1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonInstrInfo.h"
15 #include "Hexagon.h"
16 #include "HexagonRegisterInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/DFAPacketizer.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Support/MathExtras.h"
27 #define GET_INSTRINFO_CTOR
28 #define GET_INSTRMAP_INFO
29 #include "HexagonGenInstrInfo.inc"
30 #include "HexagonGenDFAPacketizer.inc"
31
32 using namespace llvm;
33
34 ///
35 /// Constants for Hexagon instructions.
36 ///
37 const int Hexagon_MEMW_OFFSET_MAX = 4095;
38 const int Hexagon_MEMW_OFFSET_MIN = -4096;
39 const int Hexagon_MEMD_OFFSET_MAX = 8191;
40 const int Hexagon_MEMD_OFFSET_MIN = -8192;
41 const int Hexagon_MEMH_OFFSET_MAX = 2047;
42 const int Hexagon_MEMH_OFFSET_MIN = -2048;
43 const int Hexagon_MEMB_OFFSET_MAX = 1023;
44 const int Hexagon_MEMB_OFFSET_MIN = -1024;
45 const int Hexagon_ADDI_OFFSET_MAX = 32767;
46 const int Hexagon_ADDI_OFFSET_MIN = -32768;
47 const int Hexagon_MEMD_AUTOINC_MAX = 56;
48 const int Hexagon_MEMD_AUTOINC_MIN = -64;
49 const int Hexagon_MEMW_AUTOINC_MAX = 28;
50 const int Hexagon_MEMW_AUTOINC_MIN = -32;
51 const int Hexagon_MEMH_AUTOINC_MAX = 14;
52 const int Hexagon_MEMH_AUTOINC_MIN = -16;
53 const int Hexagon_MEMB_AUTOINC_MAX = 7;
54 const int Hexagon_MEMB_AUTOINC_MIN = -8;
55
56
HexagonInstrInfo(HexagonSubtarget & ST)57 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
58 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
59 RI(ST, *this), Subtarget(ST) {
60 }
61
62
63 /// isLoadFromStackSlot - If the specified machine instruction is a direct
64 /// load from a stack slot, return the virtual or physical register number of
65 /// the destination along with the FrameIndex of the loaded stack slot. If
66 /// not, return 0. This predicate must return 0 if the instruction has
67 /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex) const68 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
69 int &FrameIndex) const {
70
71
72 switch (MI->getOpcode()) {
73 default: break;
74 case Hexagon::LDriw:
75 case Hexagon::LDrid:
76 case Hexagon::LDrih:
77 case Hexagon::LDrib:
78 case Hexagon::LDriub:
79 if (MI->getOperand(2).isFI() &&
80 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
81 FrameIndex = MI->getOperand(2).getIndex();
82 return MI->getOperand(0).getReg();
83 }
84 break;
85 }
86 return 0;
87 }
88
89
90 /// isStoreToStackSlot - If the specified machine instruction is a direct
91 /// store to a stack slot, return the virtual or physical register number of
92 /// the source reg along with the FrameIndex of the loaded stack slot. If
93 /// not, return 0. This predicate must return 0 if the instruction has
94 /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex) const95 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
96 int &FrameIndex) const {
97 switch (MI->getOpcode()) {
98 default: break;
99 case Hexagon::STriw:
100 case Hexagon::STrid:
101 case Hexagon::STrih:
102 case Hexagon::STrib:
103 if (MI->getOperand(2).isFI() &&
104 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
105 FrameIndex = MI->getOperand(0).getIndex();
106 return MI->getOperand(2).getReg();
107 }
108 break;
109 }
110 return 0;
111 }
112
113
114 unsigned
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL) const115 HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
116 MachineBasicBlock *FBB,
117 const SmallVectorImpl<MachineOperand> &Cond,
118 DebugLoc DL) const{
119
120 int BOpc = Hexagon::JMP;
121 int BccOpc = Hexagon::JMP_c;
122
123 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
124
125 int regPos = 0;
126 // Check if ReverseBranchCondition has asked to reverse this branch
127 // If we want to reverse the branch an odd number of times, we want
128 // JMP_cNot.
129 if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
130 BccOpc = Hexagon::JMP_cNot;
131 regPos = 1;
132 }
133
134 if (FBB == 0) {
135 if (Cond.empty()) {
136 // Due to a bug in TailMerging/CFG Optimization, we need to add a
137 // special case handling of a predicated jump followed by an
138 // unconditional jump. If not, Tail Merging and CFG Optimization go
139 // into an infinite loop.
140 MachineBasicBlock *NewTBB, *NewFBB;
141 SmallVector<MachineOperand, 4> Cond;
142 MachineInstr *Term = MBB.getFirstTerminator();
143 if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
144 false)) {
145 MachineBasicBlock *NextBB =
146 llvm::next(MachineFunction::iterator(&MBB));
147 if (NewTBB == NextBB) {
148 ReverseBranchCondition(Cond);
149 RemoveBranch(MBB);
150 return InsertBranch(MBB, TBB, 0, Cond, DL);
151 }
152 }
153 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
154 } else {
155 BuildMI(&MBB, DL,
156 get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
157 }
158 return 1;
159 }
160
161 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
162 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
163
164 return 2;
165 }
166
167
AnalyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const168 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
169 MachineBasicBlock *&TBB,
170 MachineBasicBlock *&FBB,
171 SmallVectorImpl<MachineOperand> &Cond,
172 bool AllowModify) const {
173 TBB = NULL;
174 FBB = NULL;
175
176 // If the block has no terminators, it just falls into the block after it.
177 MachineBasicBlock::iterator I = MBB.end();
178 if (I == MBB.begin())
179 return false;
180
181 // A basic block may looks like this:
182 //
183 // [ insn
184 // EH_LABEL
185 // insn
186 // insn
187 // insn
188 // EH_LABEL
189 // insn ]
190 //
191 // It has two succs but does not have a terminator
192 // Don't know how to handle it.
193 do {
194 --I;
195 if (I->isEHLabel())
196 return true;
197 } while (I != MBB.begin());
198
199 I = MBB.end();
200 --I;
201
202 while (I->isDebugValue()) {
203 if (I == MBB.begin())
204 return false;
205 --I;
206 }
207 if (!isUnpredicatedTerminator(I))
208 return false;
209
210 // Get the last instruction in the block.
211 MachineInstr *LastInst = I;
212
213 // If there is only one terminator instruction, process it.
214 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
215 if (LastInst->getOpcode() == Hexagon::JMP) {
216 TBB = LastInst->getOperand(0).getMBB();
217 return false;
218 }
219 if (LastInst->getOpcode() == Hexagon::JMP_c) {
220 // Block ends with fall-through true condbranch.
221 TBB = LastInst->getOperand(1).getMBB();
222 Cond.push_back(LastInst->getOperand(0));
223 return false;
224 }
225 if (LastInst->getOpcode() == Hexagon::JMP_cNot) {
226 // Block ends with fall-through false condbranch.
227 TBB = LastInst->getOperand(1).getMBB();
228 Cond.push_back(MachineOperand::CreateImm(0));
229 Cond.push_back(LastInst->getOperand(0));
230 return false;
231 }
232 // Otherwise, don't know what this is.
233 return true;
234 }
235
236 // Get the instruction before it if it's a terminator.
237 MachineInstr *SecondLastInst = I;
238
239 // If there are three terminators, we don't know what sort of block this is.
240 if (SecondLastInst && I != MBB.begin() &&
241 isUnpredicatedTerminator(--I))
242 return true;
243
244 // If the block ends with Hexagon::BRCOND and Hexagon:JMP, handle it.
245 if (((SecondLastInst->getOpcode() == Hexagon::BRCOND) ||
246 (SecondLastInst->getOpcode() == Hexagon::JMP_c)) &&
247 LastInst->getOpcode() == Hexagon::JMP) {
248 TBB = SecondLastInst->getOperand(1).getMBB();
249 Cond.push_back(SecondLastInst->getOperand(0));
250 FBB = LastInst->getOperand(0).getMBB();
251 return false;
252 }
253
254 // If the block ends with Hexagon::JMP_cNot and Hexagon:JMP, handle it.
255 if ((SecondLastInst->getOpcode() == Hexagon::JMP_cNot) &&
256 LastInst->getOpcode() == Hexagon::JMP) {
257 TBB = SecondLastInst->getOperand(1).getMBB();
258 Cond.push_back(MachineOperand::CreateImm(0));
259 Cond.push_back(SecondLastInst->getOperand(0));
260 FBB = LastInst->getOperand(0).getMBB();
261 return false;
262 }
263
264 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
265 // executed, so remove it.
266 if (SecondLastInst->getOpcode() == Hexagon::JMP &&
267 LastInst->getOpcode() == Hexagon::JMP) {
268 TBB = SecondLastInst->getOperand(0).getMBB();
269 I = LastInst;
270 if (AllowModify)
271 I->eraseFromParent();
272 return false;
273 }
274
275 // Otherwise, can't handle this.
276 return true;
277 }
278
279
RemoveBranch(MachineBasicBlock & MBB) const280 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
281 int BOpc = Hexagon::JMP;
282 int BccOpc = Hexagon::JMP_c;
283 int BccOpcNot = Hexagon::JMP_cNot;
284
285 MachineBasicBlock::iterator I = MBB.end();
286 if (I == MBB.begin()) return 0;
287 --I;
288 if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
289 I->getOpcode() != BccOpcNot)
290 return 0;
291
292 // Remove the branch.
293 I->eraseFromParent();
294
295 I = MBB.end();
296
297 if (I == MBB.begin()) return 1;
298 --I;
299 if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
300 return 1;
301
302 // Remove the branch.
303 I->eraseFromParent();
304 return 2;
305 }
306
307
308 /// \brief For a comparison instruction, return the source registers in
309 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
310 /// compares against in CmpValue. Return true if the comparison instruction
311 /// can be analyzed.
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value) const312 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
313 unsigned &SrcReg, unsigned &SrcReg2,
314 int &Mask, int &Value) const {
315 unsigned Opc = MI->getOpcode();
316
317 // Set mask and the first source register.
318 switch (Opc) {
319 case Hexagon::CMPEHexagon4rr:
320 case Hexagon::CMPEQri:
321 case Hexagon::CMPEQrr:
322 case Hexagon::CMPGT64rr:
323 case Hexagon::CMPGTU64rr:
324 case Hexagon::CMPGTUri:
325 case Hexagon::CMPGTUrr:
326 case Hexagon::CMPGTri:
327 case Hexagon::CMPGTrr:
328 case Hexagon::CMPLTUrr:
329 case Hexagon::CMPLTrr:
330 SrcReg = MI->getOperand(1).getReg();
331 Mask = ~0;
332 break;
333 case Hexagon::CMPbEQri_V4:
334 case Hexagon::CMPbEQrr_sbsb_V4:
335 case Hexagon::CMPbEQrr_ubub_V4:
336 case Hexagon::CMPbGTUri_V4:
337 case Hexagon::CMPbGTUrr_V4:
338 case Hexagon::CMPbGTrr_V4:
339 SrcReg = MI->getOperand(1).getReg();
340 Mask = 0xFF;
341 break;
342 case Hexagon::CMPhEQri_V4:
343 case Hexagon::CMPhEQrr_shl_V4:
344 case Hexagon::CMPhEQrr_xor_V4:
345 case Hexagon::CMPhGTUri_V4:
346 case Hexagon::CMPhGTUrr_V4:
347 case Hexagon::CMPhGTrr_shl_V4:
348 SrcReg = MI->getOperand(1).getReg();
349 Mask = 0xFFFF;
350 break;
351 }
352
353 // Set the value/second source register.
354 switch (Opc) {
355 case Hexagon::CMPEHexagon4rr:
356 case Hexagon::CMPEQrr:
357 case Hexagon::CMPGT64rr:
358 case Hexagon::CMPGTU64rr:
359 case Hexagon::CMPGTUrr:
360 case Hexagon::CMPGTrr:
361 case Hexagon::CMPbEQrr_sbsb_V4:
362 case Hexagon::CMPbEQrr_ubub_V4:
363 case Hexagon::CMPbGTUrr_V4:
364 case Hexagon::CMPbGTrr_V4:
365 case Hexagon::CMPhEQrr_shl_V4:
366 case Hexagon::CMPhEQrr_xor_V4:
367 case Hexagon::CMPhGTUrr_V4:
368 case Hexagon::CMPhGTrr_shl_V4:
369 case Hexagon::CMPLTUrr:
370 case Hexagon::CMPLTrr:
371 SrcReg2 = MI->getOperand(2).getReg();
372 return true;
373
374 case Hexagon::CMPEQri:
375 case Hexagon::CMPGTUri:
376 case Hexagon::CMPGTri:
377 case Hexagon::CMPbEQri_V4:
378 case Hexagon::CMPbGTUri_V4:
379 case Hexagon::CMPhEQri_V4:
380 case Hexagon::CMPhGTUri_V4:
381 SrcReg2 = 0;
382 Value = MI->getOperand(2).getImm();
383 return true;
384 }
385
386 return false;
387 }
388
389
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const390 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
391 MachineBasicBlock::iterator I, DebugLoc DL,
392 unsigned DestReg, unsigned SrcReg,
393 bool KillSrc) const {
394 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
395 BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
396 return;
397 }
398 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
399 BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
400 return;
401 }
402 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
403 // Map Pd = Ps to Pd = or(Ps, Ps).
404 BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
405 DestReg).addReg(SrcReg).addReg(SrcReg);
406 return;
407 }
408 if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
409 Hexagon::IntRegsRegClass.contains(SrcReg)) {
410 // We can have an overlap between single and double reg: r1:0 = r0.
411 if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
412 // r1:0 = r0
413 BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
414 Hexagon::subreg_hireg))).addImm(0);
415 } else {
416 // r1:0 = r1 or no overlap.
