• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/PrettyPrinter.h"
24 #include "clang/AST/Stmt.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/Module.h"
29 #include "clang/Basic/Specifiers.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/type_traits.h"
33 #include <algorithm>
34 
35 using namespace clang;
36 
37 //===----------------------------------------------------------------------===//
38 // NamedDecl Implementation
39 //===----------------------------------------------------------------------===//
40 
41 // Visibility rules aren't rigorously externally specified, but here
42 // are the basic principles behind what we implement:
43 //
44 // 1. An explicit visibility attribute is generally a direct expression
45 // of the user's intent and should be honored.  Only the innermost
46 // visibility attribute applies.  If no visibility attribute applies,
47 // global visibility settings are considered.
48 //
49 // 2. There is one caveat to the above: on or in a template pattern,
50 // an explicit visibility attribute is just a default rule, and
51 // visibility can be decreased by the visibility of template
52 // arguments.  But this, too, has an exception: an attribute on an
53 // explicit specialization or instantiation causes all the visibility
54 // restrictions of the template arguments to be ignored.
55 //
56 // 3. A variable that does not otherwise have explicit visibility can
57 // be restricted by the visibility of its type.
58 //
59 // 4. A visibility restriction is explicit if it comes from an
60 // attribute (or something like it), not a global visibility setting.
61 // When emitting a reference to an external symbol, visibility
62 // restrictions are ignored unless they are explicit.
63 //
64 // 5. When computing the visibility of a non-type, including a
65 // non-type member of a class, only non-type visibility restrictions
66 // are considered: the 'visibility' attribute, global value-visibility
67 // settings, and a few special cases like __private_extern.
68 //
69 // 6. When computing the visibility of a type, including a type member
70 // of a class, only type visibility restrictions are considered:
71 // the 'type_visibility' attribute and global type-visibility settings.
72 // However, a 'visibility' attribute counts as a 'type_visibility'
73 // attribute on any declaration that only has the former.
74 //
75 // The visibility of a "secondary" entity, like a template argument,
76 // is computed using the kind of that entity, not the kind of the
77 // primary entity for which we are computing visibility.  For example,
78 // the visibility of a specialization of either of these templates:
79 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
80 //   template <class T, bool (&compare)(T, X)> class matcher;
81 // is restricted according to the type visibility of the argument 'T',
82 // the type visibility of 'bool(&)(T,X)', and the value visibility of
83 // the argument function 'compare'.  That 'has_match' is a value
84 // and 'matcher' is a type only matters when looking for attributes
85 // and settings from the immediate context.
86 
87 const unsigned IgnoreExplicitVisibilityBit = 2;
88 
89 /// Kinds of LV computation.  The linkage side of the computation is
90 /// always the same, but different things can change how visibility is
91 /// computed.
92 enum LVComputationKind {
93   /// Do an LV computation for, ultimately, a type.
94   /// Visibility may be restricted by type visibility settings and
95   /// the visibility of template arguments.
96   LVForType = NamedDecl::VisibilityForType,
97 
98   /// Do an LV computation for, ultimately, a non-type declaration.
99   /// Visibility may be restricted by value visibility settings and
100   /// the visibility of template arguments.
101   LVForValue = NamedDecl::VisibilityForValue,
102 
103   /// Do an LV computation for, ultimately, a type that already has
104   /// some sort of explicit visibility.  Visibility may only be
105   /// restricted by the visibility of template arguments.
106   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
107 
108   /// Do an LV computation for, ultimately, a non-type declaration
109   /// that already has some sort of explicit visibility.  Visibility
110   /// may only be restricted by the visibility of template arguments.
111   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit)
112 };
113 
114 /// Does this computation kind permit us to consider additional
115 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)116 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
117   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
118 }
119 
120 /// Given an LVComputationKind, return one of the same type/value sort
121 /// that records that it already has explicit visibility.
122 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)123 withExplicitVisibilityAlready(LVComputationKind oldKind) {
124   LVComputationKind newKind =
125     static_cast<LVComputationKind>(unsigned(oldKind) |
126                                    IgnoreExplicitVisibilityBit);
127   assert(oldKind != LVForType          || newKind == LVForExplicitType);
128   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
129   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
130   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
131   return newKind;
132 }
133 
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)134 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
135                                                   LVComputationKind kind) {
136   assert(!hasExplicitVisibilityAlready(kind) &&
137          "asking for explicit visibility when we shouldn't be");
138   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
139 }
140 
141 /// Is the given declaration a "type" or a "value" for the purposes of
142 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)143 static bool usesTypeVisibility(const NamedDecl *D) {
144   return isa<TypeDecl>(D) ||
145          isa<ClassTemplateDecl>(D) ||
146          isa<ObjCInterfaceDecl>(D);
147 }
148 
149 /// Does the given declaration have member specialization information,
150 /// and if so, is it an explicit specialization?
151 template <class T> static typename
152 llvm::enable_if_c<!llvm::is_base_of<RedeclarableTemplateDecl, T>::value,
153                   bool>::type
isExplicitMemberSpecialization(const T * D)154 isExplicitMemberSpecialization(const T *D) {
155   if (const MemberSpecializationInfo *member =
156         D->getMemberSpecializationInfo()) {
157     return member->isExplicitSpecialization();
158   }
159   return false;
160 }
161 
162 /// For templates, this question is easier: a member template can't be
163 /// explicitly instantiated, so there's a single bit indicating whether
164 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)165 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
166   return D->isMemberSpecialization();
167 }
168 
169 /// Given a visibility attribute, return the explicit visibility
170 /// associated with it.
171 template <class T>
getVisibilityFromAttr(const T * attr)172 static Visibility getVisibilityFromAttr(const T *attr) {
173   switch (attr->getVisibility()) {
174   case T::Default:
175     return DefaultVisibility;
176   case T::Hidden:
177     return HiddenVisibility;
178   case T::Protected:
179     return ProtectedVisibility;
180   }
181   llvm_unreachable("bad visibility kind");
182 }
183 
184 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)185 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
186                                     NamedDecl::ExplicitVisibilityKind kind) {
187   // If we're ultimately computing the visibility of a type, look for
188   // a 'type_visibility' attribute before looking for 'visibility'.
189   if (kind == NamedDecl::VisibilityForType) {
190     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
191       return getVisibilityFromAttr(A);
192     }
193   }
194 
195   // If this declaration has an explicit visibility attribute, use it.
196   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
197     return getVisibilityFromAttr(A);
198   }
199 
200   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
201   // implies visibility(default).
202   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
203     for (specific_attr_iterator<AvailabilityAttr>
204               A = D->specific_attr_begin<AvailabilityAttr>(),
205            AEnd = D->specific_attr_end<AvailabilityAttr>();
206          A != AEnd; ++A)
207       if ((*A)->getPlatform()->getName().equals("macosx"))
208         return DefaultVisibility;
209   }
210 
211   return None;
212 }
213 
214 /// \brief Get the most restrictive linkage for the types in the given
215 /// template parameter list.  For visibility purposes, template
216 /// parameters are part of the signature of a template.
217 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * params)218 getLVForTemplateParameterList(const TemplateParameterList *params) {
219   LinkageInfo LV;
220   for (TemplateParameterList::const_iterator P = params->begin(),
221                                           PEnd = params->end();
222        P != PEnd; ++P) {
223 
224     // Template type parameters are the most common and never
225     // contribute to visibility, pack or not.
226     if (isa<TemplateTypeParmDecl>(*P))
227       continue;
228 
229     // Non-type template parameters can be restricted by the value type, e.g.
230     //   template <enum X> class A { ... };
231     // We have to be careful here, though, because we can be dealing with
232     // dependent types.
233     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
234       // Handle the non-pack case first.
235       if (!NTTP->isExpandedParameterPack()) {
236         if (!NTTP->getType()->isDependentType()) {
237           LV.merge(NTTP->getType()->getLinkageAndVisibility());
238         }
239         continue;
240       }
241 
242       // Look at all the types in an expanded pack.
243       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
244         QualType type = NTTP->getExpansionType(i);
245         if (!type->isDependentType())
246           LV.merge(type->getLinkageAndVisibility());
247       }
248       continue;
249     }
250 
251     // Template template parameters can be restricted by their
252     // template parameters, recursively.
253     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
254 
255     // Handle the non-pack case first.
256     if (!TTP->isExpandedParameterPack()) {
257       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters()));
258       continue;
259     }
260 
261     // Look at all expansions in an expanded pack.
262     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
263            i != n; ++i) {
264       LV.merge(getLVForTemplateParameterList(
265                                     TTP->getExpansionTemplateParameters(i)));
266     }
267   }
268 
269   return LV;
270 }
271 
272 /// getLVForDecl - Get the linkage and visibility for the given declaration.
273 static LinkageInfo getLVForDecl(const NamedDecl *D,
274                                 LVComputationKind computation);
275 
276 /// \brief Get the most restrictive linkage for the types and
277 /// declarations in the given template argument list.
278 ///
279 /// Note that we don't take an LVComputationKind because we always
280 /// want to honor the visibility of template arguments in the same way.
281 static LinkageInfo
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args)282 getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args) {
283   LinkageInfo LV;
284 
285   for (unsigned i = 0, e = args.size(); i != e; ++i) {
286     const TemplateArgument &arg = args[i];
287     switch (arg.getKind()) {
288     case TemplateArgument::Null:
289     case TemplateArgument::Integral:
290     case TemplateArgument::Expression:
291       continue;
292 
293     case TemplateArgument::Type:
294       LV.merge(arg.getAsType()->getLinkageAndVisibility());
295       continue;
296 
297     case TemplateArgument::Declaration:
298       if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) {
299         assert(!usesTypeVisibility(ND));
300         LV.merge(getLVForDecl(ND, LVForValue));
301       }
302       continue;
303 
304     case TemplateArgument::NullPtr:
305       LV.merge(arg.getNullPtrType()->getLinkageAndVisibility());
306       continue;
307 
308     case TemplateArgument::Template:
309     case TemplateArgument::TemplateExpansion:
310       if (TemplateDecl *Template
311                 = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
312         LV.merge(getLVForDecl(Template, LVForValue));
313       continue;
314 
315     case TemplateArgument::Pack:
316       LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray()));
317       continue;
318     }
319     llvm_unreachable("bad template argument kind");
320   }
321 
322   return LV;
323 }
324 
325 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs)326 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs) {
327   return getLVForTemplateArgumentList(TArgs.asArray());
328 }
329 
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)330 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
331                         const FunctionTemplateSpecializationInfo *specInfo) {
332   // Include visibility from the template parameters and arguments
333   // only if this is not an explicit instantiation or specialization
334   // with direct explicit visibility.  (Implicit instantiations won't
335   // have a direct attribute.)
336   if (!specInfo->isExplicitInstantiationOrSpecialization())
337     return true;
338 
339   return !fn->hasAttr<VisibilityAttr>();
340 }
341 
342 /// Merge in template-related linkage and visibility for the given
343 /// function template specialization.
344 ///
345 /// We don't need a computation kind here because we can assume
346 /// LVForValue.
347 ///
348 /// \param[out] LV the computation to use for the parent
349 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)350 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
351                 const FunctionTemplateSpecializationInfo *specInfo) {
352   bool considerVisibility =
353     shouldConsiderTemplateVisibility(fn, specInfo);
354 
355   // Merge information from the template parameters.
356   FunctionTemplateDecl *temp = specInfo->getTemplate();
357   LinkageInfo tempLV =
358     getLVForTemplateParameterList(temp->getTemplateParameters());
359   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
360 
361   // Merge information from the template arguments.
362   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
363   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs);
364   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
365 }
366 
367 /// Does the given declaration have a direct visibility attribute
368 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)369 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
370                                          LVComputationKind computation) {
371   switch (computation) {
372   case LVForType:
373   case LVForExplicitType:
374     if (D->hasAttr<TypeVisibilityAttr>())
375       return true;
376     // fallthrough
377   case LVForValue:
378   case LVForExplicitValue:
379     if (D->hasAttr<VisibilityAttr>())
380       return true;
381     return false;
382   }
383   llvm_unreachable("bad visibility computation kind");
384 }
385 
386 /// Should we consider visibility associated with the template
387 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)388 static bool shouldConsiderTemplateVisibility(
389                                  const ClassTemplateSpecializationDecl *spec,
390                                  LVComputationKind computation) {
391   // Include visibility from the template parameters and arguments
392   // only if this is not an explicit instantiation or specialization
393   // with direct explicit visibility (and note that implicit
394   // instantiations won't have a direct attribute).
395   //
396   // Furthermore, we want to ignore template parameters and arguments
397   // for an explicit specialization when computing the visibility of a
398   // member thereof with explicit visibility.
399   //
400   // This is a bit complex; let's unpack it.
401   //
402   // An explicit class specialization is an independent, top-level
403   // declaration.  As such, if it or any of its members has an
404   // explicit visibility attribute, that must directly express the
405   // user's intent, and we should honor it.  The same logic applies to
406   // an explicit instantiation of a member of such a thing.
407 
408   // Fast path: if this is not an explicit instantiation or
409   // specialization, we always want to consider template-related
410   // visibility restrictions.
411   if (!spec->isExplicitInstantiationOrSpecialization())
412     return true;
413 
414   // This is the 'member thereof' check.
415   if (spec->isExplicitSpecialization() &&
416       hasExplicitVisibilityAlready(computation))
417     return false;
418 
419   return !hasDirectVisibilityAttribute(spec, computation);
420 }
421 
422 /// Merge in template-related linkage and visibility for the given
423 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)424 static void mergeTemplateLV(LinkageInfo &LV,
425                             const ClassTemplateSpecializationDecl *spec,
426                             LVComputationKind computation) {
427   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
428 
429   // Merge information from the template parameters, but ignore
430   // visibility if we're only considering template arguments.
431 
432   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
433   LinkageInfo tempLV =
434     getLVForTemplateParameterList(temp->getTemplateParameters());
435   LV.mergeMaybeWithVisibility(tempLV,
436            considerVisibility && !hasExplicitVisibilityAlready(computation));
437 
438   // Merge information from the template arguments.  We ignore
439   // template-argument visibility if we've got an explicit
440   // instantiation with a visibility attribute.
