• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Target/TargetLoweringObjectFile.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 using namespace llvm;
35 
36 /// InitLibcallNames - Set default libcall names.
37 ///
InitLibcallNames(const char ** Names,const TargetMachine & TM)38 static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
39   Names[RTLIB::SHL_I16] = "__ashlhi3";
40   Names[RTLIB::SHL_I32] = "__ashlsi3";
41   Names[RTLIB::SHL_I64] = "__ashldi3";
42   Names[RTLIB::SHL_I128] = "__ashlti3";
43   Names[RTLIB::SRL_I16] = "__lshrhi3";
44   Names[RTLIB::SRL_I32] = "__lshrsi3";
45   Names[RTLIB::SRL_I64] = "__lshrdi3";
46   Names[RTLIB::SRL_I128] = "__lshrti3";
47   Names[RTLIB::SRA_I16] = "__ashrhi3";
48   Names[RTLIB::SRA_I32] = "__ashrsi3";
49   Names[RTLIB::SRA_I64] = "__ashrdi3";
50   Names[RTLIB::SRA_I128] = "__ashrti3";
51   Names[RTLIB::MUL_I8] = "__mulqi3";
52   Names[RTLIB::MUL_I16] = "__mulhi3";
53   Names[RTLIB::MUL_I32] = "__mulsi3";
54   Names[RTLIB::MUL_I64] = "__muldi3";
55   Names[RTLIB::MUL_I128] = "__multi3";
56   Names[RTLIB::MULO_I32] = "__mulosi4";
57   Names[RTLIB::MULO_I64] = "__mulodi4";
58   Names[RTLIB::MULO_I128] = "__muloti4";
59   Names[RTLIB::SDIV_I8] = "__divqi3";
60   Names[RTLIB::SDIV_I16] = "__divhi3";
61   Names[RTLIB::SDIV_I32] = "__divsi3";
62   Names[RTLIB::SDIV_I64] = "__divdi3";
63   Names[RTLIB::SDIV_I128] = "__divti3";
64   Names[RTLIB::UDIV_I8] = "__udivqi3";
65   Names[RTLIB::UDIV_I16] = "__udivhi3";
66   Names[RTLIB::UDIV_I32] = "__udivsi3";
67   Names[RTLIB::UDIV_I64] = "__udivdi3";
68   Names[RTLIB::UDIV_I128] = "__udivti3";
69   Names[RTLIB::SREM_I8] = "__modqi3";
70   Names[RTLIB::SREM_I16] = "__modhi3";
71   Names[RTLIB::SREM_I32] = "__modsi3";
72   Names[RTLIB::SREM_I64] = "__moddi3";
73   Names[RTLIB::SREM_I128] = "__modti3";
74   Names[RTLIB::UREM_I8] = "__umodqi3";
75   Names[RTLIB::UREM_I16] = "__umodhi3";
76   Names[RTLIB::UREM_I32] = "__umodsi3";
77   Names[RTLIB::UREM_I64] = "__umoddi3";
78   Names[RTLIB::UREM_I128] = "__umodti3";
79 
80   // These are generally not available.
81   Names[RTLIB::SDIVREM_I8] = 0;
82   Names[RTLIB::SDIVREM_I16] = 0;
83   Names[RTLIB::SDIVREM_I32] = 0;
84   Names[RTLIB::SDIVREM_I64] = 0;
85   Names[RTLIB::SDIVREM_I128] = 0;
86   Names[RTLIB::UDIVREM_I8] = 0;
87   Names[RTLIB::UDIVREM_I16] = 0;
88   Names[RTLIB::UDIVREM_I32] = 0;
89   Names[RTLIB::UDIVREM_I64] = 0;
90   Names[RTLIB::UDIVREM_I128] = 0;
91 
92   Names[RTLIB::NEG_I32] = "__negsi2";
93   Names[RTLIB::NEG_I64] = "__negdi2";
94   Names[RTLIB::ADD_F32] = "__addsf3";
95   Names[RTLIB::ADD_F64] = "__adddf3";
96   Names[RTLIB::ADD_F80] = "__addxf3";
97   Names[RTLIB::ADD_F128] = "__addtf3";
98   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
99   Names[RTLIB::SUB_F32] = "__subsf3";
100   Names[RTLIB::SUB_F64] = "__subdf3";
101   Names[RTLIB::SUB_F80] = "__subxf3";
102   Names[RTLIB::SUB_F128] = "__subtf3";
103   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104   Names[RTLIB::MUL_F32] = "__mulsf3";
105   Names[RTLIB::MUL_F64] = "__muldf3";
106   Names[RTLIB::MUL_F80] = "__mulxf3";
107   Names[RTLIB::MUL_F128] = "__multf3";
108   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109   Names[RTLIB::DIV_F32] = "__divsf3";
110   Names[RTLIB::DIV_F64] = "__divdf3";
111   Names[RTLIB::DIV_F80] = "__divxf3";
112   Names[RTLIB::DIV_F128] = "__divtf3";
113   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
114   Names[RTLIB::REM_F32] = "fmodf";
115   Names[RTLIB::REM_F64] = "fmod";
116   Names[RTLIB::REM_F80] = "fmodl";
117   Names[RTLIB::REM_F128] = "fmodl";
118   Names[RTLIB::REM_PPCF128] = "fmodl";
119   Names[RTLIB::FMA_F32] = "fmaf";
120   Names[RTLIB::FMA_F64] = "fma";
121   Names[RTLIB::FMA_F80] = "fmal";
122   Names[RTLIB::FMA_F128] = "fmal";
123   Names[RTLIB::FMA_PPCF128] = "fmal";
124   Names[RTLIB::POWI_F32] = "__powisf2";
125   Names[RTLIB::POWI_F64] = "__powidf2";
126   Names[RTLIB::POWI_F80] = "__powixf2";
127   Names[RTLIB::POWI_F128] = "__powitf2";
128   Names[RTLIB::POWI_PPCF128] = "__powitf2";
129   Names[RTLIB::SQRT_F32] = "sqrtf";
130   Names[RTLIB::SQRT_F64] = "sqrt";
131   Names[RTLIB::SQRT_F80] = "sqrtl";
132   Names[RTLIB::SQRT_F128] = "sqrtl";
133   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
134   Names[RTLIB::LOG_F32] = "logf";
135   Names[RTLIB::LOG_F64] = "log";
136   Names[RTLIB::LOG_F80] = "logl";
137   Names[RTLIB::LOG_F128] = "logl";
138   Names[RTLIB::LOG_PPCF128] = "logl";
139   Names[RTLIB::LOG2_F32] = "log2f";
140   Names[RTLIB::LOG2_F64] = "log2";
141   Names[RTLIB::LOG2_F80] = "log2l";
142   Names[RTLIB::LOG2_F128] = "log2l";
143   Names[RTLIB::LOG2_PPCF128] = "log2l";
144   Names[RTLIB::LOG10_F32] = "log10f";
145   Names[RTLIB::LOG10_F64] = "log10";
146   Names[RTLIB::LOG10_F80] = "log10l";
147   Names[RTLIB::LOG10_F128] = "log10l";
148   Names[RTLIB::LOG10_PPCF128] = "log10l";
149   Names[RTLIB::EXP_F32] = "expf";
150   Names[RTLIB::EXP_F64] = "exp";
151   Names[RTLIB::EXP_F80] = "expl";
152   Names[RTLIB::EXP_F128] = "expl";
153   Names[RTLIB::EXP_PPCF128] = "expl";
154   Names[RTLIB::EXP2_F32] = "exp2f";
155   Names[RTLIB::EXP2_F64] = "exp2";
156   Names[RTLIB::EXP2_F80] = "exp2l";
157   Names[RTLIB::EXP2_F128] = "exp2l";
158   Names[RTLIB::EXP2_PPCF128] = "exp2l";
159   Names[RTLIB::SIN_F32] = "sinf";
160   Names[RTLIB::SIN_F64] = "sin";
161   Names[RTLIB::SIN_F80] = "sinl";
162   Names[RTLIB::SIN_F128] = "sinl";
163   Names[RTLIB::SIN_PPCF128] = "sinl";
164   Names[RTLIB::COS_F32] = "cosf";
165   Names[RTLIB::COS_F64] = "cos";
166   Names[RTLIB::COS_F80] = "cosl";
167   Names[RTLIB::COS_F128] = "cosl";
168   Names[RTLIB::COS_PPCF128] = "cosl";
169   Names[RTLIB::POW_F32] = "powf";
170   Names[RTLIB::POW_F64] = "pow";
171   Names[RTLIB::POW_F80] = "powl";
172   Names[RTLIB::POW_F128] = "powl";
173   Names[RTLIB::POW_PPCF128] = "powl";
174   Names[RTLIB::CEIL_F32] = "ceilf";
175   Names[RTLIB::CEIL_F64] = "ceil";
176   Names[RTLIB::CEIL_F80] = "ceill";
177   Names[RTLIB::CEIL_F128] = "ceill";
178   Names[RTLIB::CEIL_PPCF128] = "ceill";
179   Names[RTLIB::TRUNC_F32] = "truncf";
180   Names[RTLIB::TRUNC_F64] = "trunc";
181   Names[RTLIB::TRUNC_F80] = "truncl";
182   Names[RTLIB::TRUNC_F128] = "truncl";
183   Names[RTLIB::TRUNC_PPCF128] = "truncl";
184   Names[RTLIB::RINT_F32] = "rintf";
185   Names[RTLIB::RINT_F64] = "rint";
186   Names[RTLIB::RINT_F80] = "rintl";
187   Names[RTLIB::RINT_F128] = "rintl";
188   Names[RTLIB::RINT_PPCF128] = "rintl";
189   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
190   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
191   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
192   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
193   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
194   Names[RTLIB::FLOOR_F32] = "floorf";
195   Names[RTLIB::FLOOR_F64] = "floor";
196   Names[RTLIB::FLOOR_F80] = "floorl";
197   Names[RTLIB::FLOOR_F128] = "floorl";
198   Names[RTLIB::FLOOR_PPCF128] = "floorl";
199   Names[RTLIB::COPYSIGN_F32] = "copysignf";
200   Names[RTLIB::COPYSIGN_F64] = "copysign";
201   Names[RTLIB::COPYSIGN_F80] = "copysignl";
202   Names[RTLIB::COPYSIGN_F128] = "copysignl";
203   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
204   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
205   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
206   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
207   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
208   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
209   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
210   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
211   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