417 BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
418 Hexagon::subreg_loreg))).addReg(SrcReg);
419 BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
420 Hexagon::subreg_hireg))).addImm(0);
421 }
422 return;
423 }
424 if (Hexagon::CRRegsRegClass.contains(DestReg) &&
425 Hexagon::IntRegsRegClass.contains(SrcReg)) {
426 BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
427 return;
428 }
429 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
430 Hexagon::IntRegsRegClass.contains(DestReg)) {
431 BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
432 addReg(SrcReg, getKillRegState(KillSrc));
433 return;
434 }
435 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
436 Hexagon::PredRegsRegClass.contains(DestReg)) {
437 BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
438 addReg(SrcReg, getKillRegState(KillSrc));
439 return;
440 }
441
442 llvm_unreachable("Unimplemented");
443 }
444
445
446 void HexagonInstrInfo::
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const447 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
448 unsigned SrcReg, bool isKill, int FI,
449 const TargetRegisterClass *RC,
450 const TargetRegisterInfo *TRI) const {
451
452 DebugLoc DL = MBB.findDebugLoc(I);
453 MachineFunction &MF = *MBB.getParent();
454 MachineFrameInfo &MFI = *MF.getFrameInfo();
455 unsigned Align = MFI.getObjectAlignment(FI);
456
457 MachineMemOperand *MMO =
458 MF.getMachineMemOperand(
459 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
460 MachineMemOperand::MOStore,
461 MFI.getObjectSize(FI),
462 Align);
463
464 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
465 BuildMI(MBB, I, DL, get(Hexagon::STriw))
466 .addFrameIndex(FI).addImm(0)
467 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
468 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
469 BuildMI(MBB, I, DL, get(Hexagon::STrid))
470 .addFrameIndex(FI).addImm(0)
471 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
472 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
473 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
474 .addFrameIndex(FI).addImm(0)
475 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
476 } else {
477 llvm_unreachable("Unimplemented");
478 }
479 }
480
481
storeRegToAddr(MachineFunction & MF,unsigned SrcReg,bool isKill,SmallVectorImpl<MachineOperand> & Addr,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs) const482 void HexagonInstrInfo::storeRegToAddr(
483 MachineFunction &MF, unsigned SrcReg,
484 bool isKill,
485 SmallVectorImpl<MachineOperand> &Addr,
486 const TargetRegisterClass *RC,
487 SmallVectorImpl<MachineInstr*> &NewMIs) const
488 {
489 llvm_unreachable("Unimplemented");
490 }
491
492
493 void HexagonInstrInfo::
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const494 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
495 unsigned DestReg, int FI,
496 const TargetRegisterClass *RC,
497 const TargetRegisterInfo *TRI) const {
498 DebugLoc DL = MBB.findDebugLoc(I);
499 MachineFunction &MF = *MBB.getParent();
500 MachineFrameInfo &MFI = *MF.getFrameInfo();
501 unsigned Align = MFI.getObjectAlignment(FI);
502
503 MachineMemOperand *MMO =
504 MF.getMachineMemOperand(
505 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
506 MachineMemOperand::MOLoad,
507 MFI.getObjectSize(FI),
508 Align);
509 if (RC == &Hexagon::IntRegsRegClass) {
510 BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
511 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
512 } else if (RC == &Hexagon::DoubleRegsRegClass) {
513 BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
514 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
515 } else if (RC == &Hexagon::PredRegsRegClass) {
516 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
517 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
518 } else {
519 llvm_unreachable("Can't store this register to stack slot");
520 }
521 }
522
523
loadRegFromAddr(MachineFunction & MF,unsigned DestReg,SmallVectorImpl<MachineOperand> & Addr,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs) const524 void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
525 SmallVectorImpl<MachineOperand> &Addr,
526 const TargetRegisterClass *RC,
527 SmallVectorImpl<MachineInstr*> &NewMIs) const {
528 llvm_unreachable("Unimplemented");
529 }
530
531
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops,int FI) const532 MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
533 MachineInstr* MI,
534 const SmallVectorImpl<unsigned> &Ops,
535 int FI) const {
536 // Hexagon_TODO: Implement.
537 return(0);
538 }
539
540
createVR(MachineFunction * MF,MVT VT) const541 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
542
543 MachineRegisterInfo &RegInfo = MF->getRegInfo();
544 const TargetRegisterClass *TRC;
545 if (VT == MVT::i1) {
546 TRC = &Hexagon::PredRegsRegClass;
547 } else if (VT == MVT::i32 || VT == MVT::f32) {
548 TRC = &Hexagon::IntRegsRegClass;
549 } else if (VT == MVT::i64 || VT == MVT::f64) {
550 TRC = &Hexagon::DoubleRegsRegClass;
551 } else {
552 llvm_unreachable("Cannot handle this register class");
553 }
554
555 unsigned NewReg = RegInfo.createVirtualRegister(TRC);
556 return NewReg;
557 }
558
isExtendable(const MachineInstr * MI) const559 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
560 // Constant extenders are allowed only for V4 and above.
561 if (!Subtarget.hasV4TOps())
562 return false;
563
564 const MCInstrDesc &MID = MI->getDesc();
565 const uint64_t F = MID.TSFlags;
566 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
567 return true;
568
569 // TODO: This is largely obsolete now. Will need to be removed
570 // in consecutive patches.
571 switch(MI->getOpcode()) {
572 // TFR_FI Remains a special case.
573 case Hexagon::TFR_FI:
574 return true;
575 default:
576 return false;
577 }
578 return false;
579 }
580
581 // This returns true in two cases:
582 // - The OP code itself indicates that this is an extended instruction.
583 // - One of MOs has been marked with HMOTF_ConstExtended flag.
isExtended(const MachineInstr * MI) const584 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
585 // First check if this is permanently extended op code.
586 const uint64_t F = MI->getDesc().TSFlags;
587 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
588 return true;
589 // Use MO operand flags to determine if one of MI's operands
590 // has HMOTF_ConstExtended flag set.
591 for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
592 E = MI->operands_end(); I != E; ++I) {
593 if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
594 return true;
595 }
596 return false;
597 }
598
isNewValueJump(const MachineInstr * MI) const599 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
600 switch (MI->getOpcode()) {
601 default: return false;
602 // JMP_EQri
603 case Hexagon::JMP_EQriPt_nv_V4:
604 case Hexagon::JMP_EQriPnt_nv_V4:
605 case Hexagon::JMP_EQriNotPt_nv_V4:
606 case Hexagon::JMP_EQriNotPnt_nv_V4:
607 case Hexagon::JMP_EQriPt_ie_nv_V4:
608 case Hexagon::JMP_EQriPnt_ie_nv_V4:
609 case Hexagon::JMP_EQriNotPt_ie_nv_V4:
610 case Hexagon::JMP_EQriNotPnt_ie_nv_V4:
611
612 // JMP_EQri - with -1
613 case Hexagon::JMP_EQriPtneg_nv_V4:
614 case Hexagon::JMP_EQriPntneg_nv_V4:
615 case Hexagon::JMP_EQriNotPtneg_nv_V4:
616 case Hexagon::JMP_EQriNotPntneg_nv_V4:
617 case Hexagon::JMP_EQriPtneg_ie_nv_V4:
618 case Hexagon::JMP_EQriPntneg_ie_nv_V4:
619 case Hexagon::JMP_EQriNotPtneg_ie_nv_V4:
620 case Hexagon::JMP_EQriNotPntneg_ie_nv_V4:
621
622 // JMP_EQrr
623 case Hexagon::JMP_EQrrPt_nv_V4:
624 case Hexagon::JMP_EQrrPnt_nv_V4:
625 case Hexagon::JMP_EQrrNotPt_nv_V4:
626 case Hexagon::JMP_EQrrNotPnt_nv_V4:
627 case Hexagon::JMP_EQrrPt_ie_nv_V4:
628 case Hexagon::JMP_EQrrPnt_ie_nv_V4:
629 case Hexagon::JMP_EQrrNotPt_ie_nv_V4:
630 case Hexagon::JMP_EQrrNotPnt_ie_nv_V4:
631
632 // JMP_GTri
633 case Hexagon::JMP_GTriPt_nv_V4:
634 case Hexagon::JMP_GTriPnt_nv_V4:
635 case Hexagon::JMP_GTriNotPt_nv_V4:
636 case Hexagon::JMP_GTriNotPnt_nv_V4:
637 case Hexagon::JMP_GTriPt_ie_nv_V4:
638 case Hexagon::JMP_GTriPnt_ie_nv_V4:
639 case Hexagon::JMP_GTriNotPt_ie_nv_V4:
640 case Hexagon::JMP_GTriNotPnt_ie_nv_V4:
641
642 // JMP_GTri - with -1
643 case Hexagon::JMP_GTriPtneg_nv_V4:
644 case Hexagon::JMP_GTriPntneg_nv_V4:
645 case Hexagon::JMP_GTriNotPtneg_nv_V4:
646 case Hexagon::JMP_GTriNotPntneg_nv_V4:
647 case Hexagon::JMP_GTriPtneg_ie_nv_V4:
648 case Hexagon::JMP_GTriPntneg_ie_nv_V4:
649 case Hexagon::JMP_GTriNotPtneg_ie_nv_V4:
650 case Hexagon::JMP_GTriNotPntneg_ie_nv_V4:
651
652 // JMP_GTrr
653 case Hexagon::JMP_GTrrPt_nv_V4:
654 case Hexagon::JMP_GTrrPnt_nv_V4:
655 case Hexagon::JMP_GTrrNotPt_nv_V4:
656 case Hexagon::JMP_GTrrNotPnt_nv_V4:
657 case Hexagon::JMP_GTrrPt_ie_nv_V4:
658 case Hexagon::JMP_GTrrPnt_ie_nv_V4:
659 case Hexagon::JMP_GTrrNotPt_ie_nv_V4:
660 case Hexagon::JMP_GTrrNotPnt_ie_nv_V4:
661
662 // JMP_GTrrdn
663 case Hexagon::JMP_GTrrdnPt_nv_V4:
664 case Hexagon::JMP_GTrrdnPnt_nv_V4:
665 case Hexagon::JMP_GTrrdnNotPt_nv_V4:
666 case Hexagon::JMP_GTrrdnNotPnt_nv_V4:
667 case Hexagon::JMP_GTrrdnPt_ie_nv_V4:
668 case Hexagon::JMP_GTrrdnPnt_ie_nv_V4:
669 case Hexagon::JMP_GTrrdnNotPt_ie_nv_V4:
670 case Hexagon::JMP_GTrrdnNotPnt_ie_nv_V4:
671
672 // JMP_GTUri
673 case Hexagon::JMP_GTUriPt_nv_V4:
674 case Hexagon::JMP_GTUriPnt_nv_V4:
675 case Hexagon::JMP_GTUriNotPt_nv_V4:
676 case Hexagon::JMP_GTUriNotPnt_nv_V4:
677 case Hexagon::JMP_GTUriPt_ie_nv_V4:
678 case Hexagon::JMP_GTUriPnt_ie_nv_V4:
679 case Hexagon::JMP_GTUriNotPt_ie_nv_V4:
680 case Hexagon::JMP_GTUriNotPnt_ie_nv_V4:
681
682 // JMP_GTUrr
683 case Hexagon::JMP_GTUrrPt_nv_V4:
684 case Hexagon::JMP_GTUrrPnt_nv_V4:
685 case Hexagon::JMP_GTUrrNotPt_nv_V4:
686 case Hexagon::JMP_GTUrrNotPnt_nv_V4:
687 case Hexagon::JMP_GTUrrPt_ie_nv_V4:
688 case Hexagon::JMP_GTUrrPnt_ie_nv_V4:
689 case Hexagon::JMP_GTUrrNotPt_ie_nv_V4:
690 case Hexagon::JMP_GTUrrNotPnt_ie_nv_V4:
691
692 // JMP_GTUrrdn
693 case Hexagon::JMP_GTUrrdnPt_nv_V4:
694 case Hexagon::JMP_GTUrrdnPnt_nv_V4:
695 case Hexagon::JMP_GTUrrdnNotPt_nv_V4:
696 case Hexagon::JMP_GTUrrdnNotPnt_nv_V4:
697 case Hexagon::JMP_GTUrrdnPt_ie_nv_V4:
698 case Hexagon::JMP_GTUrrdnPnt_ie_nv_V4:
699 case Hexagon::JMP_GTUrrdnNotPt_ie_nv_V4:
700 case Hexagon::JMP_GTUrrdnNotPnt_ie_nv_V4:
701 return true;
702 }
703 }
704
isNewValueStore(const MachineInstr * MI) const705 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
706 switch (MI->getOpcode()) {
707 default: return false;
708 // Store Byte
709 case Hexagon::STrib_nv_V4:
710 case Hexagon::STrib_indexed_nv_V4:
711 case Hexagon::STrib_indexed_shl_nv_V4:
712 case Hexagon::STrib_shl_nv_V4:
713 case Hexagon::STb_GP_nv_V4:
714 case Hexagon::POST_STbri_nv_V4:
715 case Hexagon::STrib_cPt_nv_V4:
716 case Hexagon::STrib_cdnPt_nv_V4:
717 case Hexagon::STrib_cNotPt_nv_V4:
718 case Hexagon::STrib_cdnNotPt_nv_V4:
719 case Hexagon::STrib_indexed_cPt_nv_V4:
720 case Hexagon::STrib_indexed_cdnPt_nv_V4:
721 case Hexagon::STrib_indexed_cNotPt_nv_V4:
722 case Hexagon::STrib_indexed_cdnNotPt_nv_V4:
723 case Hexagon::STrib_indexed_shl_cPt_nv_V4:
724 case Hexagon::STrib_indexed_shl_cdnPt_nv_V4:
725 case Hexagon::STrib_indexed_shl_cNotPt_nv_V4:
726 case Hexagon::STrib_indexed_shl_cdnNotPt_nv_V4:
727 case Hexagon::POST_STbri_cPt_nv_V4:
728 case Hexagon::POST_STbri_cdnPt_nv_V4:
729 case Hexagon::POST_STbri_cNotPt_nv_V4:
730 case Hexagon::POST_STbri_cdnNotPt_nv_V4:
731 case Hexagon::STb_GP_cPt_nv_V4:
732 case Hexagon::STb_GP_cNotPt_nv_V4:
733 case Hexagon::STb_GP_cdnPt_nv_V4:
734 case Hexagon::STb_GP_cdnNotPt_nv_V4:
735 case Hexagon::STrib_abs_nv_V4:
736 case Hexagon::STrib_abs_cPt_nv_V4:
737 case Hexagon::STrib_abs_cdnPt_nv_V4:
738 case Hexagon::STrib_abs_cNotPt_nv_V4:
739 case Hexagon::STrib_abs_cdnNotPt_nv_V4:
740 case Hexagon::STrib_imm_abs_nv_V4:
741 case Hexagon::STrib_imm_abs_cPt_nv_V4:
742 case Hexagon::STrib_imm_abs_cdnPt_nv_V4:
743 case Hexagon::STrib_imm_abs_cNotPt_nv_V4:
744 case Hexagon::STrib_imm_abs_cdnNotPt_nv_V4:
745
746 // Store Halfword
747 case Hexagon::STrih_nv_V4:
748 case Hexagon::STrih_indexed_nv_V4:
749 case Hexagon::STrih_indexed_shl_nv_V4:
750 case Hexagon::STrih_shl_nv_V4:
751 case Hexagon::STh_GP_nv_V4:
752 case Hexagon::POST_SThri_nv_V4:
753 case Hexagon::STrih_cPt_nv_V4:
754 case Hexagon::STrih_cdnPt_nv_V4:
755 case Hexagon::STrih_cNotPt_nv_V4:
756 case Hexagon::STrih_cdnNotPt_nv_V4:
757 case Hexagon::STrih_indexed_cPt_nv_V4:
758 case Hexagon::STrih_indexed_cdnPt_nv_V4:
759 case Hexagon::STrih_indexed_cNotPt_nv_V4:
760 case Hexagon::STrih_indexed_cdnNotPt_nv_V4:
761 case Hexagon::STrih_indexed_shl_cPt_nv_V4:
762 case Hexagon::STrih_indexed_shl_cdnPt_nv_V4:
763 case Hexagon::STrih_indexed_shl_cNotPt_nv_V4:
764 case Hexagon::STrih_indexed_shl_cdnNotPt_nv_V4:
765 case Hexagon::POST_SThri_cPt_nv_V4:
766 case Hexagon::POST_SThri_cdnPt_nv_V4:
767 case Hexagon::POST_SThri_cNotPt_nv_V4:
768 case Hexagon::POST_SThri_cdnNotPt_nv_V4:
769 case Hexagon::STh_GP_cPt_nv_V4:
770 case Hexagon::STh_GP_cNotPt_nv_V4:
771 case Hexagon::STh_GP_cdnPt_nv_V4:
772 case Hexagon::STh_GP_cdnNotPt_nv_V4:
773 case Hexagon::STrih_abs_nv_V4:
774 case Hexagon::STrih_abs_cPt_nv_V4:
775 case Hexagon::STrih_abs_cdnPt_nv_V4:
776 case Hexagon::STrih_abs_cNotPt_nv_V4:
777 case Hexagon::STrih_abs_cdnNotPt_nv_V4:
778 case Hexagon::STrih_imm_abs_nv_V4:
779 case Hexagon::STrih_imm_abs_cPt_nv_V4:
780 case Hexagon::STrih_imm_abs_cdnPt_nv_V4:
781 case Hexagon::STrih_imm_abs_cNotPt_nv_V4:
782 case Hexagon::STrih_imm_abs_cdnNotPt_nv_V4:
783
784 // Store Word
785 case Hexagon::STriw_nv_V4:
786 case Hexagon::STriw_indexed_nv_V4:
787 case Hexagon::STriw_indexed_shl_nv_V4:
788 case Hexagon::STriw_shl_nv_V4:
789 case Hexagon::STw_GP_nv_V4:
790 case Hexagon::POST_STwri_nv_V4:
791 case Hexagon::STriw_cPt_nv_V4:
792 case Hexagon::STriw_cdnPt_nv_V4:
793 case Hexagon::STriw_cNotPt_nv_V4:
794 case Hexagon::STriw_cdnNotPt_nv_V4:
795 case Hexagon::STriw_indexed_cPt_nv_V4:
796 case Hexagon::STriw_indexed_cdnPt_nv_V4:
797 case Hexagon::STriw_indexed_cNotPt_nv_V4:
798 case Hexagon::STriw_indexed_cdnNotPt_nv_V4:
799 case Hexagon::STriw_indexed_shl_cPt_nv_V4:
800 case Hexagon::STriw_indexed_shl_cdnPt_nv_V4:
801 case Hexagon::STriw_indexed_shl_cNotPt_nv_V4:
802 case Hexagon::STriw_indexed_shl_cdnNotPt_nv_V4:
803 case Hexagon::POST_STwri_cPt_nv_V4:
804 case Hexagon::POST_STwri_cdnPt_nv_V4:
805 case Hexagon::POST_STwri_cNotPt_nv_V4:
806 case Hexagon::POST_STwri_cdnNotPt_nv_V4:
807 case Hexagon::STw_GP_cPt_nv_V4:
808 case Hexagon::STw_GP_cNotPt_nv_V4:
809 case Hexagon::STw_GP_cdnPt_nv_V4:
810 case Hexagon::STw_GP_cdnNotPt_nv_V4:
811 case Hexagon::STriw_abs_nv_V4:
812 case Hexagon::STriw_abs_cPt_nv_V4:
813 case Hexagon::STriw_abs_cdnPt_nv_V4:
814 case Hexagon::STriw_abs_cNotPt_nv_V4:
815 case Hexagon::STriw_abs_cdnNotPt_nv_V4:
816 case Hexagon::STriw_imm_abs_nv_V4:
817 case Hexagon::STriw_imm_abs_cPt_nv_V4:
818 case Hexagon::STriw_imm_abs_cdnPt_nv_V4:
819 case Hexagon::STriw_imm_abs_cNotPt_nv_V4:
820 case Hexagon::STriw_imm_abs_cdnNotPt_nv_V4:
821 return true;
822 }
823 }
824
isPostIncrement(const MachineInstr * MI) const825 bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
826 switch (MI->getOpcode())
827 {
828 default: return false;
829 // Load Byte
830 case Hexagon::POST_LDrib:
831 case Hexagon::POST_LDrib_cPt:
832 case Hexagon::POST_LDrib_cNotPt:
833 case Hexagon::POST_LDrib_cdnPt_V4:
834 case Hexagon::POST_LDrib_cdnNotPt_V4:
835
836 // Load unsigned byte
837 case Hexagon::POST_LDriub:
838 case Hexagon::POST_LDriub_cPt:
839 case Hexagon::POST_LDriub_cNotPt:
840 case Hexagon::POST_LDriub_cdnPt_V4:
841 case Hexagon::POST_LDriub_cdnNotPt_V4:
842
843 // Load halfword
844 case Hexagon::POST_LDrih:
845 case Hexagon::POST_LDrih_cPt:
846 case Hexagon::POST_LDrih_cNotPt:
847 case Hexagon::POST_LDrih_cdnPt_V4:
848 case Hexagon::POST_LDrih_cdnNotPt_V4:
849
850 // Load unsigned halfword
851 case Hexagon::POST_LDriuh:
852 case Hexagon::POST_LDriuh_cPt:
853 case Hexagon::POST_LDriuh_cNotPt:
854 case Hexagon::POST_LDriuh_cdnPt_V4:
855 case Hexagon::POST_LDriuh_cdnNotPt_V4:
856
857 // Load word
858 case Hexagon::POST_LDriw:
859 case Hexagon::POST_LDriw_cPt:
860 case Hexagon::POST_LDriw_cNotPt:
861 case Hexagon::POST_LDriw_cdnPt_V4:
862 case Hexagon::POST_LDriw_cdnNotPt_V4:
863
864 // Load double word
865 case Hexagon::POST_LDrid:
866 case Hexagon::POST_LDrid_cPt:
867 case Hexagon::POST_LDrid_cNotPt:
868 case Hexagon::POST_LDrid_cdnPt_V4:
869 case Hexagon::POST_LDrid_cdnNotPt_V4:
870
871 // Store byte
872 case Hexagon::POST_STbri:
873 case Hexagon::POST_STbri_cPt:
874 case Hexagon::POST_STbri_cNotPt:
875 case Hexagon::POST_STbri_cdnPt_V4:
876 case Hexagon::POST_STbri_cdnNotPt_V4:
877
878 // Store halfword
879 case Hexagon::POST_SThri:
880 case Hexagon::POST_SThri_cPt:
881 case Hexagon::POST_SThri_cNotPt:
882 case Hexagon::POST_SThri_cdnPt_V4:
883 case Hexagon::POST_SThri_cdnNotPt_V4:
884
885 // Store word
886 case Hexagon::POST_STwri:
887 case Hexagon::POST_STwri_cPt:
888 case Hexagon::POST_STwri_cNotPt:
889 case Hexagon::POST_STwri_cdnPt_V4:
890 case Hexagon::POST_STwri_cdnNotPt_V4:
891
892 // Store double word
893 case Hexagon::POST_STdri:
894 case Hexagon::POST_STdri_cPt:
895 case Hexagon::POST_STdri_cNotPt:
896 case Hexagon::POST_STdri_cdnPt_V4:
897 case Hexagon::POST_STdri_cdnNotPt_V4:
898 return true;
899 }
900 }
901
isNewValueInst(const MachineInstr * MI) const902 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
903 if (isNewValueJump(MI))
904 return true;
905
906 if (isNewValueStore(MI))
907 return true;
908
909 return false;
910 }
911
isSaveCalleeSavedRegsCall(const MachineInstr * MI) const912 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
913 return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
914 }
915
isPredicable(MachineInstr * MI) const916 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
917 bool isPred = MI->getDesc().isPredicable();
918
919 if (!isPred)
920 return false;
921
922 const int Opc = MI->getOpcode();
923
924 switch(Opc) {
925 case Hexagon::TFRI:
926 return isInt<12>(MI->getOperand(1).getImm());
927
928 case Hexagon::STrid:
929 case Hexagon::STrid_indexed:
930 return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
931
932 case Hexagon::STriw:
933 case Hexagon::STriw_indexed:
934 case Hexagon::STriw_nv_V4:
935 return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
936
937 case Hexagon::STrih:
938 case Hexagon::STrih_indexed:
939 case Hexagon::STrih_nv_V4:
940 return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
941
942 case Hexagon::STrib:
943 case Hexagon::STrib_indexed:
944 case Hexagon::STrib_nv_V4:
945 return isUInt<6>(MI->getOperand(1).getImm());
946
947 case Hexagon::LDrid:
948 case Hexagon::LDrid_indexed:
949 return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
950
951 case Hexagon::LDriw:
952 case Hexagon::LDriw_indexed:
953 return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
954
955 case Hexagon::LDrih:
956 case Hexagon::LDriuh:
957 case Hexagon::LDrih_indexed:
958 case Hexagon::LDriuh_indexed:
959 return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
960
961 case Hexagon::LDrib:
962 case Hexagon::LDriub:
963 case Hexagon::LDrib_indexed:
964 case Hexagon::LDriub_indexed:
965 return isUInt<6>(MI->getOperand(2).getImm());
966
967 case Hexagon::POST_LDrid:
968 return isShiftedInt<4,3>(MI->getOperand(3).getImm());
969
970 case Hexagon::POST_LDriw:
971 return isShiftedInt<4,2>(MI->getOperand(3).getImm());
972
973 case Hexagon::POST_LDrih:
974 case Hexagon::POST_LDriuh:
975 return isShiftedInt<4,1>(MI->getOperand(3).getImm());
976
977 case Hexagon::POST_LDrib:
978 case Hexagon::POST_LDriub:
979 return isInt<4>(MI->getOperand(3).getImm());
980
981 case Hexagon::STrib_imm_V4:
982 case Hexagon::STrih_imm_V4:
983 case Hexagon::STriw_imm_V4:
984 return (isUInt<6>(MI->getOperand(1).getImm()) &&
985 isInt<6>(MI->getOperand(2).getImm()));
986
987 case Hexagon::ADD_ri:
988 return isInt<8>(MI->getOperand(2).getImm());
989
990 case Hexagon::ASLH:
991 case Hexagon::ASRH:
992 case Hexagon::SXTB:
993 case Hexagon::SXTH:
994 case Hexagon::ZXTB:
995 case Hexagon::ZXTH:
996 return Subtarget.hasV4TOps();
997
998 case Hexagon::JMPR:
999 return false;
1000 }
1001
1002 return true;
1003 }
1004
1005 // This function performs the following inversiones:
1006 //
1007 // cPt ---> cNotPt
1008 // cNotPt ---> cPt
1009 //
1010 // however, these inversiones are NOT included:
1011 //
1012 // cdnPt -X-> cdnNotPt
1013 // cdnNotPt -X-> cdnPt
1014 // cPt_nv -X-> cNotPt_nv (new value stores)
1015 // cNotPt_nv -X-> cPt_nv (new value stores)
1016 //
1017 // because only the following transformations are allowed:
1018 //
1019 // cNotPt ---> cdnNotPt
1020 // cPt ---> cdnPt
1021 // cNotPt ---> cNotPt_nv
1022 // cPt ---> cPt_nv
getInvertedPredicatedOpcode(const int Opc) const1023 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
1024 switch(Opc) {
1025 default: llvm_unreachable("Unexpected predicated instruction");
1026 case Hexagon::TFR_cPt:
1027 return Hexagon::TFR_cNotPt;
1028 case Hexagon::TFR_cNotPt:
1029 return Hexagon::TFR_cPt;
1030
1031 case Hexagon::TFRI_cPt:
1032 return Hexagon::TFRI_cNotPt;
1033 case Hexagon::TFRI_cNotPt:
1034 return Hexagon::TFRI_cPt;
1035
1036 case Hexagon::JMP_c:
1037 return Hexagon::JMP_cNot;
1038 case Hexagon::JMP_cNot:
1039 return Hexagon::JMP_c;
1040
1041 case Hexagon::ADD_ri_cPt:
1042 return Hexagon::ADD_ri_cNotPt;
1043 case Hexagon::ADD_ri_cNotPt:
1044 return Hexagon::ADD_ri_cPt;
1045
1046 case Hexagon::ADD_rr_cPt:
1047 return Hexagon::ADD_rr_cNotPt;
1048 case Hexagon::ADD_rr_cNotPt:
1049 return Hexagon::ADD_rr_cPt;
1050
1051 case Hexagon::XOR_rr_cPt:
1052 return Hexagon::XOR_rr_cNotPt;
1053 case Hexagon::XOR_rr_cNotPt:
1054 return Hexagon::XOR_rr_cPt;
1055
1056 case Hexagon::AND_rr_cPt:
1057 return Hexagon::AND_rr_cNotPt;
1058 case Hexagon::AND_rr_cNotPt:
1059 return Hexagon::AND_rr_cPt;
1060
1061 case Hexagon::OR_rr_cPt:
1062 return Hexagon::OR_rr_cNotPt;
1063 case Hexagon::OR_rr_cNotPt:
1064 return Hexagon::OR_rr_cPt;
1065
1066 case Hexagon::SUB_rr_cPt:
1067 return Hexagon::SUB_rr_cNotPt;
1068 case Hexagon::SUB_rr_cNotPt:
1069 return Hexagon::SUB_rr_cPt;
1070
1071 case Hexagon::COMBINE_rr_cPt:
1072 return Hexagon::COMBINE_rr_cNotPt;
1073 case Hexagon::COMBINE_rr_cNotPt:
1074 return Hexagon::COMBINE_rr_cPt;
1075
1076 case Hexagon::ASLH_cPt_V4:
1077 return Hexagon::ASLH_cNotPt_V4;
1078 case Hexagon::ASLH_cNotPt_V4:
1079 return Hexagon::ASLH_cPt_V4;
1080
1081 case Hexagon::ASRH_cPt_V4:
1082 return Hexagon::ASRH_cNotPt_V4;
1083 case Hexagon::ASRH_cNotPt_V4:
1084 return Hexagon::ASRH_cPt_V4;
1085
1086 case Hexagon::SXTB_cPt_V4:
1087 return Hexagon::SXTB_cNotPt_V4;
1088 case Hexagon::SXTB_cNotPt_V4:
1089 return Hexagon::SXTB_cPt_V4;
1090
1091 case Hexagon::SXTH_cPt_V4:
1092 return Hexagon::SXTH_cNotPt_V4;
1093 case Hexagon::SXTH_cNotPt_V4:
1094 return Hexagon::SXTH_cPt_V4;
1095
1096 case Hexagon::ZXTB_cPt_V4:
1097 return Hexagon::ZXTB_cNotPt_V4;
1098 case Hexagon::ZXTB_cNotPt_V4:
1099 return Hexagon::ZXTB_cPt_V4;
1100
1101 case Hexagon::ZXTH_cPt_V4:
1102 return Hexagon::ZXTH_cNotPt_V4;
1103 case Hexagon::ZXTH_cNotPt_V4:
1104 return Hexagon::ZXTH_cPt_V4;
1105
1106
1107 case Hexagon::JMPR_cPt:
1108 return Hexagon::JMPR_cNotPt;
1109 case Hexagon::JMPR_cNotPt:
1110 return Hexagon::JMPR_cPt;
1111
1112 // V4 indexed+scaled load.
