• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Calculate a program structure tree built out of single entry single exit
11 // regions.
12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
15 // Koehler - 2009".
16 // The algorithm to calculate these data structures however is completely
17 // different, as it takes advantage of existing information already available
18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
19 // and in practice hopefully better performing algorithm. The runtime of the
20 // algorithms described in the papers above are both linear in graph size,
21 // O(V+E), whereas this algorithm is not, as the dominance frontier information
22 // itself is not, but in practice runtime seems to be in the order of magnitude
23 // of dominance tree calculation.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #ifndef LLVM_ANALYSIS_REGIONINFO_H
28 #define LLVM_ANALYSIS_REGIONINFO_H
29 
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/Analysis/DominanceFrontier.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/Support/Allocator.h"
34 #include <map>
35 
36 namespace llvm {
37 
38 class Region;
39 class RegionInfo;
40 class raw_ostream;
41 class Loop;
42 class LoopInfo;
43 
44 /// @brief Marker class to iterate over the elements of a Region in flat mode.
45 ///
46 /// The class is used to either iterate in Flat mode or by not using it to not
47 /// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
48 /// and the iteration returns every BasicBlock.  If the Flat mode is not
49 /// selected for SubRegions just one RegionNode containing the subregion is
50 /// returned.
51 template <class GraphType>
52 class FlatIt {};
53 
54 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
55 /// Region.
56 class RegionNode {
57   RegionNode(const RegionNode &) LLVM_DELETED_FUNCTION;
58   const RegionNode &operator=(const RegionNode &) LLVM_DELETED_FUNCTION;
59 
60 protected:
61   /// This is the entry basic block that starts this region node.  If this is a
62   /// BasicBlock RegionNode, then entry is just the basic block, that this
63   /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
64   ///
65   /// In the BBtoRegionNode map of the parent of this node, BB will always map
66   /// to this node no matter which kind of node this one is.
67   ///
68   /// The node can hold either a Region or a BasicBlock.
69   /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
70   /// RegionNode.
71   PointerIntPair<BasicBlock*, 1, bool> entry;
72 
73   /// @brief The parent Region of this RegionNode.
74   /// @see getParent()
75   Region* parent;
76 
77 public:
78   /// @brief Create a RegionNode.
79   ///
80   /// @param Parent      The parent of this RegionNode.
81   /// @param Entry       The entry BasicBlock of the RegionNode.  If this
82   ///                    RegionNode represents a BasicBlock, this is the
83   ///                    BasicBlock itself.  If it represents a subregion, this
84   ///                    is the entry BasicBlock of the subregion.
85   /// @param isSubRegion If this RegionNode represents a SubRegion.
86   inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
entry(Entry,isSubRegion)87     : entry(Entry, isSubRegion), parent(Parent) {}
88 
89   /// @brief Get the parent Region of this RegionNode.
90   ///
91   /// The parent Region is the Region this RegionNode belongs to. If for
92   /// example a BasicBlock is element of two Regions, there exist two
93   /// RegionNodes for this BasicBlock. Each with the getParent() function
94   /// pointing to the Region this RegionNode belongs to.
95   ///
96   /// @return Get the parent Region of this RegionNode.
getParent()97   inline Region* getParent() const { return parent; }
98 
99   /// @brief Get the entry BasicBlock of this RegionNode.
100   ///
101   /// If this RegionNode represents a BasicBlock this is just the BasicBlock
102   /// itself, otherwise we return the entry BasicBlock of the Subregion
103   ///
104   /// @return The entry BasicBlock of this RegionNode.
getEntry()105   inline BasicBlock* getEntry() const { return entry.getPointer(); }
106 
107   /// @brief Get the content of this RegionNode.
108   ///
109   /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
110   /// check the type of the content with the isSubRegion() function call.
111   ///
112   /// @return The content of this RegionNode.
113   template<class T>
114   inline T* getNodeAs() const;
115 
116   /// @brief Is this RegionNode a subregion?
117   ///
118   /// @return True if it contains a subregion. False if it contains a
119   ///         BasicBlock.
isSubRegion()120   inline bool isSubRegion() const {
121     return entry.getInt();
122   }
123 };
124 
125 /// Print a RegionNode.
126 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
127 
128 template<>
129 inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
130   assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
131   return getEntry();
132 }
133 
134 template<>
135 inline Region* RegionNode::getNodeAs<Region>() const {
136   assert(isSubRegion() && "This is not a subregion RegionNode!");
137   return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
138 }
139 
140 //===----------------------------------------------------------------------===//
141 /// @brief A single entry single exit Region.
142 ///
143 /// A Region is a connected subgraph of a control flow graph that has exactly
144 /// two connections to the remaining graph. It can be used to analyze or
145 /// optimize parts of the control flow graph.
146 ///
147 /// A <em> simple Region </em> is connected to the remaining graph by just two
148 /// edges. One edge entering the Region and another one leaving the Region.
149 ///
150 /// An <em> extended Region </em> (or just Region) is a subgraph that can be
151 /// transform into a simple Region. The transformation is done by adding
152 /// BasicBlocks that merge several entry or exit edges so that after the merge
153 /// just one entry and one exit edge exists.
