1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 // Constant Class
41 //===----------------------------------------------------------------------===//
42
anchor()43 void Constant::anchor() { }
44
isNegativeZeroValue() const45 bool Constant::isNegativeZeroValue() const {
46 // Floating point values have an explicit -0.0 value.
47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48 return CFP->isZero() && CFP->isNegative();
49
50 // Equivalent for a vector of -0.0's.
51 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54 return true;
55
56 // However, vectors of zeroes which are floating point represent +0.0's.
57 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
58 if (const VectorType *VT = dyn_cast<VectorType>(CAZ->getType()))
59 if (VT->getElementType()->isFloatingPointTy())
60 // As it's a CAZ, we know it's the zero bit-pattern (ie, +0.0) in each element.
61 return false;
62
63 // Otherwise, just use +0.0.
64 return isNullValue();
65 }
66
67 // Return true iff this constant is positive zero (floating point), negative
68 // zero (floating point), or a null value.
isZeroValue() const69 bool Constant::isZeroValue() const {
70 // Floating point values have an explicit -0.0 value.
71 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
72 return CFP->isZero();
73
74 // Otherwise, just use +0.0.
75 return isNullValue();
76 }
77
isNullValue() const78 bool Constant::isNullValue() const {
79 // 0 is null.
80 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
81 return CI->isZero();
82
83 // +0.0 is null.
84 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
85 return CFP->isZero() && !CFP->isNegative();
86
87 // constant zero is zero for aggregates and cpnull is null for pointers.
88 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
89 }
90
isAllOnesValue() const91 bool Constant::isAllOnesValue() const {
92 // Check for -1 integers
93 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94 return CI->isMinusOne();
95
96 // Check for FP which are bitcasted from -1 integers
97 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
99
100 // Check for constant vectors which are splats of -1 values.
101 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
102 if (Constant *Splat = CV->getSplatValue())
103 return Splat->isAllOnesValue();
104
105 // Check for constant vectors which are splats of -1 values.
106 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
107 if (Constant *Splat = CV->getSplatValue())
108 return Splat->isAllOnesValue();
109
110 return false;
111 }
112
113 // Constructor to create a '0' constant of arbitrary type...
getNullValue(Type * Ty)114 Constant *Constant::getNullValue(Type *Ty) {
115 switch (Ty->getTypeID()) {
116 case Type::IntegerTyID:
117 return ConstantInt::get(Ty, 0);
118 case Type::HalfTyID:
119 return ConstantFP::get(Ty->getContext(),
120 APFloat::getZero(APFloat::IEEEhalf));
121 case Type::FloatTyID:
122 return ConstantFP::get(Ty->getContext(),
123 APFloat::getZero(APFloat::IEEEsingle));
124 case Type::DoubleTyID:
125 return ConstantFP::get(Ty->getContext(),
126 APFloat::getZero(APFloat::IEEEdouble));
127 case Type::X86_FP80TyID:
128 return ConstantFP::get(Ty->getContext(),
129 APFloat::getZero(APFloat::x87DoubleExtended));
130 case Type::FP128TyID:
131 return ConstantFP::get(Ty->getContext(),
132 APFloat::getZero(APFloat::IEEEquad));
133 case Type::PPC_FP128TyID:
134 return ConstantFP::get(Ty->getContext(),
135 APFloat(APFloat::PPCDoubleDouble,
136 APInt::getNullValue(128)));
137 case Type::PointerTyID:
138 return ConstantPointerNull::get(cast<PointerType>(Ty));
139 case Type::StructTyID:
140 case Type::ArrayTyID:
141 case Type::VectorTyID:
142 return ConstantAggregateZero::get(Ty);
143 default:
144 // Function, Label, or Opaque type?
145 llvm_unreachable("Cannot create a null constant of that type!");
146 }
147 }
148
getIntegerValue(Type * Ty,const APInt & V)149 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
150 Type *ScalarTy = Ty->getScalarType();
151
152 // Create the base integer constant.
153 Constant *C = ConstantInt::get(Ty->getContext(), V);
154
155 // Convert an integer to a pointer, if necessary.
156 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
157 C = ConstantExpr::getIntToPtr(C, PTy);
158
159 // Broadcast a scalar to a vector, if necessary.
160 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
161 C = ConstantVector::getSplat(VTy->getNumElements(), C);
162
163 return C;
164 }
165
getAllOnesValue(Type * Ty)166 Constant *Constant::getAllOnesValue(Type *Ty) {
167 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
168 return ConstantInt::get(Ty->getContext(),
169 APInt::getAllOnesValue(ITy->getBitWidth()));
170
171 if (Ty->isFloatingPointTy()) {
172 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
173 !Ty->isPPC_FP128Ty());
174 return ConstantFP::get(Ty->getContext(), FL);
175 }
176
177 VectorType *VTy = cast<VectorType>(Ty);
178 return ConstantVector::getSplat(VTy->getNumElements(),
179 getAllOnesValue(VTy->getElementType()));
180 }
181
182 /// getAggregateElement - For aggregates (struct/array/vector) return the
183 /// constant that corresponds to the specified element if possible, or null if
184 /// not. This can return null if the element index is a ConstantExpr, or if
185 /// 'this' is a constant expr.
getAggregateElement(unsigned Elt) const186 Constant *Constant::getAggregateElement(unsigned Elt) const {
187 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
188 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
189
190 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
191 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
192
193 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
194 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
195
196 if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
197 return CAZ->getElementValue(Elt);
198
199 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
200 return UV->getElementValue(Elt);
201
202 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
203 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
204 return 0;
205 }
206
getAggregateElement(Constant * Elt) const207 Constant *Constant::getAggregateElement(Constant *Elt) const {
208 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
209 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
210 return getAggregateElement(CI->getZExtValue());
211 return 0;
212 }
213
214
destroyConstantImpl()215 void Constant::destroyConstantImpl() {
216 // When a Constant is destroyed, there may be lingering
217 // references to the constant by other constants in the constant pool. These
218 // constants are implicitly dependent on the module that is being deleted,
219 // but they don't know that. Because we only find out when the CPV is
220 // deleted, we must now notify all of our users (that should only be
221 // Constants) that they are, in fact, invalid now and should be deleted.
222 //
223 while (!use_empty()) {
224 Value *V = use_back();
225 #ifndef NDEBUG // Only in -g mode...
226 if (!isa<Constant>(V)) {
227 dbgs() << "While deleting: " << *this
228 << "\n\nUse still stuck around after Def is destroyed: "
229 << *V << "\n\n";
230 }
231 #endif
232 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
233 cast<Constant>(V)->destroyConstant();
234
235 // The constant should remove itself from our use list...
236 assert((use_empty() || use_back() != V) && "Constant not removed!");
237 }
238
239 // Value has no outstanding references it is safe to delete it now...
240 delete this;
241 }
242
243 /// canTrap - Return true if evaluation of this constant could trap. This is
244 /// true for things like constant expressions that could divide by zero.
canTrap() const245 bool Constant::canTrap() const {
246 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
247 // The only thing that could possibly trap are constant exprs.
248 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
249 if (!CE) return false;
250
251 // ConstantExpr traps if any operands can trap.
252 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
253 if (CE->getOperand(i)->canTrap())
254 return true;
255
256 // Otherwise, only specific operations can trap.
257 switch (CE->getOpcode()) {
258 default:
259 return false;
260 case Instruction::UDiv:
261 case Instruction::SDiv:
262 case Instruction::FDiv:
263 case Instruction::URem:
264 case Instruction::SRem:
265 case Instruction::FRem:
266 // Div and rem can trap if the RHS is not known to be non-zero.
267 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
268 return true;
269 return false;
270 }
271 }
272
273 /// isThreadDependent - Return true if the value can vary between threads.
isThreadDependent() const274 bool Constant::isThreadDependent() const {
275 SmallPtrSet<const Constant*, 64> Visited;
276 SmallVector<const Constant*, 64> WorkList;
277 WorkList.push_back(this);
278 Visited.insert(this);
279
280 while (!WorkList.empty()) {
281 const Constant *C = WorkList.pop_back_val();
282
283 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
284 if (GV->isThreadLocal())
285 return true;
286 }
287
288 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
289 const Constant *D = dyn_cast<Constant>(C->getOperand(I));
290 if (!D)
291 continue;
292 if (Visited.insert(D))
293 WorkList.push_back(D);
294 }
295 }
296
297 return false;
298 }
299
300 /// isConstantUsed - Return true if the constant has users other than constant
301 /// exprs and other dangling things.
isConstantUsed() const302 bool Constant::isConstantUsed() const {
303 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
304 const Constant *UC = dyn_cast<Constant>(*UI);
305 if (UC == 0 || isa<GlobalValue>(UC))
306 return true;
307
308 if (UC->isConstantUsed())
309 return true;
310 }
311 return false;
312 }
313
314
315
316 /// getRelocationInfo - This method classifies the entry according to
317 /// whether or not it may generate a relocation entry. This must be
318 /// conservative, so if it might codegen to a relocatable entry, it should say
319 /// so. The return values are:
320 ///
321 /// NoRelocation: This constant pool entry is guaranteed to never have a
322 /// relocation applied to it (because it holds a simple constant like
323 /// '4').
324 /// LocalRelocation: This entry has relocations, but the entries are
325 /// guaranteed to be resolvable by the static linker, so the dynamic
326 /// linker will never see them.
327 /// GlobalRelocations: This entry may have arbitrary relocations.
328 ///
329 /// FIXME: This really should not be in IR.
getRelocationInfo() const330 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
331 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
332 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
333 return LocalRelocation; // Local to this file/library.
334 return GlobalRelocations; // Global reference.
335 }
336
337 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
338 return BA->getFunction()->getRelocationInfo();
339
340 // While raw uses of blockaddress need to be relocated, differences between
341 // two of them don't when they are for labels in the same function. This is a
342 // common idiom when creating a table for the indirect goto extension, so we
343 // handle it efficiently here.
344 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
345 if (CE->getOpcode() == Instruction::Sub) {
346 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
347 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
348 if (LHS && RHS &&
349 LHS->getOpcode() == Instruction::PtrToInt &&
350 RHS->getOpcode() == Instruction::PtrToInt &&
351 isa<BlockAddress>(LHS->getOperand(0)) &&
352 isa<BlockAddress>(RHS->getOperand(0)) &&
353 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
354 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
355 return NoRelocation;
356 }
357
358 PossibleRelocationsTy Result = NoRelocation;
359 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
360 Result = std::max(Result,
361 cast<Constant>(getOperand(i))->getRelocationInfo());
362
363 return Result;
364 }
365
366 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
367 /// it. This involves recursively eliminating any dead users of the
368 /// constantexpr.
removeDeadUsersOfConstant(const Constant * C)369 static bool removeDeadUsersOfConstant(const Constant *C) {
370 if (isa<GlobalValue>(C)) return false; // Cannot remove this
371
372 while (!C->use_empty()) {
373 const Constant *User = dyn_cast<Constant>(C->use_back());
374 if (!User) return false; // Non-constant usage;
375 if (!removeDeadUsersOfConstant(User))
376 return false; // Constant wasn't dead
377 }
378
379 const_cast<Constant*>(C)->destroyConstant();
380 return true;
381 }
382
383
384 /// removeDeadConstantUsers - If there are any dead constant users dangling
385 /// off of this constant, remove them. This method is useful for clients
386 /// that want to check to see if a global is unused, but don't want to deal
387 /// with potentially dead constants hanging off of the globals.
removeDeadConstantUsers() const388 void Constant::removeDeadConstantUsers() const {
389 Value::const_use_iterator I = use_begin(), E = use_end();
390 Value::const_use_iterator LastNonDeadUser = E;
391 while (I != E) {
392 const Constant *User = dyn_cast<Constant>(*I);
393 if (User == 0) {
394 LastNonDeadUser = I;
395 ++I;
396 continue;
397 }
398
399 if (!removeDeadUsersOfConstant(User)) {
400 // If the constant wasn't dead, remember that this was the last live use
401 // and move on to the next constant.
