Blocks CodeGen.
248   ///
249   /// Since this is only used for generation of debug info, it is not
250   /// serialized.
251   mutable RecordDecl *BlockDescriptorExtendedType;
252 
253   /// \brief Declaration for the CUDA cudaConfigureCall function.
254   FunctionDecl *cudaConfigureCallDecl;
255 
256   TypeSourceInfo NullTypeSourceInfo;
257 
258   /// \brief Keeps track of all declaration attributes.
259   ///
260   /// Since so few decls have attrs, we keep them in a hash map instead of
261   /// wasting space in the Decl class.
262   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
263 
264   /// \brief Keeps track of the static data member templates from which
265   /// static data members of class template specializations were instantiated.
266   ///
267   /// This data structure stores the mapping from instantiations of static
268   /// data members to the static data member representations within the
269   /// class template from which they were instantiated along with the kind
270   /// of instantiation or specialization (a TemplateSpecializationKind - 1).
271   ///
272   /// Given the following example:
273   ///
274   /// \code
275   /// template<typename T>
276   /// struct X {
277   ///   static T value;
278   /// };
279   ///
280   /// template<typename T>
281   ///   T X<T>::value = T(17);
282   ///
283   /// int *x = &X<int>::value;
284   /// \endcode
285   ///
286   /// This mapping will contain an entry that maps from the VarDecl for
287   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
288   /// class template X) and will be marked TSK_ImplicitInstantiation.
289   llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
290     InstantiatedFromStaticDataMember;
291 
292   /// \brief Keeps track of the declaration from which a UsingDecl was
293   /// created during instantiation.
294   ///
295   /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
296   /// or an UnresolvedUsingTypenameDecl.
297   ///
298   /// For example:
299   /// \code
300   /// template<typename T>
301   /// struct A {
302   ///   void f();
303   /// };
304   ///
305   /// template<typename T>
306   /// struct B : A<T> {
307   ///   using A<T>::f;
308   /// };
309   ///
310   /// template struct B<int>;
311   /// \endcode
312   ///
313   /// This mapping will contain an entry that maps from the UsingDecl in
314   /// B<int> to the UnresolvedUsingDecl in B<T>.
315   llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
316 
317   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
318     InstantiatedFromUsingShadowDecl;
319 
320   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
321 
322   /// \brief Mapping that stores the methods overridden by a given C++
323   /// member function.
324   ///
325   /// Since most C++ member functions aren't virtual and therefore
326   /// don't override anything, we store the overridden functions in
327   /// this map on the side rather than within the CXXMethodDecl structure.
328   typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
329   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
330 
331   /// \brief Mapping from each declaration context to its corresponding lambda
332   /// mangling context.
333   llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
334 
335   llvm::DenseMap<const DeclContext *, unsigned> UnnamedMangleContexts;
336   llvm::DenseMap<const TagDecl *, unsigned> UnnamedMangleNumbers;
337 
338   /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
339   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
340   typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
341   ParameterIndexTable ParamIndices;
342 
343   ImportDecl *FirstLocalImport;
344   ImportDecl *LastLocalImport;
345 
346   TranslationUnitDecl *TUDecl;
347 
348   /// \brief The associated SourceManager object.a
349   SourceManager &SourceMgr;
350 
351   /// \brief The language options used to create the AST associated with
352   ///  this ASTContext object.
353   LangOptions &LangOpts;
354 
355   /// \brief The allocator used to create AST objects.
356   ///
357   /// AST objects are never destructed; rather, all memory associated with the
358   /// AST objects will be released when the ASTContext itself is destroyed.
359   mutable llvm::BumpPtrAllocator BumpAlloc;
360 
361   /// \brief Allocator for partial diagnostics.
362   PartialDiagnostic::StorageAllocator DiagAllocator;
363 
364   /// \brief The current C++ ABI.
365   OwningPtr<CXXABI> ABI;
366   CXXABI *createCXXABI(const TargetInfo &T);
367 
368   /// \brief The logical -> physical address space map.
369   const LangAS::Map *AddrSpaceMap;
370 
371   friend class ASTDeclReader;
372   friend class ASTReader;
373   friend class ASTWriter;
374   friend class CXXRecordDecl;
375 
376   const TargetInfo *Target;
377   clang::PrintingPolicy PrintingPolicy;
378 
379 public:
380   IdentifierTable &Idents;
381   SelectorTable &Selectors;
382   Builtin::Context &BuiltinInfo;
383   mutable DeclarationNameTable DeclarationNames;
384   OwningPtr<ExternalASTSource> ExternalSource;
385   ASTMutationListener *Listener;
386 
387   /// \brief Contains parents of a node.
388   typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
389 
390   /// \brief Maps from a node to its parents.
391   typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
392 
393   /// \brief Returns the parents of the given node.
394   ///
395   /// Note that this will lazily compute the parents of all nodes
396   /// and store them for later retrieval. Thus, the first call is O(n)
397   /// in the number of AST nodes.
398   ///
399   /// Caveats and FIXMEs:
400   /// Calculating the parent map over all AST nodes will need to load the
401   /// full AST. This can be undesirable in the case where the full AST is
402   /// expensive to create (for example, when using precompiled header
403   /// preambles). Thus, there are good opportunities for optimization here.
404   /// One idea is to walk the given node downwards, looking for references
405   /// to declaration contexts - once a declaration context is found, compute
406   /// the parent map for the declaration context; if that can satisfy the
407   /// request, loading the whole AST can be avoided. Note that this is made
408   /// more complex by statements in templates having multiple parents - those
409   /// problems can be solved by building closure over the templated parts of
410   /// the AST, which also avoids touching large parts of the AST.
411   /// Additionally, we will want to add an interface to already give a hint
412   /// where to search for the parents, for example when looking at a statement
413   /// inside a certain function.
414   ///
415   /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
416   /// NestedNameSpecifier or NestedNameSpecifierLoc.
417   template <typename NodeT>
getParents(const NodeT & Node)418   ParentVector getParents(const NodeT &Node) {
419     return getParents(ast_type_traits::DynTypedNode::create(Node));
420   }
421 
getParents(const ast_type_traits::DynTypedNode & Node)422   ParentVector getParents(const ast_type_traits::DynTypedNode &Node) {
423     assert(Node.getMemoizationData() &&
424            "Invariant broken: only nodes that support memoization may be "
425            "used in the parent map.");
426     if (!AllParents) {
427       // We always need to run over the whole translation unit, as
428       // hasAncestor can escape any subtree.
429       AllParents.reset(
430           ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
431     }
432     ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
433     if (I == AllParents->end()) {
434       return ParentVector();
435     }
436     return I->second;
437   }
438 
getPrintingPolicy()439   const clang::PrintingPolicy &getPrintingPolicy() const {
440     return PrintingPolicy;
441   }
442 
setPrintingPolicy(const clang::PrintingPolicy & Policy)443   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
444     PrintingPolicy = Policy;
445   }
446 
getSourceManager()447   SourceManager& getSourceManager() { return SourceMgr; }
getSourceManager()448   const SourceManager& getSourceManager() const { return SourceMgr; }
449 
getAllocator()450   llvm::BumpPtrAllocator &getAllocator() const {
451     return BumpAlloc;
452   }
453 
454   void *Allocate(unsigned Size, unsigned Align = 8) const {
455     return BumpAlloc.Allocate(Size, Align);
456   }
Deallocate(void * Ptr)457   void Deallocate(void *Ptr) const { }
458 
459   /// Return the total amount of physical memory allocated for representing
460   /// AST nodes and type information.
getASTAllocatedMemory()461   size_t getASTAllocatedMemory() const {
462     return BumpAlloc.getTotalMemory();
463   }
464   /// Return the total memory used for various side tables.
465   size_t getSideTableAllocatedMemory() const;
466 
getDiagAllocator()467   PartialDiagnostic::StorageAllocator &getDiagAllocator() {
468     return DiagAllocator;
469   }
470 
getTargetInfo()471   const TargetInfo &getTargetInfo() const { return *Target; }
472 
getLangOpts()473   const LangOptions& getLangOpts() const { return LangOpts; }
474 
475   DiagnosticsEngine &getDiagnostics() const;
476 
getFullLoc(SourceLocation Loc)477   FullSourceLoc getFullLoc(SourceLocation Loc) const {
478     return FullSourceLoc(Loc,SourceMgr);
479   }
480 
481   /// \brief All comments in this translation unit.
482   RawCommentList Comments;
483 
484   /// \brief True if comments are already loaded from ExternalASTSource.
485   mutable bool CommentsLoaded;
486 
487   class RawCommentAndCacheFlags {
488   public:
489     enum Kind {
490       /// We searched for a comment attached to the particular declaration, but
491       /// didn't find any.
492       ///
493       /// getRaw() == 0.
494       NoCommentInDecl = 0,
495 
496       /// We have found a comment attached to this particular declaration.
497       ///
498       /// getRaw() != 0.
499       FromDecl,
500 
501       /// This declaration does not have an attached comment, and we have
502       /// searched the redeclaration chain.
503       ///
504       /// If getRaw() == 0, the whole redeclaration chain does not have any
505       /// comments.
506       ///
507       /// If getRaw() != 0, it is a comment propagated from other
508       /// redeclaration.
509       FromRedecl
510     };
511 
getKind()512     Kind getKind() const LLVM_READONLY {
513       return Data.getInt();
514     }
515 
setKind(Kind K)516     void setKind(Kind K) {
517       Data.setInt(K);
518     }
519 
getRaw()520     const RawComment *getRaw() const LLVM_READONLY {
521       return Data.getPointer();
522     }
523 
setRaw(const RawComment * RC)524     void setRaw(const RawComment *RC) {
525       Data.setPointer(RC);
526     }
527 
getOriginalDecl()528     const Decl *getOriginalDecl() const LLVM_READONLY {
529       return OriginalDecl;
530     }
531 
setOriginalDecl(const Decl * Orig)532     void setOriginalDecl(const Decl *Orig) {
533       OriginalDecl = Orig;
534     }
535 
536   private:
537     llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
538     const Decl *OriginalDecl;
539   };
540 
541   /// \brief Mapping from declarations to comments attached to any
542   /// redeclaration.