212   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
213   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
214   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
215   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
216   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
217   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
218   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
219   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
220   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
221   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
222   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
223   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
224   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
225   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
226   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
227   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
228   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
229   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
230   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
231   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
232   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
233   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
234   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
235   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
236   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
237   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
238   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
239   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
240   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
241   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
242   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
243   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
244   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
245   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
246   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
247   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
248   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
249   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
250   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
251   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
252   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
253   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
254   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
255   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
256   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
257   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
258   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
259   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
260   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
261   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
262   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
263   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
264   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
265   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
266   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
267   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
268   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
269   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
270   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
271   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
272   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
273   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
274   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
275   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
276   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
277   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
278   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
279   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
280   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
281   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
282   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
283   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
284   Names[RTLIB::OEQ_F32] = "__eqsf2";
285   Names[RTLIB::OEQ_F64] = "__eqdf2";
286   Names[RTLIB::OEQ_F128] = "__eqtf2";
287   Names[RTLIB::UNE_F32] = "__nesf2";
288   Names[RTLIB::UNE_F64] = "__nedf2";
289   Names[RTLIB::UNE_F128] = "__netf2";
290   Names[RTLIB::OGE_F32] = "__gesf2";
291   Names[RTLIB::OGE_F64] = "__gedf2";
292   Names[RTLIB::OGE_F128] = "__getf2";
293   Names[RTLIB::OLT_F32] = "__ltsf2";
294   Names[RTLIB::OLT_F64] = "__ltdf2";
295   Names[RTLIB::OLT_F128] = "__lttf2";
296   Names[RTLIB::OLE_F32] = "__lesf2";
297   Names[RTLIB::OLE_F64] = "__ledf2";
298   Names[RTLIB::OLE_F128] = "__letf2";
299   Names[RTLIB::OGT_F32] = "__gtsf2";
300   Names[RTLIB::OGT_F64] = "__gtdf2";
301   Names[RTLIB::OGT_F128] = "__gttf2";
302   Names[RTLIB::UO_F32] = "__unordsf2";
303   Names[RTLIB::UO_F64] = "__unorddf2";
304   Names[RTLIB::UO_F128] = "__unordtf2";
305   Names[RTLIB::O_F32] = "__unordsf2";
306   Names[RTLIB::O_F64] = "__unorddf2";
307   Names[RTLIB::O_F128] = "__unordtf2";
308   Names[RTLIB::MEMCPY] = "memcpy";
309   Names[RTLIB::MEMMOVE] = "memmove";
310   Names[RTLIB::MEMSET] = "memset";
311   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
312   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
313   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
314   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
315   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
316   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
317   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
318   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
319   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
320   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
321   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
322   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
323   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
324   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
325   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
326   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
327   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
328   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
329   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
330   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
331   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
332   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
333   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
334   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
335   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
336   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
337   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
338   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
339   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
340   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
341   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
342   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
343   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
344 
345   if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) {
346     Names[RTLIB::SINCOS_F32] = "sincosf";
347     Names[RTLIB::SINCOS_F64] = "sincos";
348     Names[RTLIB::SINCOS_F80] = "sincosl";
349     Names[RTLIB::SINCOS_F128] = "sincosl";
350     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
351   } else {
352     // These are generally not available.
