1 /*
2 ***************************************************************************
3 * Copyright (C) 1999-2012 International Business Machines Corporation
4 * and others. All rights reserved.
5 ***************************************************************************
6 */
7 //
8 // file: rbbi.c Contains the implementation of the rule based break iterator
9 // runtime engine and the API implementation for
10 // class RuleBasedBreakIterator
11 //
12
13 #include "utypeinfo.h" // for 'typeid' to work
14
15 #include "unicode/utypes.h"
16
17 #if !UCONFIG_NO_BREAK_ITERATION
18
19 #include "unicode/rbbi.h"
20 #include "unicode/schriter.h"
21 #include "unicode/uchriter.h"
22 #include "unicode/udata.h"
23 #include "unicode/uclean.h"
24 #include "rbbidata.h"
25 #include "rbbirb.h"
26 #include "cmemory.h"
27 #include "cstring.h"
28 #include "umutex.h"
29 #include "ucln_cmn.h"
30 #include "brkeng.h"
31
32 #include "uassert.h"
33 #include "uvector.h"
34
35 // if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included.
36 #if U_LOCAL_SERVICE_HOOK
37 #include "localsvc.h"
38 #endif
39
40 #ifdef RBBI_DEBUG
41 static UBool fTrace = FALSE;
42 #endif
43
44 U_NAMESPACE_BEGIN
45
46 // The state number of the starting state
47 #define START_STATE 1
48
49 // The state-transition value indicating "stop"
50 #define STOP_STATE 0
51
52
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)53 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
54
55
56 //=======================================================================
57 // constructors
58 //=======================================================================
59
60 /**
61 * Constructs a RuleBasedBreakIterator that uses the already-created
62 * tables object that is passed in as a parameter.
63 */
64 RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
65 {
66 init();
67 fData = new RBBIDataWrapper(data, status); // status checked in constructor
68 if (U_FAILURE(status)) {return;}
69 if(fData == 0) {
70 status = U_MEMORY_ALLOCATION_ERROR;
71 return;
72 }
73 }
74
75 /**
76 * Same as above but does not adopt memory
77 */
RuleBasedBreakIterator(const RBBIDataHeader * data,enum EDontAdopt,UErrorCode & status)78 RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader* data, enum EDontAdopt, UErrorCode &status)
79 {
80 init();
81 fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); // status checked in constructor
82 if (U_FAILURE(status)) {return;}
83 if(fData == 0) {
84 status = U_MEMORY_ALLOCATION_ERROR;
85 return;
86 }
87 }
88
89
90 //
91 // Construct from precompiled binary rules (tables). This constructor is public API,
92 // taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
93 //
RuleBasedBreakIterator(const uint8_t * compiledRules,uint32_t ruleLength,UErrorCode & status)94 RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
95 uint32_t ruleLength,
96 UErrorCode &status) {
97 init();
98 if (U_FAILURE(status)) {
99 return;
100 }
101 if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) {
102 status = U_ILLEGAL_ARGUMENT_ERROR;
103 return;
104 }
105 const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules;
106 if (data->fLength > ruleLength) {
107 status = U_ILLEGAL_ARGUMENT_ERROR;
108 return;
109 }
110 fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
111 if (U_FAILURE(status)) {return;}
112 if(fData == 0) {
113 status = U_MEMORY_ALLOCATION_ERROR;
114 return;
115 }
116 }
117
118
119 //-------------------------------------------------------------------------------
120 //
121 // Constructor from a UDataMemory handle to precompiled break rules
122 // stored in an ICU data file.
123 //
124 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(UDataMemory * udm,UErrorCode & status)125 RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
126 {
127 init();
128 fData = new RBBIDataWrapper(udm, status); // status checked in constructor
129 if (U_FAILURE(status)) {return;}
130 if(fData == 0) {
131 status = U_MEMORY_ALLOCATION_ERROR;
132 return;
133 }
134 }
135
136
137
138 //-------------------------------------------------------------------------------
139 //
140 // Constructor from a set of rules supplied as a string.
141 //
142 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(const UnicodeString & rules,UParseError & parseError,UErrorCode & status)143 RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules,
144 UParseError &parseError,
145 UErrorCode &status)
146 {
147 init();
148 if (U_FAILURE(status)) {return;}
149 RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
150 RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
151 // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that
152 // creates and returns a complete RBBI. From here, in a constructor, we
153 // can't just return the object created by the builder factory, hence
154 // the assignment of the factory created object to "this".
155 if (U_SUCCESS(status)) {
156 *this = *bi;
157 delete bi;
158 }
159 }
160
161
162 //-------------------------------------------------------------------------------
163 //
164 // Default Constructor. Create an empty shell that can be set up later.
165 // Used when creating a RuleBasedBreakIterator from a set
166 // of rules.
167 //-------------------------------------------------------------------------------
RuleBasedBreakIterator()168 RuleBasedBreakIterator::RuleBasedBreakIterator() {
169 init();
170 }
171
172
173 //-------------------------------------------------------------------------------
174 //
175 // Copy constructor. Will produce a break iterator with the same behavior,
176 // and which iterates over the same text, as the one passed in.
177 //
178 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(const RuleBasedBreakIterator & other)179 RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
180 : BreakIterator(other)
181 {
182 this->init();
183 *this = other;
184 }
185
186
187 /**
188 * Destructor
189 */
~RuleBasedBreakIterator()190 RuleBasedBreakIterator::~RuleBasedBreakIterator() {
191 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
192 // fCharIter was adopted from the outside.
193 delete fCharIter;
194 }
195 fCharIter = NULL;
196 delete fSCharIter;
197 fCharIter = NULL;
198 delete fDCharIter;
199 fDCharIter = NULL;
200
201 utext_close(fText);
202
203 if (fData != NULL) {
204 fData->removeReference();
205 fData = NULL;
206 }
207 if (fCachedBreakPositions) {
208 uprv_free(fCachedBreakPositions);
209 fCachedBreakPositions = NULL;
210 }
211 if (fLanguageBreakEngines) {
212 delete fLanguageBreakEngines;
213 fLanguageBreakEngines = NULL;
214 }
215 if (fUnhandledBreakEngine) {
216 delete fUnhandledBreakEngine;
217 fUnhandledBreakEngine = NULL;
218 }
219 }
220
221 /**
222 * Assignment operator. Sets this iterator to have the same behavior,
223 * and iterate over the same text, as the one passed in.
224 */
225 RuleBasedBreakIterator&
operator =(const RuleBasedBreakIterator & that)226 RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
227 if (this == &that) {
228 return *this;
229 }
230 reset(); // Delete break cache information
231 fBreakType = that.fBreakType;
232 if (fLanguageBreakEngines != NULL) {
233 delete fLanguageBreakEngines;
234 fLanguageBreakEngines = NULL; // Just rebuild for now
235 }
236 // TODO: clone fLanguageBreakEngines from "that"
237 UErrorCode status = U_ZERO_ERROR;
238 fText = utext_clone(fText, that.fText, FALSE, TRUE, &status);
239
240 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
241 delete fCharIter;
242 }
243 fCharIter = NULL;
244
245 if (that.fCharIter != NULL ) {
246 // This is a little bit tricky - it will intially appear that
247 // this->fCharIter is adopted, even if that->fCharIter was
248 // not adopted. That's ok.
249 fCharIter = that.fCharIter->clone();
250 }
251
252 if (fData != NULL) {
253 fData->removeReference();
254 fData = NULL;
255 }
256 if (that.fData != NULL) {
257 fData = that.fData->addReference();
258 }
259
260 return *this;
261 }
262
263
264
265 //-----------------------------------------------------------------------------
266 //
267 // init() Shared initialization routine. Used by all the constructors.
268 // Initializes all fields, leaving the object in a consistent state.
269 //
270 //-----------------------------------------------------------------------------
init()271 void RuleBasedBreakIterator::init() {
272 UErrorCode status = U_ZERO_ERROR;
273 fBufferClone = FALSE;
274 fText = utext_openUChars(NULL, NULL, 0, &status);
275 fCharIter = NULL;
276 fSCharIter = NULL;
277 fDCharIter = NULL;
278 fData = NULL;
279 fLastRuleStatusIndex = 0;
280 fLastStatusIndexValid = TRUE;
281 fDictionaryCharCount = 0;
282 fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable
283 // dictionary behavior for Break Iterators that are
284 // built from rules. Even better would be the ability to
285 // declare the type in the rules.