543   ///
544   /// Raw comments are owned by Comments list.  This mapping is populated
545   /// lazily.
546   mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
547 
548   /// \brief Mapping from declarations to parsed comments attached to any
549   /// redeclaration.
550   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
551 
552   /// \brief Return the documentation comment attached to a given declaration,
553   /// without looking into cache.
554   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
555 
556 public:
getRawCommentList()557   RawCommentList &getRawCommentList() {
558     return Comments;
559   }
560 
addComment(const RawComment & RC)561   void addComment(const RawComment &RC) {
562     assert(LangOpts.RetainCommentsFromSystemHeaders ||
563            !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
564     Comments.addComment(RC, BumpAlloc);
565   }
566 
567   /// \brief Return the documentation comment attached to a given declaration.
568   /// Returns NULL if no comment is attached.
569   ///
570   /// \param OriginalDecl if not NULL, is set to declaration AST node that had
571   /// the comment, if the comment we found comes from a redeclaration.
572   const RawComment *getRawCommentForAnyRedecl(
573                                       const Decl *D,
574                                       const Decl **OriginalDecl = NULL) const;
575 
576   /// Return parsed documentation comment attached to a given declaration.
577   /// Returns NULL if no comment is attached.
578   ///
579   /// \param PP the Preprocessor used with this TU.  Could be NULL if
580   /// preprocessor is not available.
581   comments::FullComment *getCommentForDecl(const Decl *D,
582                                            const Preprocessor *PP) const;
583 
584   comments::FullComment *cloneFullComment(comments::FullComment *FC,
585                                          const Decl *D) const;
586 
587 private:
588   mutable comments::CommandTraits CommentCommandTraits;
589 
590 public:
getCommentCommandTraits()591   comments::CommandTraits &getCommentCommandTraits() const {
592     return CommentCommandTraits;
593   }
594 
595   /// \brief Retrieve the attributes for the given declaration.
596   AttrVec& getDeclAttrs(const Decl *D);
597 
598   /// \brief Erase the attributes corresponding to the given declaration.
599   void eraseDeclAttrs(const Decl *D);
600 
601   /// \brief If this variable is an instantiated static data member of a
602   /// class template specialization, returns the templated static data member
603   /// from which it was instantiated.
604   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
605                                                            const VarDecl *Var);
606 
607   FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
608 
609   void setClassScopeSpecializationPattern(FunctionDecl *FD,
610                                           FunctionDecl *Pattern);
611 
612   /// \brief Note that the static data member \p Inst is an instantiation of
613   /// the static data member template \p Tmpl of a class template.
614   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
615                                            TemplateSpecializationKind TSK,
616                         SourceLocation PointOfInstantiation = SourceLocation());
617 
618   /// \brief If the given using decl \p Inst is an instantiation of a
619   /// (possibly unresolved) using decl from a template instantiation,
620   /// return it.
621   NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
622 
623   /// \brief Remember that the using decl \p Inst is an instantiation
624   /// of the using decl \p Pattern of a class template.
625   void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
626 
627   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
628                                           UsingShadowDecl *Pattern);
629   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
630 
631   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
632 
633   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
634 
635   /// \brief Return \c true if \p FD is a zero-length bitfield which follows
636   /// the non-bitfield \p LastFD.
637   bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
638                                       const FieldDecl *LastFD) const;
639 
640   /// \brief Return \c true if \p FD is a zero-length bitfield which follows
641   /// the bitfield \p LastFD.
642   bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
643                                    const FieldDecl *LastFD) const;
644 
645   /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
646   /// \p LastFD.
647   bool BitfieldFollowsBitfield(const FieldDecl *FD,
648                                const FieldDecl *LastFD) const;
649 
650   /// \brief Return \c true if \p FD is not a bitfield which follows the
651   /// bitfield \p LastFD.
652   bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
653                                   const FieldDecl *LastFD) const;
654 
655   /// \brief Return \c true if \p FD is a bitfield which follows the
656   /// non-bitfield \p LastFD.
657   bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
658                                   const FieldDecl *LastFD) const;
659 
660   // Access to the set of methods overridden by the given C++ method.
661   typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
662   overridden_cxx_method_iterator
663   overridden_methods_begin(const CXXMethodDecl *Method) const;
664 
665   overridden_cxx_method_iterator
666   overridden_methods_end(const CXXMethodDecl *Method) const;
667 
668   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
669 
670   /// \brief Note that the given C++ \p Method overrides the given \p
671   /// Overridden method.
672   void addOverriddenMethod(const CXXMethodDecl *Method,
673                            const CXXMethodDecl *Overridden);
674 
675   /// \brief Return C++ or ObjC overridden methods for the given \p Method.
676   ///
677   /// An ObjC method is considered to override any method in the class's
678   /// base classes, its protocols, or its categories' protocols, that has
679   /// the same selector and is of the same kind (class or instance).
680   /// A method in an implementation is not considered as overriding the same
681   /// method in the interface or its categories.
682   void getOverriddenMethods(
683                         const NamedDecl *Method,
684                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
685 
686   /// \brief Notify the AST context that a new import declaration has been
687   /// parsed or implicitly created within this translation unit.
688   void addedLocalImportDecl(ImportDecl *Import);
689 
getNextLocalImport(ImportDecl * Import)690   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
691     return Import->NextLocalImport;
692   }
693 
694   /// \brief Iterator that visits import declarations.
695   class import_iterator {
696     ImportDecl *Import;
697 
698   public:
699     typedef ImportDecl               *value_type;
700     typedef ImportDecl               *reference;
701     typedef ImportDecl               *pointer;
702     typedef int                       difference_type;
703     typedef std::forward_iterator_tag iterator_category;
704 
import_iterator()705     import_iterator() : Import() { }
import_iterator(ImportDecl * Import)706     explicit import_iterator(ImportDecl *Import) : Import(Import) { }
707 
708     reference operator*() const { return Import; }
709     pointer operator->() const { return Import; }
710 
711     import_iterator &operator++() {
712       Import = ASTContext::getNextLocalImport(Import);
713       return *this;
714     }
715 
716     import_iterator operator++(int) {
717       import_iterator Other(*this);
718       ++(*this);
719       return Other;
720     }
721 
722     friend bool operator==(import_iterator X, import_iterator Y) {
723       return X.Import == Y.Import;
724     }
725 
726     friend bool operator!=(import_iterator X, import_iterator Y) {
727       return X.Import != Y.Import;
728     }
729   };
730 
local_import_begin()731   import_iterator local_import_begin() const {
732     return import_iterator(FirstLocalImport);
733   }
local_import_end()734   import_iterator local_import_end() const { return import_iterator(); }
735 
getTranslationUnitDecl()736   TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
737 
738 
739   // Builtin Types.
740   CanQualType VoidTy;
741   CanQualType BoolTy;
742   CanQualType CharTy;
743   CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
744   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
745   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
746   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
747   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
748   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
749   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
750   CanQualType FloatTy, DoubleTy, LongDoubleTy;
751   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
752   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
753   CanQualType VoidPtrTy, NullPtrTy;
754   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
755   CanQualType BuiltinFnTy;
756   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
757   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
758   CanQualType ObjCBuiltinBoolTy;
759   CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
760   CanQualType OCLImage2dTy, OCLImage2dArrayTy;
761   CanQualType OCLImage3dTy;
762   CanQualType OCLSamplerTy, OCLEventTy;
763 
764   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
765   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
766   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
767 
768   // Type used to help define __builtin_va_list for some targets.
769   // The type is built when constructing 'BuiltinVaListDecl'.
770   mutable QualType VaListTagTy;
771 
772   ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
773              IdentifierTable &idents, SelectorTable &sels,
774              Builtin::Context &builtins,
775              unsigned size_reserve,
776              bool DelayInitialization = false);
777 
778   ~ASTContext();
779 
780   /// \brief Attach an external AST source to the AST context.
781   ///
782   /// The external AST source provides the ability to load parts of
783   /// the abstract syntax tree as needed from some external storage,
784   /// e.g., a precompiled header.
785   void setExternalSource(OwningPtr<ExternalASTSource> &Source);
786 
787   /// \brief Retrieve a pointer to the external AST source associated
788   /// with this AST context, if any.
getExternalSource()789   ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
790 
791   /// \brief Attach an AST mutation listener to the AST context.
792   ///
793   /// The AST mutation listener provides the ability to track modifications to
794   /// the abstract syntax tree entities committed after they were initially
795   /// created.
setASTMutationListener(ASTMutationListener * Listener)796   void setASTMutationListener(ASTMutationListener *Listener) {
797     this->Listener = Listener;
798   }
799 
800   /// \brief Retrieve a pointer to the AST mutation listener associated
801   /// with this AST context, if any.
getASTMutationListener()802   ASTMutationListener *getASTMutationListener() const { return Listener; }
803 
804   void PrintStats() const;
getTypes()805   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
806 
807   /// \brief Retrieve the declaration for the 128-bit signed integer type.
808   TypedefDecl *getInt128Decl() const;
809 
810   /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
811   TypedefDecl *getUInt128Decl() const;
812 
813   //===--------------------------------------------------------------------===//
814   //                           Type Constructors
815   //===--------------------------------------------------------------------===//
816 
817 private:
818   /// \brief Return a type with extended qualifiers.
819   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
820 
821   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
822 
823 public:
824   /// \brief Return the uniqued reference to the type for an address space
825   /// qualified type with the specified type and address space.
