1 //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a wrapper around MCSchedModel that allows the interface
11 // to benefit from information currently only available in TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/raw_ostream.h"
18 #include "llvm/Target/TargetInstrInfo.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/Target/TargetSubtargetInfo.h"
22
23 using namespace llvm;
24
25 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
26 cl::desc("Use TargetSchedModel for latency lookup"));
27
28 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
29 cl::desc("Use InstrItineraryData for latency lookup"));
30
hasInstrSchedModel() const31 bool TargetSchedModel::hasInstrSchedModel() const {
32 return EnableSchedModel && SchedModel.hasInstrSchedModel();
33 }
34
hasInstrItineraries() const35 bool TargetSchedModel::hasInstrItineraries() const {
36 return EnableSchedItins && !InstrItins.isEmpty();
37 }
38
gcd(unsigned Dividend,unsigned Divisor)39 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
40 // Dividend and Divisor will be naturally swapped as needed.
41 while(Divisor) {
42 unsigned Rem = Dividend % Divisor;
43 Dividend = Divisor;
44 Divisor = Rem;
45 };
46 return Dividend;
47 }
lcm(unsigned A,unsigned B)48 static unsigned lcm(unsigned A, unsigned B) {
49 unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
50 assert((LCM >= A && LCM >= B) && "LCM overflow");
51 return LCM;
52 }
53
init(const MCSchedModel & sm,const TargetSubtargetInfo * sti,const TargetInstrInfo * tii)54 void TargetSchedModel::init(const MCSchedModel &sm,
55 const TargetSubtargetInfo *sti,
56 const TargetInstrInfo *tii) {
57 SchedModel = sm;
58 STI = sti;
59 TII = tii;
60 STI->initInstrItins(InstrItins);
61
62 unsigned NumRes = SchedModel.getNumProcResourceKinds();
63 ResourceFactors.resize(NumRes);
64 ResourceLCM = SchedModel.IssueWidth;
65 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
66 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
67 if (NumUnits > 0)
68 ResourceLCM = lcm(ResourceLCM, NumUnits);
69 }
70 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
71 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
72 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
73 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
74 }
75 }
76
getNumMicroOps(const MachineInstr * MI,const MCSchedClassDesc * SC) const77 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
78 const MCSchedClassDesc *SC) const {
79 if (hasInstrItineraries()) {
80 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
81 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI);
82 }
83 if (hasInstrSchedModel()) {
84 if (!SC)
85 SC = resolveSchedClass(MI);
86 if (SC->isValid())
87 return SC->NumMicroOps;
88 }
89 return MI->isTransient() ? 0 : 1;
90 }
91
92 // The machine model may explicitly specify an invalid latency, which
93 // effectively means infinite latency. Since users of the TargetSchedule API
94 // don't know how to handle this, we convert it to a very large latency that is
95 // easy to distinguish when debugging the DAG but won't induce overflow.
convertLatency(int Cycles)96 static unsigned convertLatency(int Cycles) {
97 return Cycles >= 0 ? Cycles : 1000;
98 }
99
100 /// If we can determine the operand latency from the def only, without machine
101 /// model or itinerary lookup, do so. Otherwise return -1.
getDefLatency(const MachineInstr * DefMI,bool FindMin) const102 int TargetSchedModel::getDefLatency(const MachineInstr *DefMI,
103 bool FindMin) const {
104
105 // Return a latency based on the itinerary properties and defining instruction
106 // if possible. Some common subtargets don't require per-operand latency,
107 // especially for minimum latencies.
108 if (FindMin) {
109 // If MinLatency is invalid, then use the itinerary for MinLatency. If no
110 // itinerary exists either, then use single cycle latency.
111 if (SchedModel.MinLatency < 0 && !hasInstrItineraries()) {
112 return 1;
113 }
114 return SchedModel.MinLatency;
115 }
116 else if (!hasInstrSchedModel() && !hasInstrItineraries()) {
117 return TII->defaultDefLatency(&SchedModel, DefMI);
118 }
119 // ...operand lookup required
120 return -1;
121 }
122
123 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
124 /// evaluation of predicates that depend on instruction operands or flags.
125 const MCSchedClassDesc *TargetSchedModel::
resolveSchedClass(const MachineInstr * MI) const126 resolveSchedClass(const MachineInstr *MI) const {
127
128 // Get the definition's scheduling class descriptor from this machine model.
129 unsigned SchedClass = MI->getDesc().getSchedClass();
130 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
131
132 #ifndef NDEBUG
133 unsigned NIter = 0;
134 #endif
135 while (SCDesc->isVariant()) {
136 assert(++NIter < 6 && "Variants are nested deeper than the magic number");
137
138 SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
139 SCDesc = SchedModel.getSchedClassDesc(SchedClass);
140 }
141 return SCDesc;
142 }
143
144 /// Find the def index of this operand. This index maps to the machine model and
145 /// is independent of use operands. Def operands may be reordered with uses or
146 /// merged with uses without affecting the def index (e.g. before/after
147 /// regalloc). However, an instruction's def operands must never be reordered
148 /// with respect to each other.
findDefIdx(const MachineInstr * MI,unsigned DefOperIdx)149 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
150 unsigned DefIdx = 0;
151 for (unsigned i = 0; i != DefOperIdx; ++i) {
152 const MachineOperand &MO = MI->getOperand(i);
153 if (MO.isReg() && MO.isDef())
154 ++DefIdx;
155 }
156 return DefIdx;
157 }
158
159 /// Find the use index of this operand. This is independent of the instruction's
160 /// def operands.