286
287 fCachedBreakPositions = NULL;
288 fLanguageBreakEngines = NULL;
289 fUnhandledBreakEngine = NULL;
290 fNumCachedBreakPositions = 0;
291 fPositionInCache = 0;
292
293 #ifdef RBBI_DEBUG
294 static UBool debugInitDone = FALSE;
295 if (debugInitDone == FALSE) {
296 char *debugEnv = getenv("U_RBBIDEBUG");
297 if (debugEnv && uprv_strstr(debugEnv, "trace")) {
298 fTrace = TRUE;
299 }
300 debugInitDone = TRUE;
301 }
302 #endif
303 }
304
305
306
307 //-----------------------------------------------------------------------------
308 //
309 // clone - Returns a newly-constructed RuleBasedBreakIterator with the same
310 // behavior, and iterating over the same text, as this one.
311 // Virtual function: does the right thing with subclasses.
312 //
313 //-----------------------------------------------------------------------------
314 BreakIterator*
clone(void) const315 RuleBasedBreakIterator::clone(void) const {
316 return new RuleBasedBreakIterator(*this);
317 }
318
319 /**
320 * Equality operator. Returns TRUE if both BreakIterators are of the
321 * same class, have the same behavior, and iterate over the same text.
322 */
323 UBool
operator ==(const BreakIterator & that) const324 RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
325 if (typeid(*this) != typeid(that)) {
326 return FALSE;
327 }
328
329 const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
330
331 if (!utext_equals(fText, that2.fText)) {
332 // The two break iterators are operating on different text,
333 // or have a different interation position.
334 return FALSE;
335 };
336
337 // TODO: need a check for when in a dictionary region at different offsets.
338
339 if (that2.fData == fData ||
340 (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
341 // The two break iterators are using the same rules.
342 return TRUE;
343 }
344 return FALSE;
345 }
346
347 /**
348 * Compute a hash code for this BreakIterator
349 * @return A hash code
350 */
351 int32_t
hashCode(void) const352 RuleBasedBreakIterator::hashCode(void) const {
353 int32_t hash = 0;
354 if (fData != NULL) {
355 hash = fData->hashCode();
356 }
357 return hash;
358 }
359
360
setText(UText * ut,UErrorCode & status)361 void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
362 if (U_FAILURE(status)) {
363 return;
364 }
365 reset();
366 fText = utext_clone(fText, ut, FALSE, TRUE, &status);
367
368 // Set up a dummy CharacterIterator to be returned if anyone
369 // calls getText(). With input from UText, there is no reasonable
370 // way to return a characterIterator over the actual input text.
371 // Return one over an empty string instead - this is the closest
372 // we can come to signaling a failure.
373 // (GetText() is obsolete, this failure is sort of OK)
374 if (fDCharIter == NULL) {
375 static const UChar c = 0;
376 fDCharIter = new UCharCharacterIterator(&c, 0);
377 if (fDCharIter == NULL) {
378 status = U_MEMORY_ALLOCATION_ERROR;
379 return;
380 }
381 }
382
383 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
384 // existing fCharIter was adopted from the outside. Delete it now.
385 delete fCharIter;
386 }
387 fCharIter = fDCharIter;
388
389 this->first();
390 }
391
392
getUText(UText * fillIn,UErrorCode & status) const393 UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
394 UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status);
395 return result;
396 }
397
398
399
400 /**
401 * Returns the description used to create this iterator
402 */
403 const UnicodeString&
getRules() const404 RuleBasedBreakIterator::getRules() const {
405 if (fData != NULL) {
406 return fData->getRuleSourceString();
407 } else {
408 static const UnicodeString *s;
409 if (s == NULL) {
410 // TODO: something more elegant here.
411 // perhaps API should return the string by value.
412 // Note: thread unsafe init & leak are semi-ok, better than
413 // what was before. Sould be cleaned up, though.
414 s = new UnicodeString;
415 }
416 return *s;
417 }
418 }
419
420 //=======================================================================
421 // BreakIterator overrides
422 //=======================================================================
423
424 /**
425 * Return a CharacterIterator over the text being analyzed.
426 */
427 CharacterIterator&
getText() const428 RuleBasedBreakIterator::getText() const {
429 return *fCharIter;
430 }
431
432 /**
433 * Set the iterator to analyze a new piece of text. This function resets
434 * the current iteration position to the beginning of the text.
435 * @param newText An iterator over the text to analyze.
436 */
437 void
adoptText(CharacterIterator * newText)438 RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
439 // If we are holding a CharacterIterator adopted from a
440 // previous call to this function, delete it now.
441 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
442 delete fCharIter;
443 }
444
445 fCharIter = newText;
446 UErrorCode status = U_ZERO_ERROR;
447 reset();
448 if (newText==NULL || newText->startIndex() != 0) {
449 // startIndex !=0 wants to be an error, but there's no way to report it.
450 // Make the iterator text be an empty string.
451 fText = utext_openUChars(fText, NULL, 0, &status);
452 } else {
453 fText = utext_openCharacterIterator(fText, newText, &status);
454 }
455 this->first();
456 }
457
458 /**
459 * Set the iterator to analyze a new piece of text. This function resets
460 * the current iteration position to the beginning of the text.
461 * @param newText An iterator over the text to analyze.
462 */
463 void
setText(const UnicodeString & newText)464 RuleBasedBreakIterator::setText(const UnicodeString& newText) {
465 UErrorCode status = U_ZERO_ERROR;
466 reset();
467 fText = utext_openConstUnicodeString(fText, &newText, &status);
468
469 // Set up a character iterator on the string.
470 // Needed in case someone calls getText().
471 // Can not, unfortunately, do this lazily on the (probably never)
472 // call to getText(), because getText is const.
473 if (fSCharIter == NULL) {
474 fSCharIter = new StringCharacterIterator(newText);
475 } else {
476 fSCharIter->setText(newText);
477 }
478
479 if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
480 // old fCharIter was adopted from the outside. Delete it.
481 delete fCharIter;
482 }
483 fCharIter = fSCharIter;
484
485 this->first();
486 }
487
488
489 /**
490 * Provide a new UText for the input text. Must reference text with contents identical
491 * to the original.
492 * Intended for use with text data originating in Java (garbage collected) environments
493 * where the data may be moved in memory at arbitrary times.
494 */
refreshInputText(UText * input,UErrorCode & status)495 RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) {
496 if (U_FAILURE(status)) {
497 return *this;
498 }
499 if (input == NULL) {
500 status = U_ILLEGAL_ARGUMENT_ERROR;
501 return *this;
502 }
503 int64_t pos = utext_getNativeIndex(fText);
504 // Shallow read-only clone of the new UText into the existing input UText
505 fText = utext_clone(fText, input, FALSE, TRUE, &status);
506 if (U_FAILURE(status)) {
507 return *this;
508 }
509 utext_setNativeIndex(fText, pos);
510 if (utext_getNativeIndex(fText) != pos) {
511 // Sanity check. The new input utext is supposed to have the exact same
512 // contents as the old. If we can't set to the same position, it doesn't.
513 // The contents underlying the old utext might be invalid at this point,
514 // so it's not safe to check directly.
515 status = U_ILLEGAL_ARGUMENT_ERROR;
516 }
517 return *this;
518 }
519
520
521 /**
522 * Sets the current iteration position to the beginning of the text.
523 * @return The offset of the beginning of the text.
524 */
first(void)525 int32_t RuleBasedBreakIterator::first(void) {
526 reset();
527 fLastRuleStatusIndex = 0;
528 fLastStatusIndexValid = TRUE;
529 //if (fText == NULL)
530 // return BreakIterator::DONE;
531
532 utext_setNativeIndex(fText, 0);
533 return 0;
534 }
535
536 /**
537 * Sets the current iteration position to the end of the text.
538 * @return The text's past-the-end offset.