826   ///
827   /// The resulting type has a union of the qualifiers from T and the address
828   /// space. If T already has an address space specifier, it is silently
829   /// replaced.
830   QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
831 
832   /// \brief Return the uniqued reference to the type for an Objective-C
833   /// gc-qualified type.
834   ///
835   /// The retulting type has a union of the qualifiers from T and the gc
836   /// attribute.
837   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
838 
839   /// \brief Return the uniqued reference to the type for a \c restrict
840   /// qualified type.
841   ///
842   /// The resulting type has a union of the qualifiers from \p T and
843   /// \c restrict.
getRestrictType(QualType T)844   QualType getRestrictType(QualType T) const {
845     return T.withFastQualifiers(Qualifiers::Restrict);
846   }
847 
848   /// \brief Return the uniqued reference to the type for a \c volatile
849   /// qualified type.
850   ///
851   /// The resulting type has a union of the qualifiers from \p T and
852   /// \c volatile.
getVolatileType(QualType T)853   QualType getVolatileType(QualType T) const {
854     return T.withFastQualifiers(Qualifiers::Volatile);
855   }
856 
857   /// \brief Return the uniqued reference to the type for a \c const
858   /// qualified type.
859   ///
860   /// The resulting type has a union of the qualifiers from \p T and \c const.
861   ///
862   /// It can be reasonably expected that this will always be equivalent to
863   /// calling T.withConst().
getConstType(QualType T)864   QualType getConstType(QualType T) const { return T.withConst(); }
865 
866   /// \brief Change the ExtInfo on a function type.
867   const FunctionType *adjustFunctionType(const FunctionType *Fn,
868                                          FunctionType::ExtInfo EInfo);
869 
870   /// \brief Return the uniqued reference to the type for a complex
871   /// number with the specified element type.
872   QualType getComplexType(QualType T) const;
getComplexType(CanQualType T)873   CanQualType getComplexType(CanQualType T) const {
874     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
875   }
876 
877   /// \brief Return the uniqued reference to the type for a pointer to
878   /// the specified type.
879   QualType getPointerType(QualType T) const;
getPointerType(CanQualType T)880   CanQualType getPointerType(CanQualType T) const {
881     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
882   }
883 
884   /// \brief Return the uniqued reference to the atomic type for the specified
885   /// type.
886   QualType getAtomicType(QualType T) const;
887 
888   /// \brief Return the uniqued reference to the type for a block of the
889   /// specified type.
890   QualType getBlockPointerType(QualType T) const;
891 
892   /// Gets the struct used to keep track of the descriptor for pointer to
893   /// blocks.
894   QualType getBlockDescriptorType() const;
895 
896   /// Gets the struct used to keep track of the extended descriptor for
897   /// pointer to blocks.
898   QualType getBlockDescriptorExtendedType() const;
899 
setcudaConfigureCallDecl(FunctionDecl * FD)900   void setcudaConfigureCallDecl(FunctionDecl *FD) {
901     cudaConfigureCallDecl = FD;
902   }
getcudaConfigureCallDecl()903   FunctionDecl *getcudaConfigureCallDecl() {
904     return cudaConfigureCallDecl;
905   }
906 
907   /// Returns true iff we need copy/dispose helpers for the given type.
908   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
909 
910 
911   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
912   /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
913   /// has extended lifetime.
914   bool getByrefLifetime(QualType Ty,
915                         Qualifiers::ObjCLifetime &Lifetime,
916                         bool &HasByrefExtendedLayout) const;
917 
918   /// \brief Return the uniqued reference to the type for an lvalue reference
919   /// to the specified type.
920   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
921     const;
922 
923   /// \brief Return the uniqued reference to the type for an rvalue reference
924   /// to the specified type.
925   QualType getRValueReferenceType(QualType T) const;
926 
927   /// \brief Return the uniqued reference to the type for a member pointer to
928   /// the specified type in the specified class.
929   ///
930   /// The class \p Cls is a \c Type because it could be a dependent name.
931   QualType getMemberPointerType(QualType T, const Type *Cls) const;
932 
933   /// \brief Return a non-unique reference to the type for a variable array of
934   /// the specified element type.
935   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
936                                 ArrayType::ArraySizeModifier ASM,
937                                 unsigned IndexTypeQuals,
938                                 SourceRange Brackets) const;
939 
940   /// \brief Return a non-unique reference to the type for a dependently-sized
941   /// array of the specified element type.
942   ///
943   /// FIXME: We will need these to be uniqued, or at least comparable, at some
944   /// point.
945   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
946                                       ArrayType::ArraySizeModifier ASM,
947                                       unsigned IndexTypeQuals,
948                                       SourceRange Brackets) const;
949 
950   /// \brief Return a unique reference to the type for an incomplete array of
951   /// the specified element type.
952   QualType getIncompleteArrayType(QualType EltTy,
953                                   ArrayType::ArraySizeModifier ASM,
954                                   unsigned IndexTypeQuals) const;
955 
956   /// \brief Return the unique reference to the type for a constant array of
957   /// the specified element type.
958   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
959                                 ArrayType::ArraySizeModifier ASM,
960                                 unsigned IndexTypeQuals) const;
961 
962   /// \brief Returns a vla type where known sizes are replaced with [*].
963   QualType getVariableArrayDecayedType(QualType Ty) const;
964 
965   /// \brief Return the unique reference to a vector type of the specified
966   /// element type and size.
967   ///
968   /// \pre \p VectorType must be a built-in type.
969   QualType getVectorType(QualType VectorType, unsigned NumElts,
970                          VectorType::VectorKind VecKind) const;
971 
972   /// \brief Return the unique reference to an extended vector type
973   /// of the specified element type and size.
974   ///
975   /// \pre \p VectorType must be a built-in type.
976   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
977 
978   /// \pre Return a non-unique reference to the type for a dependently-sized
979   /// vector of the specified element type.
980   ///
981   /// FIXME: We will need these to be uniqued, or at least comparable, at some
982   /// point.
983   QualType getDependentSizedExtVectorType(QualType VectorType,
984                                           Expr *SizeExpr,
985                                           SourceLocation AttrLoc) const;
986 
987   /// \brief Return a K&R style C function type like 'int()'.
988   QualType getFunctionNoProtoType(QualType ResultTy,
989                                   const FunctionType::ExtInfo &Info) const;
990 
getFunctionNoProtoType(QualType ResultTy)991   QualType getFunctionNoProtoType(QualType ResultTy) const {
992     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
993   }
994 
995   /// \brief Return a normal function type with a typed argument list.
996   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
997                            const FunctionProtoType::ExtProtoInfo &EPI) const;
998 
999   /// \brief Return the unique reference to the type for the specified type
1000   /// declaration.
1001   QualType getTypeDeclType(const TypeDecl *Decl,
1002                            const TypeDecl *PrevDecl = 0) const {
1003     assert(Decl && "Passed null for Decl param");
1004     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1005 
1006     if (PrevDecl) {
1007       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1008       Decl->TypeForDecl = PrevDecl->TypeForDecl;
1009       return QualType(PrevDecl->TypeForDecl, 0);
1010     }
1011 
1012     return getTypeDeclTypeSlow(Decl);
1013   }
1014 
1015   /// \brief Return the unique reference to the type for the specified
1016   /// typedef-name decl.
1017   QualType getTypedefType(const TypedefNameDecl *Decl,
1018                           QualType Canon = QualType()) const;
1019 
1020   QualType getRecordType(const RecordDecl *Decl) const;
1021 
1022   QualType getEnumType(const EnumDecl *Decl) const;
1023 
1024   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1025 
1026   QualType getAttributedType(AttributedType::Kind attrKind,
1027                              QualType modifiedType,
1028                              QualType equivalentType);
1029 
1030   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1031                                         QualType Replacement) const;
1032   QualType getSubstTemplateTypeParmPackType(
1033                                           const TemplateTypeParmType *Replaced,
1034                                             const TemplateArgument &ArgPack);
1035 
1036   QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1037                                    bool ParameterPack,
1038                                    TemplateTypeParmDecl *ParmDecl = 0) const;
1039 
1040   QualType getTemplateSpecializationType(TemplateName T,
1041                                          const TemplateArgument *Args,
1042                                          unsigned NumArgs,
1043                                          QualType Canon = QualType()) const;
1044 
1045   QualType getCanonicalTemplateSpecializationType(TemplateName T,
1046                                                   const TemplateArgument *Args,
1047                                                   unsigned NumArgs) const;
1048 
1049   QualType getTemplateSpecializationType(TemplateName T,
1050                                          const TemplateArgumentListInfo &Args,
1051                                          QualType Canon = QualType()) const;
1052 
1053   TypeSourceInfo *
1054   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1055                                     const TemplateArgumentListInfo &Args,
1056                                     QualType Canon = QualType()) const;
1057 
1058   QualType getParenType(QualType NamedType) const;
1059 
1060   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1061                              NestedNameSpecifier *NNS,
1062                              QualType NamedType) const;
1063   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1064                                 NestedNameSpecifier *NNS,
1065                                 const IdentifierInfo *Name,
1066                                 QualType Canon = QualType()) const;
1067 
1068   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1069                                                   NestedNameSpecifier *NNS,
1070                                                   const IdentifierInfo *Name,
1071                                     const TemplateArgumentListInfo &Args) const;
1072   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1073                                                   NestedNameSpecifier *NNS,
1074                                                   const IdentifierInfo *Name,
1075                                                   unsigned NumArgs,
1076                                             const TemplateArgument *Args) const;
1077 
1078   QualType getPackExpansionType(QualType Pattern,
1079                                 Optional<unsigned> NumExpansions);
1080 
1081   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1082                                 ObjCInterfaceDecl *PrevDecl = 0) const;
1083 
1084   QualType getObjCObjectType(QualType Base,
1085                              ObjCProtocolDecl * const *Protocols,
1086                              unsigned NumProtocols) const;
1087 
1088   /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1089   QualType getObjCObjectPointerType(QualType OIT) const;
1090 
1091   /// \brief GCC extension.
