• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a wrapper around MCSchedModel that allows the interface
11 // to benefit from information currently only available in TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/raw_ostream.h"
18 #include "llvm/Target/TargetInstrInfo.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/Target/TargetSubtargetInfo.h"
22 
23 using namespace llvm;
24 
25 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
26   cl::desc("Use TargetSchedModel for latency lookup"));
27 
28 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
29   cl::desc("Use InstrItineraryData for latency lookup"));
30 
hasInstrSchedModel() const31 bool TargetSchedModel::hasInstrSchedModel() const {
32   return EnableSchedModel && SchedModel.hasInstrSchedModel();
33 }
34 
hasInstrItineraries() const35 bool TargetSchedModel::hasInstrItineraries() const {
36   return EnableSchedItins && !InstrItins.isEmpty();
37 }
38 
gcd(unsigned Dividend,unsigned Divisor)39 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
40   // Dividend and Divisor will be naturally swapped as needed.
41   while(Divisor) {
42     unsigned Rem = Dividend % Divisor;
43     Dividend = Divisor;
44     Divisor = Rem;
45   };
46   return Dividend;
47 }
lcm(unsigned A,unsigned B)48 static unsigned lcm(unsigned A, unsigned B) {
49   unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
50   assert((LCM >= A && LCM >= B) && "LCM overflow");
51   return LCM;
52 }
53 
init(const MCSchedModel & sm,const TargetSubtargetInfo * sti,const TargetInstrInfo * tii)54 void TargetSchedModel::init(const MCSchedModel &sm,
55                             const TargetSubtargetInfo *sti,
56                             const TargetInstrInfo *tii) {
57   SchedModel = sm;
58   STI = sti;
59   TII = tii;
60   STI->initInstrItins(InstrItins);
61 
62   unsigned NumRes = SchedModel.getNumProcResourceKinds();
63   ResourceFactors.resize(NumRes);
64   ResourceLCM = SchedModel.IssueWidth;
65   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
66     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
67     if (NumUnits > 0)
68       ResourceLCM = lcm(ResourceLCM, NumUnits);
69   }
70   MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
71   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
72     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
73     ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
74   }
75 }
76 
getNumMicroOps(const MachineInstr * MI,const MCSchedClassDesc * SC) const77 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
78                                           const MCSchedClassDesc *SC) const {
79   if (hasInstrItineraries()) {
80     int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
81     return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI);
82   }
83   if (hasInstrSchedModel()) {
84     if (!SC)
85       SC = resolveSchedClass(MI);
86     if (SC->isValid())
87       return SC->NumMicroOps;
88   }
89   return MI->isTransient() ? 0 : 1;
90 }
91 
92 // The machine model may explicitly specify an invalid latency, which
93 // effectively means infinite latency. Since users of the TargetSchedule API
94 // don't know how to handle this, we convert it to a very large latency that is
95 // easy to distinguish when debugging the DAG but won't induce overflow.
convertLatency(int Cycles)96 static unsigned convertLatency(int Cycles) {
97   return Cycles >= 0 ? Cycles : 1000;
98 }
99 
100 /// If we can determine the operand latency from the def only, without machine
101 /// model or itinerary lookup, do so. Otherwise return -1.
getDefLatency(const MachineInstr * DefMI,bool FindMin) const102 int TargetSchedModel::getDefLatency(const MachineInstr *DefMI,
103                                     bool FindMin) const {
104 
105   // Return a latency based on the itinerary properties and defining instruction
106   // if possible. Some common subtargets don't require per-operand latency,
107   // especially for minimum latencies.
108   if (FindMin) {
109     // If MinLatency is invalid, then use the itinerary for MinLatency. If no
110     // itinerary exists either, then use single cycle latency.
111     if (SchedModel.MinLatency < 0 && !hasInstrItineraries()) {
112       return 1;
113     }
114     return SchedModel.MinLatency;
115   }
116   else if (!hasInstrSchedModel() && !hasInstrItineraries()) {
117     return TII->defaultDefLatency(&SchedModel, DefMI);
118   }
119   // ...operand lookup required
120   return -1;
121 }
122 
123 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
124 /// evaluation of predicates that depend on instruction operands or flags.
125 const MCSchedClassDesc *TargetSchedModel::
resolveSchedClass(const MachineInstr * MI) const126 resolveSchedClass(const MachineInstr *MI) const {
127 
128   // Get the definition's scheduling class descriptor from this machine model.
129   unsigned SchedClass = MI->getDesc().getSchedClass();
130   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
131 
132 #ifndef NDEBUG
133   unsigned NIter = 0;
134 #endif
135   while (SCDesc->isVariant()) {
136     assert(++NIter < 6 && "Variants are nested deeper than the magic number");
137 
138     SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
139     SCDesc = SchedModel.getSchedClassDesc(SchedClass);
140   }
141   return SCDesc;
142 }
143 
144 /// Find the def index of this operand. This index maps to the machine model and
145 /// is independent of use operands. Def operands may be reordered with uses or
146 /// merged with uses without affecting the def index (e.g. before/after
147 /// regalloc). However, an instruction's def operands must never be reordered
148 /// with respect to each other.
findDefIdx(const MachineInstr * MI,unsigned DefOperIdx)149 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
150   unsigned DefIdx = 0;
151   for (unsigned i = 0; i != DefOperIdx; ++i) {
152     const MachineOperand &MO = MI->getOperand(i);
153     if (MO.isReg() && MO.isDef())
154       ++DefIdx;
155   }
156   return DefIdx;
157 }
158 
159 /// Find the use index of this operand. This is independent of the instruction's
160 /// def operands.