441   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
442   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs);
443   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
444 }
445 
useInlineVisibilityHidden(const NamedDecl * D)446 static bool useInlineVisibilityHidden(const NamedDecl *D) {
447   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
448   const LangOptions &Opts = D->getASTContext().getLangOpts();
449   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
450     return false;
451 
452   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
453   if (!FD)
454     return false;
455 
456   TemplateSpecializationKind TSK = TSK_Undeclared;
457   if (FunctionTemplateSpecializationInfo *spec
458       = FD->getTemplateSpecializationInfo()) {
459     TSK = spec->getTemplateSpecializationKind();
460   } else if (MemberSpecializationInfo *MSI =
461              FD->getMemberSpecializationInfo()) {
462     TSK = MSI->getTemplateSpecializationKind();
463   }
464 
465   const FunctionDecl *Def = 0;
466   // InlineVisibilityHidden only applies to definitions, and
467   // isInlined() only gives meaningful answers on definitions
468   // anyway.
469   return TSK != TSK_ExplicitInstantiationDeclaration &&
470     TSK != TSK_ExplicitInstantiationDefinition &&
471     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
472 }
473 
isInExternCContext(T * D)474 template <typename T> static bool isInExternCContext(T *D) {
475   const T *First = D->getFirstDeclaration();
476   return First->getDeclContext()->isExternCContext();
477 }
478 
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)479 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
480                                               LVComputationKind computation) {
481   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
482          "Not a name having namespace scope");
483   ASTContext &Context = D->getASTContext();
484 
485   // C++ [basic.link]p3:
486   //   A name having namespace scope (3.3.6) has internal linkage if it
487   //   is the name of
488   //     - an object, reference, function or function template that is
489   //       explicitly declared static; or,
490   // (This bullet corresponds to C99 6.2.2p3.)
491   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
492     // Explicitly declared static.
493     if (Var->getStorageClass() == SC_Static)
494       return LinkageInfo::internal();
495 
496     // - a non-volatile object or reference that is explicitly declared const
497     //   or constexpr and neither explicitly declared extern nor previously
498     //   declared to have external linkage; or (there is no equivalent in C99)
499     if (Context.getLangOpts().CPlusPlus &&
500         Var->getType().isConstQualified() &&
501         !Var->getType().isVolatileQualified() &&
502         Var->getStorageClass() != SC_Extern &&
503         Var->getStorageClass() != SC_PrivateExtern) {
504       bool FoundExtern = false;
505       for (const VarDecl *PrevVar = Var->getPreviousDecl();
506            PrevVar && !FoundExtern;
507            PrevVar = PrevVar->getPreviousDecl())
508         if (isExternalLinkage(PrevVar->getLinkage()))
509           FoundExtern = true;
510 
511       if (!FoundExtern)
512         return LinkageInfo::internal();
513     }
514     if (Var->getStorageClass() == SC_None) {
515       const VarDecl *PrevVar = Var->getPreviousDecl();
516       for (; PrevVar; PrevVar = PrevVar->getPreviousDecl())
517         if (PrevVar->getStorageClass() == SC_PrivateExtern)
518           break;
519       if (PrevVar)
520         return PrevVar->getLinkageAndVisibility();
521     }
522   } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
523     // C++ [temp]p4:
524     //   A non-member function template can have internal linkage; any
525     //   other template name shall have external linkage.
526     const FunctionDecl *Function = 0;
527     if (const FunctionTemplateDecl *FunTmpl
528                                         = dyn_cast<FunctionTemplateDecl>(D))
529       Function = FunTmpl->getTemplatedDecl();
530     else
531       Function = cast<FunctionDecl>(D);
532 
533     // Explicitly declared static.
534     if (Function->getStorageClass() == SC_Static)
535       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
536   } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
537     //   - a data member of an anonymous union.
538     if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
539       return LinkageInfo::internal();
540   }
541 
542   if (D->isInAnonymousNamespace()) {
543     const VarDecl *Var = dyn_cast<VarDecl>(D);
544     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
545     if ((!Var || !isInExternCContext(Var)) &&
546         (!Func || !isInExternCContext(Func)))
547       return LinkageInfo::uniqueExternal();
548   }
549 
550   // Set up the defaults.
551 
552   // C99 6.2.2p5:
553   //   If the declaration of an identifier for an object has file
554   //   scope and no storage-class specifier, its linkage is
555   //   external.
556   LinkageInfo LV;
557 
558   if (!hasExplicitVisibilityAlready(computation)) {
559     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
560       LV.mergeVisibility(*Vis, true);
561     } else {
562       // If we're declared in a namespace with a visibility attribute,
563       // use that namespace's visibility, and it still counts as explicit.
564       for (const DeclContext *DC = D->getDeclContext();
565            !isa<TranslationUnitDecl>(DC);
566            DC = DC->getParent()) {
567         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
568         if (!ND) continue;
569         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
570           LV.mergeVisibility(*Vis, true);
571           break;
572         }
573       }
574     }
575 
576     // Add in global settings if the above didn't give us direct visibility.
577     if (!LV.isVisibilityExplicit()) {
578       // Use global type/value visibility as appropriate.
579       Visibility globalVisibility;
580       if (computation == LVForValue) {
581         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
582       } else {
583         assert(computation == LVForType);
584         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
585       }
586       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
587 
588       // If we're paying attention to global visibility, apply
589       // -finline-visibility-hidden if this is an inline method.
590       if (useInlineVisibilityHidden(D))
591         LV.mergeVisibility(HiddenVisibility, true);
592     }
593   }
594 
595   // C++ [basic.link]p4:
596 
597   //   A name having namespace scope has external linkage if it is the
598   //   name of
599   //
600   //     - an object or reference, unless it has internal linkage; or
601   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
602     // GCC applies the following optimization to variables and static
603     // data members, but not to functions:
604     //
605     // Modify the variable's LV by the LV of its type unless this is
606     // C or extern "C".  This follows from [basic.link]p9:
607     //   A type without linkage shall not be used as the type of a
608     //   variable or function with external linkage unless
609     //    - the entity has C language linkage, or
610     //    - the entity is declared within an unnamed namespace, or
611     //    - the entity is not used or is defined in the same
612     //      translation unit.
613     // and [basic.link]p10:
614     //   ...the types specified by all declarations referring to a
615     //   given variable or function shall be identical...
616     // C does not have an equivalent rule.
617     //
618     // Ignore this if we've got an explicit attribute;  the user
619     // probably knows what they're doing.
620     //
621     // Note that we don't want to make the variable non-external
622     // because of this, but unique-external linkage suits us.
623     if (Context.getLangOpts().CPlusPlus && !isInExternCContext(Var)) {
624       LinkageInfo TypeLV = Var->getType()->getLinkageAndVisibility();
625       if (TypeLV.getLinkage() != ExternalLinkage)
626         return LinkageInfo::uniqueExternal();
627       if (!LV.isVisibilityExplicit())
628         LV.mergeVisibility(TypeLV);
629     }
630 
631     if (Var->getStorageClass() == SC_PrivateExtern)
632       LV.mergeVisibility(HiddenVisibility, true);
633 
634     // Note that Sema::MergeVarDecl already takes care of implementing
635     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
636     // to do it here.
637 
638   //     - a function, unless it has internal linkage; or
639   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
640     // In theory, we can modify the function's LV by the LV of its
641     // type unless it has C linkage (see comment above about variables
642     // for justification).  In practice, GCC doesn't do this, so it's
643     // just too painful to make work.
644 
645     if (Function->getStorageClass() == SC_PrivateExtern)
646       LV.mergeVisibility(HiddenVisibility, true);
647 
648     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
649     // merging storage classes and visibility attributes, so we don't have to
650     // look at previous decls in here.
651 
652     // In C++, then if the type of the function uses a type with
653     // unique-external linkage, it's not legally usable from outside
654     // this translation unit.  However, we should use the C linkage
655     // rules instead for extern "C" declarations.
656     if (Context.getLangOpts().CPlusPlus &&
657         !Function->getDeclContext()->isExternCContext() &&
658         Function->getType()->getLinkage() == UniqueExternalLinkage)
659       return LinkageInfo::uniqueExternal();
660 
661     // Consider LV from the template and the template arguments.
662     // We're at file scope, so we do not need to worry about nested
663     // specializations.
664     if (FunctionTemplateSpecializationInfo *specInfo
665                                = Function->getTemplateSpecializationInfo()) {
666       mergeTemplateLV(LV, Function, specInfo);
667     }
668 
669   //     - a named class (Clause 9), or an unnamed class defined in a
670   //       typedef declaration in which the class has the typedef name
671   //       for linkage purposes (7.1.3); or
672   //     - a named enumeration (7.2), or an unnamed enumeration
673   //       defined in a typedef declaration in which the enumeration
674   //       has the typedef name for linkage purposes (7.1.3); or
675   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
676     // Unnamed tags have no linkage.
677     if (!Tag->hasNameForLinkage())
678       return LinkageInfo::none();
679 
680     // If this is a class template specialization, consider the
681     // linkage of the template and template arguments.  We're at file
682     // scope, so we do not need to worry about nested specializations.
683     if (const ClassTemplateSpecializationDecl *spec
684           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
685       mergeTemplateLV(LV, spec, computation);
686     }
687 
688   //     - an enumerator belonging to an enumeration with external linkage;
689   } else if (isa<EnumConstantDecl>(D)) {
690     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
691                                       computation);
692     if (!isExternalLinkage(EnumLV.getLinkage()))
693       return LinkageInfo::none();
694     LV.merge(EnumLV);
695 
696   //     - a template, unless it is a function template that has
697   //       internal linkage (Clause 14);
698   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
699     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
700     LinkageInfo tempLV =
701       getLVForTemplateParameterList(temp->getTemplateParameters());
702     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
703 
704   //     - a namespace (7.3), unless it is declared within an unnamed
705   //       namespace.
706   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
707     return LV;
708 
709   // By extension, we assign external linkage to Objective-C
710   // interfaces.
711   } else if (isa<ObjCInterfaceDecl>(D)) {
712     // fallout
713 
714   // Everything not covered here has no linkage.
715   } else {
716     return LinkageInfo::none();
717   }
718 
719   // If we ended up with non-external linkage, visibility should
720   // always be default.
721   if (LV.getLinkage() != ExternalLinkage)
722     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
723 
724   return LV;
725 }
726 
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)727 static LinkageInfo getLVForClassMember(const NamedDecl *D,
728                                        LVComputationKind computation) {
729   // Only certain class members have linkage.  Note that fields don't
730   // really have linkage, but it's convenient to say they do for the
731   // purposes of calculating linkage of pointer-to-data-member
732   // template arguments.
733   if (!(isa<CXXMethodDecl>(D) ||
734         isa<VarDecl>(D) ||
735         isa<FieldDecl>(D) ||
736         isa<TagDecl>(D)))
737     return LinkageInfo::none();
738 
739   LinkageInfo LV;
740 
741   // If we have an explicit visibility attribute, merge that in.
742   if (!hasExplicitVisibilityAlready(computation)) {
743     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
744       LV.mergeVisibility(*Vis, true);
745     // If we're paying attention to global visibility, apply
746     // -finline-visibility-hidden if this is an inline method.
747     //
748     // Note that we do this before merging information about
749     // the class visibility.
750     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
751       LV.mergeVisibility(HiddenVisibility, true);
752   }
753 
754   // If this class member has an explicit visibility attribute, the only
755   // thing that can change its visibility is the template arguments, so
756   // only look for them when processing the class.
757   LVComputationKind classComputation = computation;
758   if (LV.isVisibilityExplicit())
759     classComputation = withExplicitVisibilityAlready(computation);
760 
761   LinkageInfo classLV =
762     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
763   if (!isExternalLinkage(classLV.getLinkage()))
764     return LinkageInfo::none();
765 
766   // If the class already has unique-external linkage, we can't improve.
767   if (classLV.getLinkage() == UniqueExternalLinkage)
768     return LinkageInfo::uniqueExternal();
769 
770   // Otherwise, don't merge in classLV yet, because in certain cases
771   // we need to completely ignore the visibility from it.
772 
773   // Specifically, if this decl exists and has an explicit attribute.
774   const NamedDecl *explicitSpecSuppressor = 0;
775 
776   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
777     // If the type of the function uses a type with unique-external
778     // linkage, it's not legally usable from outside this translation unit.
779     if (MD->getType()->getLinkage() == UniqueExternalLinkage)
780       return LinkageInfo::uniqueExternal();
781 
782     // If this is a method template specialization, use the linkage for
783     // the template parameters and arguments.
784     if (FunctionTemplateSpecializationInfo *spec
785            = MD->getTemplateSpecializationInfo()) {
786       mergeTemplateLV(LV, MD, spec);
787       if (spec->isExplicitSpecialization()) {
788         explicitSpecSuppressor = MD;
789       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
790         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
791       }
792     } else if (isExplicitMemberSpecialization(MD)) {
793       explicitSpecSuppressor = MD;
794     }
795 
796   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
797     if (const ClassTemplateSpecializationDecl *spec
798         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
799       mergeTemplateLV(LV, spec, computation);
800       if (spec->isExplicitSpecialization()) {
801         explicitSpecSuppressor = spec;
802       } else {
803         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
804         if (isExplicitMemberSpecialization(temp)) {
805           explicitSpecSuppressor = temp->getTemplatedDecl();
806         }
807       }
808     } else if (isExplicitMemberSpecialization(RD)) {
809       explicitSpecSuppressor = RD;
810     }
811 
812   // Static data members.
813   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
814     // Modify the variable's linkage by its type, but ignore the
815     // type's visibility unless it's a definition.
816     LinkageInfo typeLV = VD->getType()->getLinkageAndVisibility();
817     LV.mergeMaybeWithVisibility(typeLV,
818                  !LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit());
819 
820     if (isExplicitMemberSpecialization(VD)) {
821       explicitSpecSuppressor = VD;
822     }
823 
824   // Template members.
825   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
826     bool considerVisibility =
827       (!LV.isVisibilityExplicit() &&
828        !classLV.isVisibilityExplicit() &&
829        !hasExplicitVisibilityAlready(computation));
830     LinkageInfo tempLV =
831       getLVForTemplateParameterList(temp->getTemplateParameters());
832     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
833 
834     if (const RedeclarableTemplateDecl *redeclTemp =
835           dyn_cast<RedeclarableTemplateDecl>(temp)) {
836       if (isExplicitMemberSpecialization(redeclTemp)) {
837         explicitSpecSuppressor = temp->getTemplatedDecl();
838       }
839     }
840   }
841 
842   // We should never be looking for an attribute directly on a template.
843   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
844 
845   // If this member is an explicit member specialization, and it has
846   // an explicit attribute, ignore visibility from the parent.