1092   QualType getTypeOfExprType(Expr *e) const;
1093   QualType getTypeOfType(QualType t) const;
1094 
1095   /// \brief C++11 decltype.
1096   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1097 
1098   /// \brief Unary type transforms
1099   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1100                                  UnaryTransformType::UTTKind UKind) const;
1101 
1102   /// \brief C++11 deduced auto type.
1103   QualType getAutoType(QualType DeducedType) const;
1104 
1105   /// \brief C++11 deduction pattern for 'auto' type.
1106   QualType getAutoDeductType() const;
1107 
1108   /// \brief C++11 deduction pattern for 'auto &&' type.
1109   QualType getAutoRRefDeductType() const;
1110 
1111   /// \brief Return the unique reference to the type for the specified TagDecl
1112   /// (struct/union/class/enum) decl.
1113   QualType getTagDeclType(const TagDecl *Decl) const;
1114 
1115   /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1116   /// <stddef.h>.
1117   ///
1118   /// The sizeof operator requires this (C99 6.5.3.4p4).
1119   CanQualType getSizeType() const;
1120 
1121   /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1122   /// <stdint.h>.
1123   CanQualType getIntMaxType() const;
1124 
1125   /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1126   /// <stdint.h>.
1127   CanQualType getUIntMaxType() const;
1128 
1129   /// \brief In C++, this returns the unique wchar_t type.  In C99, this
1130   /// returns a type compatible with the type defined in <stddef.h> as defined
1131   /// by the target.
getWCharType()1132   QualType getWCharType() const { return WCharTy; }
1133 
1134   /// \brief Return the type of "signed wchar_t".
1135   ///
1136   /// Used when in C++, as a GCC extension.
1137   QualType getSignedWCharType() const;
1138 
1139   /// \brief Return the type of "unsigned wchar_t".
1140   ///
1141   /// Used when in C++, as a GCC extension.
1142   QualType getUnsignedWCharType() const;
1143 
1144   /// \brief In C99, this returns a type compatible with the type
1145   /// defined in <stddef.h> as defined by the target.
getWIntType()1146   QualType getWIntType() const { return WIntTy; }
1147 
1148   /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1149   /// as defined by the target.
1150   QualType getIntPtrType() const;
1151 
1152   /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1153   /// as defined by the target.
1154   QualType getUIntPtrType() const;
1155 
1156   /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1157   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1158   QualType getPointerDiffType() const;
1159 
1160   /// \brief Return the unique type for "pid_t" defined in
1161   /// <sys/types.h>. We need this to compute the correct type for vfork().
1162   QualType getProcessIDType() const;
1163 
1164   /// \brief Return the C structure type used to represent constant CFStrings.
1165   QualType getCFConstantStringType() const;
1166 
1167   /// \brief Returns the C struct type for objc_super
1168   QualType getObjCSuperType() const;
setObjCSuperType(QualType ST)1169   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1170 
1171   /// Get the structure type used to representation CFStrings, or NULL
1172   /// if it hasn't yet been built.
getRawCFConstantStringType()1173   QualType getRawCFConstantStringType() const {
1174     if (CFConstantStringTypeDecl)
1175       return getTagDeclType(CFConstantStringTypeDecl);
1176     return QualType();
1177   }
1178   void setCFConstantStringType(QualType T);
1179 
1180   // This setter/getter represents the ObjC type for an NSConstantString.
1181   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
getObjCConstantStringInterface()1182   QualType getObjCConstantStringInterface() const {
1183     return ObjCConstantStringType;
1184   }
1185 
getObjCNSStringType()1186   QualType getObjCNSStringType() const {
1187     return ObjCNSStringType;
1188   }
1189 
setObjCNSStringType(QualType T)1190   void setObjCNSStringType(QualType T) {
1191     ObjCNSStringType = T;
1192   }
1193 
1194   /// \brief Retrieve the type that \c id has been defined to, which may be
1195   /// different from the built-in \c id if \c id has been typedef'd.
getObjCIdRedefinitionType()1196   QualType getObjCIdRedefinitionType() const {
1197     if (ObjCIdRedefinitionType.isNull())
1198       return getObjCIdType();
1199     return ObjCIdRedefinitionType;
1200   }
1201 
1202   /// \brief Set the user-written type that redefines \c id.
setObjCIdRedefinitionType(QualType RedefType)1203   void setObjCIdRedefinitionType(QualType RedefType) {
1204     ObjCIdRedefinitionType = RedefType;
1205   }
1206 
1207   /// \brief Retrieve the type that \c Class has been defined to, which may be
1208   /// different from the built-in \c Class if \c Class has been typedef'd.
getObjCClassRedefinitionType()1209   QualType getObjCClassRedefinitionType() const {
1210     if (ObjCClassRedefinitionType.isNull())
1211       return getObjCClassType();
1212     return ObjCClassRedefinitionType;
1213   }
1214 
1215   /// \brief Set the user-written type that redefines 'SEL'.
setObjCClassRedefinitionType(QualType RedefType)1216   void setObjCClassRedefinitionType(QualType RedefType) {
1217     ObjCClassRedefinitionType = RedefType;
1218   }
1219 
1220   /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1221   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
getObjCSelRedefinitionType()1222   QualType getObjCSelRedefinitionType() const {
1223     if (ObjCSelRedefinitionType.isNull())
1224       return getObjCSelType();
1225     return ObjCSelRedefinitionType;
1226   }
1227 
1228 
1229   /// \brief Set the user-written type that redefines 'SEL'.
setObjCSelRedefinitionType(QualType RedefType)1230   void setObjCSelRedefinitionType(QualType RedefType) {
1231     ObjCSelRedefinitionType = RedefType;
1232   }
1233 
1234   /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1235   /// otherwise, returns a NULL type;
getObjCInstanceType()1236   QualType getObjCInstanceType() {
1237     return getTypeDeclType(getObjCInstanceTypeDecl());
1238   }
1239 
1240   /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1241   /// "instancetype" type.
1242   TypedefDecl *getObjCInstanceTypeDecl();
1243 
1244   /// \brief Set the type for the C FILE type.
setFILEDecl(TypeDecl * FILEDecl)1245   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1246 
1247   /// \brief Retrieve the C FILE type.
getFILEType()1248   QualType getFILEType() const {
1249     if (FILEDecl)
1250       return getTypeDeclType(FILEDecl);
1251     return QualType();
1252   }
1253 
1254   /// \brief Set the type for the C jmp_buf type.
setjmp_bufDecl(TypeDecl * jmp_bufDecl)1255   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1256     this->jmp_bufDecl = jmp_bufDecl;
1257   }
1258 
1259   /// \brief Retrieve the C jmp_buf type.
getjmp_bufType()1260   QualType getjmp_bufType() const {
1261     if (jmp_bufDecl)
1262       return getTypeDeclType(jmp_bufDecl);
1263     return QualType();
1264   }
1265 
1266   /// \brief Set the type for the C sigjmp_buf type.
setsigjmp_bufDecl(TypeDecl * sigjmp_bufDecl)1267   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1268     this->sigjmp_bufDecl = sigjmp_bufDecl;
1269   }
1270 
1271   /// \brief Retrieve the C sigjmp_buf type.
getsigjmp_bufType()1272   QualType getsigjmp_bufType() const {
1273     if (sigjmp_bufDecl)
1274       return getTypeDeclType(sigjmp_bufDecl);
1275     return QualType();
1276   }
1277 
1278   /// \brief Set the type for the C ucontext_t type.
setucontext_tDecl(TypeDecl * ucontext_tDecl)1279   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1280     this->ucontext_tDecl = ucontext_tDecl;
1281   }
1282 
1283   /// \brief Retrieve the C ucontext_t type.
getucontext_tType()1284   QualType getucontext_tType() const {
1285     if (ucontext_tDecl)
1286       return getTypeDeclType(ucontext_tDecl);
1287     return QualType();
1288   }
1289 
1290   /// \brief The result type of logical operations, '<', '>', '!=', etc.
getLogicalOperationType()1291   QualType getLogicalOperationType() const {
1292     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1293   }
1294 
1295   /// \brief Emit the Objective-CC type encoding for the given type \p T into
1296   /// \p S.
1297   ///
1298   /// If \p Field is specified then record field names are also encoded.
1299   void getObjCEncodingForType(QualType T, std::string &S,
1300                               const FieldDecl *Field=0) const;
1301 
1302   void getLegacyIntegralTypeEncoding(QualType &t) const;
1303 
1304   /// \brief Put the string version of the type qualifiers \p QT into \p S.
1305   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1306                                        std::string &S) const;
1307 
1308   /// \brief Emit the encoded type for the function \p Decl into \p S.
1309   ///
1310   /// This is in the same format as Objective-C method encodings.
1311   ///
1312   /// \returns true if an error occurred (e.g., because one of the parameter
1313   /// types is incomplete), false otherwise.
1314   bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1315 
1316   /// \brief Emit the encoded type for the method declaration \p Decl into
1317   /// \p S.
1318   ///
1319   /// \returns true if an error occurred (e.g., because one of the parameter
1320   /// types is incomplete), false otherwise.
1321   bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1322                                     bool Extended = false)
1323     const;
1324 
1325   /// \brief Return the encoded type for this block declaration.
1326   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1327 
1328   /// getObjCEncodingForPropertyDecl - Return the encoded type for
1329   /// this method declaration. If non-NULL, Container must be either
1330   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1331   /// only be NULL when getting encodings for protocol properties.