539 */
last(void)540 int32_t RuleBasedBreakIterator::last(void) {
541 reset();
542 if (fText == NULL) {
543 fLastRuleStatusIndex = 0;
544 fLastStatusIndexValid = TRUE;
545 return BreakIterator::DONE;
546 }
547
548 fLastStatusIndexValid = FALSE;
549 int32_t pos = (int32_t)utext_nativeLength(fText);
550 utext_setNativeIndex(fText, pos);
551 return pos;
552 }
553
554 /**
555 * Advances the iterator either forward or backward the specified number of steps.
556 * Negative values move backward, and positive values move forward. This is
557 * equivalent to repeatedly calling next() or previous().
558 * @param n The number of steps to move. The sign indicates the direction
559 * (negative is backwards, and positive is forwards).
560 * @return The character offset of the boundary position n boundaries away from
561 * the current one.
562 */
next(int32_t n)563 int32_t RuleBasedBreakIterator::next(int32_t n) {
564 int32_t result = current();
565 while (n > 0) {
566 result = next();
567 --n;
568 }
569 while (n < 0) {
570 result = previous();
571 ++n;
572 }
573 return result;
574 }
575
576 /**
577 * Advances the iterator to the next boundary position.
578 * @return The position of the first boundary after this one.
579 */
next(void)580 int32_t RuleBasedBreakIterator::next(void) {
581 // if we have cached break positions and we're still in the range
582 // covered by them, just move one step forward in the cache
583 if (fCachedBreakPositions != NULL) {
584 if (fPositionInCache < fNumCachedBreakPositions - 1) {
585 ++fPositionInCache;
586 int32_t pos = fCachedBreakPositions[fPositionInCache];
587 utext_setNativeIndex(fText, pos);
588 return pos;
589 }
590 else {
591 reset();
592 }
593 }
594
595 int32_t startPos = current();
596 int32_t result = handleNext(fData->fForwardTable);
597 if (fDictionaryCharCount > 0) {
598 result = checkDictionary(startPos, result, FALSE);
599 }
600 return result;
601 }
602
603 /**
604 * Advances the iterator backwards, to the last boundary preceding this one.
605 * @return The position of the last boundary position preceding this one.
606 */
previous(void)607 int32_t RuleBasedBreakIterator::previous(void) {
608 int32_t result;
609 int32_t startPos;
610
611 // if we have cached break positions and we're still in the range
612 // covered by them, just move one step backward in the cache
613 if (fCachedBreakPositions != NULL) {
614 if (fPositionInCache > 0) {
615 --fPositionInCache;
616 // If we're at the beginning of the cache, need to reevaluate the
617 // rule status
618 if (fPositionInCache <= 0) {
619 fLastStatusIndexValid = FALSE;
620 }
621 int32_t pos = fCachedBreakPositions[fPositionInCache];
622 utext_setNativeIndex(fText, pos);
623 return pos;
624 }
625 else {
626 reset();
627 }
628 }
629
630 // if we're already sitting at the beginning of the text, return DONE
631 if (fText == NULL || (startPos = current()) == 0) {
632 fLastRuleStatusIndex = 0;
633 fLastStatusIndexValid = TRUE;
634 return BreakIterator::DONE;
635 }
636
637 if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) {
638 result = handlePrevious(fData->fReverseTable);
639 if (fDictionaryCharCount > 0) {
640 result = checkDictionary(result, startPos, TRUE);
641 }
642 return result;
643 }
644
645 // old rule syntax
646 // set things up. handlePrevious() will back us up to some valid
647 // break position before the current position (we back our internal
648 // iterator up one step to prevent handlePrevious() from returning
649 // the current position), but not necessarily the last one before
650
651 // where we started
652
653 int32_t start = current();
654
655 (void)UTEXT_PREVIOUS32(fText);
656 int32_t lastResult = handlePrevious(fData->fReverseTable);
657 if (lastResult == UBRK_DONE) {
658 lastResult = 0;
659 utext_setNativeIndex(fText, 0);
660 }
661 result = lastResult;
662 int32_t lastTag = 0;
663 UBool breakTagValid = FALSE;
664
665 // iterate forward from the known break position until we pass our
666 // starting point. The last break position before the starting
667 // point is our return value
668
669 for (;;) {
670 result = next();
671 if (result == BreakIterator::DONE || result >= start) {
672 break;
673 }
674 lastResult = result;
675 lastTag = fLastRuleStatusIndex;
676 breakTagValid = TRUE;
677 }
678
679 // fLastBreakTag wants to have the value for section of text preceding
680 // the result position that we are to return (in lastResult.) If
681 // the backwards rules overshot and the above loop had to do two or more
682 // next()s to move up to the desired return position, we will have a valid
683 // tag value. But, if handlePrevious() took us to exactly the correct result positon,
684 // we wont have a tag value for that position, which is only set by handleNext().
685
686 // set the current iteration position to be the last break position
687 // before where we started, and then return that value
688 utext_setNativeIndex(fText, lastResult);
689 fLastRuleStatusIndex = lastTag; // for use by getRuleStatus()
690 fLastStatusIndexValid = breakTagValid;
691
692 // No need to check the dictionary; it will have been handled by
693 // next()
694
695 return lastResult;
696 }
697
698 /**
699 * Sets the iterator to refer to the first boundary position following
700 * the specified position.
701 * @offset The position from which to begin searching for a break position.
702 * @return The position of the first break after the current position.
703 */
following(int32_t offset)704 int32_t RuleBasedBreakIterator::following(int32_t offset) {
705 // if we have cached break positions and offset is in the range
706 // covered by them, use them
707 // TODO: could use binary search
708 // TODO: what if offset is outside range, but break is not?
709 if (fCachedBreakPositions != NULL) {
710 if (offset >= fCachedBreakPositions[0]
711 && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
712 fPositionInCache = 0;
713 // We are guaranteed not to leave the array due to range test above
714 while (offset >= fCachedBreakPositions[fPositionInCache]) {
715 ++fPositionInCache;
716 }
717 int32_t pos = fCachedBreakPositions[fPositionInCache];
718 utext_setNativeIndex(fText, pos);
719 return pos;
720 }
721 else {
722 reset();
723 }
724 }
725
726 // if the offset passed in is already past the end of the text,
727 // just return DONE; if it's before the beginning, return the
728 // text's starting offset
729 fLastRuleStatusIndex = 0;
730 fLastStatusIndexValid = TRUE;
731 if (fText == NULL || offset >= utext_nativeLength(fText)) {
732 last();
733 return next();
734 }
735 else if (offset < 0) {
736 return first();
737 }
738
739 // otherwise, set our internal iteration position (temporarily)
740 // to the position passed in. If this is the _beginning_ position,
741 // then we can just use next() to get our return value
742
743 int32_t result = 0;
744
745 if (fData->fSafeRevTable != NULL) {
746 // new rule syntax
747 utext_setNativeIndex(fText, offset);
748 // move forward one codepoint to prepare for moving back to a
749 // safe point.
750 // this handles offset being between a supplementary character
751 (void)UTEXT_NEXT32(fText);
752 // handlePrevious will move most of the time to < 1 boundary away
753 handlePrevious(fData->fSafeRevTable);
754 int32_t result = next();
755 while (result <= offset) {
756 result = next();
757 }
758 return result;
759 }
760 if (fData->fSafeFwdTable != NULL) {
761 // backup plan if forward safe table is not available
762 utext_setNativeIndex(fText, offset);
763 (void)UTEXT_PREVIOUS32(fText);
764 // handle next will give result >= offset
765 handleNext(fData->fSafeFwdTable);
766 // previous will give result 0 or 1 boundary away from offset,
767 // most of the time
768 // we have to
769 int32_t oldresult = previous();
770 while (oldresult > offset) {
771 int32_t result = previous();
772 if (result <= offset) {
773 return oldresult;
774 }
775 oldresult = result;
776 }
777 int32_t result = next();
778 if (result <= offset) {
779 return next();
780 }
781 return result;
782 }
783 // otherwise, we have to sync up first. Use handlePrevious() to back
784 // up to a known break position before the specified position (if
785 // we can determine that the specified position is a break position,
786 // we don't back up at all). This may or may not be the last break
787 // position at or before our starting position. Advance forward
788 // from here until we've passed the starting position. The position
789 // we stop on will be the first break position after the specified one.