353     Names[RTLIB::SINCOS_F32] = 0;
354     Names[RTLIB::SINCOS_F64] = 0;
355     Names[RTLIB::SINCOS_F80] = 0;
356     Names[RTLIB::SINCOS_F128] = 0;
357     Names[RTLIB::SINCOS_PPCF128] = 0;
358   }
359 }
360 
361 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
362 ///
InitLibcallCallingConvs(CallingConv::ID * CCs)363 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
364   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
365     CCs[i] = CallingConv::C;
366   }
367 }
368 
369 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
370 /// UNKNOWN_LIBCALL if there is none.
getFPEXT(EVT OpVT,EVT RetVT)371 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
372   if (OpVT == MVT::f32) {
373     if (RetVT == MVT::f64)
374       return FPEXT_F32_F64;
375     if (RetVT == MVT::f128)
376       return FPEXT_F32_F128;
377   } else if (OpVT == MVT::f64) {
378     if (RetVT == MVT::f128)
379       return FPEXT_F64_F128;
380   }
381 
382   return UNKNOWN_LIBCALL;
383 }
384 
385 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
386 /// UNKNOWN_LIBCALL if there is none.
getFPROUND(EVT OpVT,EVT RetVT)387 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
388   if (RetVT == MVT::f32) {
389     if (OpVT == MVT::f64)
390       return FPROUND_F64_F32;
391     if (OpVT == MVT::f80)
392       return FPROUND_F80_F32;
393     if (OpVT == MVT::f128)
394       return FPROUND_F128_F32;
395     if (OpVT == MVT::ppcf128)
396       return FPROUND_PPCF128_F32;
397   } else if (RetVT == MVT::f64) {
398     if (OpVT == MVT::f80)
399       return FPROUND_F80_F64;
400     if (OpVT == MVT::f128)
401       return FPROUND_F128_F64;
402     if (OpVT == MVT::ppcf128)
403       return FPROUND_PPCF128_F64;
404   }
405 
406   return UNKNOWN_LIBCALL;
407 }
408 
409 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
410 /// UNKNOWN_LIBCALL if there is none.
getFPTOSINT(EVT OpVT,EVT RetVT)411 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
412   if (OpVT == MVT::f32) {
413     if (RetVT == MVT::i8)
414       return FPTOSINT_F32_I8;
415     if (RetVT == MVT::i16)
416       return FPTOSINT_F32_I16;
417     if (RetVT == MVT::i32)
418       return FPTOSINT_F32_I32;
419     if (RetVT == MVT::i64)
420       return FPTOSINT_F32_I64;
421     if (RetVT == MVT::i128)
422       return FPTOSINT_F32_I128;
423   } else if (OpVT == MVT::f64) {
424     if (RetVT == MVT::i8)
425       return FPTOSINT_F64_I8;
426     if (RetVT == MVT::i16)
427       return FPTOSINT_F64_I16;
428     if (RetVT == MVT::i32)
429       return FPTOSINT_F64_I32;
430     if (RetVT == MVT::i64)
431       return FPTOSINT_F64_I64;
432     if (RetVT == MVT::i128)
433       return FPTOSINT_F64_I128;
434   } else if (OpVT == MVT::f80) {
435     if (RetVT == MVT::i32)
436       return FPTOSINT_F80_I32;
437     if (RetVT == MVT::i64)
438       return FPTOSINT_F80_I64;
439     if (RetVT == MVT::i128)
440       return FPTOSINT_F80_I128;
441   } else if (OpVT == MVT::f128) {
442     if (RetVT == MVT::i32)
443       return FPTOSINT_F128_I32;
444     if (RetVT == MVT::i64)
445       return FPTOSINT_F128_I64;
446     if (RetVT == MVT::i128)
447       return FPTOSINT_F128_I128;
448   } else if (OpVT == MVT::ppcf128) {
449     if (RetVT == MVT::i32)
450       return FPTOSINT_PPCF128_I32;
451     if (RetVT == MVT::i64)
452       return FPTOSINT_PPCF128_I64;
453     if (RetVT == MVT::i128)
454       return FPTOSINT_PPCF128_I128;
455   }
456   return UNKNOWN_LIBCALL;
457 }
458 
459 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
460 /// UNKNOWN_LIBCALL if there is none.