402 LastNonDeadUser = I;
403 ++I;
404 continue;
405 }
406
407 // If the constant was dead, then the iterator is invalidated.
408 if (LastNonDeadUser == E) {
409 I = use_begin();
410 if (I == E) break;
411 } else {
412 I = LastNonDeadUser;
413 ++I;
414 }
415 }
416 }
417
418
419
420 //===----------------------------------------------------------------------===//
421 // ConstantInt
422 //===----------------------------------------------------------------------===//
423
anchor()424 void ConstantInt::anchor() { }
425
ConstantInt(IntegerType * Ty,const APInt & V)426 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
427 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
428 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
429 }
430
getTrue(LLVMContext & Context)431 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
432 LLVMContextImpl *pImpl = Context.pImpl;
433 if (!pImpl->TheTrueVal)
434 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
435 return pImpl->TheTrueVal;
436 }
437
getFalse(LLVMContext & Context)438 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
439 LLVMContextImpl *pImpl = Context.pImpl;
440 if (!pImpl->TheFalseVal)
441 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
442 return pImpl->TheFalseVal;
443 }
444
getTrue(Type * Ty)445 Constant *ConstantInt::getTrue(Type *Ty) {
446 VectorType *VTy = dyn_cast<VectorType>(Ty);
447 if (!VTy) {
448 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
449 return ConstantInt::getTrue(Ty->getContext());
450 }
451 assert(VTy->getElementType()->isIntegerTy(1) &&
452 "True must be vector of i1 or i1.");
453 return ConstantVector::getSplat(VTy->getNumElements(),
454 ConstantInt::getTrue(Ty->getContext()));
455 }
456
getFalse(Type * Ty)457 Constant *ConstantInt::getFalse(Type *Ty) {
458 VectorType *VTy = dyn_cast<VectorType>(Ty);
459 if (!VTy) {
460 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
461 return ConstantInt::getFalse(Ty->getContext());
462 }
463 assert(VTy->getElementType()->isIntegerTy(1) &&
464 "False must be vector of i1 or i1.");
465 return ConstantVector::getSplat(VTy->getNumElements(),
466 ConstantInt::getFalse(Ty->getContext()));
467 }
468
469
470 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
471 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
472 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
473 // compare APInt's of different widths, which would violate an APInt class
474 // invariant which generates an assertion.
get(LLVMContext & Context,const APInt & V)475 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
476 // Get the corresponding integer type for the bit width of the value.
477 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
478 // get an existing value or the insertion position
479 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
480 ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
481 if (!Slot) Slot = new ConstantInt(ITy, V);
482 return Slot;
483 }
484
get(Type * Ty,uint64_t V,bool isSigned)485 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
486 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
487
488 // For vectors, broadcast the value.
489 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
490 return ConstantVector::getSplat(VTy->getNumElements(), C);
491
492 return C;
493 }
494
get(IntegerType * Ty,uint64_t V,bool isSigned)495 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
496 bool isSigned) {
497 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
498 }
499
getSigned(IntegerType * Ty,int64_t V)500 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
501 return get(Ty, V, true);
502 }
503
getSigned(Type * Ty,int64_t V)504 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
505 return get(Ty, V, true);
506 }
507
get(Type * Ty,const APInt & V)508 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
509 ConstantInt *C = get(Ty->getContext(), V);
510 assert(C->getType() == Ty->getScalarType() &&
511 "ConstantInt type doesn't match the type implied by its value!");
512
513 // For vectors, broadcast the value.
514 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
515 return ConstantVector::getSplat(VTy->getNumElements(), C);
516
517 return C;
518 }
519
get(IntegerType * Ty,StringRef Str,uint8_t radix)520 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
521 uint8_t radix) {
522 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
523 }
524
525 //===----------------------------------------------------------------------===//
526 // ConstantFP
527 //===----------------------------------------------------------------------===//
528
TypeToFloatSemantics(Type * Ty)529 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
530 if (Ty->isHalfTy())
531 return &APFloat::IEEEhalf;
532 if (Ty->isFloatTy())
533 return &APFloat::IEEEsingle;
534 if (Ty->isDoubleTy())
535 return &APFloat::IEEEdouble;
536 if (Ty->isX86_FP80Ty())
537 return &APFloat::x87DoubleExtended;
538 else if (Ty->isFP128Ty())
539 return &APFloat::IEEEquad;
540
541 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
542 return &APFloat::PPCDoubleDouble;
543 }
544
anchor()545 void ConstantFP::anchor() { }
546
547 /// get() - This returns a constant fp for the specified value in the
548 /// specified type. This should only be used for simple constant values like
549 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
get(Type * Ty,double V)550 Constant *ConstantFP::get(Type *Ty, double V) {
551 LLVMContext &Context = Ty->getContext();
552
553 APFloat FV(V);
554 bool ignored;
555 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
556 APFloat::rmNearestTiesToEven, &ignored);
557 Constant *C = get(Context, FV);
558
559 // For vectors, broadcast the value.
560 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
561 return ConstantVector::getSplat(VTy->getNumElements(), C);
562
563 return C;
564 }
565
566
get(Type * Ty,StringRef Str)567 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
568 LLVMContext &Context = Ty->getContext();
569
570 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
571 Constant *C = get(Context, FV);
572
573 // For vectors, broadcast the value.
574 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
575 return ConstantVector::getSplat(VTy->getNumElements(), C);
576
577 return C;
578 }
579
580
getNegativeZero(Type * Ty)581 ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
582 LLVMContext &Context = Ty->getContext();
583 APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
584 apf.changeSign();
585 return get(Context, apf);
586 }
587
588
getZeroValueForNegation(Type * Ty)589 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
590 Type *ScalarTy = Ty->getScalarType();
591 if (ScalarTy->isFloatingPointTy()) {
592 Constant *C = getNegativeZero(ScalarTy);
593 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
594 return ConstantVector::getSplat(VTy->getNumElements(), C);
595 return C;
596 }
597
598 return Constant::getNullValue(Ty);
599 }
600
601
602 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)603 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
604 DenseMapAPFloatKeyInfo::KeyTy Key(V);
605
606 LLVMContextImpl* pImpl = Context.pImpl;
607
608 ConstantFP *&Slot = pImpl->FPConstants[Key];
609
610 if (!Slot) {
611 Type *Ty;
612 if (&V.getSemantics() == &APFloat::IEEEhalf)
613 Ty = Type::getHalfTy(Context);
614 else if (&V.getSemantics() == &APFloat::IEEEsingle)
615 Ty = Type::getFloatTy(Context);
616 else if (&V.getSemantics() == &APFloat::IEEEdouble)
617 Ty = Type::getDoubleTy(Context);
618 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
619 Ty = Type::getX86_FP80Ty(Context);
620 else if (&V.getSemantics() == &APFloat::IEEEquad)
621 Ty = Type::getFP128Ty(Context);
622 else {
623 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
624 "Unknown FP format");
625 Ty = Type::getPPC_FP128Ty(Context);
626 }
627 Slot = new ConstantFP(Ty, V);
628 }
629
630 return Slot;
631 }
632
getInfinity(Type * Ty,bool Negative)633 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
634 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
635 return ConstantFP::get(Ty->getContext(),
636 APFloat::getInf(Semantics, Negative));
637 }
638
ConstantFP(Type * Ty,const APFloat & V)639 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
640 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
641 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
642 "FP type Mismatch");
643 }
644
isExactlyValue(const APFloat & V) const645 bool ConstantFP::isExactlyValue(const APFloat &V) const {
646 return Val.bitwiseIsEqual(V);
647 }
648
649 //===----------------------------------------------------------------------===//
650 // ConstantAggregateZero Implementation
651 //===----------------------------------------------------------------------===//
652
653 /// getSequentialElement - If this CAZ has array or vector type, return a zero
654 /// with the right element type.
getSequentialElement() const655 Constant *ConstantAggregateZero::getSequentialElement() const {
656 return Constant::getNullValue(getType()->getSequentialElementType());
657 }
658
659 /// getStructElement - If this CAZ has struct type, return a zero with the
660 /// right element type for the specified element.
getStructElement(unsigned Elt) const661 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
662 return Constant::getNullValue(getType()->getStructElementType(Elt));
663 }
664
665 /// getElementValue - Return a zero of the right value for the specified GEP
666 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const667 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
668 if (isa<SequentialType>(getType()))
669 return getSequentialElement();
670 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
671 }
672
673 /// getElementValue - Return a zero of the right value for the specified GEP
674 /// index.
getElementValue(unsigned Idx) const675 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
676 if (isa<SequentialType>(getType()))
677 return getSequentialElement();
678 return getStructElement(Idx);
679 }
680
681
682 //===----------------------------------------------------------------------===//
683 // UndefValue Implementation
684 //===----------------------------------------------------------------------===//
685
686 /// getSequentialElement - If this undef has array or vector type, return an
687 /// undef with the right element type.
getSequentialElement() const688 UndefValue *UndefValue::getSequentialElement() const {
689 return UndefValue::get(getType()->getSequentialElementType());
690 }
691
692 /// getStructElement - If this undef has struct type, return a zero with the
693 /// right element type for the specified element.
getStructElement(unsigned Elt) const694 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
695 return UndefValue::get(getType()->getStructElementType(Elt));
696 }
697
698 /// getElementValue - Return an undef of the right value for the specified GEP
699 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const700 UndefValue *UndefValue::getElementValue(Constant *C) const {
701 if (isa<SequentialType>(getType()))
702 return getSequentialElement();
703 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
704 }
705
706 /// getElementValue - Return an undef of the right value for the specified GEP
707 /// index.
getElementValue(unsigned Idx) const708 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
709 if (isa<SequentialType>(getType()))
710 return getSequentialElement();
711 return getStructElement(Idx);
712 }
713
714
715
716 //===----------------------------------------------------------------------===//
717 // ConstantXXX Classes
718 //===----------------------------------------------------------------------===//
719
720 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)721 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
722 for (; Start != End; ++Start)
723 if (*Start != Elt)
724 return false;
725 return true;
726 }
727
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)728 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
729 : Constant(T, ConstantArrayVal,
730 OperandTraits<ConstantArray>::op_end(this) - V.size(),
731 V.size()) {
732 assert(V.size() == T->getNumElements() &&
733 "Invalid initializer vector for constant array");
734 for (unsigned i = 0, e = V.size(); i != e; ++i)
735 assert(V[i]->getType() == T->getElementType() &&
736 "Initializer for array element doesn't match array element type!");
737 std::copy(V.begin(), V.end(), op_begin());
738 }
739
get(ArrayType * Ty,ArrayRef<Constant * > V)740 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
741 // Empty arrays are canonicalized to ConstantAggregateZero.
