• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_MC_MCINSTRDESC_H
16 #define LLVM_MC_MCINSTRDESC_H
17 
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/MC/MCRegisterInfo.h"
20 #include "llvm/Support/DataTypes.h"
21 
22 namespace llvm {
23 
24 //===----------------------------------------------------------------------===//
25 // Machine Operand Flags and Description
26 //===----------------------------------------------------------------------===//
27 
28 namespace MCOI {
29   // Operand constraints
30   enum OperandConstraint {
31     TIED_TO = 0,    // Must be allocated the same register as.
32     EARLY_CLOBBER   // Operand is an early clobber register operand
33   };
34 
35   /// OperandFlags - These are flags set on operands, but should be considered
36   /// private, all access should go through the MCOperandInfo accessors.
37   /// See the accessors for a description of what these are.
38   enum OperandFlags {
39     LookupPtrRegClass = 0,
40     Predicate,
41     OptionalDef
42   };
43 
44   /// Operand Type - Operands are tagged with one of the values of this enum.
45   enum OperandType {
46     OPERAND_UNKNOWN,
47     OPERAND_IMMEDIATE,
48     OPERAND_REGISTER,
49     OPERAND_MEMORY,
50     OPERAND_PCREL
51   };
52 }
53 
54 /// MCOperandInfo - This holds information about one operand of a machine
55 /// instruction, indicating the register class for register operands, etc.
56 ///
57 class MCOperandInfo {
58 public:
59   /// RegClass - This specifies the register class enumeration of the operand
60   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
61   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
62   /// get a dynamic register class.
63   int16_t RegClass;
64 
65   /// Flags - These are flags from the MCOI::OperandFlags enum.
66   uint8_t Flags;
67 
68   /// OperandType - Information about the type of the operand.
69   uint8_t OperandType;
70 
71   /// Lower 16 bits are used to specify which constraints are set. The higher 16
72   /// bits are used to specify the value of constraints (4 bits each).
73   uint32_t Constraints;
74   /// Currently no other information.
75 
76   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
77   /// requires a callback to look up its register class.
isLookupPtrRegClass()78   bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);}
79 
80   /// isPredicate - Set if this is one of the operands that made up of
81   /// the predicate operand that controls an isPredicable() instruction.
isPredicate()82   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
83 
84   /// isOptionalDef - Set if this operand is a optional def.
85   ///
isOptionalDef()86   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
87 };
88 
89 
90 //===----------------------------------------------------------------------===//
91 // Machine Instruction Flags and Description
92 //===----------------------------------------------------------------------===//
93 
94 /// MCInstrDesc flags - These should be considered private to the
95 /// implementation of the MCInstrDesc class.  Clients should use the predicate
96 /// methods on MCInstrDesc, not use these directly.  These all correspond to
97 /// bitfields in the MCInstrDesc::Flags field.
98 namespace MCID {
99   enum {
100     Variadic = 0,
101     HasOptionalDef,
102     Pseudo,
103     Return,
104     Call,
105     Barrier,
106     Terminator,
107     Branch,
108     IndirectBranch,
109     Compare,
110     MoveImm,
111     Bitcast,
112     Select,
113     DelaySlot,
114     FoldableAsLoad,
115     MayLoad,
116     MayStore,
117     Predicable,
118     NotDuplicable,
119     UnmodeledSideEffects,
120     Commutable,
121     ConvertibleTo3Addr,
122     UsesCustomInserter,
123     HasPostISelHook,
124     Rematerializable,
125     CheapAsAMove,
126     ExtraSrcRegAllocReq,
127     ExtraDefRegAllocReq
128   };
129 }
130 
131 /// MCInstrDesc - Describe properties that are true of each instruction in the
132 /// target description file.  This captures information about side effects,
133 /// register use and many other things.  There is one instance of this struct
134 /// for each target instruction class, and the MachineInstr class points to
135 /// this struct directly to describe itself.
136 class MCInstrDesc {
137 public:
138   unsigned short  Opcode;        // The opcode number
139   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
140   unsigned short  NumDefs;       // Num of args that are definitions
141   unsigned short  SchedClass;    // enum identifying instr sched class
142   unsigned short  Size;          // Number of bytes in encoding.