getFPTOUINT(EVT OpVT,EVT RetVT)461 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
462   if (OpVT == MVT::f32) {
463     if (RetVT == MVT::i8)
464       return FPTOUINT_F32_I8;
465     if (RetVT == MVT::i16)
466       return FPTOUINT_F32_I16;
467     if (RetVT == MVT::i32)
468       return FPTOUINT_F32_I32;
469     if (RetVT == MVT::i64)
470       return FPTOUINT_F32_I64;
471     if (RetVT == MVT::i128)
472       return FPTOUINT_F32_I128;
473   } else if (OpVT == MVT::f64) {
474     if (RetVT == MVT::i8)
475       return FPTOUINT_F64_I8;
476     if (RetVT == MVT::i16)
477       return FPTOUINT_F64_I16;
478     if (RetVT == MVT::i32)
479       return FPTOUINT_F64_I32;
480     if (RetVT == MVT::i64)
481       return FPTOUINT_F64_I64;
482     if (RetVT == MVT::i128)
483       return FPTOUINT_F64_I128;
484   } else if (OpVT == MVT::f80) {
485     if (RetVT == MVT::i32)
486       return FPTOUINT_F80_I32;
487     if (RetVT == MVT::i64)
488       return FPTOUINT_F80_I64;
489     if (RetVT == MVT::i128)
490       return FPTOUINT_F80_I128;
491   } else if (OpVT == MVT::f128) {
492     if (RetVT == MVT::i32)
493       return FPTOUINT_F128_I32;
494     if (RetVT == MVT::i64)
495       return FPTOUINT_F128_I64;
496     if (RetVT == MVT::i128)
497       return FPTOUINT_F128_I128;
498   } else if (OpVT == MVT::ppcf128) {
499     if (RetVT == MVT::i32)
500       return FPTOUINT_PPCF128_I32;
501     if (RetVT == MVT::i64)
502       return FPTOUINT_PPCF128_I64;
503     if (RetVT == MVT::i128)
504       return FPTOUINT_PPCF128_I128;
505   }
506   return UNKNOWN_LIBCALL;
507 }
508 
509 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
510 /// UNKNOWN_LIBCALL if there is none.
getSINTTOFP(EVT OpVT,EVT RetVT)511 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
512   if (OpVT == MVT::i32) {
513     if (RetVT == MVT::f32)
514       return SINTTOFP_I32_F32;
515     if (RetVT == MVT::f64)
516       return SINTTOFP_I32_F64;
517     if (RetVT == MVT::f80)
518       return SINTTOFP_I32_F80;
519     if (RetVT == MVT::f128)
520       return SINTTOFP_I32_F128;
521     if (RetVT == MVT::ppcf128)
522       return SINTTOFP_I32_PPCF128;
523   } else if (OpVT == MVT::i64) {
524     if (RetVT == MVT::f32)
525       return SINTTOFP_I64_F32;
526     if (RetVT == MVT::f64)
527       return SINTTOFP_I64_F64;
528     if (RetVT == MVT::f80)
529       return SINTTOFP_I64_F80;
530     if (RetVT == MVT::f128)
531       return SINTTOFP_I64_F128;
532     if (RetVT == MVT::ppcf128)
533       return SINTTOFP_I64_PPCF128;
534   } else if (OpVT == MVT::i128) {
535     if (RetVT == MVT::f32)
536       return SINTTOFP_I128_F32;
537     if (RetVT == MVT::f64)
538       return SINTTOFP_I128_F64;
539     if (RetVT == MVT::f80)
540       return SINTTOFP_I128_F80;
541     if (RetVT == MVT::f128)
542       return SINTTOFP_I128_F128;
543     if (RetVT == MVT::ppcf128)
544       return SINTTOFP_I128_PPCF128;
545   }
546   return UNKNOWN_LIBCALL;
547 }
548 
549 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
550 /// UNKNOWN_LIBCALL if there is none.
getUINTTOFP(EVT OpVT,EVT RetVT)551 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
552   if (OpVT == MVT::i32) {
553     if (RetVT == MVT::f32)
554       return UINTTOFP_I32_F32;
555     if (RetVT == MVT::f64)
556       return UINTTOFP_I32_F64;
557     if (RetVT == MVT::f80)
558       return UINTTOFP_I32_F80;
559     if (RetVT == MVT::f128)
560       return UINTTOFP_I32_F128;
561     if (RetVT == MVT::ppcf128)
562       return UINTTOFP_I32_PPCF128;
563   } else if (OpVT == MVT::i64) {
564     if (RetVT == MVT::f32)
565       return UINTTOFP_I64_F32;
566     if (RetVT == MVT::f64)
567       return UINTTOFP_I64_F64;
568     if (RetVT == MVT::f80)
569       return UINTTOFP_I64_F80;
570     if (RetVT == MVT::f128)
571       return UINTTOFP_I64_F128;
572     if (RetVT == MVT::ppcf128)
573       return UINTTOFP_I64_PPCF128;
574   } else if (OpVT == MVT::i128) {
575     if (RetVT == MVT::f32)
576       return UINTTOFP_I128_F32;
577     if (RetVT == MVT::f64)
578       return UINTTOFP_I128_F64;
579     if (RetVT == MVT::f80)
580       return UINTTOFP_I128_F80;
581     if (RetVT == MVT::f128)
582       return UINTTOFP_I128_F128;
583     if (RetVT == MVT::ppcf128)
584       return UINTTOFP_I128_PPCF128;
585   }
586   return UNKNOWN_LIBCALL;
587 }
588 
589 /// InitCmpLibcallCCs - Set default comparison libcall CC.