847   bool considerClassVisibility = true;
848   if (explicitSpecSuppressor &&
849       // optimization: hasDVA() is true only with explicit visibility.
850       LV.isVisibilityExplicit() &&
851       classLV.getVisibility() != DefaultVisibility &&
852       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
853     considerClassVisibility = false;
854   }
855 
856   // Finally, merge in information from the class.
857   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
858   return LV;
859 }
860 
anchor()861 void NamedDecl::anchor() { }
862 
isLinkageValid() const863 bool NamedDecl::isLinkageValid() const {
864   if (!HasCachedLinkage)
865     return true;
866 
867   return getLVForDecl(this, LVForExplicitValue).getLinkage() ==
868     Linkage(CachedLinkage);
869 }
870 
getLinkage() const871 Linkage NamedDecl::getLinkage() const {
872   if (HasCachedLinkage)
873     return Linkage(CachedLinkage);
874 
875   // We don't care about visibility here, so ask for the cheapest
876   // possible visibility analysis.
877   CachedLinkage = getLVForDecl(this, LVForExplicitValue).getLinkage();
878   HasCachedLinkage = 1;
879 
880 #ifndef NDEBUG
881   verifyLinkage();
882 #endif
883 
884   return Linkage(CachedLinkage);
885 }
886 
getLinkageAndVisibility() const887 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
888   LVComputationKind computation =
889     (usesTypeVisibility(this) ? LVForType : LVForValue);
890   LinkageInfo LI = getLVForDecl(this, computation);
891   if (HasCachedLinkage) {
892     assert(Linkage(CachedLinkage) == LI.getLinkage());
893     return LI;
894   }
895   HasCachedLinkage = 1;
896   CachedLinkage = LI.getLinkage();
897 
898 #ifndef NDEBUG
899   verifyLinkage();
900 #endif
901 
902   return LI;
903 }
904 
verifyLinkage() const905 void NamedDecl::verifyLinkage() const {
906   // In C (because of gnu inline) and in c++ with microsoft extensions an
907   // static can follow an extern, so we can have two decls with different
908   // linkages.
909   const LangOptions &Opts = getASTContext().getLangOpts();
910   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
911     return;
912 
913   // We have just computed the linkage for this decl. By induction we know
914   // that all other computed linkages match, check that the one we just computed
915   // also does.
916   NamedDecl *D = NULL;
917   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
918     NamedDecl *T = cast<NamedDecl>(*I);
919     if (T == this)
920       continue;
921     if (T->HasCachedLinkage != 0) {
922       D = T;
923       break;
924     }
925   }
926   assert(!D || D->CachedLinkage == CachedLinkage);
927 }
928 
929 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const930 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
931   // Check the declaration itself first.
932   if (Optional<Visibility> V = getVisibilityOf(this, kind))
933     return V;
934 
935   // If this is a member class of a specialization of a class template
936   // and the corresponding decl has explicit visibility, use that.
937   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
938     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
939     if (InstantiatedFrom)
940       return getVisibilityOf(InstantiatedFrom, kind);
941   }
942 
943   // If there wasn't explicit visibility there, and this is a
944   // specialization of a class template, check for visibility
945   // on the pattern.
946   if (const ClassTemplateSpecializationDecl *spec
947         = dyn_cast<ClassTemplateSpecializationDecl>(this))
948     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
949                            kind);
950 
951   // Use the most recent declaration.
952   const NamedDecl *MostRecent = cast<NamedDecl>(this->getMostRecentDecl());
953   if (MostRecent != this)
954     return MostRecent->getExplicitVisibility(kind);
955 
956   if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
957     if (Var->isStaticDataMember()) {
958       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
959       if (InstantiatedFrom)
960         return getVisibilityOf(InstantiatedFrom, kind);
961     }
962 
963     return None;
964   }
965   // Also handle function template specializations.
966   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
967     // If the function is a specialization of a template with an
968     // explicit visibility attribute, use that.
969     if (FunctionTemplateSpecializationInfo *templateInfo
970           = fn->getTemplateSpecializationInfo())
971       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
972                              kind);
973 
974     // If the function is a member of a specialization of a class template
975     // and the corresponding decl has explicit visibility, use that.
976     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
977     if (InstantiatedFrom)
978       return getVisibilityOf(InstantiatedFrom, kind);
979 
980     return None;
981   }
982 
983   // The visibility of a template is stored in the templated decl.
984   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this))
985     return getVisibilityOf(TD->getTemplatedDecl(), kind);
986 
987   return None;
988 }
989 
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)990 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
991                                      LVComputationKind computation) {
992   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
993     if (Function->isInAnonymousNamespace() &&
994         !Function->getDeclContext()->isExternCContext())
995       return LinkageInfo::uniqueExternal();
996 
997     // This is a "void f();" which got merged with a file static.
998     if (Function->getStorageClass() == SC_Static)
999       return LinkageInfo::internal();
1000 
1001     LinkageInfo LV;
1002     if (!hasExplicitVisibilityAlready(computation)) {
1003       if (Optional<Visibility> Vis =
1004               getExplicitVisibility(Function, computation))
1005         LV.mergeVisibility(*Vis, true);
1006     }
1007 
1008     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1009     // merging storage classes and visibility attributes, so we don't have to
1010     // look at previous decls in here.
1011 
1012     return LV;
1013   }
1014 
1015   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1016     if (Var->hasExternalStorageAsWritten()) {
1017       if (Var->isInAnonymousNamespace() &&
1018           !Var->getDeclContext()->isExternCContext())
1019         return LinkageInfo::uniqueExternal();
1020 
1021       // This is an "extern int foo;" which got merged with a file static.
1022       if (Var->getStorageClass() == SC_Static)
1023         return LinkageInfo::internal();
1024 
1025       LinkageInfo LV;
1026       if (Var->getStorageClass() == SC_PrivateExtern)
1027         LV.mergeVisibility(HiddenVisibility, true);
1028       else if (!hasExplicitVisibilityAlready(computation)) {
1029         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1030           LV.mergeVisibility(*Vis, true);
1031       }
1032 
1033       // Note that Sema::MergeVarDecl already takes care of implementing
1034       // C99 6.2.2p4 and propagating the visibility attribute, so we don't
1035       // have to do it here.
1036       return LV;
1037     }
1038   }
1039 
1040   return LinkageInfo::none();
1041 }
1042 
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1043 static LinkageInfo getLVForDecl(const NamedDecl *D,
1044                                 LVComputationKind computation) {
1045   // Objective-C: treat all Objective-C declarations as having external
1046   // linkage.
1047   switch (D->getKind()) {
1048     default:
1049       break;
1050     case Decl::ParmVar:
1051       return LinkageInfo::none();
1052     case Decl::TemplateTemplateParm: // count these as external
1053     case Decl::NonTypeTemplateParm:
1054     case Decl::ObjCAtDefsField:
1055     case Decl::ObjCCategory:
1056     case Decl::ObjCCategoryImpl:
1057     case Decl::ObjCCompatibleAlias:
1058     case Decl::ObjCImplementation:
1059     case Decl::ObjCMethod:
1060     case Decl::ObjCProperty:
1061     case Decl::ObjCPropertyImpl:
1062     case Decl::ObjCProtocol:
1063       return LinkageInfo::external();
1064 
1065     case Decl::CXXRecord: {
1066       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1067       if (Record->isLambda()) {
1068         if (!Record->getLambdaManglingNumber()) {
1069           // This lambda has no mangling number, so it's internal.
1070           return LinkageInfo::internal();
1071         }
1072 
1073         // This lambda has its linkage/visibility determined by its owner.
1074         const DeclContext *DC = D->getDeclContext()->getRedeclContext();
1075         if (Decl *ContextDecl = Record->getLambdaContextDecl()) {
1076           if (isa<ParmVarDecl>(ContextDecl))
1077             DC = ContextDecl->getDeclContext()->getRedeclContext();
1078           else
1079             return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1080         }
1081 
1082         if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1083           return getLVForDecl(ND, computation);
1084 
1085         return LinkageInfo::external();
1086       }
1087 
1088       break;
1089     }
1090   }
1091 
1092   // Handle linkage for namespace-scope names.
1093   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1094     return getLVForNamespaceScopeDecl(D, computation);
1095 
1096   // C++ [basic.link]p5:
1097   //   In addition, a member function, static data member, a named
1098   //   class or enumeration of class scope, or an unnamed class or
1099   //   enumeration defined in a class-scope typedef declaration such
1100   //   that the class or enumeration has the typedef name for linkage
1101   //   purposes (7.1.3), has external linkage if the name of the class
1102   //   has external linkage.
1103   if (D->getDeclContext()->isRecord())
1104     return getLVForClassMember(D, computation);
1105 
1106   // C++ [basic.link]p6:
1107   //   The name of a function declared in block scope and the name of
1108   //   an object declared by a block scope extern declaration have
1109   //   linkage. If there is a visible declaration of an entity with
1110   //   linkage having the same name and type, ignoring entities
1111   //   declared outside the innermost enclosing namespace scope, the
1112   //   block scope declaration declares that same entity and receives
1113   //   the linkage of the previous declaration. If there is more than
1114   //   one such matching entity, the program is ill-formed. Otherwise,
1115   //   if no matching entity is found, the block scope entity receives
1116   //   external linkage.
1117   if (D->getDeclContext()->isFunctionOrMethod())
1118     return getLVForLocalDecl(D, computation);
1119 
1120   // C++ [basic.link]p6:
1121   //   Names not covered by these rules have no linkage.
1122   return LinkageInfo::none();
1123 }
1124 
getQualifiedNameAsString() const1125 std::string NamedDecl::getQualifiedNameAsString() const {
1126   return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
1127 }
1128 
getQualifiedNameAsString(const PrintingPolicy & P) const1129 std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
1130   std::string QualName;
1131   llvm::raw_string_ostream OS(QualName);
1132   printQualifiedName(OS, P);
1133   return OS.str();
1134 }
1135 
printQualifiedName(raw_ostream & OS) const1136 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1137   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1138 }
1139 
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1140 void NamedDecl::printQualifiedName(raw_ostream &OS,
1141                                    const PrintingPolicy &P) const {
1142   const DeclContext *Ctx = getDeclContext();
1143 
1144   if (Ctx->isFunctionOrMethod()) {
1145     printName(OS);
1146     return;
1147   }
1148 
1149   typedef SmallVector<const DeclContext *, 8> ContextsTy;
1150   ContextsTy Contexts;
1151 
1152   // Collect contexts.
1153   while (Ctx && isa<NamedDecl>(Ctx)) {
1154     Contexts.push_back(Ctx);
1155     Ctx = Ctx->getParent();
1156   }
1157 
1158   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1159        I != E; ++I) {
1160     if (const ClassTemplateSpecializationDecl *Spec
1161           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1162       OS << Spec->getName();
1163       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1164       TemplateSpecializationType::PrintTemplateArgumentList(OS,
1165                                                             TemplateArgs.data(),
1166                                                             TemplateArgs.size(),
1167                                                             P);
1168     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1169       if (ND->isAnonymousNamespace())
1170         OS << "<anonymous namespace>";
1171       else
1172         OS << *ND;
1173     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1174       if (!RD->getIdentifier())
1175         OS << "<anonymous " << RD->getKindName() << '>';
1176       else
1177         OS << *RD;
1178     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1179       const FunctionProtoType *FT = 0;
1180       if (FD->hasWrittenPrototype())
1181         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1182 
1183       OS << *FD << '(';
1184       if (FT) {
1185         unsigned NumParams = FD->getNumParams();
1186         for (unsigned i = 0; i < NumParams; ++i) {
1187           if (i)
1188             OS << ", ";
1189           OS << FD->getParamDecl(i)->getType().stream(P);
1190         }
1191 
1192         if (FT->isVariadic()) {
1193           if (NumParams > 0)
1194             OS << ", ";
1195           OS << "...";
1196         }
1197       }
1198       OS << ')';
1199     } else {
1200       OS << *cast<NamedDecl>(*I);
1201     }
1202     OS << "::";
1203   }
1204 
1205   if (getDeclName())
1206     OS << *this;
1207   else
1208     OS << "<anonymous>";
1209 }
1210 
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1211 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1212                                      const PrintingPolicy &Policy,
1213                                      bool Qualified) const {
1214   if (Qualified)
1215     printQualifiedName(OS, Policy);
1216   else
1217     printName(OS);
1218 }
1219 
declarationReplaces(NamedDecl * OldD) const1220 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
1221   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1222 
1223   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1224   // We want to keep it, unless it nominates same namespace.
1225   if (getKind() == Decl::UsingDirective) {
1226     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
1227              ->getOriginalNamespace() ==
1228            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1229              ->getOriginalNamespace();
1230   }
1231 
1232   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1233     // For function declarations, we keep track of redeclarations.
1234     return FD->getPreviousDecl() == OldD;
1235 
1236   // For function templates, the underlying function declarations are linked.
1237   if (const FunctionTemplateDecl *FunctionTemplate
1238         = dyn_cast<FunctionTemplateDecl>(this))
1239     if (const FunctionTemplateDecl *OldFunctionTemplate
1240           = dyn_cast<FunctionTemplateDecl>(OldD))
1241       return FunctionTemplate->getTemplatedDecl()
1242                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
1243 
1244   // For method declarations, we keep track of redeclarations.
1245   if (isa<ObjCMethodDecl>(this))
1246     return false;
1247 
1248   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
1249     return true;
1250 
1251   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
1252     return cast<UsingShadowDecl>(this)->getTargetDecl() ==
1253            cast<UsingShadowDecl>(OldD)->getTargetDecl();
1254 
1255   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
1256     ASTContext &Context = getASTContext();
1257     return Context.getCanonicalNestedNameSpecifier(
1258                                      cast<UsingDecl>(this)->getQualifier()) ==
1259            Context.getCanonicalNestedNameSpecifier(
1260                                         cast<UsingDecl>(OldD)->getQualifier());
1261   }
1262 
1263   // A typedef of an Objective-C class type can replace an Objective-C class
1264   // declaration or definition, and vice versa.
1265   if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
1266       (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
1267     return true;
1268 
1269   // For non-function declarations, if the declarations are of the
1270   // same kind then this must be a redeclaration, or semantic analysis
1271   // would not have given us the new declaration.
