• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.net;
18 
19 import android.os.SystemClock;
20 import android.util.Log;
21 
22 import java.io.IOException;
23 import java.net.DatagramPacket;
24 import java.net.DatagramSocket;
25 import java.net.InetAddress;
26 
27 /**
28  * {@hide}
29  *
30  * Simple SNTP client class for retrieving network time.
31  *
32  * Sample usage:
33  * <pre>SntpClient client = new SntpClient();
34  * if (client.requestTime("time.foo.com")) {
35  *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
36  * }
37  * </pre>
38  */
39 public class SntpClient
40 {
41     private static final String TAG = "SntpClient";
42 
43     private static final int REFERENCE_TIME_OFFSET = 16;
44     private static final int ORIGINATE_TIME_OFFSET = 24;
45     private static final int RECEIVE_TIME_OFFSET = 32;
46     private static final int TRANSMIT_TIME_OFFSET = 40;
47     private static final int NTP_PACKET_SIZE = 48;
48 
49     private static final int NTP_PORT = 123;
50     private static final int NTP_MODE_CLIENT = 3;
51     private static final int NTP_VERSION = 3;
52 
53     // Number of seconds between Jan 1, 1900 and Jan 1, 1970
54     // 70 years plus 17 leap days
55     private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
56 
57     // system time computed from NTP server response
58     private long mNtpTime;
59 
60     // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
61     private long mNtpTimeReference;
62 
63     // round trip time in milliseconds
64     private long mRoundTripTime;
65 
66     /**
67      * Sends an SNTP request to the given host and processes the response.
68      *
69      * @param host host name of the server.
70      * @param timeout network timeout in milliseconds.
71      * @return true if the transaction was successful.
72      */
requestTime(String host, int timeout)73     public boolean requestTime(String host, int timeout) {
74         DatagramSocket socket = null;
75         try {
76             socket = new DatagramSocket();
77             socket.setSoTimeout(timeout);
78             InetAddress address = InetAddress.getByName(host);
79             byte[] buffer = new byte[NTP_PACKET_SIZE];
80             DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, NTP_PORT);
81 
82             // set mode = 3 (client) and version = 3
83             // mode is in low 3 bits of first byte
84             // version is in bits 3-5 of first byte
85             buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
86 
87             // get current time and write it to the request packet
88             long requestTime = System.currentTimeMillis();
89             long requestTicks = SystemClock.elapsedRealtime();
90             writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
91 
92             socket.send(request);
93 
94             // read the response
95             DatagramPacket response = new DatagramPacket(buffer, buffer.length);
96             socket.receive(response);
97             long responseTicks = SystemClock.elapsedRealtime();
98             long responseTime = requestTime + (responseTicks - requestTicks);
99 
100             // extract the results
101             long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
102             long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
103             long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
104             long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
105             // receiveTime = originateTime + transit + skew
106             // responseTime = transmitTime + transit - skew
107             // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
108             //             = ((originateTime + transit + skew - originateTime) +
109             //                (transmitTime - (transmitTime + transit - skew)))/2
110             //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
111             //             = (transit + skew - transit + skew)/2
112             //             = (2 * skew)/2 = skew
113             long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
114             // if (false) Log.d(TAG, "round trip: " + roundTripTime + " ms");
115             // if (false) Log.d(TAG, "clock offset: " + clockOffset + " ms");
116 
117             // save our results - use the times on this side of the network latency
118             // (response rather than request time)
119             mNtpTime = responseTime + clockOffset;
120             mNtpTimeReference = responseTicks;
121             mRoundTripTime = roundTripTime;
122         } catch (Exception e) {
123             if (false) Log.d(TAG, "request time failed: " + e);
124             return false;
125         } finally {
126             if (socket != null) {
127                 socket.close();
128             }
129         }
130 
131         return true;
132     }
133 
134     /**
135      * Returns the time computed from the NTP transaction.
136      *
137      * @return time value computed from NTP server response.
138      */
getNtpTime()139     public long getNtpTime() {
140         return mNtpTime;
141     }
142 
143     /**
144      * Returns the reference clock value (value of SystemClock.elapsedRealtime())
145      * corresponding to the NTP time.
146      *
147      * @return reference clock corresponding to the NTP time.
148      */
getNtpTimeReference()149     public long getNtpTimeReference() {
150         return mNtpTimeReference;
151     }
152 
153     /**
154      * Returns the round trip time of the NTP transaction
155      *
156      * @return round trip time in milliseconds.
157      */
getRoundTripTime()158     public long getRoundTripTime() {
159         return mRoundTripTime;
160     }
161 
162     /**
163      * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
164      */
read32(byte[] buffer, int offset)165     private long read32(byte[] buffer, int offset) {
166         byte b0 = buffer[offset];
167         byte b1 = buffer[offset+1];
168         byte b2 = buffer[offset+2];
169         byte b3 = buffer[offset+3];
170 
171         // convert signed bytes to unsigned values
172         int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
173         int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
174         int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
175         int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
176 
177         return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
178     }
179 
180     /**
181      * Reads the NTP time stamp at the given offset in the buffer and returns
182      * it as a system time (milliseconds since January 1, 1970).
183      */
readTimeStamp(byte[] buffer, int offset)184     private long readTimeStamp(byte[] buffer, int offset) {
185         long seconds = read32(buffer, offset);
186         long fraction = read32(buffer, offset + 4);
187         return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
188     }
189 
190     /**
191      * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
192      * at the given offset in the buffer.
193      */
writeTimeStamp(byte[] buffer, int offset, long time)194     private void writeTimeStamp(byte[] buffer, int offset, long time) {
195         long seconds = time / 1000L;
196         long milliseconds = time - seconds * 1000L;
197         seconds += OFFSET_1900_TO_1970;
198 
199         // write seconds in big endian format
200         buffer[offset++] = (byte)(seconds >> 24);
201         buffer[offset++] = (byte)(seconds >> 16);
202         buffer[offset++] = (byte)(seconds >> 8);
203         buffer[offset++] = (byte)(seconds >> 0);
204 
205         long fraction = milliseconds * 0x100000000L / 1000L;
206         // write fraction in big endian format
207         buffer[offset++] = (byte)(fraction >> 24);
208         buffer[offset++] = (byte)(fraction >> 16);
209         buffer[offset++] = (byte)(fraction >> 8);
210         // low order bits should be random data
211         buffer[offset++] = (byte)(Math.random() * 255.0);
212     }
213 }
214