• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The file defines the MachineFrameInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16 
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Support/DataTypes.h"
19 #include <cassert>
20 #include <vector>
21 
22 namespace llvm {
23 class raw_ostream;
24 class DataLayout;
25 class TargetRegisterClass;
26 class Type;
27 class MachineFunction;
28 class MachineBasicBlock;
29 class TargetFrameLowering;
30 class BitVector;
31 class Value;
32 class AllocaInst;
33 
34 /// The CalleeSavedInfo class tracks the information need to locate where a
35 /// callee saved register is in the current frame.
36 class CalleeSavedInfo {
37   unsigned Reg;
38   int FrameIdx;
39 
40 public:
41   explicit CalleeSavedInfo(unsigned R, int FI = 0)
Reg(R)42   : Reg(R), FrameIdx(FI) {}
43 
44   // Accessors.
getReg()45   unsigned getReg()                        const { return Reg; }
getFrameIdx()46   int getFrameIdx()                        const { return FrameIdx; }
setFrameIdx(int FI)47   void setFrameIdx(int FI)                       { FrameIdx = FI; }
48 };
49 
50 /// The MachineFrameInfo class represents an abstract stack frame until
51 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
52 /// representation optimizations, such as frame pointer elimination.  It also
53 /// allows more mundane (but still important) optimizations, such as reordering
54 /// of abstract objects on the stack frame.
55 ///
56 /// To support this, the class assigns unique integer identifiers to stack
57 /// objects requested clients.  These identifiers are negative integers for
58 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
59 /// for objects that may be reordered.  Instructions which refer to stack
60 /// objects use a special MO_FrameIndex operand to represent these frame
61 /// indexes.
62 ///
63 /// Because this class keeps track of all references to the stack frame, it
64 /// knows when a variable sized object is allocated on the stack.  This is the
65 /// sole condition which prevents frame pointer elimination, which is an
66 /// important optimization on register-poor architectures.  Because original
67 /// variable sized alloca's in the source program are the only source of
68 /// variable sized stack objects, it is safe to decide whether there will be
69 /// any variable sized objects before all stack objects are known (for
70 /// example, register allocator spill code never needs variable sized
71 /// objects).
72 ///
73 /// When prolog/epilog code emission is performed, the final stack frame is
74 /// built and the machine instructions are modified to refer to the actual
75 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
76 /// the program.
77 ///
78 /// @brief Abstract Stack Frame Information
79 class MachineFrameInfo {
80 
81   // StackObject - Represent a single object allocated on the stack.
82   struct StackObject {
83     // SPOffset - The offset of this object from the stack pointer on entry to
84     // the function.  This field has no meaning for a variable sized element.
85     int64_t SPOffset;
86 
87     // The size of this object on the stack. 0 means a variable sized object,
88     // ~0ULL means a dead object.
89     uint64_t Size;
90 
91     // Alignment - The required alignment of this stack slot.
92     unsigned Alignment;
93 
94     // isImmutable - If true, the value of the stack object is set before
95     // entering the function and is not modified inside the function. By
96     // default, fixed objects are immutable unless marked otherwise.
97     bool isImmutable;
98 
99     // isSpillSlot - If true the stack object is used as spill slot. It
100     // cannot alias any other memory objects.
101     bool isSpillSlot;
102 
103     // MayNeedSP - If true the stack object triggered the creation of the stack
104     // protector. We should allocate this object right after the stack
105     // protector.
106     bool MayNeedSP;
107 
108     /// Alloca - If this stack object is originated from an Alloca instruction
109     /// this value saves the original IR allocation. Can be NULL.
110     const AllocaInst *Alloca;
111 
112     // PreAllocated - If true, the object was mapped into the local frame
113     // block and doesn't need additional handling for allocation beyond that.
114     bool PreAllocated;
115 
StackObjectStackObject116     StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
117                 bool isSS, bool NSP, const AllocaInst *Val)
118       : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
119         isSpillSlot(isSS), MayNeedSP(NSP), Alloca(Val), PreAllocated(false) {}
120   };
121 
122   /// Objects - The list of stack objects allocated...
123   ///
124   std::vector<StackObject> Objects;
125 
126   /// NumFixedObjects - This contains the number of fixed objects contained on
127   /// the stack.  Because fixed objects are stored at a negative index in the
128   /// Objects list, this is also the index to the 0th object in the list.
129   ///
130   unsigned NumFixedObjects;
131 
132   /// HasVarSizedObjects - This boolean keeps track of whether any variable
133   /// sized objects have been allocated yet.