790 // old rule syntax
791
792 utext_setNativeIndex(fText, offset);
793 if (offset==0 ||
794 (offset==1 && utext_getNativeIndex(fText)==0)) {
795 return next();
796 }
797 result = previous();
798
799 while (result != BreakIterator::DONE && result <= offset) {
800 result = next();
801 }
802
803 return result;
804 }
805
806 /**
807 * Sets the iterator to refer to the last boundary position before the
808 * specified position.
809 * @offset The position to begin searching for a break from.
810 * @return The position of the last boundary before the starting position.
811 */
preceding(int32_t offset)812 int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
813 // if we have cached break positions and offset is in the range
814 // covered by them, use them
815 if (fCachedBreakPositions != NULL) {
816 // TODO: binary search?
817 // TODO: What if offset is outside range, but break is not?
818 if (offset > fCachedBreakPositions[0]
819 && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
820 fPositionInCache = 0;
821 while (fPositionInCache < fNumCachedBreakPositions
822 && offset > fCachedBreakPositions[fPositionInCache])
823 ++fPositionInCache;
824 --fPositionInCache;
825 // If we're at the beginning of the cache, need to reevaluate the
826 // rule status
827 if (fPositionInCache <= 0) {
828 fLastStatusIndexValid = FALSE;
829 }
830 utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]);
831 return fCachedBreakPositions[fPositionInCache];
832 }
833 else {
834 reset();
835 }
836 }
837
838 // if the offset passed in is already past the end of the text,
839 // just return DONE; if it's before the beginning, return the
840 // text's starting offset
841 if (fText == NULL || offset > utext_nativeLength(fText)) {
842 // return BreakIterator::DONE;
843 return last();
844 }
845 else if (offset < 0) {
846 return first();
847 }
848
849 // if we start by updating the current iteration position to the
850 // position specified by the caller, we can just use previous()
851 // to carry out this operation
852
853 if (fData->fSafeFwdTable != NULL) {
854 // new rule syntax
855 utext_setNativeIndex(fText, offset);
856 int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
857 if (newOffset != offset) {
858 // Will come here if specified offset was not a code point boundary AND
859 // the underlying implmentation is using UText, which snaps any non-code-point-boundary
860 // indices to the containing code point.
861 // For breakitereator::preceding only, these non-code-point indices need to be moved
862 // up to refer to the following codepoint.
863 (void)UTEXT_NEXT32(fText);
864 offset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
865 }
866
867 // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair,
868 // rather than adjusting the position unconditionally?
869 // (Change would interact with safe rules.)
870 // TODO: change RBBI behavior for off-boundary indices to match that of UText?
871 // affects only preceding(), seems cleaner, but is slightly different.
872 (void)UTEXT_PREVIOUS32(fText);
873 handleNext(fData->fSafeFwdTable);
874 int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
875 while (result >= offset) {
876 result = previous();
877 }
878 return result;
879 }
880 if (fData->fSafeRevTable != NULL) {
881 // backup plan if forward safe table is not available
882 // TODO: check whether this path can be discarded
883 // It's probably OK to say that rules must supply both safe tables
884 // if they use safe tables at all. We have certainly never described
885 // to anyone how to work with just one safe table.
886 utext_setNativeIndex(fText, offset);
887 (void)UTEXT_NEXT32(fText);
888
889 // handle previous will give result <= offset
890 handlePrevious(fData->fSafeRevTable);
891
892 // next will give result 0 or 1 boundary away from offset,
893 // most of the time
894 // we have to
895 int32_t oldresult = next();
896 while (oldresult < offset) {
897 int32_t result = next();
898 if (result >= offset) {
899 return oldresult;
900 }
901 oldresult = result;
902 }
903 int32_t result = previous();
904 if (result >= offset) {
905 return previous();
906 }
907 return result;
908 }
909
910 // old rule syntax
911 utext_setNativeIndex(fText, offset);
912 return previous();
913 }
914
915 /**
916 * Returns true if the specfied position is a boundary position. As a side
917 * effect, leaves the iterator pointing to the first boundary position at
918 * or after "offset".
919 * @param offset the offset to check.
920 * @return True if "offset" is a boundary position.
921 */
isBoundary(int32_t offset)922 UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
923 // the beginning index of the iterator is always a boundary position by definition
924 if (offset == 0) {
925 first(); // For side effects on current position, tag values.
926 return TRUE;
927 }
928
929 if (offset == (int32_t)utext_nativeLength(fText)) {
930 last(); // For side effects on current position, tag values.
931 return TRUE;
932 }
933
934 // out-of-range indexes are never boundary positions
935 if (offset < 0) {
936 first(); // For side effects on current position, tag values.
937 return FALSE;
938 }
939
940 if (offset > utext_nativeLength(fText)) {
941 last(); // For side effects on current position, tag values.
942 return FALSE;
943 }
944
945 // otherwise, we can use following() on the position before the specified
946 // one and return true if the position we get back is the one the user
947 // specified
948 utext_previous32From(fText, offset);
949 int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText);
950 UBool result = following(backOne) == offset;
951 return result;
952 }
953
954 /**
955 * Returns the current iteration position.
956 * @return The current iteration position.
957 */
current(void) const958 int32_t RuleBasedBreakIterator::current(void) const {
959 int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
960 return pos;
961 }
962
963 //=======================================================================
964 // implementation
965 //=======================================================================
966
967 //
968 // RBBIRunMode - the state machine runs an extra iteration at the beginning and end
969 // of user text. A variable with this enum type keeps track of where we
970 // are. The state machine only fetches user input while in the RUN mode.
971 //
972 enum RBBIRunMode {
973 RBBI_START, // state machine processing is before first char of input
974 RBBI_RUN, // state machine processing is in the user text
975 RBBI_END // state machine processing is after end of user text.
976 };
977
978
979 //-----------------------------------------------------------------------------------
980 //
981 // handleNext(stateTable)
982 // This method is the actual implementation of the rbbi next() method.
983 // This method initializes the state machine to state 1
984 // and advances through the text character by character until we reach the end
985 // of the text or the state machine transitions to state 0. We update our return
986 // value every time the state machine passes through an accepting state.
987 //
988 //-----------------------------------------------------------------------------------
handleNext(const RBBIStateTable * statetable)989 int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) {
990 int32_t state;
991 uint16_t category = 0;
992 RBBIRunMode mode;
993
994 RBBIStateTableRow *row;
995 UChar32 c;
996 int32_t lookaheadStatus = 0;
997 int32_t lookaheadTagIdx = 0;
998 int32_t result = 0;
999 int32_t initialPosition = 0;
1000 int32_t lookaheadResult = 0;
1001 UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
1002 const char *tableData = statetable->fTableData;
1003 uint32_t tableRowLen = statetable->fRowLen;
1004
1005 #ifdef RBBI_DEBUG
1006 if (fTrace) {
1007 RBBIDebugPuts("Handle Next pos char state category");
1008 }
1009 #endif
1010
1011 // No matter what, handleNext alway correctly sets the break tag value.
1012 fLastStatusIndexValid = TRUE;
1013 fLastRuleStatusIndex = 0;
1014
1015 // if we're already at the end of the text, return DONE.
1016 initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1017 result = initialPosition;
1018 c = UTEXT_NEXT32(fText);
1019 if (fData == NULL || c==U_SENTINEL) {
1020 return BreakIterator::DONE;
1021 }
1022
1023 // Set the initial state for the state machine
1024 state = START_STATE;
1025 row = (RBBIStateTableRow *)
1026 //(statetable->fTableData + (statetable->fRowLen * state));
1027 (tableData + tableRowLen * state);
1028
1029
1030 mode = RBBI_RUN;
1031 if (statetable->fFlags & RBBI_BOF_REQUIRED) {
1032 category = 2;
1033 mode = RBBI_START;
1034 }
1035
1036
1037 // loop until we reach the end of the text or transition to state 0
1038 //
1039 for (;;) {
1040 if (c == U_SENTINEL) {
1041 // Reached end of input string.