590 ///
InitCmpLibcallCCs(ISD::CondCode * CCs)591 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
592   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
593   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
594   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
595   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
596   CCs[RTLIB::UNE_F32] = ISD::SETNE;
597   CCs[RTLIB::UNE_F64] = ISD::SETNE;
598   CCs[RTLIB::UNE_F128] = ISD::SETNE;
599   CCs[RTLIB::OGE_F32] = ISD::SETGE;
600   CCs[RTLIB::OGE_F64] = ISD::SETGE;
601   CCs[RTLIB::OGE_F128] = ISD::SETGE;
602   CCs[RTLIB::OLT_F32] = ISD::SETLT;
603   CCs[RTLIB::OLT_F64] = ISD::SETLT;
604   CCs[RTLIB::OLT_F128] = ISD::SETLT;
605   CCs[RTLIB::OLE_F32] = ISD::SETLE;
606   CCs[RTLIB::OLE_F64] = ISD::SETLE;
607   CCs[RTLIB::OLE_F128] = ISD::SETLE;
608   CCs[RTLIB::OGT_F32] = ISD::SETGT;
609   CCs[RTLIB::OGT_F64] = ISD::SETGT;
610   CCs[RTLIB::OGT_F128] = ISD::SETGT;
611   CCs[RTLIB::UO_F32] = ISD::SETNE;
612   CCs[RTLIB::UO_F64] = ISD::SETNE;
613   CCs[RTLIB::UO_F128] = ISD::SETNE;
614   CCs[RTLIB::O_F32] = ISD::SETEQ;
615   CCs[RTLIB::O_F64] = ISD::SETEQ;
616   CCs[RTLIB::O_F128] = ISD::SETEQ;
617 }
618 
619 /// NOTE: The constructor takes ownership of TLOF.
TargetLoweringBase(const TargetMachine & tm,const TargetLoweringObjectFile * tlof)620 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
621                                        const TargetLoweringObjectFile *tlof)
622   : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
623   // All operations default to being supported.
624   memset(OpActions, 0, sizeof(OpActions));
625   memset(LoadExtActions, 0, sizeof(LoadExtActions));
626   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
627   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
628   memset(CondCodeActions, 0, sizeof(CondCodeActions));
629 
630   // Set default actions for various operations.
631   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
632     // Default all indexed load / store to expand.
633     for (unsigned IM = (unsigned)ISD::PRE_INC;
634          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
635       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
636       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
637     }
638 
639     // These operations default to expand.
640     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
641     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
642   }
643 
644   // Most targets ignore the @llvm.prefetch intrinsic.
645   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
646 
647   // ConstantFP nodes default to expand.  Targets can either change this to
648   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
649   // to optimize expansions for certain constants.
650   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
651   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
652   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
653   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
654   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
655 
656   // These library functions default to expand.
657   setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
658   setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
659   setOperationAction(ISD::FLOG10, MVT::f16, Expand);
660   setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
661   setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
662   setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
663   setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
664   setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
665   setOperationAction(ISD::FRINT,  MVT::f16, Expand);
666   setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
667   setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
668   setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
669   setOperationAction(ISD::FLOG10, MVT::f32, Expand);
670   setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
671   setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
672   setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
673   setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
674   setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
675   setOperationAction(ISD::FRINT,  MVT::f32, Expand);
676   setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
677   setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
678   setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
679   setOperationAction(ISD::FLOG10, MVT::f64, Expand);
680   setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
681   setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
682   setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
683   setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
684   setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
685   setOperationAction(ISD::FRINT,  MVT::f64, Expand);
686   setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
687   setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
688   setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
689   setOperationAction(ISD::FLOG10, MVT::f128, Expand);
690   setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
691   setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
692   setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
693   setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
694   setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
695   setOperationAction(ISD::FRINT,  MVT::f128, Expand);
696   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
697 
698   // Default ISD::TRAP to expand (which turns it into abort).
699   setOperationAction(ISD::TRAP, MVT::Other, Expand);
700 
701   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
702   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
703   //
704   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
705 
706   IsLittleEndian = TD->isLittleEndian();
707   PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
708   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
709   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
710   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
711   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
712     = MaxStoresPerMemmoveOptSize = 4;
713   BenefitFromCodePlacementOpt = false;
714   UseUnderscoreSetJmp = false;
715   UseUnderscoreLongJmp = false;
716   SelectIsExpensive = false;
717   IntDivIsCheap = false;
718   Pow2DivIsCheap = false;
719   JumpIsExpensive = false;
720   PredictableSelectIsExpensive = false;
721   StackPointerRegisterToSaveRestore = 0;
722   ExceptionPointerRegister = 0;
723   ExceptionSelectorRegister = 0;
724   BooleanContents = UndefinedBooleanContent;
725   BooleanVectorContents = UndefinedBooleanContent;
726   SchedPreferenceInfo = Sched::ILP;
727   JumpBufSize = 0;
728   JumpBufAlignment = 0;
729   MinFunctionAlignment = 0;
730   PrefFunctionAlignment = 0;
731   PrefLoopAlignment = 0;
732   MinStackArgumentAlignment = 1;
733   ShouldFoldAtomicFences = false;
734   InsertFencesForAtomic = false;
735   SupportJumpTables = true;
736   MinimumJumpTableEntries = 4;
737 
738   InitLibcallNames(LibcallRoutineNames, TM);
739   InitCmpLibcallCCs(CmpLibcallCCs);
740   InitLibcallCallingConvs(LibcallCallingConvs);
741 }
742 
~TargetLoweringBase()743 TargetLoweringBase::~TargetLoweringBase() {
744   delete &TLOF;
745 }
746 
getScalarShiftAmountTy(EVT LHSTy) const747 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
748   return MVT::getIntegerVT(8*TD->getPointerSize(0));
749 }
750 
getShiftAmountTy(EVT LHSTy) const751 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
752   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
753   if (LHSTy.isVector())
754     return LHSTy;
755   return getScalarShiftAmountTy(LHSTy);
756 }
757 
758 /// canOpTrap - Returns true if the operation can trap for the value type.
759 /// VT must be a legal type.
canOpTrap(unsigned Op,EVT VT) const760 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
761   assert(isTypeLegal(VT));
762   switch (Op) {
763   default:
764     return false;
765   case ISD::FDIV:
766   case ISD::FREM:
767   case ISD::SDIV:
768   case ISD::UDIV:
769   case ISD::SREM:
770   case ISD::UREM:
771     return true;
772   }
773 }
774 
775 
getVectorTypeBreakdownMVT(MVT VT,MVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT,TargetLoweringBase * TLI)776 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
777                                           unsigned &NumIntermediates,
778                                           MVT &RegisterVT,
779                                           TargetLoweringBase *TLI) {
780   // Figure out the right, legal destination reg to copy into.