134   ///
135   bool HasVarSizedObjects;
136 
137   /// FrameAddressTaken - This boolean keeps track of whether there is a call
138   /// to builtin \@llvm.frameaddress.
139   bool FrameAddressTaken;
140 
141   /// ReturnAddressTaken - This boolean keeps track of whether there is a call
142   /// to builtin \@llvm.returnaddress.
143   bool ReturnAddressTaken;
144 
145   /// StackSize - The prolog/epilog code inserter calculates the final stack
146   /// offsets for all of the fixed size objects, updating the Objects list
147   /// above.  It then updates StackSize to contain the number of bytes that need
148   /// to be allocated on entry to the function.
149   ///
150   uint64_t StackSize;
151 
152   /// OffsetAdjustment - The amount that a frame offset needs to be adjusted to
153   /// have the actual offset from the stack/frame pointer.  The exact usage of
154   /// this is target-dependent, but it is typically used to adjust between
155   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
156   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
157   /// to the distance between the initial SP and the value in FP.  For many
158   /// targets, this value is only used when generating debug info (via
159   /// TargetRegisterInfo::getFrameIndexOffset); when generating code, the
160   /// corresponding adjustments are performed directly.
161   int OffsetAdjustment;
162 
163   /// MaxAlignment - The prolog/epilog code inserter may process objects
164   /// that require greater alignment than the default alignment the target
165   /// provides. To handle this, MaxAlignment is set to the maximum alignment
166   /// needed by the objects on the current frame.  If this is greater than the
167   /// native alignment maintained by the compiler, dynamic alignment code will
168   /// be needed.
169   ///
170   unsigned MaxAlignment;
171 
172   /// AdjustsStack - Set to true if this function adjusts the stack -- e.g.,
173   /// when calling another function. This is only valid during and after
174   /// prolog/epilog code insertion.
175   bool AdjustsStack;
176 
177   /// HasCalls - Set to true if this function has any function calls.
178   bool HasCalls;
179 
180   /// StackProtectorIdx - The frame index for the stack protector.
181   int StackProtectorIdx;
182 
183   /// FunctionContextIdx - The frame index for the function context. Used for
184   /// SjLj exceptions.
185   int FunctionContextIdx;
186 
187   /// MaxCallFrameSize - This contains the size of the largest call frame if the
188   /// target uses frame setup/destroy pseudo instructions (as defined in the
189   /// TargetFrameInfo class).  This information is important for frame pointer
190   /// elimination.  If is only valid during and after prolog/epilog code
191   /// insertion.
192   ///
193   unsigned MaxCallFrameSize;
194 
195   /// CSInfo - The prolog/epilog code inserter fills in this vector with each
196   /// callee saved register saved in the frame.  Beyond its use by the prolog/
197   /// epilog code inserter, this data used for debug info and exception
198   /// handling.
199   std::vector<CalleeSavedInfo> CSInfo;
200 
201   /// CSIValid - Has CSInfo been set yet?
202   bool CSIValid;
203 
204   /// TargetFrameLowering - Target information about frame layout.
205   ///
206   const TargetFrameLowering &TFI;
207 
208   /// LocalFrameObjects - References to frame indices which are mapped
209   /// into the local frame allocation block. <FrameIdx, LocalOffset>
210   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
211 
212   /// LocalFrameSize - Size of the pre-allocated local frame block.
213   int64_t LocalFrameSize;
214 
215   /// Required alignment of the local object blob, which is the strictest
216   /// alignment of any object in it.
217   unsigned LocalFrameMaxAlign;
218 
219   /// Whether the local object blob needs to be allocated together. If not,
220   /// PEI should ignore the isPreAllocated flags on the stack objects and
221   /// just allocate them normally.
222   bool UseLocalStackAllocationBlock;
223 
224   /// Whether the "realign-stack" option is on.
225   bool RealignOption;
226 public:
MachineFrameInfo(const TargetFrameLowering & tfi,bool RealignOpt)227     explicit MachineFrameInfo(const TargetFrameLowering &tfi, bool RealignOpt)
228     : TFI(tfi), RealignOption(RealignOpt) {
229     StackSize = NumFixedObjects = OffsetAdjustment = MaxAlignment = 0;
230     HasVarSizedObjects = false;
231     FrameAddressTaken = false;
232     ReturnAddressTaken = false;
233     AdjustsStack = false;
234     HasCalls = false;
235     StackProtectorIdx = -1;
236     FunctionContextIdx = -1;
237     MaxCallFrameSize = 0;
238     CSIValid = false;
239     LocalFrameSize = 0;
240     LocalFrameMaxAlign = 0;
241     UseLocalStackAllocationBlock = false;
242   }
243 
244   /// hasStackObjects - Return true if there are any stack objects in this
245   /// function.