742 if (V.empty())
743 return ConstantAggregateZero::get(Ty);
744
745 for (unsigned i = 0, e = V.size(); i != e; ++i) {
746 assert(V[i]->getType() == Ty->getElementType() &&
747 "Wrong type in array element initializer");
748 }
749 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
750
751 // If this is an all-zero array, return a ConstantAggregateZero object. If
752 // all undef, return an UndefValue, if "all simple", then return a
753 // ConstantDataArray.
754 Constant *C = V[0];
755 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
756 return UndefValue::get(Ty);
757
758 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
759 return ConstantAggregateZero::get(Ty);
760
761 // Check to see if all of the elements are ConstantFP or ConstantInt and if
762 // the element type is compatible with ConstantDataVector. If so, use it.
763 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
764 // We speculatively build the elements here even if it turns out that there
765 // is a constantexpr or something else weird in the array, since it is so
766 // uncommon for that to happen.
767 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
768 if (CI->getType()->isIntegerTy(8)) {
769 SmallVector<uint8_t, 16> Elts;
770 for (unsigned i = 0, e = V.size(); i != e; ++i)
771 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
772 Elts.push_back(CI->getZExtValue());
773 else
774 break;
775 if (Elts.size() == V.size())
776 return ConstantDataArray::get(C->getContext(), Elts);
777 } else if (CI->getType()->isIntegerTy(16)) {
778 SmallVector<uint16_t, 16> Elts;
779 for (unsigned i = 0, e = V.size(); i != e; ++i)
780 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
781 Elts.push_back(CI->getZExtValue());
782 else
783 break;
784 if (Elts.size() == V.size())
785 return ConstantDataArray::get(C->getContext(), Elts);
786 } else if (CI->getType()->isIntegerTy(32)) {
787 SmallVector<uint32_t, 16> Elts;
788 for (unsigned i = 0, e = V.size(); i != e; ++i)
789 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
790 Elts.push_back(CI->getZExtValue());
791 else
792 break;
793 if (Elts.size() == V.size())
794 return ConstantDataArray::get(C->getContext(), Elts);
795 } else if (CI->getType()->isIntegerTy(64)) {
796 SmallVector<uint64_t, 16> Elts;
797 for (unsigned i = 0, e = V.size(); i != e; ++i)
798 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
799 Elts.push_back(CI->getZExtValue());
800 else
801 break;
802 if (Elts.size() == V.size())
803 return ConstantDataArray::get(C->getContext(), Elts);
804 }
805 }
806
807 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
808 if (CFP->getType()->isFloatTy()) {
809 SmallVector<float, 16> Elts;
810 for (unsigned i = 0, e = V.size(); i != e; ++i)
811 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
812 Elts.push_back(CFP->getValueAPF().convertToFloat());
813 else
814 break;
815 if (Elts.size() == V.size())
816 return ConstantDataArray::get(C->getContext(), Elts);
817 } else if (CFP->getType()->isDoubleTy()) {
818 SmallVector<double, 16> Elts;
819 for (unsigned i = 0, e = V.size(); i != e; ++i)
820 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
821 Elts.push_back(CFP->getValueAPF().convertToDouble());
822 else
823 break;
824 if (Elts.size() == V.size())
825 return ConstantDataArray::get(C->getContext(), Elts);
826 }
827 }
828 }
829
830 // Otherwise, we really do want to create a ConstantArray.
831 return pImpl->ArrayConstants.getOrCreate(Ty, V);
832 }
833
834 /// getTypeForElements - Return an anonymous struct type to use for a constant
835 /// with the specified set of elements. The list must not be empty.
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)836 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
837 ArrayRef<Constant*> V,
838 bool Packed) {
839 unsigned VecSize = V.size();
840 SmallVector<Type*, 16> EltTypes(VecSize);
841 for (unsigned i = 0; i != VecSize; ++i)
842 EltTypes[i] = V[i]->getType();
843
844 return StructType::get(Context, EltTypes, Packed);
845 }
846
847
getTypeForElements(ArrayRef<Constant * > V,bool Packed)848 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
849 bool Packed) {
850 assert(!V.empty() &&
851 "ConstantStruct::getTypeForElements cannot be called on empty list");
852 return getTypeForElements(V[0]->getContext(), V, Packed);
853 }
854
855
ConstantStruct(StructType * T,ArrayRef<Constant * > V)856 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
857 : Constant(T, ConstantStructVal,
858 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
859 V.size()) {
860 assert(V.size() == T->getNumElements() &&
861 "Invalid initializer vector for constant structure");
862 for (unsigned i = 0, e = V.size(); i != e; ++i)
863 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
864 "Initializer for struct element doesn't match struct element type!");
865 std::copy(V.begin(), V.end(), op_begin());
866 }
867
868 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)869 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
870 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
871 "Incorrect # elements specified to ConstantStruct::get");
872
873 // Create a ConstantAggregateZero value if all elements are zeros.
874 bool isZero = true;
875 bool isUndef = false;
876
877 if (!V.empty()) {
878 isUndef = isa<UndefValue>(V[0]);
879 isZero = V[0]->isNullValue();
880 if (isUndef || isZero) {
881 for (unsigned i = 0, e = V.size(); i != e; ++i) {
882 if (!V[i]->isNullValue())
883 isZero = false;
884 if (!isa<UndefValue>(V[i]))
885 isUndef = false;
886 }
887 }
888 }
889 if (isZero)
890 return ConstantAggregateZero::get(ST);
891 if (isUndef)
892 return UndefValue::get(ST);
893
894 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
895 }
896
get(StructType * T,...)897 Constant *ConstantStruct::get(StructType *T, ...) {
898 va_list ap;
899 SmallVector<Constant*, 8> Values;
900 va_start(ap, T);
901 while (Constant *Val = va_arg(ap, llvm::Constant*))
902 Values.push_back(Val);
903 va_end(ap);
904 return get(T, Values);
905 }
906
ConstantVector(VectorType * T,ArrayRef<Constant * > V)907 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
908 : Constant(T, ConstantVectorVal,
909 OperandTraits<ConstantVector>::op_end(this) - V.size(),
910 V.size()) {
911 for (size_t i = 0, e = V.size(); i != e; i++)
912 assert(V[i]->getType() == T->getElementType() &&
913 "Initializer for vector element doesn't match vector element type!");
914 std::copy(V.begin(), V.end(), op_begin());
915 }
916
917 // ConstantVector accessors.
get(ArrayRef<Constant * > V)918 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
919 assert(!V.empty() && "Vectors can't be empty");
920 VectorType *T = VectorType::get(V.front()->getType(), V.size());
921 LLVMContextImpl *pImpl = T->getContext().pImpl;
922
923 // If this is an all-undef or all-zero vector, return a
924 // ConstantAggregateZero or UndefValue.
925 Constant *C = V[0];
926 bool isZero = C->isNullValue();
927 bool isUndef = isa<UndefValue>(C);
928
929 if (isZero || isUndef) {
930 for (unsigned i = 1, e = V.size(); i != e; ++i)
931 if (V[i] != C) {
932 isZero = isUndef = false;
933 break;
934 }
935 }
936
937 if (isZero)
938 return ConstantAggregateZero::get(T);
939 if (isUndef)
940 return UndefValue::get(T);
941
942 // Check to see if all of the elements are ConstantFP or ConstantInt and if
943 // the element type is compatible with ConstantDataVector. If so, use it.
944 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
945 // We speculatively build the elements here even if it turns out that there
946 // is a constantexpr or something else weird in the array, since it is so
947 // uncommon for that to happen.
948 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
949 if (CI->getType()->isIntegerTy(8)) {
950 SmallVector<uint8_t, 16> Elts;
951 for (unsigned i = 0, e = V.size(); i != e; ++i)
952 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
953 Elts.push_back(CI->getZExtValue());
954 else
955 break;
956 if (Elts.size() == V.size())
957 return ConstantDataVector::get(C->getContext(), Elts);
958 } else if (CI->getType()->isIntegerTy(16)) {
959 SmallVector<uint16_t, 16> Elts;
960 for (unsigned i = 0, e = V.size(); i != e; ++i)
961 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
962 Elts.push_back(CI->getZExtValue());
963 else
964 break;
965 if (Elts.size() == V.size())
966 return ConstantDataVector::get(C->getContext(), Elts);
967 } else if (CI->getType()->isIntegerTy(32)) {
968 SmallVector<uint32_t, 16> Elts;
969 for (unsigned i = 0, e = V.size(); i != e; ++i)
970 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
971 Elts.push_back(CI->getZExtValue());
972 else
973 break;
974 if (Elts.size() == V.size())
975 return ConstantDataVector::get(C->getContext(), Elts);
976 } else if (CI->getType()->isIntegerTy(64)) {
977 SmallVector<uint64_t, 16> Elts;
978 for (unsigned i = 0, e = V.size(); i != e; ++i)
979 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
980 Elts.push_back(CI->getZExtValue());
981 else
982 break;
983 if (Elts.size() == V.size())
984 return ConstantDataVector::get(C->getContext(), Elts);
985 }
986 }
987
988 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
989 if (CFP->getType()->isFloatTy()) {
990 SmallVector<float, 16> Elts;
991 for (unsigned i = 0, e = V.size(); i != e; ++i)
992 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
993 Elts.push_back(CFP->getValueAPF().convertToFloat());
994 else
995 break;
996 if (Elts.size() == V.size())
997 return ConstantDataVector::get(C->getContext(), Elts);
998 } else if (CFP->getType()->isDoubleTy()) {
999 SmallVector<double, 16> Elts;
1000 for (unsigned i = 0, e = V.size(); i != e; ++i)
1001 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1002 Elts.push_back(CFP->getValueAPF().convertToDouble());
1003 else
1004 break;
1005 if (Elts.size() == V.size())
1006 return ConstantDataVector::get(C->getContext(), Elts);
1007 }
1008 }
1009 }
1010
1011 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1012 // the operand list constants a ConstantExpr or something else strange.
1013 return pImpl->VectorConstants.getOrCreate(T, V);
1014 }
1015
getSplat(unsigned NumElts,Constant * V)1016 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1017 // If this splat is compatible with ConstantDataVector, use it instead of
1018 // ConstantVector.
1019 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1020 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1021 return ConstantDataVector::getSplat(NumElts, V);
1022
1023 SmallVector<Constant*, 32> Elts(NumElts, V);
1024 return get(Elts);
1025 }
1026
1027
1028 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1029 // can't be inline because we don't want to #include Instruction.h into
1030 // Constant.h
isCast() const1031 bool ConstantExpr::isCast() const {
1032 return Instruction::isCast(getOpcode());
1033 }
1034
isCompare() const1035 bool ConstantExpr::isCompare() const {
1036 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1037 }
1038
isGEPWithNoNotionalOverIndexing() const1039 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1040 if (getOpcode() != Instruction::GetElementPtr) return false;
1041
1042 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1043 User::const_op_iterator OI = llvm::next(this->op_begin());
1044
1045 // Skip the first index, as it has no static limit.
1046 ++GEPI;
1047 ++OI;
1048
1049 // The remaining indices must be compile-time known integers within the
1050 // bounds of the corresponding notional static array types.