143   unsigned        Flags;         // Flags identifying machine instr class
144   uint64_t        TSFlags;       // Target Specific Flag values
145   const uint16_t *ImplicitUses;  // Registers implicitly read by this instr
146   const uint16_t *ImplicitDefs;  // Registers implicitly defined by this instr
147   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
148 
149   /// \brief Returns the value of the specific constraint if
150   /// it is set. Returns -1 if it is not set.
getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)151   int getOperandConstraint(unsigned OpNum,
152                            MCOI::OperandConstraint Constraint) const {
153     if (OpNum < NumOperands &&
154         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
155       unsigned Pos = 16 + Constraint * 4;
156       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
157     }
158     return -1;
159   }
160 
161   /// \brief Return the opcode number for this descriptor.
getOpcode()162   unsigned getOpcode() const {
163     return Opcode;
164   }
165 
166   /// \brief Return the number of declared MachineOperands for this
167   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
168   /// instructions may have additional operands at the end of the list, and note
169   /// that the machine instruction may include implicit register def/uses as
170   /// well.
getNumOperands()171   unsigned getNumOperands() const {
172     return NumOperands;
173   }
174 
175   /// \brief Return the number of MachineOperands that are register
176   /// definitions.  Register definitions always occur at the start of the
177   /// machine operand list.  This is the number of "outs" in the .td file,
178   /// and does not include implicit defs.
getNumDefs()179   unsigned getNumDefs() const {
180     return NumDefs;
181   }
182 
183   /// \brief Return flags of this instruction.
getFlags()184   unsigned getFlags() const { return Flags; }
185 
186   /// \brief Return true if this instruction can have a variable number of
187   /// operands.  In this case, the variable operands will be after the normal
188   /// operands but before the implicit definitions and uses (if any are
189   /// present).
isVariadic()190   bool isVariadic() const {
191     return Flags & (1 << MCID::Variadic);
192   }
193 
194   /// \brief Set if this instruction has an optional definition, e.g.
195   /// ARM instructions which can set condition code if 's' bit is set.
hasOptionalDef()196   bool hasOptionalDef() const {
197     return Flags & (1 << MCID::HasOptionalDef);
198   }
199 
200   /// \brief Return true if this is a pseudo instruction that doesn't
201   /// correspond to a real machine instruction.
202   ///
isPseudo()203   bool isPseudo() const {
204     return Flags & (1 << MCID::Pseudo);
205   }
206 
207   /// \brief Return true if the instruction is a return.
isReturn()208   bool isReturn() const {
209     return Flags & (1 << MCID::Return);
210   }
211 
212   /// \brief  Return true if the instruction is a call.
isCall()213   bool isCall() const {
214     return Flags & (1 << MCID::Call);
215   }
216 
217   /// \brief Returns true if the specified instruction stops control flow
218   /// from executing the instruction immediately following it.  Examples include
219   /// unconditional branches and return instructions.
isBarrier()220   bool isBarrier() const {
221     return Flags & (1 << MCID::Barrier);
222   }
223 
224   /// \brief Returns true if this instruction part of the terminator for
225   /// a basic block.  Typically this is things like return and branch
226   /// instructions.
227   ///
228   /// Various passes use this to insert code into the bottom of a basic block,
229   /// but before control flow occurs.
isTerminator()230   bool isTerminator() const {
231     return Flags & (1 << MCID::Terminator);
232   }
233 
234   /// \brief Returns true if this is a conditional, unconditional, or
235   /// indirect branch.  Predicates below can be used to discriminate between
236   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
237   /// get more information.
isBranch()238   bool isBranch() const {
239     return Flags & (1 << MCID::Branch);
240   }
241 
242   /// \brief Return true if this is an indirect branch, such as a
243   /// branch through a register.
isIndirectBranch()244   bool isIndirectBranch() const {
245     return Flags & (1 << MCID::IndirectBranch);
246   }
247 
248   /// \brief Return true if this is a branch which may fall
249   /// through to the next instruction or may transfer control flow to some other
250   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
251   /// information about this branch.
isConditionalBranch()252   bool isConditionalBranch() const {
253     return isBranch() & !isBarrier() & !isIndirectBranch();
254   }
255 
256   /// \brief Return true if this is a branch which always
257   /// transfers control flow to some other block.  The
258   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
259   /// about this branch.