1113 case Hexagon::LDrid_indexed_shl_cPt_V4:
1114 return Hexagon::LDrid_indexed_shl_cNotPt_V4;
1115 case Hexagon::LDrid_indexed_shl_cNotPt_V4:
1116 return Hexagon::LDrid_indexed_shl_cPt_V4;
1117
1118 case Hexagon::LDrib_indexed_shl_cPt_V4:
1119 return Hexagon::LDrib_indexed_shl_cNotPt_V4;
1120 case Hexagon::LDrib_indexed_shl_cNotPt_V4:
1121 return Hexagon::LDrib_indexed_shl_cPt_V4;
1122
1123 case Hexagon::LDriub_indexed_shl_cPt_V4:
1124 return Hexagon::LDriub_indexed_shl_cNotPt_V4;
1125 case Hexagon::LDriub_indexed_shl_cNotPt_V4:
1126 return Hexagon::LDriub_indexed_shl_cPt_V4;
1127
1128 case Hexagon::LDrih_indexed_shl_cPt_V4:
1129 return Hexagon::LDrih_indexed_shl_cNotPt_V4;
1130 case Hexagon::LDrih_indexed_shl_cNotPt_V4:
1131 return Hexagon::LDrih_indexed_shl_cPt_V4;
1132
1133 case Hexagon::LDriuh_indexed_shl_cPt_V4:
1134 return Hexagon::LDriuh_indexed_shl_cNotPt_V4;
1135 case Hexagon::LDriuh_indexed_shl_cNotPt_V4:
1136 return Hexagon::LDriuh_indexed_shl_cPt_V4;
1137
1138 case Hexagon::LDriw_indexed_shl_cPt_V4:
1139 return Hexagon::LDriw_indexed_shl_cNotPt_V4;
1140 case Hexagon::LDriw_indexed_shl_cNotPt_V4:
1141 return Hexagon::LDriw_indexed_shl_cPt_V4;
1142
1143 // Byte.
1144 case Hexagon::POST_STbri_cPt:
1145 return Hexagon::POST_STbri_cNotPt;
1146 case Hexagon::POST_STbri_cNotPt:
1147 return Hexagon::POST_STbri_cPt;
1148
1149 case Hexagon::STrib_cPt:
1150 return Hexagon::STrib_cNotPt;
1151 case Hexagon::STrib_cNotPt:
1152 return Hexagon::STrib_cPt;
1153
1154 case Hexagon::STrib_indexed_cPt:
1155 return Hexagon::STrib_indexed_cNotPt;
1156 case Hexagon::STrib_indexed_cNotPt:
1157 return Hexagon::STrib_indexed_cPt;
1158
1159 case Hexagon::STrib_imm_cPt_V4:
1160 return Hexagon::STrib_imm_cNotPt_V4;
1161 case Hexagon::STrib_imm_cNotPt_V4:
1162 return Hexagon::STrib_imm_cPt_V4;
1163
1164 case Hexagon::STrib_indexed_shl_cPt_V4:
1165 return Hexagon::STrib_indexed_shl_cNotPt_V4;
1166 case Hexagon::STrib_indexed_shl_cNotPt_V4:
1167 return Hexagon::STrib_indexed_shl_cPt_V4;
1168
1169 // Halfword.
1170 case Hexagon::POST_SThri_cPt:
1171 return Hexagon::POST_SThri_cNotPt;
1172 case Hexagon::POST_SThri_cNotPt:
1173 return Hexagon::POST_SThri_cPt;
1174
1175 case Hexagon::STrih_cPt:
1176 return Hexagon::STrih_cNotPt;
1177 case Hexagon::STrih_cNotPt:
1178 return Hexagon::STrih_cPt;
1179
1180 case Hexagon::STrih_indexed_cPt:
1181 return Hexagon::STrih_indexed_cNotPt;
1182 case Hexagon::STrih_indexed_cNotPt:
1183 return Hexagon::STrih_indexed_cPt;
1184
1185 case Hexagon::STrih_imm_cPt_V4:
1186 return Hexagon::STrih_imm_cNotPt_V4;
1187 case Hexagon::STrih_imm_cNotPt_V4:
1188 return Hexagon::STrih_imm_cPt_V4;
1189
1190 case Hexagon::STrih_indexed_shl_cPt_V4:
1191 return Hexagon::STrih_indexed_shl_cNotPt_V4;
1192 case Hexagon::STrih_indexed_shl_cNotPt_V4:
1193 return Hexagon::STrih_indexed_shl_cPt_V4;
1194
1195 // Word.
1196 case Hexagon::POST_STwri_cPt:
1197 return Hexagon::POST_STwri_cNotPt;
1198 case Hexagon::POST_STwri_cNotPt:
1199 return Hexagon::POST_STwri_cPt;
1200
1201 case Hexagon::STriw_cPt:
1202 return Hexagon::STriw_cNotPt;
1203 case Hexagon::STriw_cNotPt:
1204 return Hexagon::STriw_cPt;
1205
1206 case Hexagon::STriw_indexed_cPt:
1207 return Hexagon::STriw_indexed_cNotPt;
1208 case Hexagon::STriw_indexed_cNotPt:
1209 return Hexagon::STriw_indexed_cPt;
1210
1211 case Hexagon::STriw_indexed_shl_cPt_V4:
1212 return Hexagon::STriw_indexed_shl_cNotPt_V4;
1213 case Hexagon::STriw_indexed_shl_cNotPt_V4:
1214 return Hexagon::STriw_indexed_shl_cPt_V4;
1215
1216 case Hexagon::STriw_imm_cPt_V4:
1217 return Hexagon::STriw_imm_cNotPt_V4;
1218 case Hexagon::STriw_imm_cNotPt_V4:
1219 return Hexagon::STriw_imm_cPt_V4;
1220
1221 // Double word.
1222 case Hexagon::POST_STdri_cPt:
1223 return Hexagon::POST_STdri_cNotPt;
1224 case Hexagon::POST_STdri_cNotPt:
1225 return Hexagon::POST_STdri_cPt;
1226
1227 case Hexagon::STrid_cPt:
1228 return Hexagon::STrid_cNotPt;
1229 case Hexagon::STrid_cNotPt:
1230 return Hexagon::STrid_cPt;
1231
1232 case Hexagon::STrid_indexed_cPt:
1233 return Hexagon::STrid_indexed_cNotPt;
1234 case Hexagon::STrid_indexed_cNotPt:
1235 return Hexagon::STrid_indexed_cPt;
1236
1237 case Hexagon::STrid_indexed_shl_cPt_V4:
1238 return Hexagon::STrid_indexed_shl_cNotPt_V4;
1239 case Hexagon::STrid_indexed_shl_cNotPt_V4:
1240 return Hexagon::STrid_indexed_shl_cPt_V4;
1241
1242 // V4 Store to global address.
1243 case Hexagon::STd_GP_cPt_V4:
1244 return Hexagon::STd_GP_cNotPt_V4;
1245 case Hexagon::STd_GP_cNotPt_V4:
1246 return Hexagon::STd_GP_cPt_V4;
1247
1248 case Hexagon::STb_GP_cPt_V4:
1249 return Hexagon::STb_GP_cNotPt_V4;
1250 case Hexagon::STb_GP_cNotPt_V4:
1251 return Hexagon::STb_GP_cPt_V4;
1252
1253 case Hexagon::STh_GP_cPt_V4:
1254 return Hexagon::STh_GP_cNotPt_V4;
1255 case Hexagon::STh_GP_cNotPt_V4:
1256 return Hexagon::STh_GP_cPt_V4;
1257
1258 case Hexagon::STw_GP_cPt_V4:
1259 return Hexagon::STw_GP_cNotPt_V4;
1260 case Hexagon::STw_GP_cNotPt_V4:
1261 return Hexagon::STw_GP_cPt_V4;
1262
1263 // Load.
1264 case Hexagon::LDrid_cPt:
1265 return Hexagon::LDrid_cNotPt;
1266 case Hexagon::LDrid_cNotPt:
1267 return Hexagon::LDrid_cPt;
1268
1269 case Hexagon::LDriw_cPt:
1270 return Hexagon::LDriw_cNotPt;
1271 case Hexagon::LDriw_cNotPt:
1272 return Hexagon::LDriw_cPt;
1273
1274 case Hexagon::LDrih_cPt:
1275 return Hexagon::LDrih_cNotPt;
1276 case Hexagon::LDrih_cNotPt:
1277 return Hexagon::LDrih_cPt;
1278
1279 case Hexagon::LDriuh_cPt:
1280 return Hexagon::LDriuh_cNotPt;
1281 case Hexagon::LDriuh_cNotPt:
1282 return Hexagon::LDriuh_cPt;
1283
1284 case Hexagon::LDrib_cPt:
1285 return Hexagon::LDrib_cNotPt;
1286 case Hexagon::LDrib_cNotPt:
1287 return Hexagon::LDrib_cPt;
1288
1289 case Hexagon::LDriub_cPt:
1290 return Hexagon::LDriub_cNotPt;
1291 case Hexagon::LDriub_cNotPt:
1292 return Hexagon::LDriub_cPt;
1293
1294 // Load Indexed.
1295 case Hexagon::LDrid_indexed_cPt:
1296 return Hexagon::LDrid_indexed_cNotPt;
1297 case Hexagon::LDrid_indexed_cNotPt:
1298 return Hexagon::LDrid_indexed_cPt;
1299
1300 case Hexagon::LDriw_indexed_cPt:
1301 return Hexagon::LDriw_indexed_cNotPt;
1302 case Hexagon::LDriw_indexed_cNotPt:
1303 return Hexagon::LDriw_indexed_cPt;
1304
1305 case Hexagon::LDrih_indexed_cPt:
1306 return Hexagon::LDrih_indexed_cNotPt;
1307 case Hexagon::LDrih_indexed_cNotPt:
1308 return Hexagon::LDrih_indexed_cPt;
1309
1310 case Hexagon::LDriuh_indexed_cPt:
1311 return Hexagon::LDriuh_indexed_cNotPt;
1312 case Hexagon::LDriuh_indexed_cNotPt:
1313 return Hexagon::LDriuh_indexed_cPt;
1314
1315 case Hexagon::LDrib_indexed_cPt:
1316 return Hexagon::LDrib_indexed_cNotPt;
1317 case Hexagon::LDrib_indexed_cNotPt:
1318 return Hexagon::LDrib_indexed_cPt;
1319
1320 case Hexagon::LDriub_indexed_cPt:
1321 return Hexagon::LDriub_indexed_cNotPt;
1322 case Hexagon::LDriub_indexed_cNotPt:
1323 return Hexagon::LDriub_indexed_cPt;
1324
1325 // Post Inc Load.
1326 case Hexagon::POST_LDrid_cPt:
1327 return Hexagon::POST_LDrid_cNotPt;
1328 case Hexagon::POST_LDriw_cNotPt:
1329 return Hexagon::POST_LDriw_cPt;
1330
1331 case Hexagon::POST_LDrih_cPt:
1332 return Hexagon::POST_LDrih_cNotPt;
1333 case Hexagon::POST_LDrih_cNotPt:
1334 return Hexagon::POST_LDrih_cPt;
1335
1336 case Hexagon::POST_LDriuh_cPt:
1337 return Hexagon::POST_LDriuh_cNotPt;
1338 case Hexagon::POST_LDriuh_cNotPt:
1339 return Hexagon::POST_LDriuh_cPt;
1340
1341 case Hexagon::POST_LDrib_cPt:
1342 return Hexagon::POST_LDrib_cNotPt;
1343 case Hexagon::POST_LDrib_cNotPt:
1344 return Hexagon::POST_LDrib_cPt;
1345
1346 case Hexagon::POST_LDriub_cPt:
1347 return Hexagon::POST_LDriub_cNotPt;
1348 case Hexagon::POST_LDriub_cNotPt:
1349 return Hexagon::POST_LDriub_cPt;
1350
1351 // Dealloc_return.