1272   return this->getKind() == OldD->getKind();
1273 }
1274 
hasLinkage() const1275 bool NamedDecl::hasLinkage() const {
1276   return getLinkage() != NoLinkage;
1277 }
1278 
getUnderlyingDeclImpl()1279 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1280   NamedDecl *ND = this;
1281   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1282     ND = UD->getTargetDecl();
1283 
1284   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1285     return AD->getClassInterface();
1286 
1287   return ND;
1288 }
1289 
isCXXInstanceMember() const1290 bool NamedDecl::isCXXInstanceMember() const {
1291   if (!isCXXClassMember())
1292     return false;
1293 
1294   const NamedDecl *D = this;
1295   if (isa<UsingShadowDecl>(D))
1296     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1297 
1298   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
1299     return true;
1300   if (isa<CXXMethodDecl>(D))
1301     return cast<CXXMethodDecl>(D)->isInstance();
1302   if (isa<FunctionTemplateDecl>(D))
1303     return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
1304                                  ->getTemplatedDecl())->isInstance();
1305   return false;
1306 }
1307 
1308 //===----------------------------------------------------------------------===//
1309 // DeclaratorDecl Implementation
1310 //===----------------------------------------------------------------------===//
1311 
1312 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1313 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1314   if (decl->getNumTemplateParameterLists() > 0)
1315     return decl->getTemplateParameterList(0)->getTemplateLoc();
1316   else
1317     return decl->getInnerLocStart();
1318 }
1319 
getTypeSpecStartLoc() const1320 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1321   TypeSourceInfo *TSI = getTypeSourceInfo();
1322   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1323   return SourceLocation();
1324 }
1325 
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1326 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1327   if (QualifierLoc) {
1328     // Make sure the extended decl info is allocated.
1329     if (!hasExtInfo()) {
1330       // Save (non-extended) type source info pointer.
1331       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1332       // Allocate external info struct.
1333       DeclInfo = new (getASTContext()) ExtInfo;
1334       // Restore savedTInfo into (extended) decl info.
1335       getExtInfo()->TInfo = savedTInfo;
1336     }
1337     // Set qualifier info.
1338     getExtInfo()->QualifierLoc = QualifierLoc;
1339   } else {
1340     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1341     if (hasExtInfo()) {
1342       if (getExtInfo()->NumTemplParamLists == 0) {
1343         // Save type source info pointer.
1344         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1345         // Deallocate the extended decl info.
1346         getASTContext().Deallocate(getExtInfo());
1347         // Restore savedTInfo into (non-extended) decl info.
1348         DeclInfo = savedTInfo;
1349       }
1350       else
1351         getExtInfo()->QualifierLoc = QualifierLoc;
1352     }
1353   }
1354 }
1355 
1356 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1357 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1358                                               unsigned NumTPLists,
1359                                               TemplateParameterList **TPLists) {
1360   assert(NumTPLists > 0);
1361   // Make sure the extended decl info is allocated.
1362   if (!hasExtInfo()) {
1363     // Save (non-extended) type source info pointer.
1364     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1365     // Allocate external info struct.
1366     DeclInfo = new (getASTContext()) ExtInfo;
1367     // Restore savedTInfo into (extended) decl info.
1368     getExtInfo()->TInfo = savedTInfo;
1369   }
1370   // Set the template parameter lists info.
1371   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1372 }
1373 
getOuterLocStart() const1374 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1375   return getTemplateOrInnerLocStart(this);
1376 }
1377 
1378 namespace {
1379 
1380 // Helper function: returns true if QT is or contains a type
1381 // having a postfix component.
typeIsPostfix(clang::QualType QT)1382 bool typeIsPostfix(clang::QualType QT) {
1383   while (true) {
1384     const Type* T = QT.getTypePtr();
1385     switch (T->getTypeClass()) {
1386     default:
1387       return false;
1388     case Type::Pointer:
1389       QT = cast<PointerType>(T)->getPointeeType();
1390       break;
1391     case Type::BlockPointer:
1392       QT = cast<BlockPointerType>(T)->getPointeeType();
1393       break;
1394     case Type::MemberPointer:
1395       QT = cast<MemberPointerType>(T)->getPointeeType();
1396       break;
1397     case Type::LValueReference:
1398     case Type::RValueReference:
1399       QT = cast<ReferenceType>(T)->getPointeeType();
1400       break;
1401     case Type::PackExpansion:
1402       QT = cast<PackExpansionType>(T)->getPattern();
1403       break;
1404     case Type::Paren:
1405     case Type::ConstantArray:
1406     case Type::DependentSizedArray:
1407     case Type::IncompleteArray:
1408     case Type::VariableArray:
1409     case Type::FunctionProto:
1410     case Type::FunctionNoProto:
1411       return true;
1412     }
1413   }
1414 }
1415 
1416 } // namespace
1417 
getSourceRange() const1418 SourceRange DeclaratorDecl::getSourceRange() const {
1419   SourceLocation RangeEnd = getLocation();
1420   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1421     if (typeIsPostfix(TInfo->getType()))
1422       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1423   }
1424   return SourceRange(getOuterLocStart(), RangeEnd);
1425 }
1426 
1427 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1428 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1429                                              unsigned NumTPLists,
1430                                              TemplateParameterList **TPLists) {
1431   assert((NumTPLists == 0 || TPLists != 0) &&
1432          "Empty array of template parameters with positive size!");
1433 
1434   // Free previous template parameters (if any).
1435   if (NumTemplParamLists > 0) {
1436     Context.Deallocate(TemplParamLists);
1437     TemplParamLists = 0;
1438     NumTemplParamLists = 0;
1439   }
1440   // Set info on matched template parameter lists (if any).
1441   if (NumTPLists > 0) {
1442     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1443     NumTemplParamLists = NumTPLists;
1444     for (unsigned i = NumTPLists; i-- > 0; )
1445       TemplParamLists[i] = TPLists[i];
1446   }
1447 }
1448 
1449 //===----------------------------------------------------------------------===//
1450 // VarDecl Implementation
1451 //===----------------------------------------------------------------------===//
1452 
getStorageClassSpecifierString(StorageClass SC)1453 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1454   switch (SC) {
1455   case SC_None:                 break;
1456   case SC_Auto:                 return "auto";
1457   case SC_Extern:               return "extern";
1458   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1459   case SC_PrivateExtern:        return "__private_extern__";
1460   case SC_Register:             return "register";
1461   case SC_Static:               return "static";
1462   }
1463 
1464   llvm_unreachable("Invalid storage class");
1465 }
1466 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,StorageClass SCAsWritten)1467 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1468                          SourceLocation StartL, SourceLocation IdL,
1469                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1470                          StorageClass S, StorageClass SCAsWritten) {
1471   return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S, SCAsWritten);
1472 }
1473 
CreateDeserialized(ASTContext & C,unsigned ID)1474 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1475   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
1476   return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
1477                            QualType(), 0, SC_None, SC_None);
1478 }
1479 
setStorageClass(StorageClass SC)1480 void VarDecl::setStorageClass(StorageClass SC) {
1481   assert(isLegalForVariable(SC));
1482   if (getStorageClass() != SC)
1483     assert(isLinkageValid());
1484 
1485   VarDeclBits.SClass = SC;
1486 }
1487 
getSourceRange() const1488 SourceRange VarDecl::getSourceRange() const {
1489   if (const Expr *Init = getInit()) {
1490     SourceLocation InitEnd = Init->getLocEnd();
1491     // If Init is implicit, ignore its source range and fallback on
1492     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1493     if (InitEnd.isValid() && InitEnd != getLocation())
1494       return SourceRange(getOuterLocStart(), InitEnd);
1495   }
1496   return DeclaratorDecl::getSourceRange();
1497 }
1498 
1499 template<typename T>
getLanguageLinkageTemplate(const T & D)1500 static LanguageLinkage getLanguageLinkageTemplate(const T &D) {
1501   // C++ [dcl.link]p1: All function types, function names with external linkage,
1502   // and variable names with external linkage have a language linkage.
1503   if (!isExternalLinkage(D.getLinkage()))
1504     return NoLanguageLinkage;
1505 
1506   // Language linkage is a C++ concept, but saying that everything else in C has
1507   // C language linkage fits the implementation nicely.
1508   ASTContext &Context = D.getASTContext();
1509   if (!Context.getLangOpts().CPlusPlus)
1510     return CLanguageLinkage;
1511 
1512   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1513   // language linkage of the names of class members and the function type of
1514   // class member functions.
1515   const DeclContext *DC = D.getDeclContext();
1516   if (DC->isRecord())
1517     return CXXLanguageLinkage;
1518 
1519   // If the first decl is in an extern "C" context, any other redeclaration
1520   // will have C language linkage. If the first one is not in an extern "C"
1521   // context, we would have reported an error for any other decl being in one.
1522   const T *First = D.getFirstDeclaration();
1523   if (First->getDeclContext()->isExternCContext())
1524     return CLanguageLinkage;
1525   return CXXLanguageLinkage;
1526 }
1527 
1528 template<typename T>
isExternCTemplate(const T & D)1529 static bool isExternCTemplate(const T &D) {
1530   // Since the context is ignored for class members, they can only have C++
1531   // language linkage or no language linkage.
1532   const DeclContext *DC = D.getDeclContext();
1533   if (DC->isRecord()) {
1534     assert(D.getASTContext().getLangOpts().CPlusPlus);
1535     return false;
1536   }
1537 
1538   return D.getLanguageLinkage() == CLanguageLinkage;
1539 }
1540 
getLanguageLinkage() const1541 LanguageLinkage VarDecl::getLanguageLinkage() const {
1542   return getLanguageLinkageTemplate(*this);
1543 }
1544 
isExternC() const1545 bool VarDecl::isExternC() const {
1546   return isExternCTemplate(*this);
1547 }
1548 
getCanonicalDecl()1549 VarDecl *VarDecl::getCanonicalDecl() {
1550   return getFirstDeclaration();
1551 }
1552 
isThisDeclarationADefinition(ASTContext & C) const1553 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
1554   ASTContext &C) const
1555 {
1556   // C++ [basic.def]p2:
1557   //   A declaration is a definition unless [...] it contains the 'extern'
1558   //   specifier or a linkage-specification and neither an initializer [...],
1559   //   it declares a static data member in a class declaration [...].
1560   // C++ [temp.expl.spec]p15:
1561   //   An explicit specialization of a static data member of a template is a
1562   //   definition if the declaration includes an initializer; otherwise, it is
1563   //   a declaration.
1564   if (isStaticDataMember()) {
1565     if (isOutOfLine() && (hasInit() ||
1566           getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
1567       return Definition;
1568     else
1569       return DeclarationOnly;
1570   }
1571   // C99 6.7p5:
1572   //   A definition of an identifier is a declaration for that identifier that
1573   //   [...] causes storage to be reserved for that object.
1574   // Note: that applies for all non-file-scope objects.
1575   // C99 6.9.2p1:
1576   //   If the declaration of an identifier for an object has file scope and an
1577   //   initializer, the declaration is an external definition for the identifier
1578   if (hasInit())
1579     return Definition;
1580   // AST for 'extern "C" int foo;' is annotated with 'extern'.
1581   if (hasExternalStorage())
1582     return DeclarationOnly;
1583 
1584   if (hasExternalStorageAsWritten()) {
1585     for (const VarDecl *PrevVar = getPreviousDecl();
1586          PrevVar; PrevVar = PrevVar->getPreviousDecl()) {
1587       if (PrevVar->getLinkage() == InternalLinkage)
1588         return DeclarationOnly;
1589     }
1590   }
1591   // C99 6.9.2p2:
1592   //   A declaration of an object that has file scope without an initializer,
1593   //   and without a storage class specifier or the scs 'static', constitutes
1594   //   a tentative definition.
1595   // No such thing in C++.
1596   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1597     return TentativeDefinition;
1598 
1599   // What's left is (in C, block-scope) declarations without initializers or
1600   // external storage. These are definitions.
1601   return Definition;
1602 }
1603 
getActingDefinition()1604 VarDecl *VarDecl::getActingDefinition() {
1605   DefinitionKind Kind = isThisDeclarationADefinition();
1606   if (Kind != TentativeDefinition)
1607     return 0;
1608 
1609   VarDecl *LastTentative = 0;
1610   VarDecl *First = getFirstDeclaration();
1611   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1612        I != E; ++I) {
1613     Kind = (*I)->isThisDeclarationADefinition();
1614     if (Kind == Definition)
1615       return 0;
1616     else if (Kind == TentativeDefinition)
1617       LastTentative = *I;
1618   }
1619   return LastTentative;
1620 }
1621 
isTentativeDefinitionNow() const1622 bool VarDecl::isTentativeDefinitionNow() const {
1623   DefinitionKind Kind = isThisDeclarationADefinition();
1624   if (Kind != TentativeDefinition)
1625     return false;
1626 
1627   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1628     if ((*I)->isThisDeclarationADefinition() == Definition)
1629       return false;
1630   }
1631   return true;
1632 }
1633 
getDefinition(ASTContext & C)1634 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1635   VarDecl *First = getFirstDeclaration();
1636   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1637        I != E; ++I) {
1638     if ((*I)->isThisDeclarationADefinition(C) == Definition)
1639       return *I;
1640   }
1641   return 0;
1642 }
1643 
hasDefinition(ASTContext & C) const1644 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1645   DefinitionKind Kind = DeclarationOnly;
1646 
1647   const VarDecl *First = getFirstDeclaration();
1648   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1649        I != E; ++I) {
1650     Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
1651     if (Kind == Definition)
1652       break;
1653   }
1654 
1655   return Kind;
1656 }
1657 
getAnyInitializer(const VarDecl * & D) const1658 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1659   redecl_iterator I = redecls_begin(), E = redecls_end();
1660   while (I != E && !I->getInit())
1661     ++I;
1662 
1663   if (I != E) {
1664     D = *I;
1665     return I->getInit();
1666   }
1667   return 0;
1668 }
1669 
isOutOfLine() const1670 bool VarDecl::isOutOfLine() const {
1671   if (Decl::isOutOfLine())
1672     return true;
1673 
1674   if (!isStaticDataMember())
1675     return false;
1676 
1677   // If this static data member was instantiated from a static data member of
1678   // a class template, check whether that static data member was defined
1679   // out-of-line.