1042 if (mode == RBBI_END) {
1043 // We have already run the loop one last time with the
1044 // character set to the psueudo {eof} value. Now it is time
1045 // to unconditionally bail out.
1046 if (lookaheadResult > result) {
1047 // We ran off the end of the string with a pending look-ahead match.
1048 // Treat this as if the look-ahead condition had been met, and return
1049 // the match at the / position from the look-ahead rule.
1050 result = lookaheadResult;
1051 fLastRuleStatusIndex = lookaheadTagIdx;
1052 lookaheadStatus = 0;
1053 }
1054 break;
1055 }
1056 // Run the loop one last time with the fake end-of-input character category.
1057 mode = RBBI_END;
1058 category = 1;
1059 }
1060
1061 //
1062 // Get the char category. An incoming category of 1 or 2 means that
1063 // we are preset for doing the beginning or end of input, and
1064 // that we shouldn't get a category from an actual text input character.
1065 //
1066 if (mode == RBBI_RUN) {
1067 // look up the current character's character category, which tells us
1068 // which column in the state table to look at.
1069 // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
1070 // not the size of the character going in, which is a UChar32.
1071 //
1072 UTRIE_GET16(&fData->fTrie, c, category);
1073
1074 // Check the dictionary bit in the character's category.
1075 // Counter is only used by dictionary based iterators (subclasses).
1076 // Chars that need to be handled by a dictionary have a flag bit set
1077 // in their category values.
1078 //
1079 if ((category & 0x4000) != 0) {
1080 fDictionaryCharCount++;
1081 // And off the dictionary flag bit.
1082 category &= ~0x4000;
1083 }
1084 }
1085
1086 #ifdef RBBI_DEBUG
1087 if (fTrace) {
1088 RBBIDebugPrintf(" %4ld ", utext_getNativeIndex(fText));
1089 if (0x20<=c && c<0x7f) {
1090 RBBIDebugPrintf("\"%c\" ", c);
1091 } else {
1092 RBBIDebugPrintf("%5x ", c);
1093 }
1094 RBBIDebugPrintf("%3d %3d\n", state, category);
1095 }
1096 #endif
1097
1098 // State Transition - move machine to its next state
1099 //
1100
1101 // Note: fNextState is defined as uint16_t[2], but we are casting
1102 // a generated RBBI table to RBBIStateTableRow and some tables
1103 // actually have more than 2 categories.
1104 U_ASSERT(category<fData->fHeader->fCatCount);
1105 state = row->fNextState[category]; /*Not accessing beyond memory*/
1106 row = (RBBIStateTableRow *)
1107 // (statetable->fTableData + (statetable->fRowLen * state));
1108 (tableData + tableRowLen * state);
1109
1110
1111 if (row->fAccepting == -1) {
1112 // Match found, common case.
1113 if (mode != RBBI_START) {
1114 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1115 }
1116 fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values.
1117 }
1118
1119 if (row->fLookAhead != 0) {
1120 if (lookaheadStatus != 0
1121 && row->fAccepting == lookaheadStatus) {
1122 // Lookahead match is completed.
1123 result = lookaheadResult;
1124 fLastRuleStatusIndex = lookaheadTagIdx;
1125 lookaheadStatus = 0;
1126 // TODO: make a standalone hard break in a rule work.
1127 if (lookAheadHardBreak) {
1128 UTEXT_SETNATIVEINDEX(fText, result);
1129 return result;
1130 }
1131 // Look-ahead completed, but other rules may match further. Continue on
1132 // TODO: junk this feature? I don't think it's used anywhwere.
1133 goto continueOn;
1134 }
1135
1136 int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1137 lookaheadResult = r;
1138 lookaheadStatus = row->fLookAhead;
1139 lookaheadTagIdx = row->fTagIdx;
1140 goto continueOn;
1141 }
1142
1143
1144 if (row->fAccepting != 0) {
1145 // Because this is an accepting state, any in-progress look-ahead match
1146 // is no longer relavant. Clear out the pending lookahead status.
1147 lookaheadStatus = 0; // clear out any pending look-ahead match.
1148 }
1149
1150 continueOn:
1151 if (state == STOP_STATE) {
1152 // This is the normal exit from the lookup state machine.
1153 // We have advanced through the string until it is certain that no
1154 // longer match is possible, no matter what characters follow.
1155 break;
1156 }
1157
1158 // Advance to the next character.
1159 // If this is a beginning-of-input loop iteration, don't advance
1160 // the input position. The next iteration will be processing the
1161 // first real input character.
1162 if (mode == RBBI_RUN) {
1163 c = UTEXT_NEXT32(fText);
1164 } else {
1165 if (mode == RBBI_START) {
1166 mode = RBBI_RUN;
1167 }
1168 }
1169
1170
1171 }
1172
1173 // The state machine is done. Check whether it found a match...
1174
1175 // If the iterator failed to advance in the match engine, force it ahead by one.
1176 // (This really indicates a defect in the break rules. They should always match
1177 // at least one character.)
1178 if (result == initialPosition) {
1179 UTEXT_SETNATIVEINDEX(fText, initialPosition);
1180 UTEXT_NEXT32(fText);
1181 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1182 }
1183
1184 // Leave the iterator at our result position.
1185 UTEXT_SETNATIVEINDEX(fText, result);
1186 #ifdef RBBI_DEBUG
1187 if (fTrace) {
1188 RBBIDebugPrintf("result = %d\n\n", result);
1189 }
1190 #endif
1191 return result;
1192 }
1193
1194
1195
1196 //-----------------------------------------------------------------------------------
1197 //
1198 // handlePrevious()
1199 //
1200 // Iterate backwards, according to the logic of the reverse rules.
1201 // This version handles the exact style backwards rules.
1202 //
1203 // The logic of this function is very similar to handleNext(), above.
1204 //
1205 //-----------------------------------------------------------------------------------
handlePrevious(const RBBIStateTable * statetable)1206 int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) {
1207 int32_t state;
1208 uint16_t category = 0;
1209 RBBIRunMode mode;
1210 RBBIStateTableRow *row;
1211 UChar32 c;
1212 int32_t lookaheadStatus = 0;
1213 int32_t result = 0;
1214 int32_t initialPosition = 0;
1215 int32_t lookaheadResult = 0;
1216 UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
1217
1218 #ifdef RBBI_DEBUG
1219 if (fTrace) {
1220 RBBIDebugPuts("Handle Previous pos char state category");
1221 }
1222 #endif
1223
1224 // handlePrevious() never gets the rule status.
1225 // Flag the status as invalid; if the user ever asks for status, we will need
1226 // to back up, then re-find the break position using handleNext(), which does
1227 // get the status value.
1228 fLastStatusIndexValid = FALSE;
1229 fLastRuleStatusIndex = 0;
1230
1231 // if we're already at the start of the text, return DONE.
1232 if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) {
1233 return BreakIterator::DONE;
1234 }
1235
1236 // Set up the starting char.
1237 initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1238 result = initialPosition;
1239 c = UTEXT_PREVIOUS32(fText);
1240
1241 // Set the initial state for the state machine
1242 state = START_STATE;
1243 row = (RBBIStateTableRow *)
1244 (statetable->fTableData + (statetable->fRowLen * state));
1245 category = 3;
1246 mode = RBBI_RUN;
1247 if (statetable->fFlags & RBBI_BOF_REQUIRED) {
1248 category = 2;
1249 mode = RBBI_START;
1250 }
1251
1252
1253 // loop until we reach the start of the text or transition to state 0
1254 //
1255 for (;;) {
1256 if (c == U_SENTINEL) {
1257 // Reached end of input string.
1258 if (mode == RBBI_END) {
1259 // We have already run the loop one last time with the
1260 // character set to the psueudo {eof} value. Now it is time
1261 // to unconditionally bail out.
1262 if (lookaheadResult < result) {
1263 // We ran off the end of the string with a pending look-ahead match.
1264 // Treat this as if the look-ahead condition had been met, and return
1265 // the match at the / position from the look-ahead rule.