1051 for (; GEPI != E; ++GEPI, ++OI) {
1052 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1053 if (!CI) return false;
1054 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1055 if (CI->getValue().getActiveBits() > 64 ||
1056 CI->getZExtValue() >= ATy->getNumElements())
1057 return false;
1058 }
1059
1060 // All the indices checked out.
1061 return true;
1062 }
1063
hasIndices() const1064 bool ConstantExpr::hasIndices() const {
1065 return getOpcode() == Instruction::ExtractValue ||
1066 getOpcode() == Instruction::InsertValue;
1067 }
1068
getIndices() const1069 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1070 if (const ExtractValueConstantExpr *EVCE =
1071 dyn_cast<ExtractValueConstantExpr>(this))
1072 return EVCE->Indices;
1073
1074 return cast<InsertValueConstantExpr>(this)->Indices;
1075 }
1076
getPredicate() const1077 unsigned ConstantExpr::getPredicate() const {
1078 assert(isCompare());
1079 return ((const CompareConstantExpr*)this)->predicate;
1080 }
1081
1082 /// getWithOperandReplaced - Return a constant expression identical to this
1083 /// one, but with the specified operand set to the specified value.
1084 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1085 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1086 assert(Op->getType() == getOperand(OpNo)->getType() &&
1087 "Replacing operand with value of different type!");
1088 if (getOperand(OpNo) == Op)
1089 return const_cast<ConstantExpr*>(this);
1090
1091 SmallVector<Constant*, 8> NewOps;
1092 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1093 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1094
1095 return getWithOperands(NewOps);
1096 }
1097
1098 /// getWithOperands - This returns the current constant expression with the
1099 /// operands replaced with the specified values. The specified array must
1100 /// have the same number of operands as our current one.
1101 Constant *ConstantExpr::
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty) const1102 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1103 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1104 bool AnyChange = Ty != getType();
1105 for (unsigned i = 0; i != Ops.size(); ++i)
1106 AnyChange |= Ops[i] != getOperand(i);
1107
1108 if (!AnyChange) // No operands changed, return self.
1109 return const_cast<ConstantExpr*>(this);
1110
1111 switch (getOpcode()) {
1112 case Instruction::Trunc:
1113 case Instruction::ZExt:
1114 case Instruction::SExt:
1115 case Instruction::FPTrunc:
1116 case Instruction::FPExt:
1117 case Instruction::UIToFP:
1118 case Instruction::SIToFP:
1119 case Instruction::FPToUI:
1120 case Instruction::FPToSI:
1121 case Instruction::PtrToInt:
1122 case Instruction::IntToPtr:
1123 case Instruction::BitCast:
1124 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1125 case Instruction::Select:
1126 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1127 case Instruction::InsertElement:
1128 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1129 case Instruction::ExtractElement:
1130 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1131 case Instruction::InsertValue:
1132 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1133 case Instruction::ExtractValue:
1134 return ConstantExpr::getExtractValue(Ops[0], getIndices());
1135 case Instruction::ShuffleVector:
1136 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1137 case Instruction::GetElementPtr:
1138 return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1139 cast<GEPOperator>(this)->isInBounds());
1140 case Instruction::ICmp:
1141 case Instruction::FCmp:
1142 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1143 default:
1144 assert(getNumOperands() == 2 && "Must be binary operator?");
1145 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1146 }
1147 }
1148
1149
1150 //===----------------------------------------------------------------------===//
1151 // isValueValidForType implementations
1152
isValueValidForType(Type * Ty,uint64_t Val)1153 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1154 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1155 if (Ty->isIntegerTy(1))
1156 return Val == 0 || Val == 1;
1157 if (NumBits >= 64)
1158 return true; // always true, has to fit in largest type
1159 uint64_t Max = (1ll << NumBits) - 1;
1160 return Val <= Max;
1161 }
1162
isValueValidForType(Type * Ty,int64_t Val)1163 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1164 unsigned NumBits = Ty->getIntegerBitWidth();
1165 if (Ty->isIntegerTy(1))
1166 return Val == 0 || Val == 1 || Val == -1;
1167 if (NumBits >= 64)
1168 return true; // always true, has to fit in largest type
1169 int64_t Min = -(1ll << (NumBits-1));
1170 int64_t Max = (1ll << (NumBits-1)) - 1;
1171 return (Val >= Min && Val <= Max);
1172 }
1173
isValueValidForType(Type * Ty,const APFloat & Val)1174 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1175 // convert modifies in place, so make a copy.
1176 APFloat Val2 = APFloat(Val);
1177 bool losesInfo;
1178 switch (Ty->getTypeID()) {
1179 default:
1180 return false; // These can't be represented as floating point!
1181
1182 // FIXME rounding mode needs to be more flexible
1183 case Type::HalfTyID: {
1184 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1185 return true;
1186 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1187 return !losesInfo;
1188 }
1189 case Type::FloatTyID: {
1190 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1191 return true;
1192 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1193 return !losesInfo;
1194 }
1195 case Type::DoubleTyID: {
1196 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1197 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1198 &Val2.getSemantics() == &APFloat::IEEEdouble)
1199 return true;
1200 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1201 return !losesInfo;
1202 }
1203 case Type::X86_FP80TyID:
1204 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1205 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1206 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1207 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1208 case Type::FP128TyID:
1209 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1210 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1211 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1212 &Val2.getSemantics() == &APFloat::IEEEquad;
1213 case Type::PPC_FP128TyID:
1214 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1215 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1216 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1217 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1218 }
1219 }
1220
1221
1222 //===----------------------------------------------------------------------===//
1223 // Factory Function Implementation
1224
get(Type * Ty)1225 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1226 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1227 "Cannot create an aggregate zero of non-aggregate type!");
1228
1229 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1230 if (Entry == 0)
1231 Entry = new ConstantAggregateZero(Ty);
1232
1233 return Entry;
1234 }
1235
1236 /// destroyConstant - Remove the constant from the constant table.
1237 ///
destroyConstant()1238 void ConstantAggregateZero::destroyConstant() {
1239 getContext().pImpl->CAZConstants.erase(getType());
1240 destroyConstantImpl();
1241 }
1242
1243 /// destroyConstant - Remove the constant from the constant table...
1244 ///
destroyConstant()1245 void ConstantArray::destroyConstant() {
1246 getType()->getContext().pImpl->ArrayConstants.remove(this);
1247 destroyConstantImpl();
1248 }
1249
1250
1251 //---- ConstantStruct::get() implementation...
1252 //
1253
1254 // destroyConstant - Remove the constant from the constant table...
1255 //
destroyConstant()1256 void ConstantStruct::destroyConstant() {
1257 getType()->getContext().pImpl->StructConstants.remove(this);
1258 destroyConstantImpl();
1259 }
1260
1261 // destroyConstant - Remove the constant from the constant table...
1262 //
destroyConstant()1263 void ConstantVector::destroyConstant() {
1264 getType()->getContext().pImpl->VectorConstants.remove(this);
1265 destroyConstantImpl();
1266 }
1267
1268 /// getSplatValue - If this is a splat vector constant, meaning that all of
1269 /// the elements have the same value, return that value. Otherwise return 0.
getSplatValue() const1270 Constant *Constant::getSplatValue() const {
1271 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1272 if (isa<ConstantAggregateZero>(this))
1273 return getNullValue(this->getType()->getVectorElementType());
1274 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1275 return CV->getSplatValue();
1276 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1277 return CV->getSplatValue();
1278 return 0;
1279 }
1280
1281 /// getSplatValue - If this is a splat constant, where all of the
1282 /// elements have the same value, return that value. Otherwise return null.
getSplatValue() const1283 Constant *ConstantVector::getSplatValue() const {
1284 // Check out first element.
1285 Constant *Elt = getOperand(0);
1286 // Then make sure all remaining elements point to the same value.
1287 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1288 if (getOperand(I) != Elt)
1289 return 0;
1290 return Elt;
1291 }
1292
1293 /// If C is a constant integer then return its value, otherwise C must be a
1294 /// vector of constant integers, all equal, and the common value is returned.
getUniqueInteger() const1295 const APInt &Constant::getUniqueInteger() const {
1296 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1297 return CI->getValue();
1298 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1299 const Constant *C = this->getAggregateElement(0U);
1300 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1301 return cast<ConstantInt>(C)->getValue();
1302 }
1303
1304
1305 //---- ConstantPointerNull::get() implementation.
1306 //
1307
get(PointerType * Ty)1308 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1309 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1310 if (Entry == 0)
1311 Entry = new ConstantPointerNull(Ty);
1312
1313 return Entry;
1314 }
1315
1316 // destroyConstant - Remove the constant from the constant table...
1317 //
destroyConstant()1318 void ConstantPointerNull::destroyConstant() {
1319 getContext().pImpl->CPNConstants.erase(getType());
1320 // Free the constant and any dangling references to it.
1321 destroyConstantImpl();
1322 }
1323
1324
1325 //---- UndefValue::get() implementation.
1326 //
1327
get(Type * Ty)1328 UndefValue *UndefValue::get(Type *Ty) {
1329 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1330 if (Entry == 0)
1331 Entry = new UndefValue(Ty);
1332
1333 return Entry;
1334 }
1335
1336 // destroyConstant - Remove the constant from the constant table.
1337 //
destroyConstant()1338 void UndefValue::destroyConstant() {
1339 // Free the constant and any dangling references to it.
1340 getContext().pImpl->UVConstants.erase(getType());
1341 destroyConstantImpl();
1342 }
1343
1344 //---- BlockAddress::get() implementation.
1345 //
1346
get(BasicBlock * BB)1347 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1348 assert(BB->getParent() != 0 && "Block must have a parent");
1349 return get(BB->getParent(), BB);
1350 }
1351
get(Function * F,BasicBlock * BB)1352 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1353 BlockAddress *&BA =
1354 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1355 if (BA == 0)
1356 BA = new BlockAddress(F, BB);
1357
1358 assert(BA->getFunction() == F && "Basic block moved between functions");
1359 return BA;
1360 }
1361
BlockAddress(Function * F,BasicBlock * BB)1362 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1363 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1364 &Op<0>(), 2) {
1365 setOperand(0, F);
1366 setOperand(1, BB);
1367 BB->AdjustBlockAddressRefCount(1);
1368 }
1369
1370
1371 // destroyConstant - Remove the constant from the constant table.
1372 //
destroyConstant()1373 void BlockAddress::destroyConstant() {
1374 getFunction()->getType()->getContext().pImpl
1375 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1376 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1377 destroyConstantImpl();
1378 }
1379
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)1380 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1381 // This could be replacing either the Basic Block or the Function. In either
1382 // case, we have to remove the map entry.
1383 Function *NewF = getFunction();
1384 BasicBlock *NewBB = getBasicBlock();
1385
1386 if (U == &Op<0>())
1387 NewF = cast<Function>(To);
1388 else
1389 NewBB = cast<BasicBlock>(To);
1390
1391 // See if the 'new' entry already exists, if not, just update this in place
1392 // and return early.
1393 BlockAddress *&NewBA =
1394 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1395 if (NewBA == 0) {
1396 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1397
1398 // Remove the old entry, this can't cause the map to rehash (just a
1399 // tombstone will get added).