161 ///
162 /// Note that uses are not determined by the operand's isUse property, which
163 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
164 /// a "use". The machine model allows an operand to be both a Def and Use.
findUseIdx(const MachineInstr * MI,unsigned UseOperIdx)165 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
166 unsigned UseIdx = 0;
167 for (unsigned i = 0; i != UseOperIdx; ++i) {
168 const MachineOperand &MO = MI->getOperand(i);
169 if (MO.isReg() && MO.readsReg())
170 ++UseIdx;
171 }
172 return UseIdx;
173 }
174
175 // Top-level API for clients that know the operand indices.
computeOperandLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * UseMI,unsigned UseOperIdx,bool FindMin) const176 unsigned TargetSchedModel::computeOperandLatency(
177 const MachineInstr *DefMI, unsigned DefOperIdx,
178 const MachineInstr *UseMI, unsigned UseOperIdx,
179 bool FindMin) const {
180
181 int DefLatency = getDefLatency(DefMI, FindMin);
182 if (DefLatency >= 0)
183 return DefLatency;
184
185 if (hasInstrItineraries()) {
186 int OperLatency = 0;
187 if (UseMI) {
188 OperLatency =
189 TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx, UseMI, UseOperIdx);
190 }
191 else {
192 unsigned DefClass = DefMI->getDesc().getSchedClass();
193 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
194 }
195 if (OperLatency >= 0)
196 return OperLatency;
197
198 // No operand latency was found.
199 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI);
200
201 // Expected latency is the max of the stage latency and itinerary props.
202 // Rather than directly querying InstrItins stage latency, we call a TII
203 // hook to allow subtargets to specialize latency. This hook is only
204 // applicable to the InstrItins model. InstrSchedModel should model all
205 // special cases without TII hooks.
206 if (!FindMin)
207 InstrLatency = std::max(InstrLatency,
208 TII->defaultDefLatency(&SchedModel, DefMI));
209 return InstrLatency;
210 }
211 assert(!FindMin && hasInstrSchedModel() &&
212 "Expected a SchedModel for this cpu");
213 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
214 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
215 if (DefIdx < SCDesc->NumWriteLatencyEntries) {
216 // Lookup the definition's write latency in SubtargetInfo.
217 const MCWriteLatencyEntry *WLEntry =
218 STI->getWriteLatencyEntry(SCDesc, DefIdx);
219 unsigned WriteID = WLEntry->WriteResourceID;
220 unsigned Latency = convertLatency(WLEntry->Cycles);
221 if (!UseMI)
222 return Latency;
223
224 // Lookup the use's latency adjustment in SubtargetInfo.
225 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
226 if (UseDesc->NumReadAdvanceEntries == 0)
227 return Latency;
228 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
229 return Latency - STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
230 }
231 // If DefIdx does not exist in the model (e.g. implicit defs), then return
232 // unit latency (defaultDefLatency may be too conservative).
233 #ifndef NDEBUG
234 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
235 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()) {
236 std::string Err;
237 raw_string_ostream ss(Err);
238 ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
239 << *DefMI;
240 report_fatal_error(ss.str());
241 }
242 #endif
243 // FIXME: Automatically giving all implicit defs defaultDefLatency is
244 // undesirable. We should only do it for defs that are known to the MC
245 // desc like flags. Truly implicit defs should get 1 cycle latency.
246 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(&SchedModel, DefMI);
247 }
248
computeInstrLatency(const MachineInstr * MI) const249 unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI) const {
250 // For the itinerary model, fall back to the old subtarget hook.
251 // Allow subtargets to compute Bundle latencies outside the machine model.
252 if (hasInstrItineraries() || MI->isBundle())
253 return TII->getInstrLatency(&InstrItins, MI);
254
255 if (hasInstrSchedModel()) {
256 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
257 if (SCDesc->isValid()) {
258 unsigned Latency = 0;
259 for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
260 DefIdx != DefEnd; ++DefIdx) {
261 // Lookup the definition's write latency in SubtargetInfo.
262 const MCWriteLatencyEntry *WLEntry =
263 STI->getWriteLatencyEntry(SCDesc, DefIdx);
264 Latency = std::max(Latency, convertLatency(WLEntry->Cycles));
265 }
266 return Latency;
267 }
268 }
269 return TII->defaultDefLatency(&SchedModel, MI);
270 }
271
272 unsigned TargetSchedModel::
computeOutputLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * DepMI) const273 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
274 const MachineInstr *DepMI) const {
275 // MinLatency == -1 is for in-order processors that always have unit
276 // MinLatency. MinLatency > 0 is for in-order processors with varying min
277 // latencies, but since this is not a RAW dep, we always use unit latency.
278 if (SchedModel.MinLatency != 0)
279 return 1;
280
281 // MinLatency == 0 indicates an out-of-order processor that can dispatch
282 // WAW dependencies in the same cycle.
283
284 // Treat predication as a data dependency for out-of-order cpus. In-order
285 // cpus do not need to treat predicated writes specially.
286 //
287 // TODO: The following hack exists because predication passes do not
288 // correctly append imp-use operands, and readsReg() strangely returns false
289 // for predicated defs.
290 unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
291 const MachineFunction &MF = *DefMI->getParent()->getParent();
292 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
293 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
294 return computeInstrLatency(DefMI);
295
296 // If we have a per operand scheduling model, check if this def is writing
297 // an unbuffered resource. If so, it treated like an in-order cpu.
298 if (hasInstrSchedModel()) {
299 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
300 if (SCDesc->isValid()) {
301 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
302 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
303 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->IsBuffered)
304 return 1;
305 }
306 }
307 }
308 return 0;
309 }
310