781   unsigned NumElts = VT.getVectorNumElements();
782   MVT EltTy = VT.getVectorElementType();
783 
784   unsigned NumVectorRegs = 1;
785 
786   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
787   // could break down into LHS/RHS like LegalizeDAG does.
788   if (!isPowerOf2_32(NumElts)) {
789     NumVectorRegs = NumElts;
790     NumElts = 1;
791   }
792 
793   // Divide the input until we get to a supported size.  This will always
794   // end with a scalar if the target doesn't support vectors.
795   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
796     NumElts >>= 1;
797     NumVectorRegs <<= 1;
798   }
799 
800   NumIntermediates = NumVectorRegs;
801 
802   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
803   if (!TLI->isTypeLegal(NewVT))
804     NewVT = EltTy;
805   IntermediateVT = NewVT;
806 
807   unsigned NewVTSize = NewVT.getSizeInBits();
808 
809   // Convert sizes such as i33 to i64.
810   if (!isPowerOf2_32(NewVTSize))
811     NewVTSize = NextPowerOf2(NewVTSize);
812 
813   MVT DestVT = TLI->getRegisterType(NewVT);
814   RegisterVT = DestVT;
815   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
816     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
817 
818   // Otherwise, promotion or legal types use the same number of registers as
819   // the vector decimated to the appropriate level.
820   return NumVectorRegs;
821 }
822 
823 /// isLegalRC - Return true if the value types that can be represented by the
824 /// specified register class are all legal.
isLegalRC(const TargetRegisterClass * RC) const825 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
826   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
827        I != E; ++I) {
828     if (isTypeLegal(*I))
829       return true;
830   }
831   return false;
832 }
833 
834 /// findRepresentativeClass - Return the largest legal super-reg register class
835 /// of the register class for the specified type and its associated "cost".
836 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(MVT VT) const837 TargetLoweringBase::findRepresentativeClass(MVT VT) const {
838   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
839   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
840   if (!RC)
841     return std::make_pair(RC, 0);
842 
843   // Compute the set of all super-register classes.
844   BitVector SuperRegRC(TRI->getNumRegClasses());
845   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
846     SuperRegRC.setBitsInMask(RCI.getMask());
847 
848   // Find the first legal register class with the largest spill size.
849   const TargetRegisterClass *BestRC = RC;
850   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
851     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
852     // We want the largest possible spill size.
853     if (SuperRC->getSize() <= BestRC->getSize())
854       continue;
855     if (!isLegalRC(SuperRC))
856       continue;
857     BestRC = SuperRC;
858   }
859   return std::make_pair(BestRC, 1);
860 }
861 
862 /// computeRegisterProperties - Once all of the register classes are added,
863 /// this allows us to compute derived properties we expose.
computeRegisterProperties()864 void TargetLoweringBase::computeRegisterProperties() {
865   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
866          "Too many value types for ValueTypeActions to hold!");
867 
868   // Everything defaults to needing one register.
869   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
870     NumRegistersForVT[i] = 1;
871     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
872   }
873   // ...except isVoid, which doesn't need any registers.
874   NumRegistersForVT[MVT::isVoid] = 0;
875 
876   // Find the largest integer register class.
877   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
878   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
879     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
880 
881   // Every integer value type larger than this largest register takes twice as
882   // many registers to represent as the previous ValueType.
883   for (unsigned ExpandedReg = LargestIntReg + 1;
884        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
885     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
886     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
887     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
888     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
889                                    TypeExpandInteger);
890   }
891 
892   // Inspect all of the ValueType's smaller than the largest integer
893   // register to see which ones need promotion.
894   unsigned LegalIntReg = LargestIntReg;
895   for (unsigned IntReg = LargestIntReg - 1;
896        IntReg >= (unsigned)MVT::i1; --IntReg) {
897     MVT IVT = (MVT::SimpleValueType)IntReg;
898     if (isTypeLegal(IVT)) {
899       LegalIntReg = IntReg;
900     } else {
901       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
902         (const MVT::SimpleValueType)LegalIntReg;
903       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
904     }
905   }
906 
907   // ppcf128 type is really two f64's.
908   if (!isTypeLegal(MVT::ppcf128)) {
909     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
910     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
911     TransformToType[MVT::ppcf128] = MVT::f64;
912     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
913   }
914 
915   // Decide how to handle f128. If the target does not have native f128 support,
916   // expand it to i128 and we will be generating soft float library calls.
917   if (!isTypeLegal(MVT::f128)) {
918     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
919     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
920     TransformToType[MVT::f128] = MVT::i128;
921     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
922   }
923 
924   // Decide how to handle f64. If the target does not have native f64 support,
925   // expand it to i64 and we will be generating soft float library calls.
926   if (!isTypeLegal(MVT::f64)) {
927     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
928     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
929     TransformToType[MVT::f64] = MVT::i64;
930     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
931   }
932 
933   // Decide how to handle f32. If the target does not have native support for
934   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
935   if (!isTypeLegal(MVT::f32)) {
936     if (isTypeLegal(MVT::f64)) {
937       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
938       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
939       TransformToType[MVT::f32] = MVT::f64;
940       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
941     } else {
942       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
943       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
944       TransformToType[MVT::f32] = MVT::i32;
945       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
946     }
947   }
948 
949   // Loop over all of the vector value types to see which need transformations.
950   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
951        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
952     MVT VT = (MVT::SimpleValueType)i;
953     if (isTypeLegal(VT)) continue;
954 
955     // Determine if there is a legal wider type.  If so, we should promote to
956     // that wider vector type.
957     MVT EltVT = VT.getVectorElementType();
958     unsigned NElts = VT.getVectorNumElements();
959     if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
960       bool IsLegalWiderType = false;
961       // First try to promote the elements of integer vectors. If no legal
962       // promotion was found, fallback to the widen-vector method.
963       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
964         MVT SVT = (MVT::SimpleValueType)nVT;
965         // Promote vectors of integers to vectors with the same number
966         // of elements, with a wider element type.