isUnconditionalBranch()260   bool isUnconditionalBranch() const {
261     return isBranch() & isBarrier() & !isIndirectBranch();
262   }
263 
264   /// \brief Return true if this is a branch or an instruction which directly
265   /// writes to the program counter. Considered 'may' affect rather than
266   /// 'does' affect as things like predication are not taken into account.
mayAffectControlFlow(const MCInst & MI,const MCRegisterInfo & RI)267   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const {
268     if (isBranch() || isCall() || isReturn() || isIndirectBranch())
269       return true;
270     unsigned PC = RI.getProgramCounter();
271     if (PC == 0) return false;
272     return hasDefOfPhysReg(MI, PC, RI);
273   }
274 
275   /// \brief Return true if this instruction has a predicate operand
276   /// that controls execution. It may be set to 'always', or may be set to other
277   /// values. There are various methods in TargetInstrInfo that can be used to
278   /// control and modify the predicate in this instruction.
isPredicable()279   bool isPredicable() const {
280     return Flags & (1 << MCID::Predicable);
281   }
282 
283   /// \brief Return true if this instruction is a comparison.
isCompare()284   bool isCompare() const {
285     return Flags & (1 << MCID::Compare);
286   }
287 
288   /// \brief Return true if this instruction is a move immediate
289   /// (including conditional moves) instruction.
isMoveImmediate()290   bool isMoveImmediate() const {
291     return Flags & (1 << MCID::MoveImm);
292   }
293 
294   /// \brief Return true if this instruction is a bitcast instruction.
isBitcast()295   bool isBitcast() const {
296     return Flags & (1 << MCID::Bitcast);
297   }
298 
299   /// \brief Return true if this is a select instruction.
isSelect()300   bool isSelect() const {
301     return Flags & (1 << MCID::Select);
302   }
303 
304   /// \brief Return true if this instruction cannot be safely
305   /// duplicated.  For example, if the instruction has a unique labels attached
306   /// to it, duplicating it would cause multiple definition errors.
isNotDuplicable()307   bool isNotDuplicable() const {
308     return Flags & (1 << MCID::NotDuplicable);
309   }
310 
311   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
312   /// which must be filled by the code generator.
hasDelaySlot()313   bool hasDelaySlot() const {
314     return Flags & (1 << MCID::DelaySlot);
315   }
316 
317   /// canFoldAsLoad - Return true for instructions that can be folded as
318   /// memory operands in other instructions. The most common use for this
319   /// is instructions that are simple loads from memory that don't modify
320   /// the loaded value in any way, but it can also be used for instructions
321   /// that can be expressed as constant-pool loads, such as V_SETALLONES
322   /// on x86, to allow them to be folded when it is beneficial.
323   /// This should only be set on instructions that return a value in their
324   /// only virtual register definition.
canFoldAsLoad()325   bool canFoldAsLoad() const {
326     return Flags & (1 << MCID::FoldableAsLoad);
327   }
328 
329   //===--------------------------------------------------------------------===//
330   // Side Effect Analysis
331   //===--------------------------------------------------------------------===//
332 
333   /// \brief Return true if this instruction could possibly read memory.
334   /// Instructions with this flag set are not necessarily simple load
335   /// instructions, they may load a value and modify it, for example.
mayLoad()336   bool mayLoad() const {
337     return Flags & (1 << MCID::MayLoad);
338   }
339 
340 
341   /// \brief Return true if this instruction could possibly modify memory.
342   /// Instructions with this flag set are not necessarily simple store
343   /// instructions, they may store a modified value based on their operands, or
344   /// may not actually modify anything, for example.
mayStore()345   bool mayStore() const {
346     return Flags & (1 << MCID::MayStore);
347   }
348 
349   /// hasUnmodeledSideEffects - Return true if this instruction has side
350   /// effects that are not modeled by other flags.  This does not return true
351   /// for instructions whose effects are captured by:
352   ///
353   ///  1. Their operand list and implicit definition/use list.  Register use/def
354   ///     info is explicit for instructions.
355   ///  2. Memory accesses.  Use mayLoad/mayStore.
356   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
357   ///
358   /// Examples of side effects would be modifying 'invisible' machine state like
359   /// a control register, flushing a cache, modifying a register invisible to
360   /// LLVM, etc.