1680   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
1681     return VD->isOutOfLine();
1682 
1683   return false;
1684 }
1685 
getOutOfLineDefinition()1686 VarDecl *VarDecl::getOutOfLineDefinition() {
1687   if (!isStaticDataMember())
1688     return 0;
1689 
1690   for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
1691        RD != RDEnd; ++RD) {
1692     if (RD->getLexicalDeclContext()->isFileContext())
1693       return *RD;
1694   }
1695 
1696   return 0;
1697 }
1698 
setInit(Expr * I)1699 void VarDecl::setInit(Expr *I) {
1700   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
1701     Eval->~EvaluatedStmt();
1702     getASTContext().Deallocate(Eval);
1703   }
1704 
1705   Init = I;
1706 }
1707 
isUsableInConstantExpressions(ASTContext & C) const1708 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
1709   const LangOptions &Lang = C.getLangOpts();
1710 
1711   if (!Lang.CPlusPlus)
1712     return false;
1713 
1714   // In C++11, any variable of reference type can be used in a constant
1715   // expression if it is initialized by a constant expression.
1716   if (Lang.CPlusPlus11 && getType()->isReferenceType())
1717     return true;
1718 
1719   // Only const objects can be used in constant expressions in C++. C++98 does
1720   // not require the variable to be non-volatile, but we consider this to be a
1721   // defect.
1722   if (!getType().isConstQualified() || getType().isVolatileQualified())
1723     return false;
1724 
1725   // In C++, const, non-volatile variables of integral or enumeration types
1726   // can be used in constant expressions.
1727   if (getType()->isIntegralOrEnumerationType())
1728     return true;
1729 
1730   // Additionally, in C++11, non-volatile constexpr variables can be used in
1731   // constant expressions.
1732   return Lang.CPlusPlus11 && isConstexpr();
1733 }
1734 
1735 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
1736 /// form, which contains extra information on the evaluated value of the
1737 /// initializer.
ensureEvaluatedStmt() const1738 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
1739   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
1740   if (!Eval) {
1741     Stmt *S = Init.get<Stmt *>();
1742     Eval = new (getASTContext()) EvaluatedStmt;
1743     Eval->Value = S;
1744     Init = Eval;
1745   }
1746   return Eval;
1747 }
1748 
evaluateValue() const1749 APValue *VarDecl::evaluateValue() const {
1750   SmallVector<PartialDiagnosticAt, 8> Notes;
1751   return evaluateValue(Notes);
1752 }
1753 
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const1754 APValue *VarDecl::evaluateValue(
1755     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
1756   EvaluatedStmt *Eval = ensureEvaluatedStmt();
1757 
1758   // We only produce notes indicating why an initializer is non-constant the
1759   // first time it is evaluated. FIXME: The notes won't always be emitted the
1760   // first time we try evaluation, so might not be produced at all.
1761   if (Eval->WasEvaluated)
1762     return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
1763 
1764   const Expr *Init = cast<Expr>(Eval->Value);
1765   assert(!Init->isValueDependent());
1766 
1767   if (Eval->IsEvaluating) {
1768     // FIXME: Produce a diagnostic for self-initialization.
1769     Eval->CheckedICE = true;
1770     Eval->IsICE = false;
1771     return 0;
1772   }
1773 
1774   Eval->IsEvaluating = true;
1775 
1776   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
1777                                             this, Notes);
1778 
1779   // Ensure the result is an uninitialized APValue if evaluation fails.
1780   if (!Result)
1781     Eval->Evaluated = APValue();
1782 
1783   Eval->IsEvaluating = false;
1784   Eval->WasEvaluated = true;
1785 
1786   // In C++11, we have determined whether the initializer was a constant
1787   // expression as a side-effect.
1788   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
1789     Eval->CheckedICE = true;
1790     Eval->IsICE = Result && Notes.empty();
1791   }
1792 
1793   return Result ? &Eval->Evaluated : 0;
1794 }
1795 
checkInitIsICE() const1796 bool VarDecl::checkInitIsICE() const {
1797   // Initializers of weak variables are never ICEs.
1798   if (isWeak())
1799     return false;
1800 
1801   EvaluatedStmt *Eval = ensureEvaluatedStmt();
1802   if (Eval->CheckedICE)
1803     // We have already checked whether this subexpression is an
1804     // integral constant expression.
1805     return Eval->IsICE;
1806 
1807   const Expr *Init = cast<Expr>(Eval->Value);
1808   assert(!Init->isValueDependent());
1809 
1810   // In C++11, evaluate the initializer to check whether it's a constant
1811   // expression.
1812   if (getASTContext().getLangOpts().CPlusPlus11) {
1813     SmallVector<PartialDiagnosticAt, 8> Notes;
1814     evaluateValue(Notes);
1815     return Eval->IsICE;
1816   }
1817 
1818   // It's an ICE whether or not the definition we found is
1819   // out-of-line.  See DR 721 and the discussion in Clang PR
1820   // 6206 for details.
1821 
1822   if (Eval->CheckingICE)
1823     return false;
1824   Eval->CheckingICE = true;
1825 
1826   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
1827   Eval->CheckingICE = false;
1828   Eval->CheckedICE = true;
1829   return Eval->IsICE;
1830 }
1831 
extendsLifetimeOfTemporary() const1832 bool VarDecl::extendsLifetimeOfTemporary() const {
1833   assert(getType()->isReferenceType() &&"Non-references never extend lifetime");
1834 
1835   const Expr *E = getInit();
1836   if (!E)
1837     return false;
1838 
1839   if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(E))
1840     E = Cleanups->getSubExpr();
1841 
1842   return isa<MaterializeTemporaryExpr>(E);
1843 }
1844 
getInstantiatedFromStaticDataMember() const1845 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
1846   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1847     return cast<VarDecl>(MSI->getInstantiatedFrom());
1848 
1849   return 0;
1850 }
1851 
getTemplateSpecializationKind() const1852 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
1853   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1854     return MSI->getTemplateSpecializationKind();
1855 
1856   return TSK_Undeclared;
1857 }
1858 
getMemberSpecializationInfo() const1859 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
1860   return getASTContext().getInstantiatedFromStaticDataMember(this);
1861 }
1862 
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1863 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1864                                          SourceLocation PointOfInstantiation) {
1865   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
1866   assert(MSI && "Not an instantiated static data member?");
1867   MSI->setTemplateSpecializationKind(TSK);
1868   if (TSK != TSK_ExplicitSpecialization &&
1869       PointOfInstantiation.isValid() &&
1870       MSI->getPointOfInstantiation().isInvalid())
1871     MSI->setPointOfInstantiation(PointOfInstantiation);
1872 }
1873 
1874 //===----------------------------------------------------------------------===//
1875 // ParmVarDecl Implementation
1876 //===----------------------------------------------------------------------===//
1877 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,StorageClass SCAsWritten,Expr * DefArg)1878 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
1879                                  SourceLocation StartLoc,
1880                                  SourceLocation IdLoc, IdentifierInfo *Id,
1881                                  QualType T, TypeSourceInfo *TInfo,
1882                                  StorageClass S, StorageClass SCAsWritten,
1883                                  Expr *DefArg) {
1884   return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
1885                              S, SCAsWritten, DefArg);
1886 }
1887 
CreateDeserialized(ASTContext & C,unsigned ID)1888 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1889   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
1890   return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
1891                                0, QualType(), 0, SC_None, SC_None, 0);
1892 }
1893 
getSourceRange() const1894 SourceRange ParmVarDecl::getSourceRange() const {
1895   if (!hasInheritedDefaultArg()) {
1896     SourceRange ArgRange = getDefaultArgRange();
1897     if (ArgRange.isValid())
1898       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
1899   }
1900 
1901   return DeclaratorDecl::getSourceRange();
1902 }
1903 
getDefaultArg()1904 Expr *ParmVarDecl::getDefaultArg() {
1905   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
1906   assert(!hasUninstantiatedDefaultArg() &&
1907          "Default argument is not yet instantiated!");
1908 
1909   Expr *Arg = getInit();
1910   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
1911     return E->getSubExpr();
1912 
1913   return Arg;
1914 }
1915 
getDefaultArgRange() const1916 SourceRange ParmVarDecl::getDefaultArgRange() const {
1917   if (const Expr *E = getInit())
1918     return E->getSourceRange();
1919 
1920   if (hasUninstantiatedDefaultArg())
1921     return getUninstantiatedDefaultArg()->getSourceRange();
1922 
1923   return SourceRange();
1924 }
1925 
isParameterPack() const1926 bool ParmVarDecl::isParameterPack() const {
1927   return isa<PackExpansionType>(getType());
1928 }
1929 
setParameterIndexLarge(unsigned parameterIndex)1930 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
1931   getASTContext().setParameterIndex(this, parameterIndex);
1932   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
1933 }
1934 
getParameterIndexLarge() const1935 unsigned ParmVarDecl::getParameterIndexLarge() const {
1936   return getASTContext().getParameterIndex(this);
1937 }
1938 
1939 //===----------------------------------------------------------------------===//
1940 // FunctionDecl Implementation
1941 //===----------------------------------------------------------------------===//
1942 
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1943 void FunctionDecl::getNameForDiagnostic(
1944     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
1945   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
1946   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
1947   if (TemplateArgs)
1948     TemplateSpecializationType::PrintTemplateArgumentList(
1949         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
1950 }
1951 
isVariadic() const1952 bool FunctionDecl::isVariadic() const {
1953   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
1954     return FT->isVariadic();
1955   return false;
1956 }
1957 
hasBody(const FunctionDecl * & Definition) const1958 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
1959   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1960     if (I->Body || I->IsLateTemplateParsed) {
1961       Definition = *I;
1962       return true;
1963     }
1964   }
1965 
1966   return false;
1967 }
1968 
hasTrivialBody() const1969 bool FunctionDecl::hasTrivialBody() const
1970 {
1971   Stmt *S = getBody();
1972   if (!S) {
1973     // Since we don't have a body for this function, we don't know if it's
1974     // trivial or not.
1975     return false;
1976   }
1977 
1978   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
1979     return true;
1980   return false;
1981 }
1982 
isDefined(const FunctionDecl * & Definition) const1983 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
1984   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1985     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
1986       Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
1987       return true;
1988     }
1989   }
1990 
1991   return false;
1992 }
1993 
getBody(const FunctionDecl * & Definition) const1994 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
1995   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1996     if (I->Body) {
1997       Definition = *I;
1998       return I->Body.get(getASTContext().getExternalSource());
1999     } else if (I->IsLateTemplateParsed) {
2000       Definition = *I;
2001       return 0;
2002     }
2003   }
2004 
2005   return 0;
2006 }
2007 
setBody(Stmt * B)2008 void FunctionDecl::setBody(Stmt *B) {
2009   Body = B;
2010   if (B)
2011     EndRangeLoc = B->getLocEnd();
2012 }
2013 
setPure(bool P)2014 void FunctionDecl::setPure(bool P) {
2015   IsPure = P;
2016   if (P)
2017     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2018       Parent->markedVirtualFunctionPure();
2019 }
2020 
isMain() const2021 bool FunctionDecl::isMain() const {
2022   const TranslationUnitDecl *tunit =
2023     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2024   return tunit &&
2025          !tunit->getASTContext().getLangOpts().Freestanding &&
2026          getIdentifier() &&
2027          getIdentifier()->isStr("main");
2028 }
2029 
isReservedGlobalPlacementOperator() const2030 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2031   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2032   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2033          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2034          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2035          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2036 
2037   if (isa<CXXRecordDecl>(getDeclContext())) return false;
2038   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
2039 
2040   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2041   if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
2042 
2043   ASTContext &Context =
2044     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2045       ->getASTContext();
2046 
2047   // The result type and first argument type are constant across all
2048   // these operators.  The second argument must be exactly void*.
2049   return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
2050 }
2051 
getLanguageLinkage() const2052 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2053   // Users expect to be able to write
2054   // extern "C" void *__builtin_alloca (size_t);
2055   // so consider builtins as having C language linkage.
2056   if (getBuiltinID())
2057     return CLanguageLinkage;
2058 
2059   return getLanguageLinkageTemplate(*this);
2060 }
2061 
isExternC() const2062 bool FunctionDecl::isExternC() const {
2063   return isExternCTemplate(*this);
2064 }
2065 
isGlobal() const2066 bool FunctionDecl::isGlobal() const {
2067   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2068     return Method->isStatic();
2069 
2070   if (getStorageClass() == SC_Static)
2071     return false;
2072 
2073   for (const DeclContext *DC = getDeclContext();
2074        DC->isNamespace();
2075        DC = DC->getParent()) {
2076     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2077       if (!Namespace->getDeclName())
2078         return false;
2079       break;
2080     }
2081   }
2082 
2083   return true;
2084 }
2085 
isNoReturn() const2086 bool FunctionDecl::isNoReturn() const {
2087   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2088          hasAttr<C11NoReturnAttr>() ||
2089          getType()->getAs<FunctionType>()->getNoReturnAttr();
2090 }
2091 
2092 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2093 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2094   redeclarable_base::setPreviousDeclaration(PrevDecl);
2095 
2096   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2097     FunctionTemplateDecl *PrevFunTmpl
2098       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
2099     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2100     FunTmpl->setPreviousDeclaration(PrevFunTmpl);
2101   }
2102 
2103   if (PrevDecl && PrevDecl->IsInline)
2104     IsInline = true;
2105 }
2106 
getCanonicalDecl() const2107 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2108   return getFirstDeclaration();
2109 }
2110 
getCanonicalDecl()2111 FunctionDecl *FunctionDecl::getCanonicalDecl() {
2112   return getFirstDeclaration();
2113 }
2114 
setStorageClass(StorageClass SC)2115 void FunctionDecl::setStorageClass(StorageClass SC) {
2116   assert(isLegalForFunction(SC));
2117   if (getStorageClass() != SC)
2118     assert(isLinkageValid());
2119 
2120   SClass = SC;
2121 }
2122 
2123 /// \brief Returns a value indicating whether this function
2124 /// corresponds to a builtin function.
2125 ///
2126 /// The function corresponds to a built-in function if it is
2127 /// declared at translation scope or within an extern "C" block and
2128 /// its name matches with the name of a builtin. The returned value
2129 /// will be 0 for functions that do not correspond to a builtin, a
2130 /// value of type \c Builtin::ID if in the target-independent range
2131 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2132 unsigned FunctionDecl::getBuiltinID() const {
2133   if (!getIdentifier())
2134     return 0;
2135 
2136   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2137   if (!BuiltinID)
2138     return 0;
2139 
2140   ASTContext &Context = getASTContext();
2141   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2142     return BuiltinID;
2143 
2144   // This function has the name of a known C library
2145   // function. Determine whether it actually refers to the C library
2146   // function or whether it just has the same name.
2147 
2148   // If this is a static function, it's not a builtin.