1400 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1401 getBasicBlock()));
1402 NewBA = this;
1403 setOperand(0, NewF);
1404 setOperand(1, NewBB);
1405 getBasicBlock()->AdjustBlockAddressRefCount(1);
1406 return;
1407 }
1408
1409 // Otherwise, I do need to replace this with an existing value.
1410 assert(NewBA != this && "I didn't contain From!");
1411
1412 // Everyone using this now uses the replacement.
1413 replaceAllUsesWith(NewBA);
1414
1415 destroyConstant();
1416 }
1417
1418 //---- ConstantExpr::get() implementations.
1419 //
1420
1421 /// This is a utility function to handle folding of casts and lookup of the
1422 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty)1423 static inline Constant *getFoldedCast(
1424 Instruction::CastOps opc, Constant *C, Type *Ty) {
1425 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1426 // Fold a few common cases
1427 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1428 return FC;
1429
1430 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1431
1432 // Look up the constant in the table first to ensure uniqueness.
1433 ExprMapKeyType Key(opc, C);
1434
1435 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1436 }
1437
getCast(unsigned oc,Constant * C,Type * Ty)1438 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1439 Instruction::CastOps opc = Instruction::CastOps(oc);
1440 assert(Instruction::isCast(opc) && "opcode out of range");
1441 assert(C && Ty && "Null arguments to getCast");
1442 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1443
1444 switch (opc) {
1445 default:
1446 llvm_unreachable("Invalid cast opcode");
1447 case Instruction::Trunc: return getTrunc(C, Ty);
1448 case Instruction::ZExt: return getZExt(C, Ty);
1449 case Instruction::SExt: return getSExt(C, Ty);
1450 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1451 case Instruction::FPExt: return getFPExtend(C, Ty);
1452 case Instruction::UIToFP: return getUIToFP(C, Ty);
1453 case Instruction::SIToFP: return getSIToFP(C, Ty);
1454 case Instruction::FPToUI: return getFPToUI(C, Ty);
1455 case Instruction::FPToSI: return getFPToSI(C, Ty);
1456 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1457 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1458 case Instruction::BitCast: return getBitCast(C, Ty);
1459 }
1460 }
1461
getZExtOrBitCast(Constant * C,Type * Ty)1462 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1463 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1464 return getBitCast(C, Ty);
1465 return getZExt(C, Ty);
1466 }
1467
getSExtOrBitCast(Constant * C,Type * Ty)1468 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1469 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1470 return getBitCast(C, Ty);
1471 return getSExt(C, Ty);
1472 }
1473
getTruncOrBitCast(Constant * C,Type * Ty)1474 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1475 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1476 return getBitCast(C, Ty);
1477 return getTrunc(C, Ty);
1478 }
1479
getPointerCast(Constant * S,Type * Ty)1480 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1481 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1482 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1483 "Invalid cast");
1484
1485 if (Ty->isIntOrIntVectorTy())
1486 return getPtrToInt(S, Ty);
1487 return getBitCast(S, Ty);
1488 }
1489
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1490 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1491 bool isSigned) {
1492 assert(C->getType()->isIntOrIntVectorTy() &&
1493 Ty->isIntOrIntVectorTy() && "Invalid cast");
1494 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1495 unsigned DstBits = Ty->getScalarSizeInBits();
1496 Instruction::CastOps opcode =
1497 (SrcBits == DstBits ? Instruction::BitCast :
1498 (SrcBits > DstBits ? Instruction::Trunc :
1499 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1500 return getCast(opcode, C, Ty);
1501 }
1502
getFPCast(Constant * C,Type * Ty)1503 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1504 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1505 "Invalid cast");
1506 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1507 unsigned DstBits = Ty->getScalarSizeInBits();
1508 if (SrcBits == DstBits)
1509 return C; // Avoid a useless cast
1510 Instruction::CastOps opcode =
1511 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1512 return getCast(opcode, C, Ty);
1513 }
1514
getTrunc(Constant * C,Type * Ty)1515 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1516 #ifndef NDEBUG
1517 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1518 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1519 #endif
1520 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1521 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1522 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1523 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1524 "SrcTy must be larger than DestTy for Trunc!");
1525
1526 return getFoldedCast(Instruction::Trunc, C, Ty);
1527 }
1528
getSExt(Constant * C,Type * Ty)1529 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1530 #ifndef NDEBUG
1531 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1532 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1533 #endif
1534 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1535 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1536 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1537 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1538 "SrcTy must be smaller than DestTy for SExt!");
1539
1540 return getFoldedCast(Instruction::SExt, C, Ty);
1541 }
1542
getZExt(Constant * C,Type * Ty)1543 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1544 #ifndef NDEBUG
1545 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1546 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1547 #endif
1548 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1549 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1550 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1551 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1552 "SrcTy must be smaller than DestTy for ZExt!");
1553
1554 return getFoldedCast(Instruction::ZExt, C, Ty);
1555 }
1556
getFPTrunc(Constant * C,Type * Ty)1557 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1558 #ifndef NDEBUG
1559 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1560 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1561 #endif
1562 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1563 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1564 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1565 "This is an illegal floating point truncation!");
1566 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1567 }
1568
getFPExtend(Constant * C,Type * Ty)1569 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1570 #ifndef NDEBUG
1571 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1572 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1573 #endif
1574 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1575 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1576 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1577 "This is an illegal floating point extension!");
1578 return getFoldedCast(Instruction::FPExt, C, Ty);
1579 }
1580
getUIToFP(Constant * C,Type * Ty)1581 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1582 #ifndef NDEBUG
1583 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1584 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1585 #endif
1586 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1587 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1588 "This is an illegal uint to floating point cast!");
1589 return getFoldedCast(Instruction::UIToFP, C, Ty);
1590 }
1591
getSIToFP(Constant * C,Type * Ty)1592 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1593 #ifndef NDEBUG
1594 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1595 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1596 #endif
1597 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1598 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1599 "This is an illegal sint to floating point cast!");
1600 return getFoldedCast(Instruction::SIToFP, C, Ty);
1601 }
1602
getFPToUI(Constant * C,Type * Ty)1603 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1604 #ifndef NDEBUG
1605 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1606 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1607 #endif
1608 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1609 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1610 "This is an illegal floating point to uint cast!");
1611 return getFoldedCast(Instruction::FPToUI, C, Ty);
1612 }
1613
getFPToSI(Constant * C,Type * Ty)1614 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1615 #ifndef NDEBUG
1616 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1617 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1618 #endif
1619 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1620 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1621 "This is an illegal floating point to sint cast!");
1622 return getFoldedCast(Instruction::FPToSI, C, Ty);
1623 }
1624
getPtrToInt(Constant * C,Type * DstTy)1625 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1626 assert(C->getType()->getScalarType()->isPointerTy() &&
1627 "PtrToInt source must be pointer or pointer vector");
1628 assert(DstTy->getScalarType()->isIntegerTy() &&
1629 "PtrToInt destination must be integer or integer vector");
1630 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1631 if (isa<VectorType>(C->getType()))
1632 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1633 "Invalid cast between a different number of vector elements");
1634 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1635 }
1636
getIntToPtr(Constant * C,Type * DstTy)1637 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1638 assert(C->getType()->getScalarType()->isIntegerTy() &&
1639 "IntToPtr source must be integer or integer vector");
1640 assert(DstTy->getScalarType()->isPointerTy() &&
1641 "IntToPtr destination must be a pointer or pointer vector");
1642 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1643 if (isa<VectorType>(C->getType()))
1644 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1645 "Invalid cast between a different number of vector elements");
1646 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1647 }
1648
getBitCast(Constant * C,Type * DstTy)1649 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1650 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1651 "Invalid constantexpr bitcast!");
1652
1653 // It is common to ask for a bitcast of a value to its own type, handle this
1654 // speedily.
1655 if (C->getType() == DstTy) return C;
1656
1657 return getFoldedCast(Instruction::BitCast, C, DstTy);
1658 }
1659
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags)1660 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1661 unsigned Flags) {
1662 // Check the operands for consistency first.
1663 assert(Opcode >= Instruction::BinaryOpsBegin &&
1664 Opcode < Instruction::BinaryOpsEnd &&
1665 "Invalid opcode in binary constant expression");
1666 assert(C1->getType() == C2->getType() &&
1667 "Operand types in binary constant expression should match");
1668
1669 #ifndef NDEBUG
1670 switch (Opcode) {
1671 case Instruction::Add:
1672 case Instruction::Sub:
1673 case Instruction::Mul:
1674 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1675 assert(C1->getType()->isIntOrIntVectorTy() &&
1676 "Tried to create an integer operation on a non-integer type!");
1677 break;
1678 case Instruction::FAdd:
1679 case Instruction::FSub:
1680 case Instruction::FMul:
1681 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1682 assert(C1->getType()->isFPOrFPVectorTy() &&
1683 "Tried to create a floating-point operation on a "
1684 "non-floating-point type!");
1685 break;
1686 case Instruction::UDiv:
1687 case Instruction::SDiv:
1688 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1689 assert(C1->getType()->isIntOrIntVectorTy() &&
1690 "Tried to create an arithmetic operation on a non-arithmetic type!");
1691 break;
1692 case Instruction::FDiv:
1693 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1694 assert(C1->getType()->isFPOrFPVectorTy() &&
1695 "Tried to create an arithmetic operation on a non-arithmetic type!");
1696 break;
1697 case Instruction::URem:
1698 case Instruction::SRem:
1699 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1700 assert(C1->getType()->isIntOrIntVectorTy() &&
1701 "Tried to create an arithmetic operation on a non-arithmetic type!");
1702 break;
1703 case Instruction::FRem:
1704 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1705 assert(C1->getType()->isFPOrFPVectorTy() &&
1706 "Tried to create an arithmetic operation on a non-arithmetic type!");
1707 break;
1708 case Instruction::And:
1709 case Instruction::Or:
1710 case Instruction::Xor:
1711 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1712 assert(C1->getType()->isIntOrIntVectorTy() &&
1713 "Tried to create a logical operation on a non-integral type!");
1714 break;
1715 case Instruction::Shl:
1716 case Instruction::LShr:
1717 case Instruction::AShr:
1718 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1719 assert(C1->getType()->isIntOrIntVectorTy() &&
1720 "Tried to create a shift operation on a non-integer type!");
1721 break;
1722 default:
1723 break;
1724 }
1725 #endif
1726
1727 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1728 return FC; // Fold a few common cases.
1729
1730 Constant *ArgVec[] = { C1, C2 };
1731 ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1732
1733 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1734 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1735 }
1736
getSizeOf(Type * Ty)1737 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1738 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1739 // Note that a non-inbounds gep is used, as null isn't within any object.
1740 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1741 Constant *GEP = getGetElementPtr(
1742 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1743 return getPtrToInt(GEP,
1744 Type::getInt64Ty(Ty->getContext()));
1745 }
1746
getAlignOf(Type * Ty)1747 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1748 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1749 // Note that a non-inbounds gep is used, as null isn't within any object.
1750 Type *AligningTy =
1751 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1752 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1753 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1754 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1755 Constant *Indices[2] = { Zero, One };
1756 Constant *GEP = getGetElementPtr(NullPtr, Indices);
1757 return getPtrToInt(GEP,
1758 Type::getInt64Ty(Ty->getContext()));
1759 }
1760
getOffsetOf(StructType * STy,unsigned FieldNo)1761 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1762 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1763 FieldNo));
1764 }
1765
getOffsetOf(Type * Ty,Constant * FieldNo)1766 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1767 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1768 // Note that a non-inbounds gep is used, as null isn't within any object.