967         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
968             && SVT.getVectorNumElements() == NElts &&
969             isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
970           TransformToType[i] = SVT;
971           RegisterTypeForVT[i] = SVT;
972           NumRegistersForVT[i] = 1;
973           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
974           IsLegalWiderType = true;
975           break;
976         }
977       }
978 
979       if (IsLegalWiderType) continue;
980 
981       // Try to widen the vector.
982       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
983         MVT SVT = (MVT::SimpleValueType)nVT;
984         if (SVT.getVectorElementType() == EltVT &&
985             SVT.getVectorNumElements() > NElts &&
986             isTypeLegal(SVT)) {
987           TransformToType[i] = SVT;
988           RegisterTypeForVT[i] = SVT;
989           NumRegistersForVT[i] = 1;
990           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
991           IsLegalWiderType = true;
992           break;
993         }
994       }
995       if (IsLegalWiderType) continue;
996     }
997 
998     MVT IntermediateVT;
999     MVT RegisterVT;
1000     unsigned NumIntermediates;
1001     NumRegistersForVT[i] =
1002       getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
1003                                 RegisterVT, this);
1004     RegisterTypeForVT[i] = RegisterVT;
1005 
1006     MVT NVT = VT.getPow2VectorType();
1007     if (NVT == VT) {
1008       // Type is already a power of 2.  The default action is to split.
1009       TransformToType[i] = MVT::Other;
1010       unsigned NumElts = VT.getVectorNumElements();
1011       ValueTypeActions.setTypeAction(VT,
1012             NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
1013     } else {
1014       TransformToType[i] = NVT;
1015       ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1016     }
1017   }
1018 
1019   // Determine the 'representative' register class for each value type.
1020   // An representative register class is the largest (meaning one which is
1021   // not a sub-register class / subreg register class) legal register class for
1022   // a group of value types. For example, on i386, i8, i16, and i32
1023   // representative would be GR32; while on x86_64 it's GR64.
1024   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1025     const TargetRegisterClass* RRC;
1026     uint8_t Cost;
1027     tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
1028     RepRegClassForVT[i] = RRC;
1029     RepRegClassCostForVT[i] = Cost;
1030   }
1031 }
1032 
getSetCCResultType(EVT VT) const1033 EVT TargetLoweringBase::getSetCCResultType(EVT VT) const {
1034   assert(!VT.isVector() && "No default SetCC type for vectors!");
1035   return getPointerTy(0).SimpleTy;
1036 }
1037 
getCmpLibcallReturnType() const1038 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1039   return MVT::i32; // return the default value
1040 }
1041 
1042 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1043 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1044 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1045 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1046 ///
1047 /// This method returns the number of registers needed, and the VT for each
1048 /// register.  It also returns the VT and quantity of the intermediate values
1049 /// before they are promoted/expanded.
1050 ///
getVectorTypeBreakdown(LLVMContext & Context,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT) const1051 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1052                                                 EVT &IntermediateVT,
1053                                                 unsigned &NumIntermediates,
1054                                                 MVT &RegisterVT) const {
1055   unsigned NumElts = VT.getVectorNumElements();
1056 
1057   // If there is a wider vector type with the same element type as this one,
1058   // or a promoted vector type that has the same number of elements which
1059   // are wider, then we should convert to that legal vector type.
1060   // This handles things like <2 x float> -> <4 x float> and
1061   // <4 x i1> -> <4 x i32>.
1062   LegalizeTypeAction TA = getTypeAction(Context, VT);
1063   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1064     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1065     if (isTypeLegal(RegisterEVT)) {
1066       IntermediateVT = RegisterEVT;
1067       RegisterVT = RegisterEVT.getSimpleVT();
1068       NumIntermediates = 1;
1069       return 1;
1070     }
1071   }
1072 
1073   // Figure out the right, legal destination reg to copy into.
1074   EVT EltTy = VT.getVectorElementType();
1075 
1076   unsigned NumVectorRegs = 1;
1077 
1078   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1079   // could break down into LHS/RHS like LegalizeDAG does.
1080   if (!isPowerOf2_32(NumElts)) {
1081     NumVectorRegs = NumElts;
1082     NumElts = 1;
1083   }
1084 
1085   // Divide the input until we get to a supported size.  This will always
1086   // end with a scalar if the target doesn't support vectors.
1087   while (NumElts > 1 && !isTypeLegal(
1088                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1089     NumElts >>= 1;
1090     NumVectorRegs <<= 1;
1091   }
1092 
1093   NumIntermediates = NumVectorRegs;
1094 
1095   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1096   if (!isTypeLegal(NewVT))
1097     NewVT = EltTy;
1098   IntermediateVT = NewVT;
1099 
1100   MVT DestVT = getRegisterType(Context, NewVT);
1101   RegisterVT = DestVT;
1102   unsigned NewVTSize = NewVT.getSizeInBits();
1103 
1104   // Convert sizes such as i33 to i64.
1105   if (!isPowerOf2_32(NewVTSize))
1106     NewVTSize = NextPowerOf2(NewVTSize);
1107 
1108   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1109     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1110 
1111   // Otherwise, promotion or legal types use the same number of registers as
1112   // the vector decimated to the appropriate level.
1113   return NumVectorRegs;
1114 }
1115 
1116 /// Get the EVTs and ArgFlags collections that represent the legalized return
1117 /// type of the given function.  This does not require a DAG or a return value,
1118 /// and is suitable for use before any DAGs for the function are constructed.
1119 /// TODO: Move this out of TargetLowering.cpp.
GetReturnInfo(Type * ReturnType,AttributeSet attr,SmallVectorImpl<ISD::OutputArg> & Outs,const TargetLowering & TLI)1120 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
1121                          SmallVectorImpl<ISD::OutputArg> &Outs,
1122                          const TargetLowering &TLI) {
1123   SmallVector<EVT, 4> ValueVTs;
1124   ComputeValueVTs(TLI, ReturnType, ValueVTs);
1125   unsigned NumValues = ValueVTs.size();
1126   if (NumValues == 0) return;
1127 
1128   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1129     EVT VT = ValueVTs[j];
1130     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1131 
1132     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1133       ExtendKind = ISD::SIGN_EXTEND;
1134     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1135       ExtendKind = ISD::ZERO_EXTEND;
1136 
1137     // FIXME: C calling convention requires the return type to be promoted to
1138     // at least 32-bit. But this is not necessary for non-C calling
1139     // conventions. The frontend should mark functions whose return values
1140     // require promoting with signext or zeroext attributes.