1266 result = lookaheadResult;
1267 lookaheadStatus = 0;
1268 } else if (result == initialPosition) {
1269 // Ran off start, no match found.
1270 // move one index one (towards the start, since we are doing a previous())
1271 UTEXT_SETNATIVEINDEX(fText, initialPosition);
1272 (void)UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check.
1273 }
1274 break;
1275 }
1276 // Run the loop one last time with the fake end-of-input character category.
1277 mode = RBBI_END;
1278 category = 1;
1279 }
1280
1281 //
1282 // Get the char category. An incoming category of 1 or 2 means that
1283 // we are preset for doing the beginning or end of input, and
1284 // that we shouldn't get a category from an actual text input character.
1285 //
1286 if (mode == RBBI_RUN) {
1287 // look up the current character's character category, which tells us
1288 // which column in the state table to look at.
1289 // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
1290 // not the size of the character going in, which is a UChar32.
1291 //
1292 UTRIE_GET16(&fData->fTrie, c, category);
1293
1294 // Check the dictionary bit in the character's category.
1295 // Counter is only used by dictionary based iterators (subclasses).
1296 // Chars that need to be handled by a dictionary have a flag bit set
1297 // in their category values.
1298 //
1299 if ((category & 0x4000) != 0) {
1300 fDictionaryCharCount++;
1301 // And off the dictionary flag bit.
1302 category &= ~0x4000;
1303 }
1304 }
1305
1306 #ifdef RBBI_DEBUG
1307 if (fTrace) {
1308 RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText));
1309 if (0x20<=c && c<0x7f) {
1310 RBBIDebugPrintf("\"%c\" ", c);
1311 } else {
1312 RBBIDebugPrintf("%5x ", c);
1313 }
1314 RBBIDebugPrintf("%3d %3d\n", state, category);
1315 }
1316 #endif
1317
1318 // State Transition - move machine to its next state
1319 //
1320
1321 // Note: fNextState is defined as uint16_t[2], but we are casting
1322 // a generated RBBI table to RBBIStateTableRow and some tables
1323 // actually have more than 2 categories.
1324 U_ASSERT(category<fData->fHeader->fCatCount);
1325 state = row->fNextState[category]; /*Not accessing beyond memory*/
1326 row = (RBBIStateTableRow *)
1327 (statetable->fTableData + (statetable->fRowLen * state));
1328
1329 if (row->fAccepting == -1) {
1330 // Match found, common case.
1331 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1332 }
1333
1334 if (row->fLookAhead != 0) {
1335 if (lookaheadStatus != 0
1336 && row->fAccepting == lookaheadStatus) {
1337 // Lookahead match is completed.
1338 result = lookaheadResult;
1339 lookaheadStatus = 0;
1340 // TODO: make a standalone hard break in a rule work.
1341 if (lookAheadHardBreak) {
1342 UTEXT_SETNATIVEINDEX(fText, result);
1343 return result;
1344 }
1345 // Look-ahead completed, but other rules may match further. Continue on
1346 // TODO: junk this feature? I don't think it's used anywhwere.
1347 goto continueOn;
1348 }
1349
1350 int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1351 lookaheadResult = r;
1352 lookaheadStatus = row->fLookAhead;
1353 goto continueOn;
1354 }
1355
1356
1357 if (row->fAccepting != 0) {
1358 // Because this is an accepting state, any in-progress look-ahead match
1359 // is no longer relavant. Clear out the pending lookahead status.
1360 lookaheadStatus = 0;
1361 }
1362
1363 continueOn:
1364 if (state == STOP_STATE) {
1365 // This is the normal exit from the lookup state machine.
1366 // We have advanced through the string until it is certain that no
1367 // longer match is possible, no matter what characters follow.
1368 break;
1369 }
1370
1371 // Move (backwards) to the next character to process.
1372 // If this is a beginning-of-input loop iteration, don't advance
1373 // the input position. The next iteration will be processing the
1374 // first real input character.
1375 if (mode == RBBI_RUN) {
1376 c = UTEXT_PREVIOUS32(fText);
1377 } else {
1378 if (mode == RBBI_START) {
1379 mode = RBBI_RUN;
1380 }
1381 }
1382 }
1383
1384 // The state machine is done. Check whether it found a match...
1385
1386 // If the iterator failed to advance in the match engine, force it ahead by one.
1387 // (This really indicates a defect in the break rules. They should always match
1388 // at least one character.)
1389 if (result == initialPosition) {
1390 UTEXT_SETNATIVEINDEX(fText, initialPosition);
1391 UTEXT_PREVIOUS32(fText);
1392 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1393 }
1394
1395 // Leave the iterator at our result position.
1396 UTEXT_SETNATIVEINDEX(fText, result);
1397 #ifdef RBBI_DEBUG
1398 if (fTrace) {
1399 RBBIDebugPrintf("result = %d\n\n", result);
1400 }
1401 #endif
1402 return result;
1403 }
1404
1405
1406 void
reset()1407 RuleBasedBreakIterator::reset()
1408 {
1409 if (fCachedBreakPositions) {
1410 uprv_free(fCachedBreakPositions);
1411 }
1412 fCachedBreakPositions = NULL;
1413 fNumCachedBreakPositions = 0;
1414 fDictionaryCharCount = 0;
1415 fPositionInCache = 0;
1416 }
1417
1418
1419
1420 //-------------------------------------------------------------------------------
1421 //
1422 // getRuleStatus() Return the break rule tag associated with the current
1423 // iterator position. If the iterator arrived at its current
1424 // position by iterating forwards, the value will have been
1425 // cached by the handleNext() function.
1426 //
1427 // If no cached status value is available, the status is
1428 // found by doing a previous() followed by a next(), which
1429 // leaves the iterator where it started, and computes the
1430 // status while doing the next().
1431 //
1432 //-------------------------------------------------------------------------------
makeRuleStatusValid()1433 void RuleBasedBreakIterator::makeRuleStatusValid() {
1434 if (fLastStatusIndexValid == FALSE) {
1435 // No cached status is available.
1436 if (fText == NULL || current() == 0) {
1437 // At start of text, or there is no text. Status is always zero.
1438 fLastRuleStatusIndex = 0;
1439 fLastStatusIndexValid = TRUE;
1440 } else {
1441 // Not at start of text. Find status the tedious way.
1442 int32_t pa = current();
1443 previous();
1444 if (fNumCachedBreakPositions > 0) {
1445 reset(); // Blow off the dictionary cache
1446 }
1447 int32_t pb = next();
1448 if (pa != pb) {
1449 // note: the if (pa != pb) test is here only to eliminate warnings for
1450 // unused local variables on gcc. Logically, it isn't needed.
1451 U_ASSERT(pa == pb);
1452 }
1453 }
1454 }
1455 U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx);
1456 }
1457
1458
getRuleStatus() const1459 int32_t RuleBasedBreakIterator::getRuleStatus() const {
1460 RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
1461 nonConstThis->makeRuleStatusValid();
1462
1463 // fLastRuleStatusIndex indexes to the start of the appropriate status record
1464 // (the number of status values.)
1465 // This function returns the last (largest) of the array of status values.
1466 int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex];
1467 int32_t tagVal = fData->fRuleStatusTable[idx];
1468
1469 return tagVal;
1470 }
1471
1472
1473
1474
getRuleStatusVec(int32_t * fillInVec,int32_t capacity,UErrorCode & status)1475 int32_t RuleBasedBreakIterator::getRuleStatusVec(
1476 int32_t *fillInVec, int32_t capacity, UErrorCode &status)
1477 {
1478 if (U_FAILURE(status)) {
1479 return 0;
1480 }
1481
1482 RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
1483 nonConstThis->makeRuleStatusValid();
1484 int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex];
1485 int32_t numValsToCopy = numVals;
1486 if (numVals > capacity) {
1487 status = U_BUFFER_OVERFLOW_ERROR;
1488 numValsToCopy = capacity;
1489 }
1490 int i;
1491 for (i=0; i<numValsToCopy; i++) {
1492 fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1];
1493 }
1494 return numVals;
1495 }
1496
1497
1498
1499 //-------------------------------------------------------------------------------
1500 //
1501 // getBinaryRules Access to the compiled form of the rules,
1502 // for use by build system tools that save the data
1503 // for standard iterator types.