1769 Constant *GEPIdx[] = {
1770 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1771 FieldNo
1772 };
1773 Constant *GEP = getGetElementPtr(
1774 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1775 return getPtrToInt(GEP,
1776 Type::getInt64Ty(Ty->getContext()));
1777 }
1778
getCompare(unsigned short Predicate,Constant * C1,Constant * C2)1779 Constant *ConstantExpr::getCompare(unsigned short Predicate,
1780 Constant *C1, Constant *C2) {
1781 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1782
1783 switch (Predicate) {
1784 default: llvm_unreachable("Invalid CmpInst predicate");
1785 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1786 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1787 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1788 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1789 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1790 case CmpInst::FCMP_TRUE:
1791 return getFCmp(Predicate, C1, C2);
1792
1793 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1794 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1795 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1796 case CmpInst::ICMP_SLE:
1797 return getICmp(Predicate, C1, C2);
1798 }
1799 }
1800
getSelect(Constant * C,Constant * V1,Constant * V2)1801 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1802 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1803
1804 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1805 return SC; // Fold common cases
1806
1807 Constant *ArgVec[] = { C, V1, V2 };
1808 ExprMapKeyType Key(Instruction::Select, ArgVec);
1809
1810 LLVMContextImpl *pImpl = C->getContext().pImpl;
1811 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1812 }
1813
getGetElementPtr(Constant * C,ArrayRef<Value * > Idxs,bool InBounds)1814 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1815 bool InBounds) {
1816 assert(C->getType()->isPtrOrPtrVectorTy() &&
1817 "Non-pointer type for constant GetElementPtr expression");
1818
1819 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1820 return FC; // Fold a few common cases.
1821
1822 // Get the result type of the getelementptr!
1823 Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1824 assert(Ty && "GEP indices invalid!");
1825 unsigned AS = C->getType()->getPointerAddressSpace();
1826 Type *ReqTy = Ty->getPointerTo(AS);
1827 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1828 ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1829
1830 // Look up the constant in the table first to ensure uniqueness
1831 std::vector<Constant*> ArgVec;
1832 ArgVec.reserve(1 + Idxs.size());
1833 ArgVec.push_back(C);
1834 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1835 assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1836 "getelementptr index type missmatch");
1837 assert((!Idxs[i]->getType()->isVectorTy() ||
1838 ReqTy->getVectorNumElements() ==
1839 Idxs[i]->getType()->getVectorNumElements()) &&
1840 "getelementptr index type missmatch");
1841 ArgVec.push_back(cast<Constant>(Idxs[i]));
1842 }
1843 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1844 InBounds ? GEPOperator::IsInBounds : 0);
1845
1846 LLVMContextImpl *pImpl = C->getContext().pImpl;
1847 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1848 }
1849
1850 Constant *
getICmp(unsigned short pred,Constant * LHS,Constant * RHS)1851 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1852 assert(LHS->getType() == RHS->getType());
1853 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1854 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1855
1856 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1857 return FC; // Fold a few common cases...
1858
1859 // Look up the constant in the table first to ensure uniqueness
1860 Constant *ArgVec[] = { LHS, RHS };
1861 // Get the key type with both the opcode and predicate
1862 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1863
1864 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1865 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1866 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1867
1868 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1869 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1870 }
1871
1872 Constant *
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS)1873 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1874 assert(LHS->getType() == RHS->getType());
1875 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1876
1877 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1878 return FC; // Fold a few common cases...
1879
1880 // Look up the constant in the table first to ensure uniqueness
1881 Constant *ArgVec[] = { LHS, RHS };
1882 // Get the key type with both the opcode and predicate
1883 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1884
1885 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1886 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1887 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1888
1889 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1890 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1891 }
1892
getExtractElement(Constant * Val,Constant * Idx)1893 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1894 assert(Val->getType()->isVectorTy() &&
1895 "Tried to create extractelement operation on non-vector type!");
1896 assert(Idx->getType()->isIntegerTy(32) &&
1897 "Extractelement index must be i32 type!");
1898
1899 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1900 return FC; // Fold a few common cases.
1901
1902 // Look up the constant in the table first to ensure uniqueness
1903 Constant *ArgVec[] = { Val, Idx };
1904 const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1905
1906 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1907 Type *ReqTy = Val->getType()->getVectorElementType();
1908 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1909 }
1910
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx)1911 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1912 Constant *Idx) {
1913 assert(Val->getType()->isVectorTy() &&
1914 "Tried to create insertelement operation on non-vector type!");
1915 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1916 "Insertelement types must match!");
1917 assert(Idx->getType()->isIntegerTy(32) &&
1918 "Insertelement index must be i32 type!");
1919
1920 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1921 return FC; // Fold a few common cases.
1922 // Look up the constant in the table first to ensure uniqueness
1923 Constant *ArgVec[] = { Val, Elt, Idx };
1924 const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1925
1926 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1927 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1928 }
1929
getShuffleVector(Constant * V1,Constant * V2,Constant * Mask)1930 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1931 Constant *Mask) {
1932 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1933 "Invalid shuffle vector constant expr operands!");
1934
1935 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1936 return FC; // Fold a few common cases.
1937
1938 unsigned NElts = Mask->getType()->getVectorNumElements();
1939 Type *EltTy = V1->getType()->getVectorElementType();
1940 Type *ShufTy = VectorType::get(EltTy, NElts);
1941
1942 // Look up the constant in the table first to ensure uniqueness
1943 Constant *ArgVec[] = { V1, V2, Mask };
1944 const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1945
1946 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1947 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1948 }
1949
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs)1950 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1951 ArrayRef<unsigned> Idxs) {
1952 assert(ExtractValueInst::getIndexedType(Agg->getType(),
1953 Idxs) == Val->getType() &&
1954 "insertvalue indices invalid!");
1955 assert(Agg->getType()->isFirstClassType() &&
1956 "Non-first-class type for constant insertvalue expression");
1957 Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1958 assert(FC && "insertvalue constant expr couldn't be folded!");
1959 return FC;
1960 }
1961
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs)1962 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1963 ArrayRef<unsigned> Idxs) {
1964 assert(Agg->getType()->isFirstClassType() &&
1965 "Tried to create extractelement operation on non-first-class type!");
1966
1967 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1968 (void)ReqTy;
1969 assert(ReqTy && "extractvalue indices invalid!");
1970
1971 assert(Agg->getType()->isFirstClassType() &&
1972 "Non-first-class type for constant extractvalue expression");
1973 Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1974 assert(FC && "ExtractValue constant expr couldn't be folded!");
1975 return FC;
1976 }
1977
getNeg(Constant * C,bool HasNUW,bool HasNSW)1978 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1979 assert(C->getType()->isIntOrIntVectorTy() &&
1980 "Cannot NEG a nonintegral value!");
1981 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1982 C, HasNUW, HasNSW);
1983 }
1984
getFNeg(Constant * C)1985 Constant *ConstantExpr::getFNeg(Constant *C) {
1986 assert(C->getType()->isFPOrFPVectorTy() &&
1987 "Cannot FNEG a non-floating-point value!");
1988 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1989 }
1990
getNot(Constant * C)1991 Constant *ConstantExpr::getNot(Constant *C) {
1992 assert(C->getType()->isIntOrIntVectorTy() &&
1993 "Cannot NOT a nonintegral value!");
1994 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1995 }
1996
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)1997 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1998 bool HasNUW, bool HasNSW) {
1999 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2000 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2001 return get(Instruction::Add, C1, C2, Flags);
2002 }
2003
getFAdd(Constant * C1,Constant * C2)2004 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2005 return get(Instruction::FAdd, C1, C2);
2006 }
2007
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2008 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2009 bool HasNUW, bool HasNSW) {
2010 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2011 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2012 return get(Instruction::Sub, C1, C2, Flags);
2013 }
2014
getFSub(Constant * C1,Constant * C2)2015 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2016 return get(Instruction::FSub, C1, C2);
2017 }
2018
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2019 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2020 bool HasNUW, bool HasNSW) {
2021 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2022 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2023 return get(Instruction::Mul, C1, C2, Flags);
2024 }
2025
getFMul(Constant * C1,Constant * C2)2026 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2027 return get(Instruction::FMul, C1, C2);
2028 }
2029
getUDiv(Constant * C1,Constant * C2,bool isExact)2030 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2031 return get(Instruction::UDiv, C1, C2,
2032 isExact ? PossiblyExactOperator::IsExact : 0);
2033 }
2034
getSDiv(Constant * C1,Constant * C2,bool isExact)2035 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2036 return get(Instruction::SDiv, C1, C2,
2037 isExact ? PossiblyExactOperator::IsExact : 0);
2038 }
2039
getFDiv(Constant * C1,Constant * C2)2040 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2041 return get(Instruction::FDiv, C1, C2);
2042 }
2043
getURem(Constant * C1,Constant * C2)2044 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2045 return get(Instruction::URem, C1, C2);
2046 }
2047
getSRem(Constant * C1,Constant * C2)2048 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2049 return get(Instruction::SRem, C1, C2);
2050 }
2051
getFRem(Constant * C1,Constant * C2)2052 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2053 return get(Instruction::FRem, C1, C2);
2054 }
2055
getAnd(Constant * C1,Constant * C2)2056 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2057 return get(Instruction::And, C1, C2);
2058 }
2059
getOr(Constant * C1,Constant * C2)2060 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2061 return get(Instruction::Or, C1, C2);
2062 }
2063
getXor(Constant * C1,Constant * C2)2064 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2065 return get(Instruction::Xor, C1, C2);
2066 }
2067
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2068 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2069 bool HasNUW, bool HasNSW) {
2070 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2071 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2072 return get(Instruction::Shl, C1, C2, Flags);
2073 }
2074
getLShr(Constant * C1,Constant * C2,bool isExact)2075 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2076 return get(Instruction::LShr, C1, C2,
2077 isExact ? PossiblyExactOperator::IsExact : 0);
2078 }
2079
getAShr(Constant * C1,Constant * C2,bool isExact)2080 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2081 return get(Instruction::AShr, C1, C2,
2082 isExact ? PossiblyExactOperator::IsExact : 0);
2083 }
2084
2085 /// getBinOpIdentity - Return the identity for the given binary operation,
2086 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
2087 /// returns null if the operator doesn't have an identity.
getBinOpIdentity(unsigned Opcode,Type * Ty)2088 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2089 switch (Opcode) {
2090 default:
2091 // Doesn't have an identity.
2092 return 0;
2093
2094 case Instruction::Add:
2095 case Instruction::Or:
2096 case Instruction::Xor:
2097 return Constant::getNullValue(Ty);
2098
2099 case Instruction::Mul:
2100 return ConstantInt::get(Ty, 1);
2101
2102 case Instruction::And:
2103 return Constant::getAllOnesValue(Ty);
2104 }
2105 }
2106
2107 /// getBinOpAbsorber - Return the absorbing element for the given binary
2108 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2109 /// every X. For example, this returns zero for integer multiplication.
2110 /// It returns null if the operator doesn't have an absorbing element.
getBinOpAbsorber(unsigned Opcode,Type * Ty)2111 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2112 switch (Opcode) {
2113 default:
2114 // Doesn't have an absorber.