1332   void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1333                                       const Decl *Container,
1334                                       std::string &S) const;
1335 
1336   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1337                                       ObjCProtocolDecl *rProto) const;
1338 
1339   /// \brief Return the size of type \p T for Objective-C encoding purpose,
1340   /// in characters.
1341   CharUnits getObjCEncodingTypeSize(QualType T) const;
1342 
1343   /// \brief Retrieve the typedef corresponding to the predefined \c id type
1344   /// in Objective-C.
1345   TypedefDecl *getObjCIdDecl() const;
1346 
1347   /// \brief Represents the Objective-CC \c id type.
1348   ///
1349   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1350   /// pointer type, a pointer to a struct.
getObjCIdType()1351   QualType getObjCIdType() const {
1352     return getTypeDeclType(getObjCIdDecl());
1353   }
1354 
1355   /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1356   /// in Objective-C.
1357   TypedefDecl *getObjCSelDecl() const;
1358 
1359   /// \brief Retrieve the type that corresponds to the predefined Objective-C
1360   /// 'SEL' type.
getObjCSelType()1361   QualType getObjCSelType() const {
1362     return getTypeDeclType(getObjCSelDecl());
1363   }
1364 
1365   /// \brief Retrieve the typedef declaration corresponding to the predefined
1366   /// Objective-C 'Class' type.
1367   TypedefDecl *getObjCClassDecl() const;
1368 
1369   /// \brief Represents the Objective-C \c Class type.
1370   ///
1371   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1372   /// pointer type, a pointer to a struct.
getObjCClassType()1373   QualType getObjCClassType() const {
1374     return getTypeDeclType(getObjCClassDecl());
1375   }
1376 
1377   /// \brief Retrieve the Objective-C class declaration corresponding to
1378   /// the predefined \c Protocol class.
1379   ObjCInterfaceDecl *getObjCProtocolDecl() const;
1380 
1381   /// \brief Retrieve declaration of 'BOOL' typedef
getBOOLDecl()1382   TypedefDecl *getBOOLDecl() const {
1383     return BOOLDecl;
1384   }
1385 
1386   /// \brief Save declaration of 'BOOL' typedef
setBOOLDecl(TypedefDecl * TD)1387   void setBOOLDecl(TypedefDecl *TD) {
1388     BOOLDecl = TD;
1389   }
1390 
1391   /// \brief type of 'BOOL' type.
getBOOLType()1392   QualType getBOOLType() const {
1393     return getTypeDeclType(getBOOLDecl());
1394   }
1395 
1396   /// \brief Retrieve the type of the Objective-C \c Protocol class.
getObjCProtoType()1397   QualType getObjCProtoType() const {
1398     return getObjCInterfaceType(getObjCProtocolDecl());
1399   }
1400 
1401   /// \brief Retrieve the C type declaration corresponding to the predefined
1402   /// \c __builtin_va_list type.
1403   TypedefDecl *getBuiltinVaListDecl() const;
1404 
1405   /// \brief Retrieve the type of the \c __builtin_va_list type.
getBuiltinVaListType()1406   QualType getBuiltinVaListType() const {
1407     return getTypeDeclType(getBuiltinVaListDecl());
1408   }
1409 
1410   /// \brief Retrieve the C type declaration corresponding to the predefined
1411   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1412   /// for some targets.
1413   QualType getVaListTagType() const;
1414 
1415   /// \brief Return a type with additional \c const, \c volatile, or
1416   /// \c restrict qualifiers.
getCVRQualifiedType(QualType T,unsigned CVR)1417   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1418     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1419   }
1420 
1421   /// \brief Un-split a SplitQualType.
getQualifiedType(SplitQualType split)1422   QualType getQualifiedType(SplitQualType split) const {
1423     return getQualifiedType(split.Ty, split.Quals);
1424   }
1425 
1426   /// \brief Return a type with additional qualifiers.
getQualifiedType(QualType T,Qualifiers Qs)1427   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1428     if (!Qs.hasNonFastQualifiers())
1429       return T.withFastQualifiers(Qs.getFastQualifiers());
1430     QualifierCollector Qc(Qs);
1431     const Type *Ptr = Qc.strip(T);
1432     return getExtQualType(Ptr, Qc);
1433   }
1434 
1435   /// \brief Return a type with additional qualifiers.
getQualifiedType(const Type * T,Qualifiers Qs)1436   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1437     if (!Qs.hasNonFastQualifiers())
1438       return QualType(T, Qs.getFastQualifiers());
1439     return getExtQualType(T, Qs);
1440   }
1441 
1442   /// \brief Return a type with the given lifetime qualifier.
1443   ///
1444   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
getLifetimeQualifiedType(QualType type,Qualifiers::ObjCLifetime lifetime)1445   QualType getLifetimeQualifiedType(QualType type,
1446                                     Qualifiers::ObjCLifetime lifetime) {
1447     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1448     assert(lifetime != Qualifiers::OCL_None);
1449 
1450     Qualifiers qs;
1451     qs.addObjCLifetime(lifetime);
1452     return getQualifiedType(type, qs);
1453   }
1454 
1455   DeclarationNameInfo getNameForTemplate(TemplateName Name,
1456                                          SourceLocation NameLoc) const;
1457 
1458   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1459                                          UnresolvedSetIterator End) const;
1460 
1461   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1462                                         bool TemplateKeyword,
1463                                         TemplateDecl *Template) const;
1464 
1465   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1466                                         const IdentifierInfo *Name) const;
1467   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1468                                         OverloadedOperatorKind Operator) const;
1469   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1470                                             TemplateName replacement) const;
1471   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1472                                         const TemplateArgument &ArgPack) const;
1473 
1474   enum GetBuiltinTypeError {
1475     GE_None,              ///< No error
1476     GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1477     GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1478     GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1479   };
1480 
1481   /// \brief Return the type for the specified builtin.
1482   ///
1483   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1484   /// arguments to the builtin that are required to be integer constant
1485   /// expressions.
1486   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1487                           unsigned *IntegerConstantArgs = 0) const;
1488 
1489 private:
1490   CanQualType getFromTargetType(unsigned Type) const;
1491   std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1492 
1493   //===--------------------------------------------------------------------===//
1494   //                         Type Predicates.
1495   //===--------------------------------------------------------------------===//
1496 
1497 public:
1498   /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1499   /// collection attributes.
1500   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1501 
1502   /// \brief Return true if the given vector types are of the same unqualified
1503   /// type or if they are equivalent to the same GCC vector type.
1504   ///
1505   /// \note This ignores whether they are target-specific (AltiVec or Neon)
1506   /// types.
1507   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1508 
1509   /// \brief Return true if this is an \c NSObject object with its \c NSObject
1510   /// attribute set.
isObjCNSObjectType(QualType Ty)1511   static bool isObjCNSObjectType(QualType Ty) {
1512     return Ty->isObjCNSObjectType();
1513   }
1514 
1515   //===--------------------------------------------------------------------===//
1516   //                         Type Sizing and Analysis
1517   //===--------------------------------------------------------------------===//
1518 
1519   /// \brief Return the APFloat 'semantics' for the specified scalar floating
1520   /// point type.
1521   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1522 
1523   /// \brief Get the size and alignment of the specified complete type in bits.
1524   std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
getTypeInfo(QualType T)1525   std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1526     return getTypeInfo(T.getTypePtr());
1527   }
1528 
1529   /// \brief Return the size of the specified (complete) type \p T, in bits.
getTypeSize(QualType T)1530   uint64_t getTypeSize(QualType T) const {
1531     return getTypeInfo(T).first;
1532   }
getTypeSize(const Type * T)1533   uint64_t getTypeSize(const Type *T) const {
1534     return getTypeInfo(T).first;
1535   }
1536 
1537   /// \brief Return the size of the character type, in bits.
getCharWidth()1538   uint64_t getCharWidth() const {
1539     return getTypeSize(CharTy);
1540   }
1541 
1542   /// \brief Convert a size in bits to a size in characters.
1543   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1544 
1545   /// \brief Convert a size in characters to a size in bits.
1546   int64_t toBits(CharUnits CharSize) const;
1547 
1548   /// \brief Return the size of the specified (complete) type \p T, in
1549   /// characters.
1550   CharUnits getTypeSizeInChars(QualType T) const;
1551   CharUnits getTypeSizeInChars(const Type *T) const;
1552 
1553   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1554   /// bits.
getTypeAlign(QualType T)1555   unsigned getTypeAlign(QualType T) const {
1556     return getTypeInfo(T).second;
1557   }
getTypeAlign(const Type * T)1558   unsigned getTypeAlign(const Type *T) const {
1559     return getTypeInfo(T).second;
1560   }
1561 
1562   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1563   /// characters.
1564   CharUnits getTypeAlignInChars(QualType T) const;
1565   CharUnits getTypeAlignInChars(const Type *T) const;
1566 
1567   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1568   // type is a record, its data size is returned.
1569   std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1570 
1571   std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1572   std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1573 
1574   /// \brief Return the "preferred" alignment of the specified type \p T for
1575   /// the current target, in bits.
1576   ///
1577   /// This can be different than the ABI alignment in cases where it is
1578   /// beneficial for performance to overalign a data type.
1579   unsigned getPreferredTypeAlign(const Type *T) const;
1580 
1581   /// \brief Return a conservative estimate of the alignment of the specified
1582   /// decl \p D.
1583   ///
1584   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1585   /// alignment.
1586   ///
1587   /// If \p RefAsPointee, references are treated like their underlying type
1588   /// (for alignof), else they're treated like pointers (for CodeGen).
1589   CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1590 
1591   /// \brief Get or compute information about the layout of the specified
1592   /// record (struct/union/class) \p D, which indicates its size and field
1593   /// position information.
1594   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1595 
1596   /// \brief Get or compute information about the layout of the specified
1597   /// Objective-C interface.