161 ///
162 /// Note that uses are not determined by the operand's isUse property, which
163 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
164 /// a "use". The machine model allows an operand to be both a Def and Use.
findUseIdx(const MachineInstr * MI,unsigned UseOperIdx)165 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
166   unsigned UseIdx = 0;
167   for (unsigned i = 0; i != UseOperIdx; ++i) {
168     const MachineOperand &MO = MI->getOperand(i);
169     if (MO.isReg() && MO.readsReg())
170       ++UseIdx;
171   }
172   return UseIdx;
173 }
174 
175 // Top-level API for clients that know the operand indices.
computeOperandLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * UseMI,unsigned UseOperIdx,bool FindMin) const176 unsigned TargetSchedModel::computeOperandLatency(
177   const MachineInstr *DefMI, unsigned DefOperIdx,
178   const MachineInstr *UseMI, unsigned UseOperIdx,
179   bool FindMin) const {
180 
181   int DefLatency = getDefLatency(DefMI, FindMin);
182   if (DefLatency >= 0)
183     return DefLatency;
184 
185   if (hasInstrItineraries()) {
186     int OperLatency = 0;
187     if (UseMI) {
188       OperLatency =
189         TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx, UseMI, UseOperIdx);
190     }
191     else {
192       unsigned DefClass = DefMI->getDesc().getSchedClass();
193       OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
194     }
195     if (OperLatency >= 0)
196       return OperLatency;
197 
198     // No operand latency was found.
199     unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI);
200 
201     // Expected latency is the max of the stage latency and itinerary props.
202     // Rather than directly querying InstrItins stage latency, we call a TII
203     // hook to allow subtargets to specialize latency. This hook is only
204     // applicable to the InstrItins model. InstrSchedModel should model all
205     // special cases without TII hooks.
206     if (!FindMin)
207       InstrLatency = std::max(InstrLatency,
208                               TII->defaultDefLatency(&SchedModel, DefMI));
209     return InstrLatency;
210   }
211   assert(!FindMin && hasInstrSchedModel() &&
212          "Expected a SchedModel for this cpu");
213   const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
214   unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
215   if (DefIdx < SCDesc->NumWriteLatencyEntries) {
216     // Lookup the definition's write latency in SubtargetInfo.
217     const MCWriteLatencyEntry *WLEntry =
218       STI->getWriteLatencyEntry(SCDesc, DefIdx);
219     unsigned WriteID = WLEntry->WriteResourceID;
220     unsigned Latency = convertLatency(WLEntry->Cycles);
221     if (!UseMI)
222       return Latency;
223 
224     // Lookup the use's latency adjustment in SubtargetInfo.
225     const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
226     if (UseDesc->NumReadAdvanceEntries == 0)
227       return Latency;
228     unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
229     return Latency - STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
230   }
231   // If DefIdx does not exist in the model (e.g. implicit defs), then return
232   // unit latency (defaultDefLatency may be too conservative).
233 #ifndef NDEBUG
234   if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
235       && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()) {
236     std::string Err;
237     raw_string_ostream ss(Err);
238     ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
239        << *DefMI;
240     report_fatal_error(ss.str());
241   }
242 #endif
243   // FIXME: Automatically giving all implicit defs defaultDefLatency is
244   // undesirable. We should only do it for defs that are known to the MC
245   // desc like flags. Truly implicit defs should get 1 cycle latency.
246   return DefMI->isTransient() ? 0 : TII->defaultDefLatency(&SchedModel, DefMI);
247 }
248 
computeInstrLatency(const MachineInstr * MI) const249 unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI) const {
250   // For the itinerary model, fall back to the old subtarget hook.
251   // Allow subtargets to compute Bundle latencies outside the machine model.
252   if (hasInstrItineraries() || MI->isBundle())
253     return TII->getInstrLatency(&InstrItins, MI);
254 
255   if (hasInstrSchedModel()) {
256     const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
257     if (SCDesc->isValid()) {
258       unsigned Latency = 0;
259       for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
260            DefIdx != DefEnd; ++DefIdx) {
261         // Lookup the definition's write latency in SubtargetInfo.
262         const MCWriteLatencyEntry *WLEntry =
263           STI->getWriteLatencyEntry(SCDesc, DefIdx);
264         Latency = std::max(Latency, convertLatency(WLEntry->Cycles));
265       }
266       return Latency;
267     }
268   }
269   return TII->defaultDefLatency(&SchedModel, MI);
270 }
271 
272 unsigned TargetSchedModel::
computeOutputLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * DepMI) const273 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
274                      const MachineInstr *DepMI) const {
275   // MinLatency == -1 is for in-order processors that always have unit
276   // MinLatency. MinLatency > 0 is for in-order processors with varying min
277   // latencies, but since this is not a RAW dep, we always use unit latency.
278   if (SchedModel.MinLatency != 0)
279     return 1;
280 
281   // MinLatency == 0 indicates an out-of-order processor that can dispatch
282   // WAW dependencies in the same cycle.
283 
284   // Treat predication as a data dependency for out-of-order cpus. In-order
285   // cpus do not need to treat predicated writes specially.
286   //
287   // TODO: The following hack exists because predication passes do not
288   // correctly append imp-use operands, and readsReg() strangely returns false
289   // for predicated defs.
290   unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
291   const MachineFunction &MF = *DefMI->getParent()->getParent();
292   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
293   if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
294     return computeInstrLatency(DefMI);
295 
296   // If we have a per operand scheduling model, check if this def is writing
297   // an unbuffered resource. If so, it treated like an in-order cpu.
298   if (hasInstrSchedModel()) {
299     const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
300     if (SCDesc->isValid()) {
301       for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
302              *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
303         if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->IsBuffered)
304           return 1;
305       }
306     }
307   }
308   return 0;
309 }
310