2115 return 0;
2116
2117 case Instruction::Or:
2118 return Constant::getAllOnesValue(Ty);
2119
2120 case Instruction::And:
2121 case Instruction::Mul:
2122 return Constant::getNullValue(Ty);
2123 }
2124 }
2125
2126 // destroyConstant - Remove the constant from the constant table...
2127 //
destroyConstant()2128 void ConstantExpr::destroyConstant() {
2129 getType()->getContext().pImpl->ExprConstants.remove(this);
2130 destroyConstantImpl();
2131 }
2132
getOpcodeName() const2133 const char *ConstantExpr::getOpcodeName() const {
2134 return Instruction::getOpcodeName(getOpcode());
2135 }
2136
2137
2138
2139 GetElementPtrConstantExpr::
GetElementPtrConstantExpr(Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2140 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2141 Type *DestTy)
2142 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2143 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2144 - (IdxList.size()+1), IdxList.size()+1) {
2145 OperandList[0] = C;
2146 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2147 OperandList[i+1] = IdxList[i];
2148 }
2149
2150 //===----------------------------------------------------------------------===//
2151 // ConstantData* implementations
2152
anchor()2153 void ConstantDataArray::anchor() {}
anchor()2154 void ConstantDataVector::anchor() {}
2155
2156 /// getElementType - Return the element type of the array/vector.
getElementType() const2157 Type *ConstantDataSequential::getElementType() const {
2158 return getType()->getElementType();
2159 }
2160
getRawDataValues() const2161 StringRef ConstantDataSequential::getRawDataValues() const {
2162 return StringRef(DataElements, getNumElements()*getElementByteSize());
2163 }
2164
2165 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2166 /// formed with a vector or array of the specified element type.
2167 /// ConstantDataArray only works with normal float and int types that are
2168 /// stored densely in memory, not with things like i42 or x86_f80.
isElementTypeCompatible(const Type * Ty)2169 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2170 if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2171 if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2172 switch (IT->getBitWidth()) {
2173 case 8:
2174 case 16:
2175 case 32:
2176 case 64:
2177 return true;
2178 default: break;
2179 }
2180 }
2181 return false;
2182 }
2183
2184 /// getNumElements - Return the number of elements in the array or vector.
getNumElements() const2185 unsigned ConstantDataSequential::getNumElements() const {
2186 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2187 return AT->getNumElements();
2188 return getType()->getVectorNumElements();
2189 }
2190
2191
2192 /// getElementByteSize - Return the size in bytes of the elements in the data.
getElementByteSize() const2193 uint64_t ConstantDataSequential::getElementByteSize() const {
2194 return getElementType()->getPrimitiveSizeInBits()/8;
2195 }
2196
2197 /// getElementPointer - Return the start of the specified element.
getElementPointer(unsigned Elt) const2198 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2199 assert(Elt < getNumElements() && "Invalid Elt");
2200 return DataElements+Elt*getElementByteSize();
2201 }
2202
2203
2204 /// isAllZeros - return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2205 static bool isAllZeros(StringRef Arr) {
2206 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2207 if (*I != 0)
2208 return false;
2209 return true;
2210 }
2211
2212 /// getImpl - This is the underlying implementation of all of the
2213 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2214 /// the correct element type. We take the bytes in as a StringRef because
2215 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2216 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2217 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2218 // If the elements are all zero or there are no elements, return a CAZ, which
2219 // is more dense and canonical.
2220 if (isAllZeros(Elements))
2221 return ConstantAggregateZero::get(Ty);
2222
2223 // Do a lookup to see if we have already formed one of these.
2224 StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2225 Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2226
2227 // The bucket can point to a linked list of different CDS's that have the same
2228 // body but different types. For example, 0,0,0,1 could be a 4 element array
2229 // of i8, or a 1-element array of i32. They'll both end up in the same
2230 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2231 ConstantDataSequential **Entry = &Slot.getValue();
2232 for (ConstantDataSequential *Node = *Entry; Node != 0;
2233 Entry = &Node->Next, Node = *Entry)
2234 if (Node->getType() == Ty)
2235 return Node;
2236
2237 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2238 // and return it.
2239 if (isa<ArrayType>(Ty))
2240 return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2241
2242 assert(isa<VectorType>(Ty));
2243 return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2244 }
2245
destroyConstant()2246 void ConstantDataSequential::destroyConstant() {
2247 // Remove the constant from the StringMap.
2248 StringMap<ConstantDataSequential*> &CDSConstants =
2249 getType()->getContext().pImpl->CDSConstants;
2250
2251 StringMap<ConstantDataSequential*>::iterator Slot =
2252 CDSConstants.find(getRawDataValues());
2253
2254 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2255
2256 ConstantDataSequential **Entry = &Slot->getValue();
2257
2258 // Remove the entry from the hash table.
2259 if ((*Entry)->Next == 0) {
2260 // If there is only one value in the bucket (common case) it must be this
2261 // entry, and removing the entry should remove the bucket completely.
2262 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2263 getContext().pImpl->CDSConstants.erase(Slot);
2264 } else {
2265 // Otherwise, there are multiple entries linked off the bucket, unlink the
2266 // node we care about but keep the bucket around.
2267 for (ConstantDataSequential *Node = *Entry; ;
2268 Entry = &Node->Next, Node = *Entry) {
2269 assert(Node && "Didn't find entry in its uniquing hash table!");
2270 // If we found our entry, unlink it from the list and we're done.
2271 if (Node == this) {
2272 *Entry = Node->Next;
2273 break;
2274 }
2275 }
2276 }
2277
2278 // If we were part of a list, make sure that we don't delete the list that is
2279 // still owned by the uniquing map.
2280 Next = 0;
2281
2282 // Finally, actually delete it.
2283 destroyConstantImpl();
2284 }
2285
2286 /// get() constructors - Return a constant with array type with an element
2287 /// count and element type matching the ArrayRef passed in. Note that this
2288 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2289 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2290 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2291 const char *Data = reinterpret_cast<const char *>(Elts.data());
2292 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2293 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2294 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2295 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2296 const char *Data = reinterpret_cast<const char *>(Elts.data());
2297 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2298 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2299 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2300 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2301 const char *Data = reinterpret_cast<const char *>(Elts.data());
2302 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2303 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2304 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2305 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2306 const char *Data = reinterpret_cast<const char *>(Elts.data());
2307 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2308 }
get(LLVMContext & Context,ArrayRef<float> Elts)2309 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2310 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2311 const char *Data = reinterpret_cast<const char *>(Elts.data());
2312 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2313 }
get(LLVMContext & Context,ArrayRef<double> Elts)2314 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2315 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2316 const char *Data = reinterpret_cast<const char *>(Elts.data());
2317 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2318 }
2319
2320 /// getString - This method constructs a CDS and initializes it with a text
2321 /// string. The default behavior (AddNull==true) causes a null terminator to
2322 /// be placed at the end of the array (increasing the length of the string by
2323 /// one more than the StringRef would normally indicate. Pass AddNull=false
2324 /// to disable this behavior.
getString(LLVMContext & Context,StringRef Str,bool AddNull)2325 Constant *ConstantDataArray::getString(LLVMContext &Context,
2326 StringRef Str, bool AddNull) {
2327 if (!AddNull) {
2328 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2329 return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2330 Str.size()));
2331 }
2332
2333 SmallVector<uint8_t, 64> ElementVals;
2334 ElementVals.append(Str.begin(), Str.end());
2335 ElementVals.push_back(0);
2336 return get(Context, ElementVals);
2337 }
2338
2339 /// get() constructors - Return a constant with vector type with an element
2340 /// count and element type matching the ArrayRef passed in. Note that this
2341 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2342 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2343 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2344 const char *Data = reinterpret_cast<const char *>(Elts.data());
2345 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2346 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2347 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2348 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2349 const char *Data = reinterpret_cast<const char *>(Elts.data());
2350 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2351 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2352 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2353 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2354 const char *Data = reinterpret_cast<const char *>(Elts.data());
2355 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2356 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2357 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2358 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2359 const char *Data = reinterpret_cast<const char *>(Elts.data());
2360 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2361 }
get(LLVMContext & Context,ArrayRef<float> Elts)2362 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2363 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2364 const char *Data = reinterpret_cast<const char *>(Elts.data());
2365 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2366 }
get(LLVMContext & Context,ArrayRef<double> Elts)2367 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2368 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2369 const char *Data = reinterpret_cast<const char *>(Elts.data());
2370 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2371 }
2372
getSplat(unsigned NumElts,Constant * V)2373 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2374 assert(isElementTypeCompatible(V->getType()) &&
2375 "Element type not compatible with ConstantData");
2376 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2377 if (CI->getType()->isIntegerTy(8)) {
2378 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2379 return get(V->getContext(), Elts);
2380 }
2381 if (CI->getType()->isIntegerTy(16)) {
2382 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2383 return get(V->getContext(), Elts);
2384 }
2385 if (CI->getType()->isIntegerTy(32)) {
2386 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2387 return get(V->getContext(), Elts);
2388 }
2389 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2390 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2391 return get(V->getContext(), Elts);
2392 }
2393
2394 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2395 if (CFP->getType()->isFloatTy()) {
2396 SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2397 return get(V->getContext(), Elts);
2398 }
2399 if (CFP->getType()->isDoubleTy()) {
2400 SmallVector<double, 16> Elts(NumElts,
2401 CFP->getValueAPF().convertToDouble());
2402 return get(V->getContext(), Elts);
2403 }
2404 }
2405 return ConstantVector::getSplat(NumElts, V);
2406 }
2407
2408
2409 /// getElementAsInteger - If this is a sequential container of integers (of
2410 /// any size), return the specified element in the low bits of a uint64_t.
getElementAsInteger(unsigned Elt) const2411 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2412 assert(isa<IntegerType>(getElementType()) &&
2413 "Accessor can only be used when element is an integer");
2414 const char *EltPtr = getElementPointer(Elt);
2415
2416 // The data is stored in host byte order, make sure to cast back to the right
2417 // type to load with the right endianness.
2418 switch (getElementType()->getIntegerBitWidth()) {
2419 default: llvm_unreachable("Invalid bitwidth for CDS");
2420 case 8:
2421 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2422 case 16:
2423 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2424 case 32:
2425 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2426 case 64:
2427 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2428 }
2429 }
2430
2431 /// getElementAsAPFloat - If this is a sequential container of floating point
2432 /// type, return the specified element as an APFloat.
getElementAsAPFloat(unsigned Elt) const2433 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2434 const char *EltPtr = getElementPointer(Elt);
2435
2436 switch (getElementType()->getTypeID()) {
2437 default:
2438 llvm_unreachable("Accessor can only be used when element is float/double!");
2439 case Type::FloatTyID: {
2440 const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2441 return APFloat(*const_cast<float *>(FloatPrt));
2442 }
2443 case Type::DoubleTyID: {
2444 const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2445 return APFloat(*const_cast<double *>(DoublePtr));
2446 }
2447 }
2448 }
2449
2450 /// getElementAsFloat - If this is an sequential container of floats, return
2451 /// the specified element as a float.
getElementAsFloat(unsigned Elt) const2452 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2453 assert(getElementType()->isFloatTy() &&
2454 "Accessor can only be used when element is a 'float'");
2455 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2456 return *const_cast<float *>(EltPtr);
2457 }
2458
2459 /// getElementAsDouble - If this is an sequential container of doubles, return
2460 /// the specified element as a float.
getElementAsDouble(unsigned Elt) const2461 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2462 assert(getElementType()->isDoubleTy() &&
2463 "Accessor can only be used when element is a 'float'");
2464 const double *EltPtr =
2465 reinterpret_cast<const double *>(getElementPointer(Elt));
2466 return *const_cast<double *>(EltPtr);
2467 }
2468
2469 /// getElementAsConstant - Return a Constant for a specified index's element.