1598   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1599     const;
1600 
1601   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1602                         bool Simple = false) const;
1603 
1604   /// \brief Get or compute information about the layout of the specified
1605   /// Objective-C implementation.
1606   ///
1607   /// This may differ from the interface if synthesized ivars are present.
1608   const ASTRecordLayout &
1609   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1610 
1611   /// \brief Get our current best idea for the key function of the
1612   /// given record decl, or NULL if there isn't one.
1613   ///
1614   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1615   ///   ...the first non-pure virtual function that is not inline at the
1616   ///   point of class definition.
1617   ///
1618   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1619   /// virtual functions that are defined 'inline', which means that
1620   /// the result of this computation can change.
1621   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1622 
1623   /// \brief Observe that the given method cannot be a key function.
1624   /// Checks the key-function cache for the method's class and clears it
1625   /// if matches the given declaration.
1626   ///
1627   /// This is used in ABIs where out-of-line definitions marked
1628   /// inline are not considered to be key functions.
1629   ///
1630   /// \param method should be the declaration from the class definition
1631   void setNonKeyFunction(const CXXMethodDecl *method);
1632 
1633   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1634   uint64_t getFieldOffset(const ValueDecl *FD) const;
1635 
1636   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1637 
1638   MangleContext *createMangleContext();
1639 
1640   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1641                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1642 
1643   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1644   void CollectInheritedProtocols(const Decl *CDecl,
1645                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1646 
1647   //===--------------------------------------------------------------------===//
1648   //                            Type Operators
1649   //===--------------------------------------------------------------------===//
1650 
1651   /// \brief Return the canonical (structural) type corresponding to the
1652   /// specified potentially non-canonical type \p T.
1653   ///
1654   /// The non-canonical version of a type may have many "decorated" versions of
1655   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1656   /// returned type is guaranteed to be free of any of these, allowing two
1657   /// canonical types to be compared for exact equality with a simple pointer
1658   /// comparison.
getCanonicalType(QualType T)1659   CanQualType getCanonicalType(QualType T) const {
1660     return CanQualType::CreateUnsafe(T.getCanonicalType());
1661   }
1662 
getCanonicalType(const Type * T)1663   const Type *getCanonicalType(const Type *T) const {
1664     return T->getCanonicalTypeInternal().getTypePtr();
1665   }
1666 
1667   /// \brief Return the canonical parameter type corresponding to the specific
1668   /// potentially non-canonical one.
1669   ///
1670   /// Qualifiers are stripped off, functions are turned into function
1671   /// pointers, and arrays decay one level into pointers.
1672   CanQualType getCanonicalParamType(QualType T) const;
1673 
1674   /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
hasSameType(QualType T1,QualType T2)1675   bool hasSameType(QualType T1, QualType T2) const {
1676     return getCanonicalType(T1) == getCanonicalType(T2);
1677   }
1678 
1679   /// \brief Return this type as a completely-unqualified array type,
1680   /// capturing the qualifiers in \p Quals.
1681   ///
1682   /// This will remove the minimal amount of sugaring from the types, similar
1683   /// to the behavior of QualType::getUnqualifiedType().
1684   ///
1685   /// \param T is the qualified type, which may be an ArrayType
1686   ///
1687   /// \param Quals will receive the full set of qualifiers that were
1688   /// applied to the array.
1689   ///
1690   /// \returns if this is an array type, the completely unqualified array type
1691   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1692   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1693 
1694   /// \brief Determine whether the given types are equivalent after
1695   /// cvr-qualifiers have been removed.
hasSameUnqualifiedType(QualType T1,QualType T2)1696   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1697     return getCanonicalType(T1).getTypePtr() ==
1698            getCanonicalType(T2).getTypePtr();
1699   }
1700 
1701   bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1702 
1703   /// \brief Retrieves the "canonical" nested name specifier for a
1704   /// given nested name specifier.
1705   ///
1706   /// The canonical nested name specifier is a nested name specifier
1707   /// that uniquely identifies a type or namespace within the type
1708   /// system. For example, given:
1709   ///
1710   /// \code
1711   /// namespace N {
1712   ///   struct S {
1713   ///     template<typename T> struct X { typename T* type; };
1714   ///   };
1715   /// }
1716   ///
1717   /// template<typename T> struct Y {
1718   ///   typename N::S::X<T>::type member;
1719   /// };
1720   /// \endcode
1721   ///
1722   /// Here, the nested-name-specifier for N::S::X<T>:: will be
1723   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1724   /// by declarations in the type system and the canonical type for
1725   /// the template type parameter 'T' is template-param-0-0.
1726   NestedNameSpecifier *
1727   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1728 
1729   /// \brief Retrieves the default calling convention to use for
1730   /// C++ instance methods.
1731   CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1732 
1733   /// \brief Retrieves the canonical representation of the given
1734   /// calling convention.
1735   CallingConv getCanonicalCallConv(CallingConv CC) const;
1736 
1737   /// \brief Determines whether two calling conventions name the same
1738   /// calling convention.
isSameCallConv(CallingConv lcc,CallingConv rcc)1739   bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1740     return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1741   }
1742 
1743   /// \brief Retrieves the "canonical" template name that refers to a
1744   /// given template.
1745   ///
1746   /// The canonical template name is the simplest expression that can
1747   /// be used to refer to a given template. For most templates, this
1748   /// expression is just the template declaration itself. For example,
1749   /// the template std::vector can be referred to via a variety of
1750   /// names---std::vector, \::std::vector, vector (if vector is in
1751   /// scope), etc.---but all of these names map down to the same
1752   /// TemplateDecl, which is used to form the canonical template name.
1753   ///
1754   /// Dependent template names are more interesting. Here, the
1755   /// template name could be something like T::template apply or
1756   /// std::allocator<T>::template rebind, where the nested name
1757   /// specifier itself is dependent. In this case, the canonical
1758   /// template name uses the shortest form of the dependent
1759   /// nested-name-specifier, which itself contains all canonical
1760   /// types, values, and templates.
1761   TemplateName getCanonicalTemplateName(TemplateName Name) const;
1762 
1763   /// \brief Determine whether the given template names refer to the same
1764   /// template.
1765   bool hasSameTemplateName(TemplateName X, TemplateName Y);
1766 
1767   /// \brief Retrieve the "canonical" template argument.
1768   ///
1769   /// The canonical template argument is the simplest template argument
1770   /// (which may be a type, value, expression, or declaration) that
1771   /// expresses the value of the argument.
1772   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1773     const;
1774 
1775   /// Type Query functions.  If the type is an instance of the specified class,
1776   /// return the Type pointer for the underlying maximally pretty type.  This
1777   /// is a member of ASTContext because this may need to do some amount of
1778   /// canonicalization, e.g. to move type qualifiers into the element type.
1779   const ArrayType *getAsArrayType(QualType T) const;
getAsConstantArrayType(QualType T)1780   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1781     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1782   }
getAsVariableArrayType(QualType T)1783   const VariableArrayType *getAsVariableArrayType(QualType T) const {
1784     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1785   }
getAsIncompleteArrayType(QualType T)1786   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1787     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1788   }
getAsDependentSizedArrayType(QualType T)1789   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1790     const {
1791     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1792   }
1793 
1794   /// \brief Return the innermost element type of an array type.
1795   ///
1796   /// For example, will return "int" for int[m][n]
1797   QualType getBaseElementType(const ArrayType *VAT) const;
1798 
1799   /// \brief Return the innermost element type of a type (which needn't
1800   /// actually be an array type).
1801   QualType getBaseElementType(QualType QT) const;
1802 
1803   /// \brief Return number of constant array elements.
1804   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1805 
1806   /// \brief Perform adjustment on the parameter type of a function.
1807   ///
1808   /// This routine adjusts the given parameter type @p T to the actual
1809   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1810   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1811   QualType getAdjustedParameterType(QualType T) const;
1812 
1813   /// \brief Retrieve the parameter type as adjusted for use in the signature
1814   /// of a function, decaying array and function types and removing top-level
1815   /// cv-qualifiers.
1816   QualType getSignatureParameterType(QualType T) const;
1817 
1818   /// \brief Return the properly qualified result of decaying the specified
1819   /// array type to a pointer.
1820   ///
1821   /// This operation is non-trivial when handling typedefs etc.  The canonical
1822   /// type of \p T must be an array type, this returns a pointer to a properly
1823   /// qualified element of the array.
1824   ///
1825   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1826   QualType getArrayDecayedType(QualType T) const;
1827 
1828   /// \brief Return the type that \p PromotableType will promote to: C99
1829   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1830   QualType getPromotedIntegerType(QualType PromotableType) const;
1831 
1832   /// \brief Recurses in pointer/array types until it finds an Objective-C
1833   /// retainable type and returns its ownership.
1834   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1835 
1836   /// \brief Whether this is a promotable bitfield reference according
1837   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1838   ///
1839   /// \returns the type this bit-field will promote to, or NULL if no
1840   /// promotion occurs.
1841   QualType isPromotableBitField(Expr *E) const;
1842 
1843   /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1844   ///
1845   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1846   /// \p LHS < \p RHS, return -1.
1847   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1848 
1849   /// \brief Compare the rank of the two specified floating point types,
1850   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1851   ///
1852   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1853   /// \p LHS < \p RHS, return -1.
1854   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1855 
1856   /// \brief Return a real floating point or a complex type (based on
1857   /// \p typeDomain/\p typeSize).
1858   ///
1859   /// \param typeDomain a real floating point or complex type.
1860   /// \param typeSize a real floating point or complex type.