246   ///
hasStackObjects()247   bool hasStackObjects() const { return !Objects.empty(); }
248 
249   /// hasVarSizedObjects - This method may be called any time after instruction
250   /// selection is complete to determine if the stack frame for this function
251   /// contains any variable sized objects.
252   ///
hasVarSizedObjects()253   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
254 
255   /// getStackProtectorIndex/setStackProtectorIndex - Return the index for the
256   /// stack protector object.
257   ///
getStackProtectorIndex()258   int getStackProtectorIndex() const { return StackProtectorIdx; }
setStackProtectorIndex(int I)259   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
260 
261   /// getFunctionContextIndex/setFunctionContextIndex - Return the index for the
262   /// function context object. This object is used for SjLj exceptions.
getFunctionContextIndex()263   int getFunctionContextIndex() const { return FunctionContextIdx; }
setFunctionContextIndex(int I)264   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
265 
266   /// isFrameAddressTaken - This method may be called any time after instruction
267   /// selection is complete to determine if there is a call to
268   /// \@llvm.frameaddress in this function.
isFrameAddressTaken()269   bool isFrameAddressTaken() const { return FrameAddressTaken; }
setFrameAddressIsTaken(bool T)270   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
271 
272   /// isReturnAddressTaken - This method may be called any time after
273   /// instruction selection is complete to determine if there is a call to
274   /// \@llvm.returnaddress in this function.
isReturnAddressTaken()275   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
setReturnAddressIsTaken(bool s)276   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
277 
278   /// getObjectIndexBegin - Return the minimum frame object index.
279   ///
getObjectIndexBegin()280   int getObjectIndexBegin() const { return -NumFixedObjects; }
281 
282   /// getObjectIndexEnd - Return one past the maximum frame object index.
283   ///
getObjectIndexEnd()284   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
285 
286   /// getNumFixedObjects - Return the number of fixed objects.
getNumFixedObjects()287   unsigned getNumFixedObjects() const { return NumFixedObjects; }
288 
289   /// getNumObjects - Return the number of objects.
290   ///
getNumObjects()291   unsigned getNumObjects() const { return Objects.size(); }
292 
293   /// mapLocalFrameObject - Map a frame index into the local object block
mapLocalFrameObject(int ObjectIndex,int64_t Offset)294   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
295     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
296     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
297   }
298 
299   /// getLocalFrameObjectMap - Get the local offset mapping for a for an object
getLocalFrameObjectMap(int i)300   std::pair<int, int64_t> getLocalFrameObjectMap(int i) {
301     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
302             "Invalid local object reference!");
303     return LocalFrameObjects[i];
304   }
305 
306   /// getLocalFrameObjectCount - Return the number of objects allocated into
307   /// the local object block.
getLocalFrameObjectCount()308   int64_t getLocalFrameObjectCount() { return LocalFrameObjects.size(); }
309 
310   /// setLocalFrameSize - Set the size of the local object blob.
setLocalFrameSize(int64_t sz)311   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
312 
313   /// getLocalFrameSize - Get the size of the local object blob.
getLocalFrameSize()314   int64_t getLocalFrameSize() const { return LocalFrameSize; }
315 
316   /// setLocalFrameMaxAlign - Required alignment of the local object blob,
317   /// which is the strictest alignment of any object in it.
setLocalFrameMaxAlign(unsigned Align)318   void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
319 
320   /// getLocalFrameMaxAlign - Return the required alignment of the local
321   /// object blob.
getLocalFrameMaxAlign()322   unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
323 
324   /// getUseLocalStackAllocationBlock - Get whether the local allocation blob
325   /// should be allocated together or let PEI allocate the locals in it
326   /// directly.
getUseLocalStackAllocationBlock()327   bool getUseLocalStackAllocationBlock() {return UseLocalStackAllocationBlock;}
328 
329   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
330   /// should be allocated together or let PEI allocate the locals in it
331   /// directly.
setUseLocalStackAllocationBlock(bool v)332   void setUseLocalStackAllocationBlock(bool v) {
333     UseLocalStackAllocationBlock = v;
334   }
335 
336   /// isObjectPreAllocated - Return true if the object was pre-allocated into
337   /// the local block.
isObjectPreAllocated(int ObjectIdx)338   bool isObjectPreAllocated(int ObjectIdx) const {
339     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
340            "Invalid Object Idx!");
341     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
342   }
343 
344   /// getObjectSize - Return the size of the specified object.