1504 //
1505 //-------------------------------------------------------------------------------
getBinaryRules(uint32_t & length)1506 const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
1507 const uint8_t *retPtr = NULL;
1508 length = 0;
1509
1510 if (fData != NULL) {
1511 retPtr = (const uint8_t *)fData->fHeader;
1512 length = fData->fHeader->fLength;
1513 }
1514 return retPtr;
1515 }
1516
1517
1518
1519
1520 //-------------------------------------------------------------------------------
1521 //
1522 // BufferClone TODO: In my (Andy) opinion, this function should be deprecated.
1523 // Saving one heap allocation isn't worth the trouble.
1524 // Cloning shouldn't be done in tight loops, and
1525 // making the clone copy involves other heap operations anyway.
1526 // And the application code for correctly dealing with buffer
1527 // size problems and the eventual object destruction is ugly.
1528 //
1529 //-------------------------------------------------------------------------------
createBufferClone(void * stackBuffer,int32_t & bufferSize,UErrorCode & status)1530 BreakIterator * RuleBasedBreakIterator::createBufferClone(void *stackBuffer,
1531 int32_t &bufferSize,
1532 UErrorCode &status)
1533 {
1534 if (U_FAILURE(status)){
1535 return NULL;
1536 }
1537
1538 //
1539 // If user buffer size is zero this is a preflight operation to
1540 // obtain the needed buffer size, allowing for worst case misalignment.
1541 //
1542 if (bufferSize == 0) {
1543 bufferSize = sizeof(RuleBasedBreakIterator) + U_ALIGNMENT_OFFSET_UP(0);
1544 return NULL;
1545 }
1546
1547
1548 //
1549 // Check the alignment and size of the user supplied buffer.
1550 // Allocate heap memory if the user supplied memory is insufficient.
1551 //
1552 char *buf = (char *)stackBuffer;
1553 uint32_t s = bufferSize;
1554
1555 if (stackBuffer == NULL) {
1556 s = 0; // Ignore size, force allocation if user didn't give us a buffer.
1557 }
1558 if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) {
1559 uint32_t offsetUp = (uint32_t)U_ALIGNMENT_OFFSET_UP(buf);
1560 s -= offsetUp;
1561 buf += offsetUp;
1562 }
1563 if (s < sizeof(RuleBasedBreakIterator)) {
1564 // Not enough room in the caller-supplied buffer.
1565 // Do a plain-vanilla heap based clone and return that, along with
1566 // a warning that the clone was allocated.
1567 RuleBasedBreakIterator *clonedBI = new RuleBasedBreakIterator(*this);
1568 if (clonedBI == 0) {
1569 status = U_MEMORY_ALLOCATION_ERROR;
1570 } else {
1571 status = U_SAFECLONE_ALLOCATED_WARNING;
1572 }
1573 return clonedBI;
1574 }
1575
1576 //
1577 // Clone the source BI into the caller-supplied buffer.
1578 //
1579 RuleBasedBreakIterator *clone = new(buf) RuleBasedBreakIterator(*this);
1580 clone->fBufferClone = TRUE; // Flag to prevent deleting storage on close (From C code)
1581
1582 return clone;
1583 }
1584
1585
1586 //-------------------------------------------------------------------------------
1587 //
1588 // isDictionaryChar Return true if the category lookup for this char
1589 // indicates that it is in the set of dictionary lookup
1590 // chars.
1591 //
1592 // This function is intended for use by dictionary based
1593 // break iterators.
1594 //
1595 //-------------------------------------------------------------------------------
1596 /*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) {
1597 if (fData == NULL) {
1598 return FALSE;
1599 }
1600 uint16_t category;
1601 UTRIE_GET16(&fData->fTrie, c, category);
1602 return (category & 0x4000) != 0;
1603 }*/
1604
1605
1606 //-------------------------------------------------------------------------------
1607 //
1608 // checkDictionary This function handles all processing of characters in
1609 // the "dictionary" set. It will determine the appropriate
1610 // course of action, and possibly set up a cache in the
1611 // process.
1612 //
1613 //-------------------------------------------------------------------------------
checkDictionary(int32_t startPos,int32_t endPos,UBool reverse)1614 int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos,
1615 int32_t endPos,
1616 UBool reverse) {
1617 // Reset the old break cache first.
1618 reset();
1619
1620 // note: code segment below assumes that dictionary chars are in the
1621 // startPos-endPos range
1622 // value returned should be next character in sequence
1623 if ((endPos - startPos) <= 1) {
1624 return (reverse ? startPos : endPos);
1625 }
1626
1627 // Bug 5532. The dictionary code will crash if the input text is UTF-8
1628 // because native indexes are different from UTF-16 indexes.
1629 // Temporary hack: skip dictionary lookup for UTF-8 encoded text.
1630 // It wont give the right breaks, but it's better than a crash.
1631 //
1632 // Check the type of the UText by checking its pFuncs field, which
1633 // is UText's function dispatch table. It will be the same for all
1634 // UTF-8 UTexts and different for any other UText type.
1635 //
1636 // We have no other type of UText available with non-UTF-16 native indexing.
1637 // This whole check will go away once the dictionary code is fixed.
1638 static const void *utext_utf8Funcs;
1639 if (utext_utf8Funcs == NULL) {
1640 // Cache the UTF-8 UText function pointer value.
1641 UErrorCode status = U_ZERO_ERROR;
1642 UText tempUText = UTEXT_INITIALIZER;
1643 utext_openUTF8(&tempUText, NULL, 0, &status);
1644 utext_utf8Funcs = tempUText.pFuncs;
1645 utext_close(&tempUText);
1646 }
1647 if (fText->pFuncs == utext_utf8Funcs) {
1648 return (reverse ? startPos : endPos);
1649 }
1650
1651 // Starting from the starting point, scan towards the proposed result,
1652 // looking for the first dictionary character (which may be the one
1653 // we're on, if we're starting in the middle of a range).
1654 utext_setNativeIndex(fText, reverse ? endPos : startPos);
1655 if (reverse) {
1656 UTEXT_PREVIOUS32(fText);
1657 }
1658
1659 int32_t rangeStart = startPos;
1660 int32_t rangeEnd = endPos;
1661
1662 uint16_t category;
1663 int32_t current;
1664 UErrorCode status = U_ZERO_ERROR;
1665 UStack breaks(status);
1666 int32_t foundBreakCount = 0;
1667 UChar32 c = utext_current32(fText);
1668
1669 UTRIE_GET16(&fData->fTrie, c, category);
1670
1671 // Is the character we're starting on a dictionary character? If so, we
1672 // need to back up to include the entire run; otherwise the results of
1673 // the break algorithm will differ depending on where we start. Since
1674 // the result is cached and there is typically a non-dictionary break
1675 // within a small number of words, there should be little performance impact.
1676 if (category & 0x4000) {
1677 if (reverse) {
1678 do {
1679 utext_next32(fText); // TODO: recast to work directly with postincrement.
1680 c = utext_current32(fText);
1681 UTRIE_GET16(&fData->fTrie, c, category);
1682 } while (c != U_SENTINEL && (category & 0x4000));
1683 // Back up to the last dictionary character
1684 rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1685 if (c == U_SENTINEL) {
1686 // c = fText->last32();
1687 // TODO: why was this if needed?
1688 c = UTEXT_PREVIOUS32(fText);
1689 }
1690 else {
1691 c = UTEXT_PREVIOUS32(fText);
1692 }
1693 }
1694 else {
1695 do {
1696 c = UTEXT_PREVIOUS32(fText);
1697 UTRIE_GET16(&fData->fTrie, c, category);
1698 }
1699 while (c != U_SENTINEL && (category & 0x4000));
1700 // Back up to the last dictionary character
1701 if (c == U_SENTINEL) {
1702 // c = fText->first32();
1703 c = utext_current32(fText);
1704 }
1705 else {
1706 utext_next32(fText);
1707 c = utext_current32(fText);
1708 }
1709 rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);;
1710 }
1711 UTRIE_GET16(&fData->fTrie, c, category);
1712 }
1713
1714 // Loop through the text, looking for ranges of dictionary characters.