1352 case Hexagon::DEALLOC_RET_cPt_V4:
1353 return Hexagon::DEALLOC_RET_cNotPt_V4;
1354 case Hexagon::DEALLOC_RET_cNotPt_V4:
1355 return Hexagon::DEALLOC_RET_cPt_V4;
1356
1357 // New Value Jump.
1358 // JMPEQ_ri - with -1.
1359 case Hexagon::JMP_EQriPtneg_nv_V4:
1360 return Hexagon::JMP_EQriNotPtneg_nv_V4;
1361 case Hexagon::JMP_EQriNotPtneg_nv_V4:
1362 return Hexagon::JMP_EQriPtneg_nv_V4;
1363
1364 case Hexagon::JMP_EQriPntneg_nv_V4:
1365 return Hexagon::JMP_EQriNotPntneg_nv_V4;
1366 case Hexagon::JMP_EQriNotPntneg_nv_V4:
1367 return Hexagon::JMP_EQriPntneg_nv_V4;
1368
1369 // JMPEQ_ri.
1370 case Hexagon::JMP_EQriPt_nv_V4:
1371 return Hexagon::JMP_EQriNotPt_nv_V4;
1372 case Hexagon::JMP_EQriNotPt_nv_V4:
1373 return Hexagon::JMP_EQriPt_nv_V4;
1374
1375 case Hexagon::JMP_EQriPnt_nv_V4:
1376 return Hexagon::JMP_EQriNotPnt_nv_V4;
1377 case Hexagon::JMP_EQriNotPnt_nv_V4:
1378 return Hexagon::JMP_EQriPnt_nv_V4;
1379
1380 // JMPEQ_rr.
1381 case Hexagon::JMP_EQrrPt_nv_V4:
1382 return Hexagon::JMP_EQrrNotPt_nv_V4;
1383 case Hexagon::JMP_EQrrNotPt_nv_V4:
1384 return Hexagon::JMP_EQrrPt_nv_V4;
1385
1386 case Hexagon::JMP_EQrrPnt_nv_V4:
1387 return Hexagon::JMP_EQrrNotPnt_nv_V4;
1388 case Hexagon::JMP_EQrrNotPnt_nv_V4:
1389 return Hexagon::JMP_EQrrPnt_nv_V4;
1390
1391 // JMPGT_ri - with -1.
1392 case Hexagon::JMP_GTriPtneg_nv_V4:
1393 return Hexagon::JMP_GTriNotPtneg_nv_V4;
1394 case Hexagon::JMP_GTriNotPtneg_nv_V4:
1395 return Hexagon::JMP_GTriPtneg_nv_V4;
1396
1397 case Hexagon::JMP_GTriPntneg_nv_V4:
1398 return Hexagon::JMP_GTriNotPntneg_nv_V4;
1399 case Hexagon::JMP_GTriNotPntneg_nv_V4:
1400 return Hexagon::JMP_GTriPntneg_nv_V4;
1401
1402 // JMPGT_ri.
1403 case Hexagon::JMP_GTriPt_nv_V4:
1404 return Hexagon::JMP_GTriNotPt_nv_V4;
1405 case Hexagon::JMP_GTriNotPt_nv_V4:
1406 return Hexagon::JMP_GTriPt_nv_V4;
1407
1408 case Hexagon::JMP_GTriPnt_nv_V4:
1409 return Hexagon::JMP_GTriNotPnt_nv_V4;
1410 case Hexagon::JMP_GTriNotPnt_nv_V4:
1411 return Hexagon::JMP_GTriPnt_nv_V4;
1412
1413 // JMPGT_rr.
1414 case Hexagon::JMP_GTrrPt_nv_V4:
1415 return Hexagon::JMP_GTrrNotPt_nv_V4;
1416 case Hexagon::JMP_GTrrNotPt_nv_V4:
1417 return Hexagon::JMP_GTrrPt_nv_V4;
1418
1419 case Hexagon::JMP_GTrrPnt_nv_V4:
1420 return Hexagon::JMP_GTrrNotPnt_nv_V4;
1421 case Hexagon::JMP_GTrrNotPnt_nv_V4:
1422 return Hexagon::JMP_GTrrPnt_nv_V4;
1423
1424 // JMPGT_rrdn.
1425 case Hexagon::JMP_GTrrdnPt_nv_V4:
1426 return Hexagon::JMP_GTrrdnNotPt_nv_V4;
1427 case Hexagon::JMP_GTrrdnNotPt_nv_V4:
1428 return Hexagon::JMP_GTrrdnPt_nv_V4;
1429
1430 case Hexagon::JMP_GTrrdnPnt_nv_V4:
1431 return Hexagon::JMP_GTrrdnNotPnt_nv_V4;
1432 case Hexagon::JMP_GTrrdnNotPnt_nv_V4:
1433 return Hexagon::JMP_GTrrdnPnt_nv_V4;
1434
1435 // JMPGTU_ri.
1436 case Hexagon::JMP_GTUriPt_nv_V4:
1437 return Hexagon::JMP_GTUriNotPt_nv_V4;
1438 case Hexagon::JMP_GTUriNotPt_nv_V4:
1439 return Hexagon::JMP_GTUriPt_nv_V4;
1440
1441 case Hexagon::JMP_GTUriPnt_nv_V4:
1442 return Hexagon::JMP_GTUriNotPnt_nv_V4;
1443 case Hexagon::JMP_GTUriNotPnt_nv_V4:
1444 return Hexagon::JMP_GTUriPnt_nv_V4;
1445
1446 // JMPGTU_rr.
1447 case Hexagon::JMP_GTUrrPt_nv_V4:
1448 return Hexagon::JMP_GTUrrNotPt_nv_V4;
1449 case Hexagon::JMP_GTUrrNotPt_nv_V4:
1450 return Hexagon::JMP_GTUrrPt_nv_V4;
1451
1452 case Hexagon::JMP_GTUrrPnt_nv_V4:
1453 return Hexagon::JMP_GTUrrNotPnt_nv_V4;
1454 case Hexagon::JMP_GTUrrNotPnt_nv_V4:
1455 return Hexagon::JMP_GTUrrPnt_nv_V4;
1456
1457 // JMPGTU_rrdn.
1458 case Hexagon::JMP_GTUrrdnPt_nv_V4:
1459 return Hexagon::JMP_GTUrrdnNotPt_nv_V4;
1460 case Hexagon::JMP_GTUrrdnNotPt_nv_V4:
1461 return Hexagon::JMP_GTUrrdnPt_nv_V4;
1462
1463 case Hexagon::JMP_GTUrrdnPnt_nv_V4:
1464 return Hexagon::JMP_GTUrrdnNotPnt_nv_V4;
1465 case Hexagon::JMP_GTUrrdnNotPnt_nv_V4:
1466 return Hexagon::JMP_GTUrrdnPnt_nv_V4;
1467 }
1468 }
1469
1470
1471 int HexagonInstrInfo::
getMatchingCondBranchOpcode(int Opc,bool invertPredicate) const1472 getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
1473 enum Hexagon::PredSense inPredSense;
1474 inPredSense = invertPredicate ? Hexagon::PredSense_false :
1475 Hexagon::PredSense_true;
1476 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
1477 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
1478 return CondOpcode;
1479
1480 // This switch case will be removed once all the instructions have been
1481 // modified to use relation maps.
1482 switch(Opc) {
1483 case Hexagon::TFR:
1484 return !invertPredicate ? Hexagon::TFR_cPt :
1485 Hexagon::TFR_cNotPt;
1486 case Hexagon::TFRI_f:
1487 return !invertPredicate ? Hexagon::TFRI_cPt_f :
1488 Hexagon::TFRI_cNotPt_f;
1489 case Hexagon::TFRI:
1490 return !invertPredicate ? Hexagon::TFRI_cPt :
1491 Hexagon::TFRI_cNotPt;
1492 case Hexagon::JMP:
1493 return !invertPredicate ? Hexagon::JMP_c :
1494 Hexagon::JMP_cNot;
1495 case Hexagon::JMP_EQrrPt_nv_V4:
1496 return !invertPredicate ? Hexagon::JMP_EQrrPt_nv_V4 :
1497 Hexagon::JMP_EQrrNotPt_nv_V4;
1498 case Hexagon::JMP_EQriPt_nv_V4:
1499 return !invertPredicate ? Hexagon::JMP_EQriPt_nv_V4 :
1500 Hexagon::JMP_EQriNotPt_nv_V4;
1501 case Hexagon::COMBINE_rr:
1502 return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
1503 Hexagon::COMBINE_rr_cNotPt;
1504 case Hexagon::ASLH:
1505 return !invertPredicate ? Hexagon::ASLH_cPt_V4 :
1506 Hexagon::ASLH_cNotPt_V4;
1507 case Hexagon::ASRH:
1508 return !invertPredicate ? Hexagon::ASRH_cPt_V4 :
1509 Hexagon::ASRH_cNotPt_V4;
1510 case Hexagon::SXTB:
1511 return !invertPredicate ? Hexagon::SXTB_cPt_V4 :
1512 Hexagon::SXTB_cNotPt_V4;
1513 case Hexagon::SXTH:
1514 return !invertPredicate ? Hexagon::SXTH_cPt_V4 :
1515 Hexagon::SXTH_cNotPt_V4;
1516 case Hexagon::ZXTB:
1517 return !invertPredicate ? Hexagon::ZXTB_cPt_V4 :
1518 Hexagon::ZXTB_cNotPt_V4;
1519 case Hexagon::ZXTH:
1520 return !invertPredicate ? Hexagon::ZXTH_cPt_V4 :
1521 Hexagon::ZXTH_cNotPt_V4;
1522
1523 case Hexagon::JMPR:
1524 return !invertPredicate ? Hexagon::JMPR_cPt :
1525 Hexagon::JMPR_cNotPt;
1526
1527 // V4 indexed+scaled load.
1528 case Hexagon::LDrid_indexed_shl_V4:
1529 return !invertPredicate ? Hexagon::LDrid_indexed_shl_cPt_V4 :
1530 Hexagon::LDrid_indexed_shl_cNotPt_V4;
1531 case Hexagon::LDrib_indexed_shl_V4:
1532 return !invertPredicate ? Hexagon::LDrib_indexed_shl_cPt_V4 :
1533 Hexagon::LDrib_indexed_shl_cNotPt_V4;
1534 case Hexagon::LDriub_indexed_shl_V4:
1535 return !invertPredicate ? Hexagon::LDriub_indexed_shl_cPt_V4 :
1536 Hexagon::LDriub_indexed_shl_cNotPt_V4;
1537 case Hexagon::LDrih_indexed_shl_V4:
1538 return !invertPredicate ? Hexagon::LDrih_indexed_shl_cPt_V4 :
1539 Hexagon::LDrih_indexed_shl_cNotPt_V4;
1540 case Hexagon::LDriuh_indexed_shl_V4:
1541 return !invertPredicate ? Hexagon::LDriuh_indexed_shl_cPt_V4 :
1542 Hexagon::LDriuh_indexed_shl_cNotPt_V4;
1543 case Hexagon::LDriw_indexed_shl_V4:
1544 return !invertPredicate ? Hexagon::LDriw_indexed_shl_cPt_V4 :
1545 Hexagon::LDriw_indexed_shl_cNotPt_V4;
1546
1547 // V4 Load from global address
1548 case Hexagon::LDd_GP_V4:
1549 return !invertPredicate ? Hexagon::LDd_GP_cPt_V4 :
1550 Hexagon::LDd_GP_cNotPt_V4;
1551 case Hexagon::LDb_GP_V4:
1552 return !invertPredicate ? Hexagon::LDb_GP_cPt_V4 :
1553 Hexagon::LDb_GP_cNotPt_V4;
1554 case Hexagon::LDub_GP_V4:
1555 return !invertPredicate ? Hexagon::LDub_GP_cPt_V4 :
1556 Hexagon::LDub_GP_cNotPt_V4;
1557 case Hexagon::LDh_GP_V4:
1558 return !invertPredicate ? Hexagon::LDh_GP_cPt_V4 :
1559 Hexagon::LDh_GP_cNotPt_V4;
1560 case Hexagon::LDuh_GP_V4:
1561 return !invertPredicate ? Hexagon::LDuh_GP_cPt_V4 :
1562 Hexagon::LDuh_GP_cNotPt_V4;
1563 case Hexagon::LDw_GP_V4:
1564 return !invertPredicate ? Hexagon::LDw_GP_cPt_V4 :
1565 Hexagon::LDw_GP_cNotPt_V4;
1566
1567 // Byte.
1568 case Hexagon::POST_STbri:
1569 return !invertPredicate ? Hexagon::POST_STbri_cPt :
1570 Hexagon::POST_STbri_cNotPt;
1571 case Hexagon::STrib:
1572 return !invertPredicate ? Hexagon::STrib_cPt :
1573 Hexagon::STrib_cNotPt;
1574 case Hexagon::STrib_indexed:
1575 return !invertPredicate ? Hexagon::STrib_indexed_cPt :
1576 Hexagon::STrib_indexed_cNotPt;
1577 case Hexagon::STrib_imm_V4:
1578 return !invertPredicate ? Hexagon::STrib_imm_cPt_V4 :
1579 Hexagon::STrib_imm_cNotPt_V4;
1580 case Hexagon::STrib_indexed_shl_V4:
1581 return !invertPredicate ? Hexagon::STrib_indexed_shl_cPt_V4 :
1582 Hexagon::STrib_indexed_shl_cNotPt_V4;
1583 // Halfword.
1584 case Hexagon::POST_SThri:
1585 return !invertPredicate ? Hexagon::POST_SThri_cPt :
1586 Hexagon::POST_SThri_cNotPt;
1587 case Hexagon::STrih:
1588 return !invertPredicate ? Hexagon::STrih_cPt :
1589 Hexagon::STrih_cNotPt;
1590 case Hexagon::STrih_indexed:
1591 return !invertPredicate ? Hexagon::STrih_indexed_cPt :
1592 Hexagon::STrih_indexed_cNotPt;
1593 case Hexagon::STrih_imm_V4:
1594 return !invertPredicate ? Hexagon::STrih_imm_cPt_V4 :
1595 Hexagon::STrih_imm_cNotPt_V4;
1596 case Hexagon::STrih_indexed_shl_V4:
1597 return !invertPredicate ? Hexagon::STrih_indexed_shl_cPt_V4 :
1598 Hexagon::STrih_indexed_shl_cNotPt_V4;
1599 // Word.