345   ///
getObjectSize(int ObjectIdx)346   int64_t getObjectSize(int ObjectIdx) const {
347     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
348            "Invalid Object Idx!");
349     return Objects[ObjectIdx+NumFixedObjects].Size;
350   }
351 
352   /// setObjectSize - Change the size of the specified stack object.
setObjectSize(int ObjectIdx,int64_t Size)353   void setObjectSize(int ObjectIdx, int64_t Size) {
354     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
355            "Invalid Object Idx!");
356     Objects[ObjectIdx+NumFixedObjects].Size = Size;
357   }
358 
359   /// getObjectAlignment - Return the alignment of the specified stack object.
getObjectAlignment(int ObjectIdx)360   unsigned getObjectAlignment(int ObjectIdx) const {
361     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
362            "Invalid Object Idx!");
363     return Objects[ObjectIdx+NumFixedObjects].Alignment;
364   }
365 
366   /// setObjectAlignment - Change the alignment of the specified stack object.
setObjectAlignment(int ObjectIdx,unsigned Align)367   void setObjectAlignment(int ObjectIdx, unsigned Align) {
368     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
369            "Invalid Object Idx!");
370     Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
371     ensureMaxAlignment(Align);
372   }
373 
374   /// getObjectAllocation - Return the underlying Alloca of the specified
375   /// stack object if it exists. Returns 0 if none exists.
getObjectAllocation(int ObjectIdx)376   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
377     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
378            "Invalid Object Idx!");
379     return Objects[ObjectIdx+NumFixedObjects].Alloca;
380   }
381 
382   /// NeedsStackProtector - Returns true if the object may need stack
383   /// protectors.
MayNeedStackProtector(int ObjectIdx)384   bool MayNeedStackProtector(int ObjectIdx) const {
385     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
386            "Invalid Object Idx!");
387     return Objects[ObjectIdx+NumFixedObjects].MayNeedSP;
388   }
389 
390   /// getObjectOffset - Return the assigned stack offset of the specified object
391   /// from the incoming stack pointer.
392   ///
getObjectOffset(int ObjectIdx)393   int64_t getObjectOffset(int ObjectIdx) const {
394     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
395            "Invalid Object Idx!");
396     assert(!isDeadObjectIndex(ObjectIdx) &&
397            "Getting frame offset for a dead object?");
398     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
399   }
400 
401   /// setObjectOffset - Set the stack frame offset of the specified object.  The
402   /// offset is relative to the stack pointer on entry to the function.
403   ///
setObjectOffset(int ObjectIdx,int64_t SPOffset)404   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
405     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
406            "Invalid Object Idx!");
407     assert(!isDeadObjectIndex(ObjectIdx) &&
408            "Setting frame offset for a dead object?");
409     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
410   }
411 
412   /// getStackSize - Return the number of bytes that must be allocated to hold
413   /// all of the fixed size frame objects.  This is only valid after
414   /// Prolog/Epilog code insertion has finalized the stack frame layout.
415   ///
getStackSize()416   uint64_t getStackSize() const { return StackSize; }
417 
418   /// setStackSize - Set the size of the stack...
419   ///
setStackSize(uint64_t Size)420   void setStackSize(uint64_t Size) { StackSize = Size; }
421 
422   /// Estimate and return the size of the stack frame.
423   unsigned estimateStackSize(const MachineFunction &MF) const;
424 
425   /// getOffsetAdjustment - Return the correction for frame offsets.
426   ///
getOffsetAdjustment()427   int getOffsetAdjustment() const { return OffsetAdjustment; }
428 
429   /// setOffsetAdjustment - Set the correction for frame offsets.
430   ///
setOffsetAdjustment(int Adj)431   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
432 
433   /// getMaxAlignment - Return the alignment in bytes that this function must be
434   /// aligned to, which is greater than the default stack alignment provided by
435   /// the target.
436   ///
getMaxAlignment()437   unsigned getMaxAlignment() const { return MaxAlignment; }
438 
439   /// ensureMaxAlignment - Make sure the function is at least Align bytes
440   /// aligned.