1861   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1862                                              QualType typeDomain) const;
1863 
getTargetAddressSpace(QualType T)1864   unsigned getTargetAddressSpace(QualType T) const {
1865     return getTargetAddressSpace(T.getQualifiers());
1866   }
1867 
getTargetAddressSpace(Qualifiers Q)1868   unsigned getTargetAddressSpace(Qualifiers Q) const {
1869     return getTargetAddressSpace(Q.getAddressSpace());
1870   }
1871 
getTargetAddressSpace(unsigned AS)1872   unsigned getTargetAddressSpace(unsigned AS) const {
1873     if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1874       return AS;
1875     else
1876       return (*AddrSpaceMap)[AS - LangAS::Offset];
1877   }
1878 
1879 private:
1880   // Helper for integer ordering
1881   unsigned getIntegerRank(const Type *T) const;
1882 
1883 public:
1884 
1885   //===--------------------------------------------------------------------===//
1886   //                    Type Compatibility Predicates
1887   //===--------------------------------------------------------------------===//
1888 
1889   /// Compatibility predicates used to check assignment expressions.
1890   bool typesAreCompatible(QualType T1, QualType T2,
1891                           bool CompareUnqualified = false); // C99 6.2.7p1
1892 
1893   bool propertyTypesAreCompatible(QualType, QualType);
1894   bool typesAreBlockPointerCompatible(QualType, QualType);
1895 
isObjCIdType(QualType T)1896   bool isObjCIdType(QualType T) const {
1897     return T == getObjCIdType();
1898   }
isObjCClassType(QualType T)1899   bool isObjCClassType(QualType T) const {
1900     return T == getObjCClassType();
1901   }
isObjCSelType(QualType T)1902   bool isObjCSelType(QualType T) const {
1903     return T == getObjCSelType();
1904   }
1905   bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1906   bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1907                                          bool ForCompare);
1908 
1909   bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1910 
1911   // Check the safety of assignment from LHS to RHS
1912   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1913                                const ObjCObjectPointerType *RHSOPT);
1914   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1915                                const ObjCObjectType *RHS);
1916   bool canAssignObjCInterfacesInBlockPointer(
1917                                           const ObjCObjectPointerType *LHSOPT,
1918                                           const ObjCObjectPointerType *RHSOPT,
1919                                           bool BlockReturnType);
1920   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1921   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1922                                    const ObjCObjectPointerType *RHSOPT);
1923   bool canBindObjCObjectType(QualType To, QualType From);
1924 
1925   // Functions for calculating composite types
1926   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1927                       bool Unqualified = false, bool BlockReturnType = false);
1928   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1929                               bool Unqualified = false);
1930   QualType mergeFunctionArgumentTypes(QualType, QualType,
1931                                       bool OfBlockPointer=false,
1932                                       bool Unqualified = false);
1933   QualType mergeTransparentUnionType(QualType, QualType,
1934                                      bool OfBlockPointer=false,
1935                                      bool Unqualified = false);
1936 
1937   QualType mergeObjCGCQualifiers(QualType, QualType);
1938 
1939   bool FunctionTypesMatchOnNSConsumedAttrs(
1940          const FunctionProtoType *FromFunctionType,
1941          const FunctionProtoType *ToFunctionType);
1942 
ResetObjCLayout(const ObjCContainerDecl * CD)1943   void ResetObjCLayout(const ObjCContainerDecl *CD) {
1944     ObjCLayouts[CD] = 0;
1945   }
1946 
1947   //===--------------------------------------------------------------------===//
1948   //                    Integer Predicates
1949   //===--------------------------------------------------------------------===//
1950 
1951   // The width of an integer, as defined in C99 6.2.6.2. This is the number
1952   // of bits in an integer type excluding any padding bits.
1953   unsigned getIntWidth(QualType T) const;
1954 
1955   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1956   // unsigned integer type.  This method takes a signed type, and returns the
1957   // corresponding unsigned integer type.
1958   QualType getCorrespondingUnsignedType(QualType T) const;
1959 
1960   //===--------------------------------------------------------------------===//
1961   //                    Type Iterators.
1962   //===--------------------------------------------------------------------===//
1963 
1964   typedef SmallVectorImpl<Type *>::iterator       type_iterator;
1965   typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
1966 
types_begin()1967   type_iterator types_begin() { return Types.begin(); }
types_end()1968   type_iterator types_end() { return Types.end(); }
types_begin()1969   const_type_iterator types_begin() const { return Types.begin(); }
types_end()1970   const_type_iterator types_end() const { return Types.end(); }
1971 
1972   //===--------------------------------------------------------------------===//
1973   //                    Integer Values
1974   //===--------------------------------------------------------------------===//
1975 
1976   /// \brief Make an APSInt of the appropriate width and signedness for the
1977   /// given \p Value and integer \p Type.
MakeIntValue(uint64_t Value,QualType Type)1978   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1979     llvm::APSInt Res(getIntWidth(Type),
1980                      !Type->isSignedIntegerOrEnumerationType());
1981     Res = Value;
1982     return Res;
1983   }
1984 
1985   bool isSentinelNullExpr(const Expr *E);
1986 
1987   /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
1988   /// none exists.
1989   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1990   /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
1991   /// none exists.
1992   ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1993 
1994   /// \brief Return true if there is at least one \@implementation in the TU.
AnyObjCImplementation()1995   bool AnyObjCImplementation() {
1996     return !ObjCImpls.empty();
1997   }
1998 
1999   /// \brief Set the implementation of ObjCInterfaceDecl.
2000   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2001                              ObjCImplementationDecl *ImplD);
2002   /// \brief Set the implementation of ObjCCategoryDecl.
2003   void setObjCImplementation(ObjCCategoryDecl *CatD,
2004                              ObjCCategoryImplDecl *ImplD);
2005 
2006   /// \brief Get the duplicate declaration of a ObjCMethod in the same
2007   /// interface, or null if none exists.
getObjCMethodRedeclaration(const ObjCMethodDecl * MD)2008   const ObjCMethodDecl *getObjCMethodRedeclaration(
2009                                                const ObjCMethodDecl *MD) const {
2010     return ObjCMethodRedecls.lookup(MD);
2011   }
2012 
setObjCMethodRedeclaration(const ObjCMethodDecl * MD,const ObjCMethodDecl * Redecl)2013   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2014                                   const ObjCMethodDecl *Redecl) {
2015     assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2016     ObjCMethodRedecls[MD] = Redecl;
2017   }
2018 
2019   /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2020   /// an Objective-C method/property/ivar etc. that is part of an interface,
2021   /// otherwise returns null.
2022   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2023 
2024   /// \brief Set the copy inialization expression of a block var decl.
2025   void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2026   /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2027   /// NULL if none exists.
2028   Expr *getBlockVarCopyInits(const VarDecl* VD);
2029 
2030   /// \brief Allocate an uninitialized TypeSourceInfo.
2031   ///
2032   /// The caller should initialize the memory held by TypeSourceInfo using
2033   /// the TypeLoc wrappers.
2034   ///
2035   /// \param T the type that will be the basis for type source info. This type
2036   /// should refer to how the declarator was written in source code, not to
2037   /// what type semantic analysis resolved the declarator to.
2038   ///
2039   /// \param Size the size of the type info to create, or 0 if the size
2040   /// should be calculated based on the type.
2041   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2042 
2043   /// \brief Allocate a TypeSourceInfo where all locations have been
2044   /// initialized to a given location, which defaults to the empty
2045   /// location.
2046   TypeSourceInfo *
2047   getTrivialTypeSourceInfo(QualType T,
2048                            SourceLocation Loc = SourceLocation()) const;
2049 
getNullTypeSourceInfo()2050   TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2051 
2052   /// \brief Add a deallocation callback that will be invoked when the
2053   /// ASTContext is destroyed.
2054   ///
2055   /// \param Callback A callback function that will be invoked on destruction.
2056   ///
2057   /// \param Data Pointer data that will be provided to the callback function
2058   /// when it is called.
2059   void AddDeallocation(void (*Callback)(void*), void *Data);
2060 
2061   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2062   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2063 
2064   /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2065   /// lazily, only when used; this is only relevant for function or file scoped
2066   /// var definitions.
2067   ///
2068   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2069   /// it is not used.
2070   bool DeclMustBeEmitted(const Decl *D);
2071 
2072   void addUnnamedTag(const TagDecl *Tag);
2073   int getUnnamedTagManglingNumber(const TagDecl *Tag) const;
2074 
2075   /// \brief Retrieve the lambda mangling number for a lambda expression.
2076   unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
2077 
2078   /// \brief Used by ParmVarDecl to store on the side the
2079   /// index of the parameter when it exceeds the size of the normal bitfield.
2080   void setParameterIndex(const ParmVarDecl *D, unsigned index);
2081 
2082   /// \brief Used by ParmVarDecl to retrieve on the side the
2083   /// index of the parameter when it exceeds the size of the normal bitfield.
2084   unsigned getParameterIndex(const ParmVarDecl *D) const;
2085 
2086   //===--------------------------------------------------------------------===//
2087   //                    Statistics
2088   //===--------------------------------------------------------------------===//
2089 
2090   /// \brief The number of implicitly-declared default constructors.
2091   static unsigned NumImplicitDefaultConstructors;
2092 
2093   /// \brief The number of implicitly-declared default constructors for
2094   /// which declarations were built.
2095   static unsigned NumImplicitDefaultConstructorsDeclared;
2096 
2097   /// \brief The number of implicitly-declared copy constructors.
2098   static unsigned NumImplicitCopyConstructors;
2099 
2100   /// \brief The number of implicitly-declared copy constructors for
2101   /// which declarations were built.
2102   static unsigned NumImplicitCopyConstructorsDeclared;
2103 
2104   /// \brief The number of implicitly-declared move constructors.
2105   static unsigned NumImplicitMoveConstructors;
2106 
2107   /// \brief The number of implicitly-declared move constructors for
2108   /// which declarations were built.