1600 case Hexagon::POST_STwri:
1601 return !invertPredicate ? Hexagon::POST_STwri_cPt :
1602 Hexagon::POST_STwri_cNotPt;
1603 case Hexagon::STriw:
1604 return !invertPredicate ? Hexagon::STriw_cPt :
1605 Hexagon::STriw_cNotPt;
1606 case Hexagon::STriw_indexed:
1607 return !invertPredicate ? Hexagon::STriw_indexed_cPt :
1608 Hexagon::STriw_indexed_cNotPt;
1609 case Hexagon::STriw_indexed_shl_V4:
1610 return !invertPredicate ? Hexagon::STriw_indexed_shl_cPt_V4 :
1611 Hexagon::STriw_indexed_shl_cNotPt_V4;
1612 case Hexagon::STriw_imm_V4:
1613 return !invertPredicate ? Hexagon::STriw_imm_cPt_V4 :
1614 Hexagon::STriw_imm_cNotPt_V4;
1615 // Double word.
1616 case Hexagon::POST_STdri:
1617 return !invertPredicate ? Hexagon::POST_STdri_cPt :
1618 Hexagon::POST_STdri_cNotPt;
1619 case Hexagon::STrid:
1620 return !invertPredicate ? Hexagon::STrid_cPt :
1621 Hexagon::STrid_cNotPt;
1622 case Hexagon::STrid_indexed:
1623 return !invertPredicate ? Hexagon::STrid_indexed_cPt :
1624 Hexagon::STrid_indexed_cNotPt;
1625 case Hexagon::STrid_indexed_shl_V4:
1626 return !invertPredicate ? Hexagon::STrid_indexed_shl_cPt_V4 :
1627 Hexagon::STrid_indexed_shl_cNotPt_V4;
1628
1629 // V4 Store to global address
1630 case Hexagon::STd_GP_V4:
1631 return !invertPredicate ? Hexagon::STd_GP_cPt_V4 :
1632 Hexagon::STd_GP_cNotPt_V4;
1633 case Hexagon::STb_GP_V4:
1634 return !invertPredicate ? Hexagon::STb_GP_cPt_V4 :
1635 Hexagon::STb_GP_cNotPt_V4;
1636 case Hexagon::STh_GP_V4:
1637 return !invertPredicate ? Hexagon::STh_GP_cPt_V4 :
1638 Hexagon::STh_GP_cNotPt_V4;
1639 case Hexagon::STw_GP_V4:
1640 return !invertPredicate ? Hexagon::STw_GP_cPt_V4 :
1641 Hexagon::STw_GP_cNotPt_V4;
1642
1643 // Load.
1644 case Hexagon::LDrid:
1645 return !invertPredicate ? Hexagon::LDrid_cPt :
1646 Hexagon::LDrid_cNotPt;
1647 case Hexagon::LDriw:
1648 return !invertPredicate ? Hexagon::LDriw_cPt :
1649 Hexagon::LDriw_cNotPt;
1650 case Hexagon::LDrih:
1651 return !invertPredicate ? Hexagon::LDrih_cPt :
1652 Hexagon::LDrih_cNotPt;
1653 case Hexagon::LDriuh:
1654 return !invertPredicate ? Hexagon::LDriuh_cPt :
1655 Hexagon::LDriuh_cNotPt;
1656 case Hexagon::LDrib:
1657 return !invertPredicate ? Hexagon::LDrib_cPt :
1658 Hexagon::LDrib_cNotPt;
1659 case Hexagon::LDriub:
1660 return !invertPredicate ? Hexagon::LDriub_cPt :
1661 Hexagon::LDriub_cNotPt;
1662 // Load Indexed.
1663 case Hexagon::LDrid_indexed:
1664 return !invertPredicate ? Hexagon::LDrid_indexed_cPt :
1665 Hexagon::LDrid_indexed_cNotPt;
1666 case Hexagon::LDriw_indexed:
1667 return !invertPredicate ? Hexagon::LDriw_indexed_cPt :
1668 Hexagon::LDriw_indexed_cNotPt;
1669 case Hexagon::LDrih_indexed:
1670 return !invertPredicate ? Hexagon::LDrih_indexed_cPt :
1671 Hexagon::LDrih_indexed_cNotPt;
1672 case Hexagon::LDriuh_indexed:
1673 return !invertPredicate ? Hexagon::LDriuh_indexed_cPt :
1674 Hexagon::LDriuh_indexed_cNotPt;
1675 case Hexagon::LDrib_indexed:
1676 return !invertPredicate ? Hexagon::LDrib_indexed_cPt :
1677 Hexagon::LDrib_indexed_cNotPt;
1678 case Hexagon::LDriub_indexed:
1679 return !invertPredicate ? Hexagon::LDriub_indexed_cPt :
1680 Hexagon::LDriub_indexed_cNotPt;
1681 // Post Increment Load.
1682 case Hexagon::POST_LDrid:
1683 return !invertPredicate ? Hexagon::POST_LDrid_cPt :
1684 Hexagon::POST_LDrid_cNotPt;
1685 case Hexagon::POST_LDriw:
1686 return !invertPredicate ? Hexagon::POST_LDriw_cPt :
1687 Hexagon::POST_LDriw_cNotPt;
1688 case Hexagon::POST_LDrih:
1689 return !invertPredicate ? Hexagon::POST_LDrih_cPt :
1690 Hexagon::POST_LDrih_cNotPt;
1691 case Hexagon::POST_LDriuh:
1692 return !invertPredicate ? Hexagon::POST_LDriuh_cPt :
1693 Hexagon::POST_LDriuh_cNotPt;
1694 case Hexagon::POST_LDrib:
1695 return !invertPredicate ? Hexagon::POST_LDrib_cPt :
1696 Hexagon::POST_LDrib_cNotPt;
1697 case Hexagon::POST_LDriub:
1698 return !invertPredicate ? Hexagon::POST_LDriub_cPt :
1699 Hexagon::POST_LDriub_cNotPt;
1700 // DEALLOC_RETURN.
1701 case Hexagon::DEALLOC_RET_V4:
1702 return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
1703 Hexagon::DEALLOC_RET_cNotPt_V4;
1704 }
1705 llvm_unreachable("Unexpected predicable instruction");
1706 }
1707
1708
1709 bool HexagonInstrInfo::
PredicateInstruction(MachineInstr * MI,const SmallVectorImpl<MachineOperand> & Cond) const1710 PredicateInstruction(MachineInstr *MI,
1711 const SmallVectorImpl<MachineOperand> &Cond) const {
1712 int Opc = MI->getOpcode();
1713 assert (isPredicable(MI) && "Expected predicable instruction");
1714 bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
1715 (Cond[0].getImm() == 0));
1716
1717 // This will change MI's opcode to its predicate version.
1718 // However, its operand list is still the old one, i.e. the
1719 // non-predicate one.
1720 MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
1721
1722 int oper = -1;
1723 unsigned int GAIdx = 0;
1724
1725 // Indicates whether the current MI has a GlobalAddress operand
1726 bool hasGAOpnd = false;
1727 std::vector<MachineOperand> tmpOpnds;
1728
1729 // Indicates whether we need to shift operands to right.
1730 bool needShift = true;
1731
1732 // The predicate is ALWAYS the FIRST input operand !!!
1733 if (MI->getNumOperands() == 0) {
1734 // The non-predicate version of MI does not take any operands,
1735 // i.e. no outs and no ins. In this condition, the predicate
1736 // operand will be directly placed at Operands[0]. No operand
1737 // shift is needed.
1738 // Example: BARRIER
1739 needShift = false;
1740 oper = -1;
1741 }
1742 else if ( MI->getOperand(MI->getNumOperands()-1).isReg()
1743 && MI->getOperand(MI->getNumOperands()-1).isDef()
1744 && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
1745 // The non-predicate version of MI does not have any input operands.
1746 // In this condition, we extend the length of Operands[] by one and
1747 // copy the original last operand to the newly allocated slot.
1748 // At this moment, it is just a place holder. Later, we will put
1749 // predicate operand directly into it. No operand shift is needed.
1750 // Example: r0=BARRIER (this is a faked insn used here for illustration)
1751 MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
1752 needShift = false;
1753 oper = MI->getNumOperands() - 2;
1754 }
1755 else {
1756 // We need to right shift all input operands by one. Duplicate the
1757 // last operand into the newly allocated slot.
1758 MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
1759 }
1760
1761 if (needShift)
1762 {
1763 // Operands[ MI->getNumOperands() - 2 ] has been copied into
1764 // Operands[ MI->getNumOperands() - 1 ], so we start from
1765 // Operands[ MI->getNumOperands() - 3 ].
1766 // oper is a signed int.
1767 // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
1768 for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
1769 {
1770 MachineOperand &MO = MI->getOperand(oper);
1771
1772 // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7]
1773 // <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
1774 // /\~
1775 // /||\~
1776 // ||
1777 // Predicate Operand here
1778 if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
1779 break;
1780 }
1781 if (MO.isReg()) {
1782 MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
1783 MO.isImplicit(), MO.isKill(),
1784 MO.isDead(), MO.isUndef(),
1785 MO.isDebug());
1786 }
1787 else if (MO.isImm()) {
1788 MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
1789 }
1790 else if (MO.isGlobal()) {
1791 // MI can not have more than one GlobalAddress operand.
1792 assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
1793
1794 // There is no member function called "ChangeToGlobalAddress" in the
1795 // MachineOperand class (not like "ChangeToRegister" and
1796 // "ChangeToImmediate"). So we have to remove them from Operands[] list
1797 // first, and then add them back after we have inserted the predicate
1798 // operand. tmpOpnds[] is to remember these operands before we remove
1799 // them.
1800 tmpOpnds.push_back(MO);
1801
1802 // Operands[oper] is a GlobalAddress operand;
1803 // Operands[oper+1] has been copied into Operands[oper+2];
1804 hasGAOpnd = true;
1805 GAIdx = oper;
1806 continue;
1807 }
1808 else {
1809 assert(false && "Unexpected operand type");
1810 }
1811 }
1812 }
1813
1814 int regPos = invertJump ? 1 : 0;
1815 MachineOperand PredMO = Cond[regPos];
1816
1817 // [oper] now points to the last explicit Def. Predicate operand must be
1818 // located at [oper+1]. See diagram above.
1819 // This assumes that the predicate is always the first operand,
1820 // i.e. Operands[0+numResults], in the set of inputs
1821 // It is better to have an assert here to check this. But I don't know how
1822 // to write this assert because findFirstPredOperandIdx() would return -1
1823 if (oper < -1) oper = -1;
1824 MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
1825 PredMO.isImplicit(), PredMO.isKill(),
1826 PredMO.isDead(), PredMO.isUndef(),
1827 PredMO.isDebug());
1828
1829 if (hasGAOpnd)
1830 {
1831 unsigned int i;
1832
1833 // Operands[GAIdx] is the original GlobalAddress operand, which is
1834 // already copied into tmpOpnds[0].
1835 // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
1836 // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
1837 // so we start from [GAIdx+2]
1838 for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
1839 tmpOpnds.push_back(MI->getOperand(i));
1840
1841 // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
1842 // It is very important that we always remove from the end of Operands[]
1843 // MI->getNumOperands() is at least 2 if program goes to here.
1844 for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
1845 MI->RemoveOperand(i);
1846
1847 for (i = 0; i < tmpOpnds.size(); ++i)
1848 MI->addOperand(tmpOpnds[i]);
1849 }
1850
1851 return true;
1852 }
1853
1854
1855 bool
1856 HexagonInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,const BranchProbability & Probability) const1857 isProfitableToIfCvt(MachineBasicBlock &MBB,
1858 unsigned NumCycles,
1859 unsigned ExtraPredCycles,
1860 const BranchProbability &Probability) const {
1861 return true;
1862 }
1863
1864
1865 bool
1866 HexagonInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,const BranchProbability & Probability) const1867 isProfitableToIfCvt(MachineBasicBlock &TMBB,
1868 unsigned NumTCycles,
1869 unsigned ExtraTCycles,
1870 MachineBasicBlock &FMBB,
1871 unsigned NumFCycles,
1872 unsigned ExtraFCycles,
1873 const BranchProbability &Probability) const {
1874 return true;
1875 }
1876
1877
isPredicated(const MachineInstr * MI) const1878 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
1879 const uint64_t F = MI->getDesc().TSFlags;
1880
1881 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
1882 }
1883
1884 bool
DefinesPredicate(MachineInstr * MI,std::vector<MachineOperand> & Pred) const1885 HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1886 std::vector<MachineOperand> &Pred) const {
1887 for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1888 MachineOperand MO = MI->getOperand(oper);
1889 if (MO.isReg() && MO.isDef()) {
1890 const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
1891 if (RC == &Hexagon::PredRegsRegClass) {
1892 Pred.push_back(MO);
1893 return true;
1894 }
1895 }
1896 }
1897 return false;
1898 }
1899
1900
1901 bool
1902 HexagonInstrInfo::
SubsumesPredicate(const SmallVectorImpl<MachineOperand> & Pred1,const SmallVectorImpl<MachineOperand> & Pred2) const1903 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
1904 const SmallVectorImpl<MachineOperand> &Pred2) const {
1905 // TODO: Fix this
1906 return false;
1907 }
1908
1909
1910 //
1911 // We indicate that we want to reverse the branch by
1912 // inserting a 0 at the beginning of the Cond vector.
1913 //
1914 bool HexagonInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const1915 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1916 if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
1917 Cond.erase(Cond.begin());
1918 } else {
1919 Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
1920 }
1921 return false;
1922 }
1923
1924
1925 bool HexagonInstrInfo::
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumInstrs,const BranchProbability & Probability) const1926 isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
1927 const BranchProbability &Probability) const {
1928 return (NumInstrs <= 4);
1929 }
1930
isDeallocRet(const MachineInstr * MI) const1931 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1932 switch (MI->getOpcode()) {
1933 default: return false;
1934 case Hexagon::DEALLOC_RET_V4 :
1935 case Hexagon::DEALLOC_RET_cPt_V4 :
1936 case Hexagon::DEALLOC_RET_cNotPt_V4 :
1937 case Hexagon::DEALLOC_RET_cdnPnt_V4 :
1938 case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
1939 case Hexagon::DEALLOC_RET_cdnPt_V4 :
1940 case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
1941 return true;
1942 }
1943 }
1944
1945
1946 bool HexagonInstrInfo::
isValidOffset(const int Opcode,const int Offset) const1947 isValidOffset(const int Opcode, const int Offset) const {
1948 // This function is to check whether the "Offset" is in the correct range of
1949 // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
1950 // inserted to calculate the final address. Due to this reason, the function
1951 // assumes that the "Offset" has correct alignment.