441   void ensureMaxAlignment(unsigned Align);
442 
443   /// AdjustsStack - Return true if this function adjusts the stack -- e.g.,
444   /// when calling another function. This is only valid during and after
445   /// prolog/epilog code insertion.
adjustsStack()446   bool adjustsStack() const { return AdjustsStack; }
setAdjustsStack(bool V)447   void setAdjustsStack(bool V) { AdjustsStack = V; }
448 
449   /// hasCalls - Return true if the current function has any function calls.
hasCalls()450   bool hasCalls() const { return HasCalls; }
setHasCalls(bool V)451   void setHasCalls(bool V) { HasCalls = V; }
452 
453   /// getMaxCallFrameSize - Return the maximum size of a call frame that must be
454   /// allocated for an outgoing function call.  This is only available if
455   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
456   /// then only during or after prolog/epilog code insertion.
457   ///
getMaxCallFrameSize()458   unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
setMaxCallFrameSize(unsigned S)459   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
460 
461   /// CreateFixedObject - Create a new object at a fixed location on the stack.
462   /// All fixed objects should be created before other objects are created for
463   /// efficiency. By default, fixed objects are immutable. This returns an
464   /// index with a negative value.
465   ///
466   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable);
467 
468 
469   /// isFixedObjectIndex - Returns true if the specified index corresponds to a
470   /// fixed stack object.
isFixedObjectIndex(int ObjectIdx)471   bool isFixedObjectIndex(int ObjectIdx) const {
472     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
473   }
474 
475   /// isImmutableObjectIndex - Returns true if the specified index corresponds
476   /// to an immutable object.
isImmutableObjectIndex(int ObjectIdx)477   bool isImmutableObjectIndex(int ObjectIdx) const {
478     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
479            "Invalid Object Idx!");
480     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
481   }
482 
483   /// isSpillSlotObjectIndex - Returns true if the specified index corresponds
484   /// to a spill slot..
isSpillSlotObjectIndex(int ObjectIdx)485   bool isSpillSlotObjectIndex(int ObjectIdx) const {
486     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
487            "Invalid Object Idx!");
488     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
489   }
490 
491   /// isDeadObjectIndex - Returns true if the specified index corresponds to
492   /// a dead object.
isDeadObjectIndex(int ObjectIdx)493   bool isDeadObjectIndex(int ObjectIdx) const {
494     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
495            "Invalid Object Idx!");
496     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
497   }
498 
499   /// CreateStackObject - Create a new statically sized stack object, returning
500   /// a nonnegative identifier to represent it.
501   ///
502   int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
503                         bool MayNeedSP = false, const AllocaInst *Alloca = 0);
504 
505   /// CreateSpillStackObject - Create a new statically sized stack object that
506   /// represents a spill slot, returning a nonnegative identifier to represent
507   /// it.
508   ///
509   int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
510 
511   /// RemoveStackObject - Remove or mark dead a statically sized stack object.
512   ///
RemoveStackObject(int ObjectIdx)513   void RemoveStackObject(int ObjectIdx) {
514     // Mark it dead.
515     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
516   }
517 
518   /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
519   /// variable sized object has been created.  This must be created whenever a
520   /// variable sized object is created, whether or not the index returned is
521   /// actually used.
522   ///
523   int CreateVariableSizedObject(unsigned Alignment);
524 
525   /// getCalleeSavedInfo - Returns a reference to call saved info vector for the
526   /// current function.
getCalleeSavedInfo()527   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
528     return CSInfo;
529   }
530 
531   /// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's
532   /// callee saved information.
setCalleeSavedInfo(const std::vector<CalleeSavedInfo> & CSI)533   void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
534     CSInfo = CSI;
535   }
536 
537   /// isCalleeSavedInfoValid - Has the callee saved info been calculated yet?
isCalleeSavedInfoValid()538   bool isCalleeSavedInfoValid() const { return CSIValid; }
539 
setCalleeSavedInfoValid(bool v)540   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
541 
542   /// getPristineRegs - Return a set of physical registers that are pristine on
543   /// entry to the MBB.
544   ///
545   /// Pristine registers hold a value that is useless to the current function,
546   /// but that must be preserved - they are callee saved registers that have not
547   /// been saved yet.
548   ///
549   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
550   /// method always returns an empty set.
551   BitVector getPristineRegs(const MachineBasicBlock *MBB) const;
552 
553   /// print - Used by the MachineFunction printer to print information about
554   /// stack objects. Implemented in MachineFunction.cpp
555   ///
556   void print(const MachineFunction &MF, raw_ostream &OS) const;
557 
558   /// dump - Print the function to stderr.
559   void dump(const MachineFunction &MF) const;
560 };
561 
562 } // End llvm namespace
563 
564 #endif
565