2149   if (getStorageClass() == SC_Static)
2150     return 0;
2151 
2152   // If this function is at translation-unit scope and we're not in
2153   // C++, it refers to the C library function.
2154   if (!Context.getLangOpts().CPlusPlus &&
2155       getDeclContext()->isTranslationUnit())
2156     return BuiltinID;
2157 
2158   // If the function is in an extern "C" linkage specification and is
2159   // not marked "overloadable", it's the real function.
2160   if (isa<LinkageSpecDecl>(getDeclContext()) &&
2161       cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
2162         == LinkageSpecDecl::lang_c &&
2163       !getAttr<OverloadableAttr>())
2164     return BuiltinID;
2165 
2166   // Not a builtin
2167   return 0;
2168 }
2169 
2170 
2171 /// getNumParams - Return the number of parameters this function must have
2172 /// based on its FunctionType.  This is the length of the ParamInfo array
2173 /// after it has been created.
getNumParams() const2174 unsigned FunctionDecl::getNumParams() const {
2175   const FunctionType *FT = getType()->castAs<FunctionType>();
2176   if (isa<FunctionNoProtoType>(FT))
2177     return 0;
2178   return cast<FunctionProtoType>(FT)->getNumArgs();
2179 
2180 }
2181 
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2182 void FunctionDecl::setParams(ASTContext &C,
2183                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2184   assert(ParamInfo == 0 && "Already has param info!");
2185   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2186 
2187   // Zero params -> null pointer.
2188   if (!NewParamInfo.empty()) {
2189     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2190     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2191   }
2192 }
2193 
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2194 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2195   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2196 
2197   if (!NewDecls.empty()) {
2198     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2199     std::copy(NewDecls.begin(), NewDecls.end(), A);
2200     DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
2201   }
2202 }
2203 
2204 /// getMinRequiredArguments - Returns the minimum number of arguments
2205 /// needed to call this function. This may be fewer than the number of
2206 /// function parameters, if some of the parameters have default
2207 /// arguments (in C++) or the last parameter is a parameter pack.
getMinRequiredArguments() const2208 unsigned FunctionDecl::getMinRequiredArguments() const {
2209   if (!getASTContext().getLangOpts().CPlusPlus)
2210     return getNumParams();
2211 
2212   unsigned NumRequiredArgs = getNumParams();
2213 
2214   // If the last parameter is a parameter pack, we don't need an argument for
2215   // it.
2216   if (NumRequiredArgs > 0 &&
2217       getParamDecl(NumRequiredArgs - 1)->isParameterPack())
2218     --NumRequiredArgs;
2219 
2220   // If this parameter has a default argument, we don't need an argument for
2221   // it.
2222   while (NumRequiredArgs > 0 &&
2223          getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
2224     --NumRequiredArgs;
2225 
2226   // We might have parameter packs before the end. These can't be deduced,
2227   // but they can still handle multiple arguments.
2228   unsigned ArgIdx = NumRequiredArgs;
2229   while (ArgIdx > 0) {
2230     if (getParamDecl(ArgIdx - 1)->isParameterPack())
2231       NumRequiredArgs = ArgIdx;
2232 
2233     --ArgIdx;
2234   }
2235 
2236   return NumRequiredArgs;
2237 }
2238 
RedeclForcesDefC99(const FunctionDecl * Redecl)2239 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2240   // Only consider file-scope declarations in this test.
2241   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2242     return false;
2243 
2244   // Only consider explicit declarations; the presence of a builtin for a
2245   // libcall shouldn't affect whether a definition is externally visible.
2246   if (Redecl->isImplicit())
2247     return false;
2248 
2249   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2250     return true; // Not an inline definition
2251 
2252   return false;
2253 }
2254 
2255 /// \brief For a function declaration in C or C++, determine whether this
2256 /// declaration causes the definition to be externally visible.
2257 ///
2258 /// Specifically, this determines if adding the current declaration to the set
2259 /// of redeclarations of the given functions causes
2260 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2261 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2262   assert(!doesThisDeclarationHaveABody() &&
2263          "Must have a declaration without a body.");
2264 
2265   ASTContext &Context = getASTContext();
2266 
2267   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2268     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2269     // an externally visible definition.
2270     //
2271     // FIXME: What happens if gnu_inline gets added on after the first
2272     // declaration?
2273     if (!isInlineSpecified() || getStorageClassAsWritten() == SC_Extern)
2274       return false;
2275 
2276     const FunctionDecl *Prev = this;
2277     bool FoundBody = false;
2278     while ((Prev = Prev->getPreviousDecl())) {
2279       FoundBody |= Prev->Body;
2280 
2281       if (Prev->Body) {
2282         // If it's not the case that both 'inline' and 'extern' are
2283         // specified on the definition, then it is always externally visible.
2284         if (!Prev->isInlineSpecified() ||
2285             Prev->getStorageClassAsWritten() != SC_Extern)
2286           return false;
2287       } else if (Prev->isInlineSpecified() &&
2288                  Prev->getStorageClassAsWritten() != SC_Extern) {
2289         return false;
2290       }
2291     }
2292     return FoundBody;
2293   }
2294 
2295   if (Context.getLangOpts().CPlusPlus)
2296     return false;
2297 
2298   // C99 6.7.4p6:
2299   //   [...] If all of the file scope declarations for a function in a
2300   //   translation unit include the inline function specifier without extern,
2301   //   then the definition in that translation unit is an inline definition.
2302   if (isInlineSpecified() && getStorageClass() != SC_Extern)
2303     return false;
2304   const FunctionDecl *Prev = this;
2305   bool FoundBody = false;
2306   while ((Prev = Prev->getPreviousDecl())) {
2307     FoundBody |= Prev->Body;
2308     if (RedeclForcesDefC99(Prev))
2309       return false;
2310   }
2311   return FoundBody;
2312 }
2313 
2314 /// \brief For an inline function definition in C, or for a gnu_inline function
2315 /// in C++, determine whether the definition will be externally visible.
2316 ///
2317 /// Inline function definitions are always available for inlining optimizations.
2318 /// However, depending on the language dialect, declaration specifiers, and
2319 /// attributes, the definition of an inline function may or may not be
2320 /// "externally" visible to other translation units in the program.
2321 ///
2322 /// In C99, inline definitions are not externally visible by default. However,
2323 /// if even one of the global-scope declarations is marked "extern inline", the
2324 /// inline definition becomes externally visible (C99 6.7.4p6).
2325 ///
2326 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2327 /// definition, we use the GNU semantics for inline, which are nearly the
2328 /// opposite of C99 semantics. In particular, "inline" by itself will create
2329 /// an externally visible symbol, but "extern inline" will not create an
2330 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2331 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2332   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2333   assert(isInlined() && "Function must be inline");
2334   ASTContext &Context = getASTContext();
2335 
2336   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2337     // Note: If you change the logic here, please change
2338     // doesDeclarationForceExternallyVisibleDefinition as well.
2339     //
2340     // If it's not the case that both 'inline' and 'extern' are
2341     // specified on the definition, then this inline definition is
2342     // externally visible.
2343     if (!(isInlineSpecified() && getStorageClassAsWritten() == SC_Extern))
2344       return true;
2345 
2346     // If any declaration is 'inline' but not 'extern', then this definition
2347     // is externally visible.
2348     for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2349          Redecl != RedeclEnd;
2350          ++Redecl) {
2351       if (Redecl->isInlineSpecified() &&
2352           Redecl->getStorageClassAsWritten() != SC_Extern)
2353         return true;
2354     }
2355 
2356     return false;
2357   }
2358 
2359   // The rest of this function is C-only.
2360   assert(!Context.getLangOpts().CPlusPlus &&
2361          "should not use C inline rules in C++");
2362 
2363   // C99 6.7.4p6:
2364   //   [...] If all of the file scope declarations for a function in a
2365   //   translation unit include the inline function specifier without extern,
2366   //   then the definition in that translation unit is an inline definition.
2367   for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2368        Redecl != RedeclEnd;
2369        ++Redecl) {
2370     if (RedeclForcesDefC99(*Redecl))
2371       return true;
2372   }
2373 
2374   // C99 6.7.4p6:
2375   //   An inline definition does not provide an external definition for the
2376   //   function, and does not forbid an external definition in another
2377   //   translation unit.
2378   return false;
2379 }
2380 
2381 /// getOverloadedOperator - Which C++ overloaded operator this
2382 /// function represents, if any.
getOverloadedOperator() const2383 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2384   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2385     return getDeclName().getCXXOverloadedOperator();
2386   else
2387     return OO_None;
2388 }
2389 
2390 /// getLiteralIdentifier - The literal suffix identifier this function
2391 /// represents, if any.
getLiteralIdentifier() const2392 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2393   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2394     return getDeclName().getCXXLiteralIdentifier();
2395   else
2396     return 0;
2397 }
2398 
getTemplatedKind() const2399 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2400   if (TemplateOrSpecialization.isNull())
2401     return TK_NonTemplate;
2402   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2403     return TK_FunctionTemplate;
2404   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2405     return TK_MemberSpecialization;
2406   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2407     return TK_FunctionTemplateSpecialization;
2408   if (TemplateOrSpecialization.is
2409                                <DependentFunctionTemplateSpecializationInfo*>())
2410     return TK_DependentFunctionTemplateSpecialization;
2411 
2412   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2413 }
2414 
getInstantiatedFromMemberFunction() const2415 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2416   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2417     return cast<FunctionDecl>(Info->getInstantiatedFrom());
2418 
2419   return 0;
2420 }
2421 
2422 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)2423 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2424                                                FunctionDecl *FD,
2425                                                TemplateSpecializationKind TSK) {
2426   assert(TemplateOrSpecialization.isNull() &&
2427          "Member function is already a specialization");
2428   MemberSpecializationInfo *Info
2429     = new (C) MemberSpecializationInfo(FD, TSK);
2430   TemplateOrSpecialization = Info;
2431 }
2432 
isImplicitlyInstantiable() const2433 bool FunctionDecl::isImplicitlyInstantiable() const {
2434   // If the function is invalid, it can't be implicitly instantiated.
2435   if (isInvalidDecl())
2436     return false;
2437 
2438   switch (getTemplateSpecializationKind()) {
2439   case TSK_Undeclared:
2440   case TSK_ExplicitInstantiationDefinition:
2441     return false;
2442 
2443   case TSK_ImplicitInstantiation:
2444     return true;
2445 
2446   // It is possible to instantiate TSK_ExplicitSpecialization kind
2447   // if the FunctionDecl has a class scope specialization pattern.
2448   case TSK_ExplicitSpecialization:
2449     return getClassScopeSpecializationPattern() != 0;
2450 
2451   case TSK_ExplicitInstantiationDeclaration:
2452     // Handled below.
2453     break;
2454   }
2455 
2456   // Find the actual template from which we will instantiate.
2457   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2458   bool HasPattern = false;
2459   if (PatternDecl)
2460     HasPattern = PatternDecl->hasBody(PatternDecl);
2461 
2462   // C++0x [temp.explicit]p9:
2463   //   Except for inline functions, other explicit instantiation declarations
2464   //   have the effect of suppressing the implicit instantiation of the entity
2465   //   to which they refer.
2466   if (!HasPattern || !PatternDecl)
2467     return true;
2468 
2469   return PatternDecl->isInlined();
2470 }
2471 
isTemplateInstantiation() const2472 bool FunctionDecl::isTemplateInstantiation() const {
2473   switch (getTemplateSpecializationKind()) {
2474     case TSK_Undeclared:
2475     case TSK_ExplicitSpecialization:
2476       return false;
2477     case TSK_ImplicitInstantiation:
2478     case TSK_ExplicitInstantiationDeclaration:
2479     case TSK_ExplicitInstantiationDefinition:
2480       return true;
2481   }
2482   llvm_unreachable("All TSK values handled.");
2483 }
2484 
getTemplateInstantiationPattern() const2485 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
2486   // Handle class scope explicit specialization special case.
2487   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
2488     return getClassScopeSpecializationPattern();
2489 
2490   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
2491     while (Primary->getInstantiatedFromMemberTemplate()) {
2492       // If we have hit a point where the user provided a specialization of
2493       // this template, we're done looking.
2494       if (Primary->isMemberSpecialization())
2495         break;
2496 
2497       Primary = Primary->getInstantiatedFromMemberTemplate();
2498     }
2499 
2500     return Primary->getTemplatedDecl();
2501   }
2502 
2503   return getInstantiatedFromMemberFunction();
2504 }
2505 
getPrimaryTemplate() const2506 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
2507   if (FunctionTemplateSpecializationInfo *Info
2508         = TemplateOrSpecialization
2509             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2510     return Info->Template.getPointer();
2511   }
2512   return 0;
2513 }
2514 
getClassScopeSpecializationPattern() const2515 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
2516     return getASTContext().getClassScopeSpecializationPattern(this);
2517 }
2518 
2519 const TemplateArgumentList *
getTemplateSpecializationArgs() const2520 FunctionDecl::getTemplateSpecializationArgs() const {
2521   if (FunctionTemplateSpecializationInfo *Info
2522         = TemplateOrSpecialization
2523             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2524     return Info->TemplateArguments;
2525   }
2526   return 0;
2527 }
2528 
2529 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const2530 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
2531   if (FunctionTemplateSpecializationInfo *Info
2532         = TemplateOrSpecialization
2533             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2534     return Info->TemplateArgumentsAsWritten;
2535   }
2536   return 0;
2537 }
2538 
2539 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)2540 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
2541                                                 FunctionTemplateDecl *Template,
2542                                      const TemplateArgumentList *TemplateArgs,
2543                                                 void *InsertPos,
2544                                                 TemplateSpecializationKind TSK,
2545                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
2546                                           SourceLocation PointOfInstantiation) {
2547   assert(TSK != TSK_Undeclared &&
2548          "Must specify the type of function template specialization");
2549   FunctionTemplateSpecializationInfo *Info
2550     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2551   if (!Info)
2552     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
2553                                                       TemplateArgs,
2554                                                       TemplateArgsAsWritten,
2555                                                       PointOfInstantiation);
2556   TemplateOrSpecialization = Info;
2557   Template->addSpecialization(Info, InsertPos);
2558 }
2559 
2560 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)2561 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
2562                                     const UnresolvedSetImpl &Templates,
2563                              const TemplateArgumentListInfo &TemplateArgs) {
2564   assert(TemplateOrSpecialization.isNull());
2565   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
2566   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
2567   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
2568   void *Buffer = Context.Allocate(Size);
2569   DependentFunctionTemplateSpecializationInfo *Info =
2570     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
2571                                                              TemplateArgs);
2572   TemplateOrSpecialization = Info;
2573 }
2574 
2575 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)2576 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
2577                                       const TemplateArgumentListInfo &TArgs)
2578   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
2579 
2580   d.NumTemplates = Ts.size();
2581   d.NumArgs = TArgs.size();
2582 
2583   FunctionTemplateDecl **TsArray =
2584     const_cast<FunctionTemplateDecl**>(getTemplates());
2585   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
2586     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
2587 
2588   TemplateArgumentLoc *ArgsArray =
2589     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
2590   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
2591     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
2592 }
2593 
getTemplateSpecializationKind() const2594 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
2595   // For a function template specialization, query the specialization
2596   // information object.