1715 // For each span, find the appropriate break engine, and ask it to find
1716 // any breaks within the span.
1717 // Note: we always do this in the forward direction, so that the break
1718 // cache is built in the right order.
1719 if (reverse) {
1720 utext_setNativeIndex(fText, rangeStart);
1721 c = utext_current32(fText);
1722 UTRIE_GET16(&fData->fTrie, c, category);
1723 }
1724 while(U_SUCCESS(status)) {
1725 while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) {
1726 utext_next32(fText); // TODO: tweak for post-increment operation
1727 c = utext_current32(fText);
1728 UTRIE_GET16(&fData->fTrie, c, category);
1729 }
1730 if (current >= rangeEnd) {
1731 break;
1732 }
1733
1734 // We now have a dictionary character. Get the appropriate language object
1735 // to deal with it.
1736 const LanguageBreakEngine *lbe = getLanguageBreakEngine(c);
1737
1738 // Ask the language object if there are any breaks. It will leave the text
1739 // pointer on the other side of its range, ready to search for the next one.
1740 if (lbe != NULL) {
1741 foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks);
1742 }
1743
1744 // Reload the loop variables for the next go-round
1745 c = utext_current32(fText);
1746 UTRIE_GET16(&fData->fTrie, c, category);
1747 }
1748
1749 // If we found breaks, build a new break cache. The first and last entries must
1750 // be the original starting and ending position.
1751 if (foundBreakCount > 0) {
1752 int32_t totalBreaks = foundBreakCount;
1753 if (startPos < breaks.elementAti(0)) {
1754 totalBreaks += 1;
1755 }
1756 if (endPos > breaks.peeki()) {
1757 totalBreaks += 1;
1758 }
1759 fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t));
1760 if (fCachedBreakPositions != NULL) {
1761 int32_t out = 0;
1762 fNumCachedBreakPositions = totalBreaks;
1763 if (startPos < breaks.elementAti(0)) {
1764 fCachedBreakPositions[out++] = startPos;
1765 }
1766 for (int32_t i = 0; i < foundBreakCount; ++i) {
1767 fCachedBreakPositions[out++] = breaks.elementAti(i);
1768 }
1769 if (endPos > fCachedBreakPositions[out-1]) {
1770 fCachedBreakPositions[out] = endPos;
1771 }
1772 // If there are breaks, then by definition, we are replacing the original
1773 // proposed break by one of the breaks we found. Use following() and
1774 // preceding() to do the work. They should never recurse in this case.
1775 if (reverse) {
1776 return preceding(endPos);
1777 }
1778 else {
1779 return following(startPos);
1780 }
1781 }
1782 // If the allocation failed, just fall through to the "no breaks found" case.
1783 }
1784
1785 // If we get here, there were no language-based breaks. Set the text pointer
1786 // to the original proposed break.
1787 utext_setNativeIndex(fText, reverse ? startPos : endPos);
1788 return (reverse ? startPos : endPos);
1789 }
1790
1791 U_NAMESPACE_END
1792
1793 // defined in ucln_cmn.h
1794
1795 static icu::UStack *gLanguageBreakFactories = NULL;
1796
1797 /**
1798 * Release all static memory held by breakiterator.
1799 */
1800 U_CDECL_BEGIN
breakiterator_cleanup_dict(void)1801 static UBool U_CALLCONV breakiterator_cleanup_dict(void) {
1802 if (gLanguageBreakFactories) {
1803 delete gLanguageBreakFactories;
1804 gLanguageBreakFactories = NULL;
1805 }
1806 return TRUE;
1807 }
1808 U_CDECL_END
1809
1810 U_CDECL_BEGIN
_deleteFactory(void * obj)1811 static void U_CALLCONV _deleteFactory(void *obj) {
1812 delete (icu::LanguageBreakFactory *) obj;
1813 }
1814 U_CDECL_END
1815 U_NAMESPACE_BEGIN
1816
1817 static const LanguageBreakEngine*
getLanguageBreakEngineFromFactory(UChar32 c,int32_t breakType)1818 getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType)
1819 {
1820 UBool needsInit;
1821 UErrorCode status = U_ZERO_ERROR;
1822 UMTX_CHECK(NULL, (UBool)(gLanguageBreakFactories == NULL), needsInit);
1823
1824 if (needsInit) {
1825 UStack *factories = new UStack(_deleteFactory, NULL, status);
1826 if (factories != NULL && U_SUCCESS(status)) {
1827 ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
1828 factories->push(builtIn, status);
1829 #ifdef U_LOCAL_SERVICE_HOOK
1830 LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
1831 if (extra != NULL) {
1832 factories->push(extra, status);
1833 }
1834 #endif
1835 }
1836 umtx_lock(NULL);
1837 if (gLanguageBreakFactories == NULL) {
1838 gLanguageBreakFactories = factories;
1839 factories = NULL;
1840 ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict);
1841 }
1842 umtx_unlock(NULL);
1843 delete factories;
1844 }
1845
1846 if (gLanguageBreakFactories == NULL) {
1847 return NULL;
1848 }
1849
1850 int32_t i = gLanguageBreakFactories->size();
1851 const LanguageBreakEngine *lbe = NULL;
1852 while (--i >= 0) {
1853 LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
1854 lbe = factory->getEngineFor(c, breakType);
1855 if (lbe != NULL) {
1856 break;
1857 }
1858 }
1859 return lbe;
1860 }
1861
1862
1863 //-------------------------------------------------------------------------------
1864 //
1865 // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the
1866 // the character c.
1867 //
1868 //-------------------------------------------------------------------------------
1869 const LanguageBreakEngine *
getLanguageBreakEngine(UChar32 c)1870 RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
1871 const LanguageBreakEngine *lbe = NULL;
1872 UErrorCode status = U_ZERO_ERROR;
1873
1874 if (fLanguageBreakEngines == NULL) {
1875 fLanguageBreakEngines = new UStack(status);
1876 if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
1877 delete fLanguageBreakEngines;
1878 fLanguageBreakEngines = 0;
1879 return NULL;
1880 }
1881 }
1882
1883 int32_t i = fLanguageBreakEngines->size();
1884 while (--i >= 0) {
1885 lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
1886 if (lbe->handles(c, fBreakType)) {
1887 return lbe;
1888 }
1889 }
1890
1891 // No existing dictionary took the character. See if a factory wants to
1892 // give us a new LanguageBreakEngine for this character.
1893 lbe = getLanguageBreakEngineFromFactory(c, fBreakType);
1894
1895 // If we got one, use it and push it on our stack.
1896 if (lbe != NULL) {
1897 fLanguageBreakEngines->push((void *)lbe, status);
1898 // Even if we can't remember it, we can keep looking it up, so
1899 // return it even if the push fails.
1900 return lbe;
1901 }
1902
1903 // No engine is forthcoming for this character. Add it to the
1904 // reject set. Create the reject break engine if needed.
1905 if (fUnhandledBreakEngine == NULL) {
1906 fUnhandledBreakEngine = new UnhandledEngine(status);
1907 if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
1908 status = U_MEMORY_ALLOCATION_ERROR;
1909 }
1910 // Put it last so that scripts for which we have an engine get tried
1911 // first.
1912 fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
1913 // If we can't insert it, or creation failed, get rid of it
1914 if (U_FAILURE(status)) {
1915 delete fUnhandledBreakEngine;
1916 fUnhandledBreakEngine = 0;
1917 return NULL;
1918 }
1919 }
1920
1921 // Tell the reject engine about the character; at its discretion, it may
1922 // add more than just the one character.
1923 fUnhandledBreakEngine->handleCharacter(c, fBreakType);
1924
1925 return fUnhandledBreakEngine;
1926 }
1927
1928
1929
1930 /*int32_t RuleBasedBreakIterator::getBreakType() const {
1931 return fBreakType;
1932 }*/
1933
setBreakType(int32_t type)1934 void RuleBasedBreakIterator::setBreakType(int32_t type) {
1935 fBreakType = type;
1936 reset();
1937 }
1938
1939 U_NAMESPACE_END
1940
1941 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1942