1952 // We used to assert if the offset was not properly aligned, however,
1953 // there are cases where a misaligned pointer recast can cause this
1954 // problem, and we need to allow for it. The front end warns of such
1955 // misaligns with respect to load size.
1956
1957 switch(Opcode) {
1958
1959 case Hexagon::LDriw:
1960 case Hexagon::LDriw_indexed:
1961 case Hexagon::LDriw_f:
1962 case Hexagon::STriw_indexed:
1963 case Hexagon::STriw:
1964 case Hexagon::STriw_f:
1965 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
1966 (Offset <= Hexagon_MEMW_OFFSET_MAX);
1967
1968 case Hexagon::LDrid:
1969 case Hexagon::LDrid_indexed:
1970 case Hexagon::LDrid_f:
1971 case Hexagon::STrid:
1972 case Hexagon::STrid_indexed:
1973 case Hexagon::STrid_f:
1974 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
1975 (Offset <= Hexagon_MEMD_OFFSET_MAX);
1976
1977 case Hexagon::LDrih:
1978 case Hexagon::LDriuh:
1979 case Hexagon::STrih:
1980 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
1981 (Offset <= Hexagon_MEMH_OFFSET_MAX);
1982
1983 case Hexagon::LDrib:
1984 case Hexagon::STrib:
1985 case Hexagon::LDriub:
1986 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
1987 (Offset <= Hexagon_MEMB_OFFSET_MAX);
1988
1989 case Hexagon::ADD_ri:
1990 case Hexagon::TFR_FI:
1991 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
1992 (Offset <= Hexagon_ADDI_OFFSET_MAX);
1993
1994 case Hexagon::MEMw_ADDi_indexed_MEM_V4 :
1995 case Hexagon::MEMw_SUBi_indexed_MEM_V4 :
1996 case Hexagon::MEMw_ADDr_indexed_MEM_V4 :
1997 case Hexagon::MEMw_SUBr_indexed_MEM_V4 :
1998 case Hexagon::MEMw_ANDr_indexed_MEM_V4 :
1999 case Hexagon::MEMw_ORr_indexed_MEM_V4 :
2000 case Hexagon::MEMw_ADDi_MEM_V4 :
2001 case Hexagon::MEMw_SUBi_MEM_V4 :
2002 case Hexagon::MEMw_ADDr_MEM_V4 :
2003 case Hexagon::MEMw_SUBr_MEM_V4 :
2004 case Hexagon::MEMw_ANDr_MEM_V4 :
2005 case Hexagon::MEMw_ORr_MEM_V4 :
2006 return (0 <= Offset && Offset <= 255);
2007
2008 case Hexagon::MEMh_ADDi_indexed_MEM_V4 :
2009 case Hexagon::MEMh_SUBi_indexed_MEM_V4 :
2010 case Hexagon::MEMh_ADDr_indexed_MEM_V4 :
2011 case Hexagon::MEMh_SUBr_indexed_MEM_V4 :
2012 case Hexagon::MEMh_ANDr_indexed_MEM_V4 :
2013 case Hexagon::MEMh_ORr_indexed_MEM_V4 :
2014 case Hexagon::MEMh_ADDi_MEM_V4 :
2015 case Hexagon::MEMh_SUBi_MEM_V4 :
2016 case Hexagon::MEMh_ADDr_MEM_V4 :
2017 case Hexagon::MEMh_SUBr_MEM_V4 :
2018 case Hexagon::MEMh_ANDr_MEM_V4 :
2019 case Hexagon::MEMh_ORr_MEM_V4 :
2020 return (0 <= Offset && Offset <= 127);
2021
2022 case Hexagon::MEMb_ADDi_indexed_MEM_V4 :
2023 case Hexagon::MEMb_SUBi_indexed_MEM_V4 :
2024 case Hexagon::MEMb_ADDr_indexed_MEM_V4 :
2025 case Hexagon::MEMb_SUBr_indexed_MEM_V4 :
2026 case Hexagon::MEMb_ANDr_indexed_MEM_V4 :
2027 case Hexagon::MEMb_ORr_indexed_MEM_V4 :
2028 case Hexagon::MEMb_ADDi_MEM_V4 :
2029 case Hexagon::MEMb_SUBi_MEM_V4 :
2030 case Hexagon::MEMb_ADDr_MEM_V4 :
2031 case Hexagon::MEMb_SUBr_MEM_V4 :
2032 case Hexagon::MEMb_ANDr_MEM_V4 :
2033 case Hexagon::MEMb_ORr_MEM_V4 :
2034 return (0 <= Offset && Offset <= 63);
2035
2036 // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
2037 // any size. Later pass knows how to handle it.
2038 case Hexagon::STriw_pred:
2039 case Hexagon::LDriw_pred:
2040 return true;
2041
2042 case Hexagon::LOOP0_i:
2043 return isUInt<10>(Offset);
2044
2045 // INLINEASM is very special.
2046 case Hexagon::INLINEASM:
2047 return true;
2048 }
2049
2050 llvm_unreachable("No offset range is defined for this opcode. "
2051 "Please define it in the above switch statement!");
2052 }
2053
2054
2055 //
2056 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2057 //
2058 bool HexagonInstrInfo::
isValidAutoIncImm(const EVT VT,const int Offset) const2059 isValidAutoIncImm(const EVT VT, const int Offset) const {
2060
2061 if (VT == MVT::i64) {
2062 return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
2063 Offset <= Hexagon_MEMD_AUTOINC_MAX &&
2064 (Offset & 0x7) == 0);
2065 }
2066 if (VT == MVT::i32) {
2067 return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
2068 Offset <= Hexagon_MEMW_AUTOINC_MAX &&
2069 (Offset & 0x3) == 0);
2070 }
2071 if (VT == MVT::i16) {
2072 return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
2073 Offset <= Hexagon_MEMH_AUTOINC_MAX &&
2074 (Offset & 0x1) == 0);
2075 }
2076 if (VT == MVT::i8) {
2077 return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
2078 Offset <= Hexagon_MEMB_AUTOINC_MAX);
2079 }
2080 llvm_unreachable("Not an auto-inc opc!");
2081 }
2082
2083
2084 bool HexagonInstrInfo::
isMemOp(const MachineInstr * MI) const2085 isMemOp(const MachineInstr *MI) const {
2086 switch (MI->getOpcode())
2087 {
2088 default: return false;
2089 case Hexagon::MEMw_ADDi_indexed_MEM_V4 :
2090 case Hexagon::MEMw_SUBi_indexed_MEM_V4 :
2091 case Hexagon::MEMw_ADDr_indexed_MEM_V4 :
2092 case Hexagon::MEMw_SUBr_indexed_MEM_V4 :
2093 case Hexagon::MEMw_ANDr_indexed_MEM_V4 :
2094 case Hexagon::MEMw_ORr_indexed_MEM_V4 :
2095 case Hexagon::MEMw_ADDi_MEM_V4 :
2096 case Hexagon::MEMw_SUBi_MEM_V4 :
2097 case Hexagon::MEMw_ADDr_MEM_V4 :
2098 case Hexagon::MEMw_SUBr_MEM_V4 :
2099 case Hexagon::MEMw_ANDr_MEM_V4 :
2100 case Hexagon::MEMw_ORr_MEM_V4 :
2101 case Hexagon::MEMh_ADDi_indexed_MEM_V4 :
2102 case Hexagon::MEMh_SUBi_indexed_MEM_V4 :
2103 case Hexagon::MEMh_ADDr_indexed_MEM_V4 :
2104 case Hexagon::MEMh_SUBr_indexed_MEM_V4 :
2105 case Hexagon::MEMh_ANDr_indexed_MEM_V4 :
2106 case Hexagon::MEMh_ORr_indexed_MEM_V4 :
2107 case Hexagon::MEMh_ADDi_MEM_V4 :
2108 case Hexagon::MEMh_SUBi_MEM_V4 :
2109 case Hexagon::MEMh_ADDr_MEM_V4 :
2110 case Hexagon::MEMh_SUBr_MEM_V4 :
2111 case Hexagon::MEMh_ANDr_MEM_V4 :
2112 case Hexagon::MEMh_ORr_MEM_V4 :
2113 case Hexagon::MEMb_ADDi_indexed_MEM_V4 :
2114 case Hexagon::MEMb_SUBi_indexed_MEM_V4 :
2115 case Hexagon::MEMb_ADDr_indexed_MEM_V4 :
2116 case Hexagon::MEMb_SUBr_indexed_MEM_V4 :
2117 case Hexagon::MEMb_ANDr_indexed_MEM_V4 :
2118 case Hexagon::MEMb_ORr_indexed_MEM_V4 :
2119 case Hexagon::MEMb_ADDi_MEM_V4 :
2120 case Hexagon::MEMb_SUBi_MEM_V4 :
2121 case Hexagon::MEMb_ADDr_MEM_V4 :
2122 case Hexagon::MEMb_SUBr_MEM_V4 :
2123 case Hexagon::MEMb_ANDr_MEM_V4 :
2124 case Hexagon::MEMb_ORr_MEM_V4 :
2125 return true;
2126 }
2127 }
2128
2129
2130 bool HexagonInstrInfo::
isSpillPredRegOp(const MachineInstr * MI) const2131 isSpillPredRegOp(const MachineInstr *MI) const {
2132 switch (MI->getOpcode()) {
2133 default: return false;
2134 case Hexagon::STriw_pred :
2135 case Hexagon::LDriw_pred :
2136 return true;
2137 }
2138 }
2139
isNewValueJumpCandidate(const MachineInstr * MI) const2140 bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
2141 switch (MI->getOpcode()) {
2142 default: return false;
2143 case Hexagon::CMPEQrr:
2144 case Hexagon::CMPEQri:
2145 case Hexagon::CMPLTrr:
2146 case Hexagon::CMPGTrr:
2147 case Hexagon::CMPGTri:
2148 case Hexagon::CMPLTUrr:
2149 case Hexagon::CMPGTUrr:
2150 case Hexagon::CMPGTUri:
2151 case Hexagon::CMPGEri:
2152 case Hexagon::CMPGEUri:
2153 return true;
2154 }
2155 }
2156
2157 bool HexagonInstrInfo::
isConditionalTransfer(const MachineInstr * MI) const2158 isConditionalTransfer (const MachineInstr *MI) const {
2159 switch (MI->getOpcode()) {
2160 default: return false;
2161 case Hexagon::TFR_cPt:
2162 case Hexagon::TFR_cNotPt:
2163 case Hexagon::TFRI_cPt:
2164 case Hexagon::TFRI_cNotPt:
2165 case Hexagon::TFR_cdnPt:
2166 case Hexagon::TFR_cdnNotPt:
2167 case Hexagon::TFRI_cdnPt:
2168 case Hexagon::TFRI_cdnNotPt:
2169 return true;
2170 }
2171 }
2172
isConditionalALU32(const MachineInstr * MI) const2173 bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
2174 const HexagonRegisterInfo& QRI = getRegisterInfo();
2175 switch (MI->getOpcode())
2176 {
2177 default: return false;
2178 case Hexagon::ADD_ri_cPt:
2179 case Hexagon::ADD_ri_cNotPt:
2180 case Hexagon::ADD_rr_cPt:
2181 case Hexagon::ADD_rr_cNotPt:
2182 case Hexagon::XOR_rr_cPt:
2183 case Hexagon::XOR_rr_cNotPt:
2184 case Hexagon::AND_rr_cPt:
2185 case Hexagon::AND_rr_cNotPt:
2186 case Hexagon::OR_rr_cPt:
2187 case Hexagon::OR_rr_cNotPt:
2188 case Hexagon::SUB_rr_cPt:
2189 case Hexagon::SUB_rr_cNotPt:
2190 case Hexagon::COMBINE_rr_cPt:
2191 case Hexagon::COMBINE_rr_cNotPt:
2192 return true;
2193 case Hexagon::ASLH_cPt_V4:
2194 case Hexagon::ASLH_cNotPt_V4:
2195 case Hexagon::ASRH_cPt_V4:
2196 case Hexagon::ASRH_cNotPt_V4:
2197 case Hexagon::SXTB_cPt_V4:
2198 case Hexagon::SXTB_cNotPt_V4:
2199 case Hexagon::SXTH_cPt_V4:
2200 case Hexagon::SXTH_cNotPt_V4:
2201 case Hexagon::ZXTB_cPt_V4:
2202 case Hexagon::ZXTB_cNotPt_V4:
2203 case Hexagon::ZXTH_cPt_V4:
2204 case Hexagon::ZXTH_cNotPt_V4:
2205 return QRI.Subtarget.hasV4TOps();
2206 }
2207 }
2208
2209 bool HexagonInstrInfo::
isConditionalLoad(const MachineInstr * MI) const2210 isConditionalLoad (const MachineInstr* MI) const {
2211 const HexagonRegisterInfo& QRI = getRegisterInfo();
2212 switch (MI->getOpcode())
2213 {
2214 default: return false;
2215 case Hexagon::LDrid_cPt :
2216 case Hexagon::LDrid_cNotPt :
2217 case Hexagon::LDrid_indexed_cPt :
2218 case Hexagon::LDrid_indexed_cNotPt :
2219 case Hexagon::LDriw_cPt :
2220 case Hexagon::LDriw_cNotPt :
2221 case Hexagon::LDriw_indexed_cPt :
2222 case Hexagon::LDriw_indexed_cNotPt :
2223 case Hexagon::LDrih_cPt :
2224 case Hexagon::LDrih_cNotPt :
2225 case Hexagon::LDrih_indexed_cPt :
2226 case Hexagon::LDrih_indexed_cNotPt :
2227 case Hexagon::LDrib_cPt :
2228 case Hexagon::LDrib_cNotPt :
2229 case Hexagon::LDrib_indexed_cPt :
2230 case Hexagon::LDrib_indexed_cNotPt :
2231 case Hexagon::LDriuh_cPt :
2232 case Hexagon::LDriuh_cNotPt :
2233 case Hexagon::LDriuh_indexed_cPt :
2234 case Hexagon::LDriuh_indexed_cNotPt :
2235 case Hexagon::LDriub_cPt :
2236 case Hexagon::LDriub_cNotPt :
2237 case Hexagon::LDriub_indexed_cPt :
2238 case Hexagon::LDriub_indexed_cNotPt :
2239 return true;
2240 case Hexagon::POST_LDrid_cPt :
2241 case Hexagon::POST_LDrid_cNotPt :
2242 case Hexagon::POST_LDriw_cPt :
2243 case Hexagon::POST_LDriw_cNotPt :
2244 case Hexagon::POST_LDrih_cPt :
2245 case Hexagon::POST_LDrih_cNotPt :
2246 case Hexagon::POST_LDrib_cPt :
2247 case Hexagon::POST_LDrib_cNotPt :
2248 case Hexagon::POST_LDriuh_cPt :
2249 case Hexagon::POST_LDriuh_cNotPt :
2250 case Hexagon::POST_LDriub_cPt :
2251 case Hexagon::POST_LDriub_cNotPt :
2252 return QRI.Subtarget.hasV4TOps();
2253 case Hexagon::LDrid_indexed_shl_cPt_V4 :
2254 case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
2255 case Hexagon::LDrib_indexed_shl_cPt_V4 :
2256 case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
2257 case Hexagon::LDriub_indexed_shl_cPt_V4 :
2258 case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
2259 case Hexagon::LDrih_indexed_shl_cPt_V4 :
2260 case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
2261 case Hexagon::LDriuh_indexed_shl_cPt_V4 :
2262 case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
2263 case Hexagon::LDriw_indexed_shl_cPt_V4 :
2264 case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
2265 return QRI.Subtarget.hasV4TOps();
2266 }
2267 }
2268
2269 // Returns true if an instruction is a conditional store.