2597   FunctionTemplateSpecializationInfo *FTSInfo
2598     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2599   if (FTSInfo)
2600     return FTSInfo->getTemplateSpecializationKind();
2601 
2602   MemberSpecializationInfo *MSInfo
2603     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
2604   if (MSInfo)
2605     return MSInfo->getTemplateSpecializationKind();
2606 
2607   return TSK_Undeclared;
2608 }
2609 
2610 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2611 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2612                                           SourceLocation PointOfInstantiation) {
2613   if (FunctionTemplateSpecializationInfo *FTSInfo
2614         = TemplateOrSpecialization.dyn_cast<
2615                                     FunctionTemplateSpecializationInfo*>()) {
2616     FTSInfo->setTemplateSpecializationKind(TSK);
2617     if (TSK != TSK_ExplicitSpecialization &&
2618         PointOfInstantiation.isValid() &&
2619         FTSInfo->getPointOfInstantiation().isInvalid())
2620       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
2621   } else if (MemberSpecializationInfo *MSInfo
2622              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
2623     MSInfo->setTemplateSpecializationKind(TSK);
2624     if (TSK != TSK_ExplicitSpecialization &&
2625         PointOfInstantiation.isValid() &&
2626         MSInfo->getPointOfInstantiation().isInvalid())
2627       MSInfo->setPointOfInstantiation(PointOfInstantiation);
2628   } else
2629     llvm_unreachable("Function cannot have a template specialization kind");
2630 }
2631 
getPointOfInstantiation() const2632 SourceLocation FunctionDecl::getPointOfInstantiation() const {
2633   if (FunctionTemplateSpecializationInfo *FTSInfo
2634         = TemplateOrSpecialization.dyn_cast<
2635                                         FunctionTemplateSpecializationInfo*>())
2636     return FTSInfo->getPointOfInstantiation();
2637   else if (MemberSpecializationInfo *MSInfo
2638              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
2639     return MSInfo->getPointOfInstantiation();
2640 
2641   return SourceLocation();
2642 }
2643 
isOutOfLine() const2644 bool FunctionDecl::isOutOfLine() const {
2645   if (Decl::isOutOfLine())
2646     return true;
2647 
2648   // If this function was instantiated from a member function of a
2649   // class template, check whether that member function was defined out-of-line.
2650   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
2651     const FunctionDecl *Definition;
2652     if (FD->hasBody(Definition))
2653       return Definition->isOutOfLine();
2654   }
2655 
2656   // If this function was instantiated from a function template,
2657   // check whether that function template was defined out-of-line.
2658   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
2659     const FunctionDecl *Definition;
2660     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
2661       return Definition->isOutOfLine();
2662   }
2663 
2664   return false;
2665 }
2666 
getSourceRange() const2667 SourceRange FunctionDecl::getSourceRange() const {
2668   return SourceRange(getOuterLocStart(), EndRangeLoc);
2669 }
2670 
getMemoryFunctionKind() const2671 unsigned FunctionDecl::getMemoryFunctionKind() const {
2672   IdentifierInfo *FnInfo = getIdentifier();
2673 
2674   if (!FnInfo)
2675     return 0;
2676 
2677   // Builtin handling.
2678   switch (getBuiltinID()) {
2679   case Builtin::BI__builtin_memset:
2680   case Builtin::BI__builtin___memset_chk:
2681   case Builtin::BImemset:
2682     return Builtin::BImemset;
2683 
2684   case Builtin::BI__builtin_memcpy:
2685   case Builtin::BI__builtin___memcpy_chk:
2686   case Builtin::BImemcpy:
2687     return Builtin::BImemcpy;
2688 
2689   case Builtin::BI__builtin_memmove:
2690   case Builtin::BI__builtin___memmove_chk:
2691   case Builtin::BImemmove:
2692     return Builtin::BImemmove;
2693 
2694   case Builtin::BIstrlcpy:
2695     return Builtin::BIstrlcpy;
2696   case Builtin::BIstrlcat:
2697     return Builtin::BIstrlcat;
2698 
2699   case Builtin::BI__builtin_memcmp:
2700   case Builtin::BImemcmp:
2701     return Builtin::BImemcmp;
2702 
2703   case Builtin::BI__builtin_strncpy:
2704   case Builtin::BI__builtin___strncpy_chk:
2705   case Builtin::BIstrncpy:
2706     return Builtin::BIstrncpy;
2707 
2708   case Builtin::BI__builtin_strncmp:
2709   case Builtin::BIstrncmp:
2710     return Builtin::BIstrncmp;
2711 
2712   case Builtin::BI__builtin_strncasecmp:
2713   case Builtin::BIstrncasecmp:
2714     return Builtin::BIstrncasecmp;
2715 
2716   case Builtin::BI__builtin_strncat:
2717   case Builtin::BI__builtin___strncat_chk:
2718   case Builtin::BIstrncat:
2719     return Builtin::BIstrncat;
2720 
2721   case Builtin::BI__builtin_strndup:
2722   case Builtin::BIstrndup:
2723     return Builtin::BIstrndup;
2724 
2725   case Builtin::BI__builtin_strlen:
2726   case Builtin::BIstrlen:
2727     return Builtin::BIstrlen;
2728 
2729   default:
2730     if (isExternC()) {
2731       if (FnInfo->isStr("memset"))
2732         return Builtin::BImemset;
2733       else if (FnInfo->isStr("memcpy"))
2734         return Builtin::BImemcpy;
2735       else if (FnInfo->isStr("memmove"))
2736         return Builtin::BImemmove;
2737       else if (FnInfo->isStr("memcmp"))
2738         return Builtin::BImemcmp;
2739       else if (FnInfo->isStr("strncpy"))
2740         return Builtin::BIstrncpy;
2741       else if (FnInfo->isStr("strncmp"))
2742         return Builtin::BIstrncmp;
2743       else if (FnInfo->isStr("strncasecmp"))
2744         return Builtin::BIstrncasecmp;
2745       else if (FnInfo->isStr("strncat"))
2746         return Builtin::BIstrncat;
2747       else if (FnInfo->isStr("strndup"))
2748         return Builtin::BIstrndup;
2749       else if (FnInfo->isStr("strlen"))
2750         return Builtin::BIstrlen;
2751     }
2752     break;
2753   }
2754   return 0;
2755 }
2756 
2757 //===----------------------------------------------------------------------===//
2758 // FieldDecl Implementation
2759 //===----------------------------------------------------------------------===//
2760 
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)2761 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
2762                              SourceLocation StartLoc, SourceLocation IdLoc,
2763                              IdentifierInfo *Id, QualType T,
2764                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2765                              InClassInitStyle InitStyle) {
2766   return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
2767                            BW, Mutable, InitStyle);
2768 }
2769 
CreateDeserialized(ASTContext & C,unsigned ID)2770 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2771   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
2772   return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
2773                              0, QualType(), 0, 0, false, ICIS_NoInit);
2774 }
2775 
isAnonymousStructOrUnion() const2776 bool FieldDecl::isAnonymousStructOrUnion() const {
2777   if (!isImplicit() || getDeclName())
2778     return false;
2779 
2780   if (const RecordType *Record = getType()->getAs<RecordType>())
2781     return Record->getDecl()->isAnonymousStructOrUnion();
2782 
2783   return false;
2784 }
2785 
getBitWidthValue(const ASTContext & Ctx) const2786 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
2787   assert(isBitField() && "not a bitfield");
2788   Expr *BitWidth = InitializerOrBitWidth.getPointer();
2789   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
2790 }
2791 
getFieldIndex() const2792 unsigned FieldDecl::getFieldIndex() const {
2793   if (CachedFieldIndex) return CachedFieldIndex - 1;
2794 
2795   unsigned Index = 0;
2796   const RecordDecl *RD = getParent();
2797   const FieldDecl *LastFD = 0;
2798   bool IsMsStruct = RD->isMsStruct(getASTContext());
2799 
2800   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
2801        I != E; ++I, ++Index) {
2802     I->CachedFieldIndex = Index + 1;
2803 
2804     if (IsMsStruct) {
2805       // Zero-length bitfields following non-bitfield members are ignored.
2806       if (getASTContext().ZeroBitfieldFollowsNonBitfield(*I, LastFD)) {
2807         --Index;
2808         continue;
2809       }
2810       LastFD = *I;
2811     }
2812   }
2813 
2814   assert(CachedFieldIndex && "failed to find field in parent");
2815   return CachedFieldIndex - 1;
2816 }
2817 
getSourceRange() const2818 SourceRange FieldDecl::getSourceRange() const {
2819   if (const Expr *E = InitializerOrBitWidth.getPointer())
2820     return SourceRange(getInnerLocStart(), E->getLocEnd());
2821   return DeclaratorDecl::getSourceRange();
2822 }
2823 
setBitWidth(Expr * Width)2824 void FieldDecl::setBitWidth(Expr *Width) {
2825   assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
2826          "bit width or initializer already set");
2827   InitializerOrBitWidth.setPointer(Width);
2828 }
2829 
setInClassInitializer(Expr * Init)2830 void FieldDecl::setInClassInitializer(Expr *Init) {
2831   assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
2832          "bit width or initializer already set");
2833   InitializerOrBitWidth.setPointer(Init);
2834 }
2835 
2836 //===----------------------------------------------------------------------===//
2837 // TagDecl Implementation
2838 //===----------------------------------------------------------------------===//
2839 
getOuterLocStart() const2840 SourceLocation TagDecl::getOuterLocStart() const {
2841   return getTemplateOrInnerLocStart(this);
2842 }
2843 
getSourceRange() const2844 SourceRange TagDecl::getSourceRange() const {
2845   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
2846   return SourceRange(getOuterLocStart(), E);
2847 }
2848 
getCanonicalDecl()2849 TagDecl* TagDecl::getCanonicalDecl() {
2850   return getFirstDeclaration();
2851 }
2852 
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)2853 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
2854   TypedefNameDeclOrQualifier = TDD;
2855   if (TypeForDecl)
2856     assert(TypeForDecl->isLinkageValid());
2857   assert(isLinkageValid());
2858 }
2859 
startDefinition()2860 void TagDecl::startDefinition() {
2861   IsBeingDefined = true;
2862 
2863   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
2864     struct CXXRecordDecl::DefinitionData *Data =
2865       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
2866     for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
2867       cast<CXXRecordDecl>(*I)->DefinitionData = Data;
2868   }
2869 }
2870 
completeDefinition()2871 void TagDecl::completeDefinition() {
2872   assert((!isa<CXXRecordDecl>(this) ||
2873           cast<CXXRecordDecl>(this)->hasDefinition()) &&
2874          "definition completed but not started");
2875 
2876   IsCompleteDefinition = true;
2877   IsBeingDefined = false;
2878 
2879   if (ASTMutationListener *L = getASTMutationListener())
2880     L->CompletedTagDefinition(this);
2881 }
2882 
getDefinition() const2883 TagDecl *TagDecl::getDefinition() const {
2884   if (isCompleteDefinition())
2885     return const_cast<TagDecl *>(this);
2886 
2887   // If it's possible for us to have an out-of-date definition, check now.
2888   if (MayHaveOutOfDateDef) {
2889     if (IdentifierInfo *II = getIdentifier()) {
2890       if (II->isOutOfDate()) {
2891         updateOutOfDate(*II);
2892       }
2893     }
2894   }
2895 
2896   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
2897     return CXXRD->getDefinition();
2898 
2899   for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
2900        R != REnd; ++R)
2901     if (R->isCompleteDefinition())
2902       return *R;
2903 
2904   return 0;
2905 }
2906 
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)2907 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
2908   if (QualifierLoc) {
2909     // Make sure the extended qualifier info is allocated.
2910     if (!hasExtInfo())
2911       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
2912     // Set qualifier info.
2913     getExtInfo()->QualifierLoc = QualifierLoc;
2914   } else {
2915     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
2916     if (hasExtInfo()) {
2917       if (getExtInfo()->NumTemplParamLists == 0) {
2918         getASTContext().Deallocate(getExtInfo());
2919         TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
2920       }
2921       else
2922         getExtInfo()->QualifierLoc = QualifierLoc;
2923     }
2924   }
2925 }
2926 
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)2927 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
2928                                             unsigned NumTPLists,
2929                                             TemplateParameterList **TPLists) {
2930   assert(NumTPLists > 0);
2931   // Make sure the extended decl info is allocated.
2932   if (!hasExtInfo())
2933     // Allocate external info struct.
2934     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
2935   // Set the template parameter lists info.