361   ///
hasUnmodeledSideEffects()362   bool hasUnmodeledSideEffects() const {
363     return Flags & (1 << MCID::UnmodeledSideEffects);
364   }
365 
366   //===--------------------------------------------------------------------===//
367   // Flags that indicate whether an instruction can be modified by a method.
368   //===--------------------------------------------------------------------===//
369 
370   /// isCommutable - Return true if this may be a 2- or 3-address
371   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
372   /// result if Y and Z are exchanged.  If this flag is set, then the
373   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
374   /// instruction.
375   ///
376   /// Note that this flag may be set on instructions that are only commutable
377   /// sometimes.  In these cases, the call to commuteInstruction will fail.
378   /// Also note that some instructions require non-trivial modification to
379   /// commute them.
isCommutable()380   bool isCommutable() const {
381     return Flags & (1 << MCID::Commutable);
382   }
383 
384   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
385   /// which can be changed into a 3-address instruction if needed.  Doing this
386   /// transformation can be profitable in the register allocator, because it
387   /// means that the instruction can use a 2-address form if possible, but
388   /// degrade into a less efficient form if the source and dest register cannot
389   /// be assigned to the same register.  For example, this allows the x86
390   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
391   /// is the same speed as the shift but has bigger code size.
392   ///
393   /// If this returns true, then the target must implement the
394   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
395   /// is allowed to fail if the transformation isn't valid for this specific
396   /// instruction (e.g. shl reg, 4 on x86).
397   ///
isConvertibleTo3Addr()398   bool isConvertibleTo3Addr() const {
399     return Flags & (1 << MCID::ConvertibleTo3Addr);
400   }
401 
402   /// usesCustomInsertionHook - Return true if this instruction requires
403   /// custom insertion support when the DAG scheduler is inserting it into a
404   /// machine basic block.  If this is true for the instruction, it basically
405   /// means that it is a pseudo instruction used at SelectionDAG time that is
406   /// expanded out into magic code by the target when MachineInstrs are formed.
407   ///
408   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
409   /// is used to insert this into the MachineBasicBlock.
usesCustomInsertionHook()410   bool usesCustomInsertionHook() const {
411     return Flags & (1 << MCID::UsesCustomInserter);
412   }
413 
414   /// hasPostISelHook - Return true if this instruction requires *adjustment*
415   /// after instruction selection by calling a target hook. For example, this
416   /// can be used to fill in ARM 's' optional operand depending on whether
417   /// the conditional flag register is used.
hasPostISelHook()418   bool hasPostISelHook() const {
419     return Flags & (1 << MCID::HasPostISelHook);
420   }
421 
422   /// isRematerializable - Returns true if this instruction is a candidate for
423   /// remat.  This flag is deprecated, please don't use it anymore.  If this
424   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
425   /// verify the instruction is really rematable.
isRematerializable()426   bool isRematerializable() const {
427     return Flags & (1 << MCID::Rematerializable);
428   }
429 
430   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
431   /// less) than a move instruction. This is useful during certain types of
432   /// optimizations (e.g., remat during two-address conversion or machine licm)
433   /// where we would like to remat or hoist the instruction, but not if it costs
434   /// more than moving the instruction into the appropriate register. Note, we
435   /// are not marking copies from and to the same register class with this flag.
isAsCheapAsAMove()436   bool isAsCheapAsAMove() const {
437     return Flags & (1 << MCID::CheapAsAMove);
438   }
439 
440   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
441   /// have special register allocation requirements that are not captured by the
442   /// operand register classes. e.g. ARM::STRD's two source registers must be an
443   /// even / odd pair, ARM::STM registers have to be in ascending order.
444   /// Post-register allocation passes should not attempt to change allocations
445   /// for sources of instructions with this flag.
hasExtraSrcRegAllocReq()446   bool hasExtraSrcRegAllocReq() const {
447     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
448   }
449 
450   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
451   /// have special register allocation requirements that are not captured by the
452   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
453   /// even / odd pair, ARM::LDM registers have to be in ascending order.
454   /// Post-register allocation passes should not attempt to change allocations
455   /// for definitions of instructions with this flag.
hasExtraDefRegAllocReq()456   bool hasExtraDefRegAllocReq() const {
457     return Flags & (1 << MCID::ExtraDefRegAllocReq);
458   }
459 
460 
461   /// getImplicitUses - Return a list of registers that are potentially
462   /// read by any instance of this machine instruction.  For example, on X86,
463   /// the "adc" instruction adds two register operands and adds the carry bit in
464   /// from the flags register.  In this case, the instruction is marked as
465   /// implicitly reading the flags.  Likewise, the variable shift instruction on
466   /// X86 is marked as implicitly reading the 'CL' register, which it always
467   /// does.