2270 //
2271 // Note: It doesn't include conditional new-value stores as they can't be
2272 // converted to .new predicate.
2273 //
2274 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
2275 // ^ ^
2276 // / \ (not OK. it will cause new-value store to be
2277 // / X conditional on p0.new while R2 producer is
2278 // / \ on p0)
2279 // / \.
2280 // p.new store p.old NV store
2281 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
2282 // ^ ^
2283 // \ /
2284 // \ /
2285 // \ /
2286 // p.old store
2287 // [if (p0)memw(R0+#0)=R2]
2288 //
2289 // The above diagram shows the steps involoved in the conversion of a predicated
2290 // store instruction to its .new predicated new-value form.
2291 //
2292 // The following set of instructions further explains the scenario where
2293 // conditional new-value store becomes invalid when promoted to .new predicate
2294 // form.
2295 //
2296 // { 1) if (p0) r0 = add(r1, r2)
2297 // 2) p0 = cmp.eq(r3, #0) }
2298 //
2299 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
2300 // the first two instructions because in instr 1, r0 is conditional on old value
2301 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
2302 // is not valid for new-value stores.
2303 bool HexagonInstrInfo::
isConditionalStore(const MachineInstr * MI) const2304 isConditionalStore (const MachineInstr* MI) const {
2305 const HexagonRegisterInfo& QRI = getRegisterInfo();
2306 switch (MI->getOpcode())
2307 {
2308 default: return false;
2309 case Hexagon::STrib_imm_cPt_V4 :
2310 case Hexagon::STrib_imm_cNotPt_V4 :
2311 case Hexagon::STrib_indexed_shl_cPt_V4 :
2312 case Hexagon::STrib_indexed_shl_cNotPt_V4 :
2313 case Hexagon::STrib_cPt :
2314 case Hexagon::STrib_cNotPt :
2315 case Hexagon::POST_STbri_cPt :
2316 case Hexagon::POST_STbri_cNotPt :
2317 case Hexagon::STrid_indexed_cPt :
2318 case Hexagon::STrid_indexed_cNotPt :
2319 case Hexagon::STrid_indexed_shl_cPt_V4 :
2320 case Hexagon::POST_STdri_cPt :
2321 case Hexagon::POST_STdri_cNotPt :
2322 case Hexagon::STrih_cPt :
2323 case Hexagon::STrih_cNotPt :
2324 case Hexagon::STrih_indexed_cPt :
2325 case Hexagon::STrih_indexed_cNotPt :
2326 case Hexagon::STrih_imm_cPt_V4 :
2327 case Hexagon::STrih_imm_cNotPt_V4 :
2328 case Hexagon::STrih_indexed_shl_cPt_V4 :
2329 case Hexagon::STrih_indexed_shl_cNotPt_V4 :
2330 case Hexagon::POST_SThri_cPt :
2331 case Hexagon::POST_SThri_cNotPt :
2332 case Hexagon::STriw_cPt :
2333 case Hexagon::STriw_cNotPt :
2334 case Hexagon::STriw_indexed_cPt :
2335 case Hexagon::STriw_indexed_cNotPt :
2336 case Hexagon::STriw_imm_cPt_V4 :
2337 case Hexagon::STriw_imm_cNotPt_V4 :
2338 case Hexagon::STriw_indexed_shl_cPt_V4 :
2339 case Hexagon::STriw_indexed_shl_cNotPt_V4 :
2340 case Hexagon::POST_STwri_cPt :
2341 case Hexagon::POST_STwri_cNotPt :
2342 return QRI.Subtarget.hasV4TOps();
2343
2344 // V4 global address store before promoting to dot new.
2345 case Hexagon::STd_GP_cPt_V4 :
2346 case Hexagon::STd_GP_cNotPt_V4 :
2347 case Hexagon::STb_GP_cPt_V4 :
2348 case Hexagon::STb_GP_cNotPt_V4 :
2349 case Hexagon::STh_GP_cPt_V4 :
2350 case Hexagon::STh_GP_cNotPt_V4 :
2351 case Hexagon::STw_GP_cPt_V4 :
2352 case Hexagon::STw_GP_cNotPt_V4 :
2353 return QRI.Subtarget.hasV4TOps();
2354
2355 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
2356 // from the "Conditional Store" list. Because a predicated new value store
2357 // would NOT be promoted to a double dot new store. See diagram below:
2358 // This function returns yes for those stores that are predicated but not
2359 // yet promoted to predicate dot new instructions.
2360 //
2361 // +---------------------+
2362 // /-----| if (p0) memw(..)=r0 |---------\~
2363 // || +---------------------+ ||
2364 // promote || /\ /\ || promote
2365 // || /||\ /||\ ||
2366 // \||/ demote || \||/
2367 // \/ || || \/
2368 // +-------------------------+ || +-------------------------+
2369 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
2370 // +-------------------------+ || +-------------------------+
2371 // || || ||
2372 // || demote \||/
2373 // promote || \/ NOT possible
2374 // || || /\~
2375 // \||/ || /||\~
2376 // \/ || ||
2377 // +-----------------------------+
2378 // | if (p0.new) memw(..)=r0.new |
2379 // +-----------------------------+
2380 // Double Dot New Store
2381 //
2382 }
2383 }
2384
getAddrMode(const MachineInstr * MI) const2385 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
2386 const uint64_t F = MI->getDesc().TSFlags;
2387
2388 return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
2389 }
2390
2391 /// immediateExtend - Changes the instruction in place to one using an immediate
2392 /// extender.
immediateExtend(MachineInstr * MI) const2393 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
2394 assert((isExtendable(MI)||isConstExtended(MI)) &&
2395 "Instruction must be extendable");
2396 // Find which operand is extendable.
2397 short ExtOpNum = getCExtOpNum(MI);
2398 MachineOperand &MO = MI->getOperand(ExtOpNum);
2399 // This needs to be something we understand.
2400 assert((MO.isMBB() || MO.isImm()) &&
2401 "Branch with unknown extendable field type");
2402 // Mark given operand as extended.
2403 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
2404 }
2405
2406 DFAPacketizer *HexagonInstrInfo::
CreateTargetScheduleState(const TargetMachine * TM,const ScheduleDAG * DAG) const2407 CreateTargetScheduleState(const TargetMachine *TM,
2408 const ScheduleDAG *DAG) const {
2409 const InstrItineraryData *II = TM->getInstrItineraryData();
2410 return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
2411 }
2412
isSchedulingBoundary(const MachineInstr * MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const2413 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
2414 const MachineBasicBlock *MBB,
2415 const MachineFunction &MF) const {
2416 // Debug info is never a scheduling boundary. It's necessary to be explicit
2417 // due to the special treatment of IT instructions below, otherwise a
2418 // dbg_value followed by an IT will result in the IT instruction being
2419 // considered a scheduling hazard, which is wrong. It should be the actual
2420 // instruction preceding the dbg_value instruction(s), just like it is
2421 // when debug info is not present.
2422 if (MI->isDebugValue())
2423 return false;
2424
2425 // Terminators and labels can't be scheduled around.
2426 if (MI->getDesc().isTerminator() || MI->isLabel() || MI->isInlineAsm())
2427 return true;
2428
2429 return false;
2430 }
2431
isConstExtended(MachineInstr * MI) const2432 bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
2433
2434 // Constant extenders are allowed only for V4 and above.
2435 if (!Subtarget.hasV4TOps())
2436 return false;
2437
2438 const uint64_t F = MI->getDesc().TSFlags;
2439 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
2440 if (isExtended) // Instruction must be extended.
2441 return true;
2442
2443 unsigned isExtendable = (F >> HexagonII::ExtendablePos)
2444 & HexagonII::ExtendableMask;
2445 if (!isExtendable)
2446 return false;
2447
2448 short ExtOpNum = getCExtOpNum(MI);
2449 const MachineOperand &MO = MI->getOperand(ExtOpNum);
2450 // Use MO operand flags to determine if MO
2451 // has the HMOTF_ConstExtended flag set.
2452 if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
2453 return true;
2454 // If this is a Machine BB address we are talking about, and it is
2455 // not marked as extended, say so.
2456 if (MO.isMBB())
2457 return false;
2458
2459 // We could be using an instruction with an extendable immediate and shoehorn
2460 // a global address into it. If it is a global address it will be constant
2461 // extended. We do this for COMBINE.
2462 // We currently only handle isGlobal() because it is the only kind of
2463 // object we are going to end up with here for now.
2464 // In the future we probably should add isSymbol(), etc.
2465 if (MO.isGlobal() || MO.isSymbol())
2466 return true;
2467
2468 // If the extendable operand is not 'Immediate' type, the instruction should
2469 // have 'isExtended' flag set.
2470 assert(MO.isImm() && "Extendable operand must be Immediate type");
2471
2472 int MinValue = getMinValue(MI);
2473 int MaxValue = getMaxValue(MI);
2474 int ImmValue = MO.getImm();
2475
2476 return (ImmValue < MinValue || ImmValue > MaxValue);
2477 }
2478
2479 // Returns true if a particular operand is extendable for an instruction.
isOperandExtended(const MachineInstr * MI,unsigned short OperandNum) const2480 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
2481 unsigned short OperandNum) const {
2482 // Constant extenders are allowed only for V4 and above.
2483 if (!Subtarget.hasV4TOps())
2484 return false;
2485
2486 const uint64_t F = MI->getDesc().TSFlags;
2487
2488 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2489 == OperandNum;
2490 }
2491
2492 // Returns Operand Index for the constant extended instruction.
getCExtOpNum(const MachineInstr * MI) const2493 unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
2494 const uint64_t F = MI->getDesc().TSFlags;
2495 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
2496 }
2497
2498 // Returns the min value that doesn't need to be extended.
getMinValue(const MachineInstr * MI) const2499 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
2500 const uint64_t F = MI->getDesc().TSFlags;
2501 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
2502 & HexagonII::ExtentSignedMask;
2503 unsigned bits = (F >> HexagonII::ExtentBitsPos)
2504 & HexagonII::ExtentBitsMask;
2505
2506 if (isSigned) // if value is signed
2507 return -1 << (bits - 1);
2508 else
2509 return 0;
2510 }
2511
2512 // Returns the max value that doesn't need to be extended.
getMaxValue(const MachineInstr * MI) const2513 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
2514 const uint64_t F = MI->getDesc().TSFlags;
2515 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
2516 & HexagonII::ExtentSignedMask;
2517 unsigned bits = (F >> HexagonII::ExtentBitsPos)
2518 & HexagonII::ExtentBitsMask;
2519
2520 if (isSigned) // if value is signed
2521 return ~(-1 << (bits - 1));
2522 else
2523 return ~(-1 << bits);
2524 }
2525
2526 // Returns true if an instruction can be converted into a non-extended
2527 // equivalent instruction.
NonExtEquivalentExists(const MachineInstr * MI) const2528 bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
2529
2530 short NonExtOpcode;
2531 // Check if the instruction has a register form that uses register in place
2532 // of the extended operand, if so return that as the non-extended form.
2533 if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
2534 return true;
2535
2536 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
2537 // Check addressing mode and retreive non-ext equivalent instruction.
2538
2539 switch (getAddrMode(MI)) {
2540 case HexagonII::Absolute :
2541 // Load/store with absolute addressing mode can be converted into
2542 // base+offset mode.
2543 NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
2544 break;
2545 case HexagonII::BaseImmOffset :
2546 // Load/store with base+offset addressing mode can be converted into
2547 // base+register offset addressing mode. However left shift operand should
2548 // be set to 0.
2549 NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
2550 break;
2551 default:
2552 return false;
2553 }
2554 if (NonExtOpcode < 0)
2555 return false;
2556 return true;
2557 }
2558 return false;
2559 }
2560
2561 // Returns opcode of the non-extended equivalent instruction.
getNonExtOpcode(const MachineInstr * MI) const2562 short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
2563
2564 // Check if the instruction has a register form that uses register in place
2565 // of the extended operand, if so return that as the non-extended form.
2566 short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
2567 if (NonExtOpcode >= 0)
2568 return NonExtOpcode;
2569
2570 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
2571 // Check addressing mode and retreive non-ext equivalent instruction.
2572 switch (getAddrMode(MI)) {
2573 case HexagonII::Absolute :
2574 return Hexagon::getBasedWithImmOffset(MI->getOpcode());
2575 case HexagonII::BaseImmOffset :
2576 return Hexagon::getBaseWithRegOffset(MI->getOpcode());
2577 default:
2578 return -1;
2579 }
2580 }
2581 return -1;
2582 }
2583