2470 /// Note that this has to compute a new constant to return, so it isn't as
2471 /// efficient as getElementAsInteger/Float/Double.
getElementAsConstant(unsigned Elt) const2472 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2473 if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2474 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2475
2476 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2477 }
2478
2479 /// isString - This method returns true if this is an array of i8.
isString() const2480 bool ConstantDataSequential::isString() const {
2481 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2482 }
2483
2484 /// isCString - This method returns true if the array "isString", ends with a
2485 /// nul byte, and does not contains any other nul bytes.
isCString() const2486 bool ConstantDataSequential::isCString() const {
2487 if (!isString())
2488 return false;
2489
2490 StringRef Str = getAsString();
2491
2492 // The last value must be nul.
2493 if (Str.back() != 0) return false;
2494
2495 // Other elements must be non-nul.
2496 return Str.drop_back().find(0) == StringRef::npos;
2497 }
2498
2499 /// getSplatValue - If this is a splat constant, meaning that all of the
2500 /// elements have the same value, return that value. Otherwise return NULL.
getSplatValue() const2501 Constant *ConstantDataVector::getSplatValue() const {
2502 const char *Base = getRawDataValues().data();
2503
2504 // Compare elements 1+ to the 0'th element.
2505 unsigned EltSize = getElementByteSize();
2506 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2507 if (memcmp(Base, Base+i*EltSize, EltSize))
2508 return 0;
2509
2510 // If they're all the same, return the 0th one as a representative.
2511 return getElementAsConstant(0);
2512 }
2513
2514 //===----------------------------------------------------------------------===//
2515 // replaceUsesOfWithOnConstant implementations
2516
2517 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2518 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2519 /// etc.
2520 ///
2521 /// Note that we intentionally replace all uses of From with To here. Consider
2522 /// a large array that uses 'From' 1000 times. By handling this case all here,
2523 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2524 /// single invocation handles all 1000 uses. Handling them one at a time would
2525 /// work, but would be really slow because it would have to unique each updated
2526 /// array instance.
2527 ///
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2528 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2529 Use *U) {
2530 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2531 Constant *ToC = cast<Constant>(To);
2532
2533 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2534
2535 SmallVector<Constant*, 8> Values;
2536 LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2537 Lookup.first = cast<ArrayType>(getType());
2538 Values.reserve(getNumOperands()); // Build replacement array.
2539
2540 // Fill values with the modified operands of the constant array. Also,
2541 // compute whether this turns into an all-zeros array.
2542 unsigned NumUpdated = 0;
2543
2544 // Keep track of whether all the values in the array are "ToC".
2545 bool AllSame = true;
2546 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2547 Constant *Val = cast<Constant>(O->get());
2548 if (Val == From) {
2549 Val = ToC;
2550 ++NumUpdated;
2551 }
2552 Values.push_back(Val);
2553 AllSame &= Val == ToC;
2554 }
2555
2556 Constant *Replacement = 0;
2557 if (AllSame && ToC->isNullValue()) {
2558 Replacement = ConstantAggregateZero::get(getType());
2559 } else if (AllSame && isa<UndefValue>(ToC)) {
2560 Replacement = UndefValue::get(getType());
2561 } else {
2562 // Check to see if we have this array type already.
2563 Lookup.second = makeArrayRef(Values);
2564 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2565 pImpl->ArrayConstants.find(Lookup);
2566
2567 if (I != pImpl->ArrayConstants.map_end()) {
2568 Replacement = I->first;
2569 } else {
2570 // Okay, the new shape doesn't exist in the system yet. Instead of
2571 // creating a new constant array, inserting it, replaceallusesof'ing the
2572 // old with the new, then deleting the old... just update the current one
2573 // in place!
2574 pImpl->ArrayConstants.remove(this);
2575
2576 // Update to the new value. Optimize for the case when we have a single
2577 // operand that we're changing, but handle bulk updates efficiently.
2578 if (NumUpdated == 1) {
2579 unsigned OperandToUpdate = U - OperandList;
2580 assert(getOperand(OperandToUpdate) == From &&
2581 "ReplaceAllUsesWith broken!");
2582 setOperand(OperandToUpdate, ToC);
2583 } else {
2584 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2585 if (getOperand(i) == From)
2586 setOperand(i, ToC);
2587 }
2588 pImpl->ArrayConstants.insert(this);
2589 return;
2590 }
2591 }
2592
2593 // Otherwise, I do need to replace this with an existing value.
2594 assert(Replacement != this && "I didn't contain From!");
2595
2596 // Everyone using this now uses the replacement.
2597 replaceAllUsesWith(Replacement);
2598
2599 // Delete the old constant!
2600 destroyConstant();
2601 }
2602
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2603 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2604 Use *U) {
2605 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2606 Constant *ToC = cast<Constant>(To);
2607
2608 unsigned OperandToUpdate = U-OperandList;
2609 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2610
2611 SmallVector<Constant*, 8> Values;
2612 LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2613 Lookup.first = cast<StructType>(getType());
2614 Values.reserve(getNumOperands()); // Build replacement struct.
2615
2616 // Fill values with the modified operands of the constant struct. Also,
2617 // compute whether this turns into an all-zeros struct.
2618 bool isAllZeros = false;
2619 bool isAllUndef = false;
2620 if (ToC->isNullValue()) {
2621 isAllZeros = true;
2622 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2623 Constant *Val = cast<Constant>(O->get());
2624 Values.push_back(Val);
2625 if (isAllZeros) isAllZeros = Val->isNullValue();
2626 }
2627 } else if (isa<UndefValue>(ToC)) {
2628 isAllUndef = true;
2629 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2630 Constant *Val = cast<Constant>(O->get());
2631 Values.push_back(Val);
2632 if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2633 }
2634 } else {
2635 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2636 Values.push_back(cast<Constant>(O->get()));
2637 }
2638 Values[OperandToUpdate] = ToC;
2639
2640 LLVMContextImpl *pImpl = getContext().pImpl;
2641
2642 Constant *Replacement = 0;
2643 if (isAllZeros) {
2644 Replacement = ConstantAggregateZero::get(getType());
2645 } else if (isAllUndef) {
2646 Replacement = UndefValue::get(getType());
2647 } else {
2648 // Check to see if we have this struct type already.
2649 Lookup.second = makeArrayRef(Values);
2650 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2651 pImpl->StructConstants.find(Lookup);
2652
2653 if (I != pImpl->StructConstants.map_end()) {
2654 Replacement = I->first;
2655 } else {
2656 // Okay, the new shape doesn't exist in the system yet. Instead of
2657 // creating a new constant struct, inserting it, replaceallusesof'ing the
2658 // old with the new, then deleting the old... just update the current one
2659 // in place!
2660 pImpl->StructConstants.remove(this);
2661
2662 // Update to the new value.
2663 setOperand(OperandToUpdate, ToC);
2664 pImpl->StructConstants.insert(this);
2665 return;
2666 }
2667 }
2668
2669 assert(Replacement != this && "I didn't contain From!");
2670
2671 // Everyone using this now uses the replacement.
2672 replaceAllUsesWith(Replacement);
2673
2674 // Delete the old constant!
2675 destroyConstant();
2676 }
2677
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2678 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2679 Use *U) {
2680 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2681
2682 SmallVector<Constant*, 8> Values;
2683 Values.reserve(getNumOperands()); // Build replacement array...
2684 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2685 Constant *Val = getOperand(i);
2686 if (Val == From) Val = cast<Constant>(To);
2687 Values.push_back(Val);
2688 }
2689
2690 Constant *Replacement = get(Values);
2691 assert(Replacement != this && "I didn't contain From!");
2692
2693 // Everyone using this now uses the replacement.
2694 replaceAllUsesWith(Replacement);
2695
2696 // Delete the old constant!
2697 destroyConstant();
2698 }
2699
replaceUsesOfWithOnConstant(Value * From,Value * ToV,Use * U)2700 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2701 Use *U) {
2702 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2703 Constant *To = cast<Constant>(ToV);
2704
2705 SmallVector<Constant*, 8> NewOps;
2706 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2707 Constant *Op = getOperand(i);
2708 NewOps.push_back(Op == From ? To : Op);
2709 }
2710
2711 Constant *Replacement = getWithOperands(NewOps);
2712 assert(Replacement != this && "I didn't contain From!");
2713
2714 // Everyone using this now uses the replacement.
2715 replaceAllUsesWith(Replacement);
2716
2717 // Delete the old constant!
2718 destroyConstant();
2719 }
2720
getAsInstruction()2721 Instruction *ConstantExpr::getAsInstruction() {
2722 SmallVector<Value*,4> ValueOperands;
2723 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2724 ValueOperands.push_back(cast<Value>(I));
2725
2726 ArrayRef<Value*> Ops(ValueOperands);
2727
2728 switch (getOpcode()) {
2729 case Instruction::Trunc:
2730 case Instruction::ZExt:
2731 case Instruction::SExt:
2732 case Instruction::FPTrunc:
2733 case Instruction::FPExt:
2734 case Instruction::UIToFP:
2735 case Instruction::SIToFP:
2736 case Instruction::FPToUI:
2737 case Instruction::FPToSI:
2738 case Instruction::PtrToInt:
2739 case Instruction::IntToPtr:
2740 case Instruction::BitCast:
2741 return CastInst::Create((Instruction::CastOps)getOpcode(),
2742 Ops[0], getType());
2743 case Instruction::Select:
2744 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2745 case Instruction::InsertElement:
2746 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2747 case Instruction::ExtractElement:
2748 return ExtractElementInst::Create(Ops[0], Ops[1]);
2749 case Instruction::InsertValue:
2750 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2751 case Instruction::ExtractValue:
2752 return ExtractValueInst::Create(Ops[0], getIndices());
2753 case Instruction::ShuffleVector:
2754 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2755
2756 case Instruction::GetElementPtr:
2757 if (cast<GEPOperator>(this)->isInBounds())
2758 return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2759 else
2760 return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2761
2762 case Instruction::ICmp:
2763 case Instruction::FCmp:
2764 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2765 getPredicate(), Ops[0], Ops[1]);
2766
2767 default:
2768 assert(getNumOperands() == 2 && "Must be binary operator?");
2769 BinaryOperator *BO =
2770 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2771 Ops[0], Ops[1]);
2772 if (isa<OverflowingBinaryOperator>(BO)) {
2773 BO->setHasNoUnsignedWrap(SubclassOptionalData &
2774 OverflowingBinaryOperator::NoUnsignedWrap);
2775 BO->setHasNoSignedWrap(SubclassOptionalData &
2776 OverflowingBinaryOperator::NoSignedWrap);
2777 }
2778 if (isa<PossiblyExactOperator>(BO))
2779 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2780 return BO;
2781 }
2782 }
2783