468   ///
469   /// This method returns null if the instruction has no implicit uses.
getImplicitUses()470   const uint16_t *getImplicitUses() const {
471     return ImplicitUses;
472   }
473 
474   /// \brief Return the number of implicit uses this instruction has.
getNumImplicitUses()475   unsigned getNumImplicitUses() const {
476     if (ImplicitUses == 0) return 0;
477     unsigned i = 0;
478     for (; ImplicitUses[i]; ++i) /*empty*/;
479     return i;
480   }
481 
482   /// getImplicitDefs - Return a list of registers that are potentially
483   /// written by any instance of this machine instruction.  For example, on X86,
484   /// many instructions implicitly set the flags register.  In this case, they
485   /// are marked as setting the FLAGS.  Likewise, many instructions always
486   /// deposit their result in a physical register.  For example, the X86 divide
487   /// instruction always deposits the quotient and remainder in the EAX/EDX
488   /// registers.  For that instruction, this will return a list containing the
489   /// EAX/EDX/EFLAGS registers.
490   ///
491   /// This method returns null if the instruction has no implicit defs.
getImplicitDefs()492   const uint16_t *getImplicitDefs() const {
493     return ImplicitDefs;
494   }
495 
496   /// \brief Return the number of implicit defs this instruct has.
getNumImplicitDefs()497   unsigned getNumImplicitDefs() const {
498     if (ImplicitDefs == 0) return 0;
499     unsigned i = 0;
500     for (; ImplicitDefs[i]; ++i) /*empty*/;
501     return i;
502   }
503 
504   /// \brief Return true if this instruction implicitly
505   /// uses the specified physical register.
hasImplicitUseOfPhysReg(unsigned Reg)506   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
507     if (const uint16_t *ImpUses = ImplicitUses)
508       for (; *ImpUses; ++ImpUses)
509         if (*ImpUses == Reg) return true;
510     return false;
511   }
512 
513   /// \brief Return true if this instruction implicitly
514   /// defines the specified physical register.
515   bool hasImplicitDefOfPhysReg(unsigned Reg,
516                                const MCRegisterInfo *MRI = 0) const {
517     if (const uint16_t *ImpDefs = ImplicitDefs)
518       for (; *ImpDefs; ++ImpDefs)
519         if (*ImpDefs == Reg || (MRI && MRI->isSubRegister(Reg, *ImpDefs)))
520             return true;
521     return false;
522   }
523 
524   /// \brief Return true if this instruction defines the specified physical
525   /// register, either explicitly or implicitly.
hasDefOfPhysReg(const MCInst & MI,unsigned Reg,const MCRegisterInfo & RI)526   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
527                        const MCRegisterInfo &RI) const {
528     for (int i = 0, e = NumDefs; i != e; ++i)
529       if (MI.getOperand(i).isReg() &&
530           RI.isSubRegisterEq(Reg, MI.getOperand(i).getReg()))
531         return true;
532     return hasImplicitDefOfPhysReg(Reg, &RI);
533   }
534 
535   /// \brief Return the scheduling class for this instruction.  The
536   /// scheduling class is an index into the InstrItineraryData table.  This
537   /// returns zero if there is no known scheduling information for the
538   /// instruction.
getSchedClass()539   unsigned getSchedClass() const {
540     return SchedClass;
541   }
542 
543   /// \brief Return the number of bytes in the encoding of this instruction,
544   /// or zero if the encoding size cannot be known from the opcode.
getSize()545   unsigned getSize() const {
546     return Size;
547   }
548 
549   /// \brief Find the index of the first operand in the
550   /// operand list that is used to represent the predicate. It returns -1 if
551   /// none is found.
findFirstPredOperandIdx()552   int findFirstPredOperandIdx() const {
553     if (isPredicable()) {
554       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
555         if (OpInfo[i].isPredicate())
556           return i;
557     }
558     return -1;
559   }
560 };
561 
562 } // end namespace llvm
563 
564 #endif
565