2109   static unsigned NumImplicitMoveConstructorsDeclared;
2110 
2111   /// \brief The number of implicitly-declared copy assignment operators.
2112   static unsigned NumImplicitCopyAssignmentOperators;
2113 
2114   /// \brief The number of implicitly-declared copy assignment operators for
2115   /// which declarations were built.
2116   static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2117 
2118   /// \brief The number of implicitly-declared move assignment operators.
2119   static unsigned NumImplicitMoveAssignmentOperators;
2120 
2121   /// \brief The number of implicitly-declared move assignment operators for
2122   /// which declarations were built.
2123   static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2124 
2125   /// \brief The number of implicitly-declared destructors.
2126   static unsigned NumImplicitDestructors;
2127 
2128   /// \brief The number of implicitly-declared destructors for which
2129   /// declarations were built.
2130   static unsigned NumImplicitDestructorsDeclared;
2131 
2132 private:
2133   ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2134   void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2135 
2136 public:
2137   /// \brief Initialize built-in types.
2138   ///
2139   /// This routine may only be invoked once for a given ASTContext object.
2140   /// It is normally invoked by the ASTContext constructor. However, the
2141   /// constructor can be asked to delay initialization, which places the burden
2142   /// of calling this function on the user of that object.
2143   ///
2144   /// \param Target The target
2145   void InitBuiltinTypes(const TargetInfo &Target);
2146 
2147 private:
2148   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2149 
2150   // Return the Objective-C type encoding for a given type.
2151   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2152                                   bool ExpandPointedToStructures,
2153                                   bool ExpandStructures,
2154                                   const FieldDecl *Field,
2155                                   bool OutermostType = false,
2156                                   bool EncodingProperty = false,
2157                                   bool StructField = false,
2158                                   bool EncodeBlockParameters = false,
2159                                   bool EncodeClassNames = false,
2160                                   bool EncodePointerToObjCTypedef = false) const;
2161 
2162   // Adds the encoding of the structure's members.
2163   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2164                                        const FieldDecl *Field,
2165                                        bool includeVBases = true) const;
2166 
2167   // Adds the encoding of a method parameter or return type.
2168   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2169                                          QualType T, std::string& S,
2170                                          bool Extended) const;
2171 
2172   const ASTRecordLayout &
2173   getObjCLayout(const ObjCInterfaceDecl *D,
2174                 const ObjCImplementationDecl *Impl) const;
2175 
2176 private:
2177   /// \brief A set of deallocations that should be performed when the
2178   /// ASTContext is destroyed.
2179   SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
2180 
2181   // FIXME: This currently contains the set of StoredDeclMaps used
2182   // by DeclContext objects.  This probably should not be in ASTContext,
2183   // but we include it here so that ASTContext can quickly deallocate them.
2184   llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2185 
2186   /// \brief A counter used to uniquely identify "blocks".
2187   mutable unsigned int UniqueBlockByRefTypeID;
2188 
2189   friend class DeclContext;
2190   friend class DeclarationNameTable;
2191   void ReleaseDeclContextMaps();
2192 
2193   /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
2194   /// parents as defined by the \c RecursiveASTVisitor.
2195   ///
2196   /// Note that the relationship described here is purely in terms of AST
2197   /// traversal - there are other relationships (for example declaration context)
2198   /// in the AST that are better modeled by special matchers.
2199   ///
2200   /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
2201   class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
2202   public:
2203     /// \brief Builds and returns the translation unit's parent map.
2204     ///
2205     ///  The caller takes ownership of the returned \c ParentMap.
buildMap(TranslationUnitDecl & TU)2206     static ParentMap *buildMap(TranslationUnitDecl &TU) {
2207       ParentMapASTVisitor Visitor(new ParentMap);
2208       Visitor.TraverseDecl(&TU);
2209       return Visitor.Parents;
2210     }
2211 
2212   private:
2213     typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
2214 
ParentMapASTVisitor(ParentMap * Parents)2215     ParentMapASTVisitor(ParentMap *Parents) : Parents(Parents) {
2216     }
2217 
shouldVisitTemplateInstantiations()2218     bool shouldVisitTemplateInstantiations() const {
2219       return true;
2220     }
shouldVisitImplicitCode()2221     bool shouldVisitImplicitCode() const {
2222       return true;
2223     }
2224     // Disables data recursion. We intercept Traverse* methods in the RAV, which
2225     // are not triggered during data recursion.
shouldUseDataRecursionFor(clang::Stmt * S)2226     bool shouldUseDataRecursionFor(clang::Stmt *S) const {
2227       return false;
2228     }
2229 
2230     template <typename T>
TraverseNode(T * Node,bool (VisitorBase::* traverse)(T *))2231     bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
2232       if (Node == NULL)
2233         return true;
2234       if (ParentStack.size() > 0)
2235         // FIXME: Currently we add the same parent multiple times, for example
2236         // when we visit all subexpressions of template instantiations; this is
2237         // suboptimal, bug benign: the only way to visit those is with
2238         // hasAncestor / hasParent, and those do not create new matches.
2239         // The plan is to enable DynTypedNode to be storable in a map or hash
2240         // map. The main problem there is to implement hash functions /
2241         // comparison operators for all types that DynTypedNode supports that
2242         // do not have pointer identity.
2243         (*Parents)[Node].push_back(ParentStack.back());
2244       ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
2245       bool Result = (this ->* traverse) (Node);
2246       ParentStack.pop_back();
2247       return Result;
2248     }
2249 
TraverseDecl(Decl * DeclNode)2250     bool TraverseDecl(Decl *DeclNode) {
2251       return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
2252     }
2253 
TraverseStmt(Stmt * StmtNode)2254     bool TraverseStmt(Stmt *StmtNode) {
2255       return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
2256     }
2257 
2258     ParentMap *Parents;
2259     llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
2260 
2261     friend class RecursiveASTVisitor<ParentMapASTVisitor>;
2262   };
2263 
2264   llvm::OwningPtr<ParentMap> AllParents;
2265 };
2266 
2267 /// \brief Utility function for constructing a nullary selector.
GetNullarySelector(StringRef name,ASTContext & Ctx)2268 static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2269   IdentifierInfo* II = &Ctx.Idents.get(name);
2270   return Ctx.Selectors.getSelector(0, &II);
2271 }
2272 
2273 /// \brief Utility function for constructing an unary selector.
GetUnarySelector(StringRef name,ASTContext & Ctx)2274 static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2275   IdentifierInfo* II = &Ctx.Idents.get(name);
2276   return Ctx.Selectors.getSelector(1, &II);
2277 }
2278 
2279 }  // end namespace clang
2280 
2281 // operator new and delete aren't allowed inside namespaces.
2282 
2283 /// @brief Placement new for using the ASTContext's allocator.
2284 ///
2285 /// This placement form of operator new uses the ASTContext's allocator for
2286 /// obtaining memory.
2287 ///
2288 /// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2289 /// here need to also be made there.
2290 ///
2291 /// We intentionally avoid using a nothrow specification here so that the calls
2292 /// to this operator will not perform a null check on the result -- the
2293 /// underlying allocator never returns null pointers.
2294 ///
2295 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2296 /// @code
2297 /// // Default alignment (8)
2298 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2299 /// // Specific alignment
2300 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2301 /// @endcode
2302 /// Please note that you cannot use delete on the pointer; it must be
2303 /// deallocated using an explicit destructor call followed by
2304 /// @c Context.Deallocate(Ptr).
2305 ///
2306 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2307 /// @param C The ASTContext that provides the allocator.
2308 /// @param Alignment The alignment of the allocated memory (if the underlying
2309 ///                  allocator supports it).
2310 /// @return The allocated memory. Could be NULL.
new(size_t Bytes,const clang::ASTContext & C,size_t Alignment)2311 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2312                           size_t Alignment) {
2313   return C.Allocate(Bytes, Alignment);
2314 }
2315 /// @brief Placement delete companion to the new above.
2316 ///
2317 /// This operator is just a companion to the new above. There is no way of
2318 /// invoking it directly; see the new operator for more details. This operator
2319 /// is called implicitly by the compiler if a placement new expression using
2320 /// the ASTContext throws in the object constructor.
delete(void * Ptr,const clang::ASTContext & C,size_t)2321 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2322   C.Deallocate(Ptr);
2323 }
2324 
2325 /// This placement form of operator new[] uses the ASTContext's allocator for
2326 /// obtaining memory.
2327 ///
2328 /// We intentionally avoid using a nothrow specification here so that the calls
2329 /// to this operator will not perform a null check on the result -- the
2330 /// underlying allocator never returns null pointers.
2331 ///
2332 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2333 /// @code
2334 /// // Default alignment (8)
2335 /// char *data = new (Context) char[10];
2336 /// // Specific alignment
2337 /// char *data = new (Context, 4) char[10];
2338 /// @endcode
2339 /// Please note that you cannot use delete on the pointer; it must be
2340 /// deallocated using an explicit destructor call followed by
2341 /// @c Context.Deallocate(Ptr).
2342 ///
2343 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2344 /// @param C The ASTContext that provides the allocator.
2345 /// @param Alignment The alignment of the allocated memory (if the underlying
2346 ///                  allocator supports it).
2347 /// @return The allocated memory. Could be NULL.
2348 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2349                             size_t Alignment = 8) {
2350   return C.Allocate(Bytes, Alignment);
2351 }
2352 
2353 /// @brief Placement delete[] companion to the new[] above.
2354 ///
2355 /// This operator is just a companion to the new[] above. There is no way of
2356 /// invoking it directly; see the new[] operator for more details. This operator
2357 /// is called implicitly by the compiler if a placement new[] expression using
2358 /// the ASTContext throws in the object constructor.
2359 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2360   C.Deallocate(Ptr);
2361 }
2362 
2363 #endif
2364