2936   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
2937 }
2938 
2939 //===----------------------------------------------------------------------===//
2940 // EnumDecl Implementation
2941 //===----------------------------------------------------------------------===//
2942 
anchor()2943 void EnumDecl::anchor() { }
2944 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)2945 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
2946                            SourceLocation StartLoc, SourceLocation IdLoc,
2947                            IdentifierInfo *Id,
2948                            EnumDecl *PrevDecl, bool IsScoped,
2949                            bool IsScopedUsingClassTag, bool IsFixed) {
2950   EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
2951                                     IsScoped, IsScopedUsingClassTag, IsFixed);
2952   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
2953   C.getTypeDeclType(Enum, PrevDecl);
2954   return Enum;
2955 }
2956 
CreateDeserialized(ASTContext & C,unsigned ID)2957 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2958   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
2959   EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(),
2960                                       0, 0, false, false, false);
2961   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
2962   return Enum;
2963 }
2964 
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)2965 void EnumDecl::completeDefinition(QualType NewType,
2966                                   QualType NewPromotionType,
2967                                   unsigned NumPositiveBits,
2968                                   unsigned NumNegativeBits) {
2969   assert(!isCompleteDefinition() && "Cannot redefine enums!");
2970   if (!IntegerType)
2971     IntegerType = NewType.getTypePtr();
2972   PromotionType = NewPromotionType;
2973   setNumPositiveBits(NumPositiveBits);
2974   setNumNegativeBits(NumNegativeBits);
2975   TagDecl::completeDefinition();
2976 }
2977 
getTemplateSpecializationKind() const2978 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
2979   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2980     return MSI->getTemplateSpecializationKind();
2981 
2982   return TSK_Undeclared;
2983 }
2984 
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2985 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2986                                          SourceLocation PointOfInstantiation) {
2987   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
2988   assert(MSI && "Not an instantiated member enumeration?");
2989   MSI->setTemplateSpecializationKind(TSK);
2990   if (TSK != TSK_ExplicitSpecialization &&
2991       PointOfInstantiation.isValid() &&
2992       MSI->getPointOfInstantiation().isInvalid())
2993     MSI->setPointOfInstantiation(PointOfInstantiation);
2994 }
2995 
getInstantiatedFromMemberEnum() const2996 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
2997   if (SpecializationInfo)
2998     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
2999 
3000   return 0;
3001 }
3002 
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3003 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3004                                             TemplateSpecializationKind TSK) {
3005   assert(!SpecializationInfo && "Member enum is already a specialization");
3006   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3007 }
3008 
3009 //===----------------------------------------------------------------------===//
3010 // RecordDecl Implementation
3011 //===----------------------------------------------------------------------===//
3012 
RecordDecl(Kind DK,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3013 RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
3014                        SourceLocation StartLoc, SourceLocation IdLoc,
3015                        IdentifierInfo *Id, RecordDecl *PrevDecl)
3016   : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
3017   HasFlexibleArrayMember = false;
3018   AnonymousStructOrUnion = false;
3019   HasObjectMember = false;
3020   HasVolatileMember = false;
3021   LoadedFieldsFromExternalStorage = false;
3022   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3023 }
3024 
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3025 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3026                                SourceLocation StartLoc, SourceLocation IdLoc,
3027                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3028   RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
3029                                      PrevDecl);
3030   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3031 
3032   C.getTypeDeclType(R, PrevDecl);
3033   return R;
3034 }
3035 
CreateDeserialized(const ASTContext & C,unsigned ID)3036 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3037   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
3038   RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
3039                                        SourceLocation(), 0, 0);
3040   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3041   return R;
3042 }
3043 
isInjectedClassName() const3044 bool RecordDecl::isInjectedClassName() const {
3045   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3046     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3047 }
3048 
field_begin() const3049 RecordDecl::field_iterator RecordDecl::field_begin() const {
3050   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3051     LoadFieldsFromExternalStorage();
3052 
3053   return field_iterator(decl_iterator(FirstDecl));
3054 }
3055 
3056 /// completeDefinition - Notes that the definition of this type is now
3057 /// complete.
completeDefinition()3058 void RecordDecl::completeDefinition() {
3059   assert(!isCompleteDefinition() && "Cannot redefine record!");
3060   TagDecl::completeDefinition();
3061 }
3062 
3063 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3064 /// This which can be turned on with an attribute, pragma, or the
3065 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3066 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3067   return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
3068 }
3069 
isFieldOrIndirectField(Decl::Kind K)3070 static bool isFieldOrIndirectField(Decl::Kind K) {
3071   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3072 }
3073 
LoadFieldsFromExternalStorage() const3074 void RecordDecl::LoadFieldsFromExternalStorage() const {
3075   ExternalASTSource *Source = getASTContext().getExternalSource();
3076   assert(hasExternalLexicalStorage() && Source && "No external storage?");
3077 
3078   // Notify that we have a RecordDecl doing some initialization.
3079   ExternalASTSource::Deserializing TheFields(Source);
3080 
3081   SmallVector<Decl*, 64> Decls;
3082   LoadedFieldsFromExternalStorage = true;
3083   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3084                                            Decls)) {
3085   case ELR_Success:
3086     break;
3087 
3088   case ELR_AlreadyLoaded:
3089   case ELR_Failure:
3090     return;
3091   }
3092 
3093 #ifndef NDEBUG
3094   // Check that all decls we got were FieldDecls.
3095   for (unsigned i=0, e=Decls.size(); i != e; ++i)
3096     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3097 #endif
3098 
3099   if (Decls.empty())
3100     return;
3101 
3102   llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3103                                                  /*FieldsAlreadyLoaded=*/false);
3104 }
3105 
3106 //===----------------------------------------------------------------------===//
3107 // BlockDecl Implementation
3108 //===----------------------------------------------------------------------===//
3109 
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3110 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3111   assert(ParamInfo == 0 && "Already has param info!");
3112 
3113   // Zero params -> null pointer.
3114   if (!NewParamInfo.empty()) {
3115     NumParams = NewParamInfo.size();
3116     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3117     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3118   }
3119 }
3120 
setCaptures(ASTContext & Context,const Capture * begin,const Capture * end,bool capturesCXXThis)3121 void BlockDecl::setCaptures(ASTContext &Context,
3122                             const Capture *begin,
3123                             const Capture *end,
3124                             bool capturesCXXThis) {
3125   CapturesCXXThis = capturesCXXThis;
3126 
3127   if (begin == end) {
3128     NumCaptures = 0;
3129     Captures = 0;
3130     return;
3131   }
3132 
3133   NumCaptures = end - begin;
3134 
3135   // Avoid new Capture[] because we don't want to provide a default
3136   // constructor.
3137   size_t allocationSize = NumCaptures * sizeof(Capture);
3138   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3139   memcpy(buffer, begin, allocationSize);
3140   Captures = static_cast<Capture*>(buffer);
3141 }
3142 
capturesVariable(const VarDecl * variable) const3143 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3144   for (capture_const_iterator
3145          i = capture_begin(), e = capture_end(); i != e; ++i)
3146     // Only auto vars can be captured, so no redeclaration worries.
3147     if (i->getVariable() == variable)
3148       return true;
3149 
3150   return false;
3151 }
3152 
getSourceRange() const3153 SourceRange BlockDecl::getSourceRange() const {
3154   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3155 }
3156 
3157 //===----------------------------------------------------------------------===//
3158 // Other Decl Allocation/Deallocation Method Implementations
3159 //===----------------------------------------------------------------------===//
3160 
anchor()3161 void TranslationUnitDecl::anchor() { }
3162 
Create(ASTContext & C)3163 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3164   return new (C) TranslationUnitDecl(C);
3165 }
3166 
anchor()3167 void LabelDecl::anchor() { }
3168 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3169 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3170                              SourceLocation IdentL, IdentifierInfo *II) {
3171   return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
3172 }
3173 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3174 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3175                              SourceLocation IdentL, IdentifierInfo *II,
3176                              SourceLocation GnuLabelL) {
3177   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3178   return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
3179 }
3180 
CreateDeserialized(ASTContext & C,unsigned ID)3181 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3182   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
3183   return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
3184 }
3185 
anchor()3186 void ValueDecl::anchor() { }
3187 
isWeak() const3188 bool ValueDecl::isWeak() const {
3189   for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I)
3190     if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I))
3191       return true;
3192 
3193   return isWeakImported();
3194 }
3195 
anchor()3196 void ImplicitParamDecl::anchor() { }
3197 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)3198 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3199                                              SourceLocation IdLoc,
3200                                              IdentifierInfo *Id,
3201                                              QualType Type) {
3202   return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
3203 }
3204 
CreateDeserialized(ASTContext & C,unsigned ID)3205 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3206                                                          unsigned ID) {
3207   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
3208   return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
3209 }
3210 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,StorageClass SCAsWritten,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)3211 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3212                                    SourceLocation StartLoc,
3213                                    const DeclarationNameInfo &NameInfo,
3214                                    QualType T, TypeSourceInfo *TInfo,
3215                                    StorageClass SC, StorageClass SCAsWritten,
3216                                    bool isInlineSpecified,
3217                                    bool hasWrittenPrototype,
3218                                    bool isConstexprSpecified) {
3219   FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
3220                                            T, TInfo, SC, SCAsWritten,
3221                                            isInlineSpecified,
3222                                            isConstexprSpecified);
3223   New->HasWrittenPrototype = hasWrittenPrototype;
3224   return New;
3225 }
3226 
CreateDeserialized(ASTContext & C,unsigned ID)3227 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3228   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
3229   return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
3230                                 DeclarationNameInfo(), QualType(), 0,
3231                                 SC_None, SC_None, false, false);
3232 }
3233 
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3234 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3235   return new (C) BlockDecl(DC, L);
3236 }
3237 
CreateDeserialized(ASTContext & C,unsigned ID)3238 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3239   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
3240   return new (Mem) BlockDecl(0, SourceLocation());
3241 }
3242 
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3243 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3244                                            SourceLocation L,
3245                                            IdentifierInfo *Id, QualType T,
3246                                            Expr *E, const llvm::APSInt &V) {
3247   return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
3248 }
3249 
3250 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3251 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3252   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
3253   return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
3254                                     llvm::APSInt());
3255 }
3256 
anchor()3257 void IndirectFieldDecl::anchor() { }
3258 
3259 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,NamedDecl ** CH,unsigned CHS)3260 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3261                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
3262                           unsigned CHS) {
3263   return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3264 }
3265 
CreateDeserialized(ASTContext & C,unsigned ID)3266 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3267                                                          unsigned ID) {
3268   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
3269   return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
3270                                      QualType(), 0, 0);
3271 }
3272 
getSourceRange() const3273 SourceRange EnumConstantDecl::getSourceRange() const {
3274   SourceLocation End = getLocation();
3275   if (Init)
3276     End = Init->getLocEnd();
3277   return SourceRange(getLocation(), End);
3278 }
3279 
anchor()3280 void TypeDecl::anchor() { }
3281 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3282 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3283                                  SourceLocation StartLoc, SourceLocation IdLoc,
3284                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3285   return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
3286 }
3287 
anchor()3288 void TypedefNameDecl::anchor() { }
3289 
CreateDeserialized(ASTContext & C,unsigned ID)3290 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3291   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
3292   return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3293 }
3294 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3295 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3296                                      SourceLocation StartLoc,
3297                                      SourceLocation IdLoc, IdentifierInfo *Id,
3298                                      TypeSourceInfo *TInfo) {
3299   return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
3300 }
3301 
CreateDeserialized(ASTContext & C,unsigned ID)3302 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3303   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
3304   return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3305 }
3306 
getSourceRange() const3307 SourceRange TypedefDecl::getSourceRange() const {
3308   SourceLocation RangeEnd = getLocation();
3309   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3310     if (typeIsPostfix(TInfo->getType()))
3311       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3312   }
3313   return SourceRange(getLocStart(), RangeEnd);
3314 }
3315 
getSourceRange() const3316 SourceRange TypeAliasDecl::getSourceRange() const {
3317   SourceLocation RangeEnd = getLocStart();
3318   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3319     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3320   return SourceRange(getLocStart(), RangeEnd);
3321 }
3322 
anchor()3323 void FileScopeAsmDecl::anchor() { }
3324 
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)3325 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3326                                            StringLiteral *Str,
3327                                            SourceLocation AsmLoc,
3328                                            SourceLocation RParenLoc) {
3329   return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3330 }
3331 
CreateDeserialized(ASTContext & C,unsigned ID)3332 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3333                                                        unsigned ID) {
3334   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
3335   return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
3336 }
3337 
anchor()3338 void EmptyDecl::anchor() {}
3339 
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3340 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3341   return new (C) EmptyDecl(DC, L);
3342 }
3343 
CreateDeserialized(ASTContext & C,unsigned ID)3344 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3345   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EmptyDecl));
3346   return new (Mem) EmptyDecl(0, SourceLocation());
3347 }
3348 
3349 //===----------------------------------------------------------------------===//
3350 // ImportDecl Implementation
3351 //===----------------------------------------------------------------------===//
3352 
3353 /// \brief Retrieve the number of module identifiers needed to name the given
3354 /// module.
getNumModuleIdentifiers(Module * Mod)3355 static unsigned getNumModuleIdentifiers(Module *Mod) {
3356   unsigned Result = 1;
3357   while (Mod->Parent) {
3358     Mod = Mod->Parent;
3359     ++Result;
3360   }
3361   return Result;
3362 }
3363 
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3364 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3365                        Module *Imported,
3366                        ArrayRef<SourceLocation> IdentifierLocs)
3367   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
3368     NextLocalImport()
3369 {
3370   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
3371   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
3372   memcpy(StoredLocs, IdentifierLocs.data(),
3373          IdentifierLocs.size() * sizeof(SourceLocation));
3374 }
3375 
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3376 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3377                        Module *Imported, SourceLocation EndLoc)
3378   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
3379     NextLocalImport()
3380 {
3381   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
3382 }
3383 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3384 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
3385                                SourceLocation StartLoc, Module *Imported,
3386                                ArrayRef<SourceLocation> IdentifierLocs) {
3387   void *Mem = C.Allocate(sizeof(ImportDecl) +
3388                          IdentifierLocs.size() * sizeof(SourceLocation));
3389   return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
3390 }
3391 
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3392 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
3393                                        SourceLocation StartLoc,
3394                                        Module *Imported,
3395                                        SourceLocation EndLoc) {
3396   void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
3397   ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
3398   Import->setImplicit();
3399   return Import;
3400 }
3401 
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)3402 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3403                                            unsigned NumLocations) {
3404   void *Mem = AllocateDeserializedDecl(C, ID,
3405                                        (sizeof(ImportDecl) +
3406                                         NumLocations * sizeof(SourceLocation)));
3407   return new (Mem) ImportDecl(EmptyShell());
3408 }
3409 
getIdentifierLocs() const3410 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
3411   if (!ImportedAndComplete.getInt())
3412     return ArrayRef<SourceLocation>();
3413 
3414   const SourceLocation *StoredLocs
3415     = reinterpret_cast<const SourceLocation *>(this + 1);
3416   return ArrayRef<SourceLocation>(StoredLocs,
3417                                   getNumModuleIdentifiers(getImportedModule()));
3418 }
3419 
getSourceRange() const3420 SourceRange ImportDecl::getSourceRange() const {
3421   if (!ImportedAndComplete.getInt())
3422     return SourceRange(getLocation(),
3423                        *reinterpret_cast<const SourceLocation *>(this + 1));
3424 
3425   return SourceRange(getLocation(), getIdentifierLocs().back());
3426 }
3427