1141     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1142       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1143       if (VT.bitsLT(MinVT))
1144         VT = MinVT;
1145     }
1146 
1147     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1148     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1149 
1150     // 'inreg' on function refers to return value
1151     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1152     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1153       Flags.setInReg();
1154 
1155     // Propagate extension type if any
1156     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1157       Flags.setSExt();
1158     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1159       Flags.setZExt();
1160 
1161     for (unsigned i = 0; i < NumParts; ++i)
1162       Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0));
1163   }
1164 }
1165 
1166 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1167 /// function arguments in the caller parameter area.  This is the actual
1168 /// alignment, not its logarithm.
getByValTypeAlignment(Type * Ty) const1169 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
1170   return TD->getCallFrameTypeAlignment(Ty);
1171 }
1172 
1173 //===----------------------------------------------------------------------===//
1174 //  TargetTransformInfo Helpers
1175 //===----------------------------------------------------------------------===//
1176 
InstructionOpcodeToISD(unsigned Opcode) const1177 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1178   enum InstructionOpcodes {
1179 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1180 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1181 #include "llvm/IR/Instruction.def"
1182   };
1183   switch (static_cast<InstructionOpcodes>(Opcode)) {
1184   case Ret:            return 0;
1185   case Br:             return 0;
1186   case Switch:         return 0;
1187   case IndirectBr:     return 0;
1188   case Invoke:         return 0;
1189   case Resume:         return 0;
1190   case Unreachable:    return 0;
1191   case Add:            return ISD::ADD;
1192   case FAdd:           return ISD::FADD;
1193   case Sub:            return ISD::SUB;
1194   case FSub:           return ISD::FSUB;
1195   case Mul:            return ISD::MUL;
1196   case FMul:           return ISD::FMUL;
1197   case UDiv:           return ISD::UDIV;
1198   case SDiv:           return ISD::UDIV;
1199   case FDiv:           return ISD::FDIV;
1200   case URem:           return ISD::UREM;
1201   case SRem:           return ISD::SREM;
1202   case FRem:           return ISD::FREM;
1203   case Shl:            return ISD::SHL;
1204   case LShr:           return ISD::SRL;
1205   case AShr:           return ISD::SRA;
1206   case And:            return ISD::AND;
1207   case Or:             return ISD::OR;
1208   case Xor:            return ISD::XOR;
1209   case Alloca:         return 0;
1210   case Load:           return ISD::LOAD;
1211   case Store:          return ISD::STORE;
1212   case GetElementPtr:  return 0;
1213   case Fence:          return 0;
1214   case AtomicCmpXchg:  return 0;
1215   case AtomicRMW:      return 0;
1216   case Trunc:          return ISD::TRUNCATE;
1217   case ZExt:           return ISD::ZERO_EXTEND;
1218   case SExt:           return ISD::SIGN_EXTEND;
1219   case FPToUI:         return ISD::FP_TO_UINT;
1220   case FPToSI:         return ISD::FP_TO_SINT;
1221   case UIToFP:         return ISD::UINT_TO_FP;
1222   case SIToFP:         return ISD::SINT_TO_FP;
1223   case FPTrunc:        return ISD::FP_ROUND;
1224   case FPExt:          return ISD::FP_EXTEND;
1225   case PtrToInt:       return ISD::BITCAST;
1226   case IntToPtr:       return ISD::BITCAST;
1227   case BitCast:        return ISD::BITCAST;
1228   case ICmp:           return ISD::SETCC;
1229   case FCmp:           return ISD::SETCC;
1230   case PHI:            return 0;
1231   case Call:           return 0;
1232   case Select:         return ISD::SELECT;
1233   case UserOp1:        return 0;
1234   case UserOp2:        return 0;
1235   case VAArg:          return 0;
1236   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1237   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1238   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1239   case ExtractValue:   return ISD::MERGE_VALUES;
1240   case InsertValue:    return ISD::MERGE_VALUES;
1241   case LandingPad:     return 0;
1242   }
1243 
1244   llvm_unreachable("Unknown instruction type encountered!");
1245 }
1246 
1247 std::pair<unsigned, MVT>
getTypeLegalizationCost(Type * Ty) const1248 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
1249   LLVMContext &C = Ty->getContext();
1250   EVT MTy = getValueType(Ty);
1251 
1252   unsigned Cost = 1;
1253   // We keep legalizing the type until we find a legal kind. We assume that
1254   // the only operation that costs anything is the split. After splitting
1255   // we need to handle two types.
1256   while (true) {
1257     LegalizeKind LK = getTypeConversion(C, MTy);
1258 
1259     if (LK.first == TypeLegal)
1260       return std::make_pair(Cost, MTy.getSimpleVT());
1261 
1262     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1263       Cost *= 2;
1264 
1265     // Keep legalizing the type.
1266     MTy = LK.second;
1267   }
1268 }
1269 
1270 //===----------------------------------------------------------------------===//
1271 //  Loop Strength Reduction hooks
1272 //===----------------------------------------------------------------------===//
1273 
1274 /// isLegalAddressingMode - Return true if the addressing mode represented
1275 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const1276 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
1277                                            Type *Ty) const {
1278   // The default implementation of this implements a conservative RISCy, r+r and
1279   // r+i addr mode.
1280 
1281   // Allows a sign-extended 16-bit immediate field.
1282   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1283     return false;
1284 
1285   // No global is ever allowed as a base.
1286   if (AM.BaseGV)
1287     return false;
1288 
1289   // Only support r+r,
1290   switch (AM.Scale) {
1291   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1292     break;
1293   case 1:
1294     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1295       return false;
1296     // Otherwise we have r+r or r+i.
1297     break;
1298   case 2:
1299     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1300       return false;
1301     // Allow 2*r as r+r.
1302     break;
1303   }
1304 
1305   return true;
1306 }
1307