154 ///
155 /// The \e Entry of a Region is the first BasicBlock that is passed after
156 /// entering the Region. It is an element of the Region. The entry BasicBlock
157 /// dominates all BasicBlocks in the Region.
158 ///
159 /// The \e Exit of a Region is the first BasicBlock that is passed after
160 /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
161 /// postdominates all BasicBlocks in the Region.
162 ///
163 /// A <em> canonical Region </em> cannot be constructed by combining smaller
164 /// Regions.
165 ///
166 /// Region A is the \e parent of Region B, if B is completely contained in A.
167 ///
168 /// Two canonical Regions either do not intersect at all or one is
169 /// the parent of the other.
170 ///
171 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
172 /// Regions in the control flow graph and E is the \e parent relation of these
173 /// Regions.
174 ///
175 /// Example:
176 ///
177 /// \verbatim
178 /// A simple control flow graph, that contains two regions.
179 ///
180 ///        1
181 ///       / |
182 ///      2   |
183 ///     / \   3
184 ///    4   5  |
185 ///    |   |  |
186 ///    6   7  8
187 ///     \  | /
188 ///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
189 ///        9        Region B: 2 -> 9 {2,4,5,6,7}
190 /// \endverbatim
191 ///
192 /// You can obtain more examples by either calling
193 ///
194 /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
195 /// or
196 /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
197 ///
198 /// on any LLVM file you are interested in.
199 ///
200 /// The first call returns a textual representation of the program structure
201 /// tree, the second one creates a graphical representation using graphviz.
202 class Region : public RegionNode {
203   friend class RegionInfo;
204   Region(const Region &) LLVM_DELETED_FUNCTION;
205   const Region &operator=(const Region &) LLVM_DELETED_FUNCTION;
206 
207   // Information necessary to manage this Region.
208   RegionInfo* RI;
209   DominatorTree *DT;
210 
211   // The exit BasicBlock of this region.
212   // (The entry BasicBlock is part of RegionNode)
213   BasicBlock *exit;
214 
215   typedef std::vector<Region*> RegionSet;
216 
217   // The subregions of this region.
218   RegionSet children;
219 
220   typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
221 
222   // Save the BasicBlock RegionNodes that are element of this Region.
223   mutable BBNodeMapT BBNodeMap;
224 
225   /// verifyBBInRegion - Check if a BB is in this Region. This check also works
226   /// if the region is incorrectly built. (EXPENSIVE!)
227   void verifyBBInRegion(BasicBlock* BB) const;
228 
229   /// verifyWalk - Walk over all the BBs of the region starting from BB and
230   /// verify that all reachable basic blocks are elements of the region.
231   /// (EXPENSIVE!)
232   void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
233 
234   /// verifyRegionNest - Verify if the region and its children are valid
235   /// regions (EXPENSIVE!)
236   void verifyRegionNest() const;
237 
238 public:
239   /// @brief Create a new region.
240   ///
241   /// @param Entry  The entry basic block of the region.
242   /// @param Exit   The exit basic block of the region.
243   /// @param RI     The region info object that is managing this region.
244   /// @param DT     The dominator tree of the current function.
245   /// @param Parent The surrounding region or NULL if this is a top level
246   ///               region.
247   Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
248          DominatorTree *DT, Region *Parent = 0);
249 
250   /// Delete the Region and all its subregions.
251   ~Region();
252 
253   /// @brief Get the entry BasicBlock of the Region.
254   /// @return The entry BasicBlock of the region.
getEntry()255   BasicBlock *getEntry() const { return RegionNode::getEntry(); }
256 
257   /// @brief Replace the entry basic block of the region with the new basic
258   ///        block.
259   ///
260   /// @param BB  The new entry basic block of the region.
261   void replaceEntry(BasicBlock *BB);
262 
263   /// @brief Replace the exit basic block of the region with the new basic
264   ///        block.
265   ///
266   /// @param BB  The new exit basic block of the region.
267   void replaceExit(BasicBlock *BB);
268 
269   /// @brief Get the exit BasicBlock of the Region.
270   /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
271   ///         Region.
getExit()272   BasicBlock *getExit() const { return exit; }
273 
274   /// @brief Get the parent of the Region.
275   /// @return The parent of the Region or NULL if this is a top level
276   ///         Region.
getParent()277   Region *getParent() const { return RegionNode::getParent(); }
278 
279   /// @brief Get the RegionNode representing the current Region.
280   /// @return The RegionNode representing the current Region.
getNode()281   RegionNode* getNode() const {
282     return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
283   }
284 
285   /// @brief Get the nesting level of this Region.
286   ///
287   /// An toplevel Region has depth 0.
288   ///
289   /// @return The depth of the region.
290   unsigned getDepth() const;
291 
292   /// @brief Check if a Region is the TopLevel region.
293   ///
294   /// The toplevel region represents the whole function.
isTopLevelRegion()295   bool isTopLevelRegion() const { return exit == NULL; }
296 
297   /// @brief Return a new (non canonical) region, that is obtained by joining
298   ///        this region with its predecessors.
299   ///
300   /// @return A region also starting at getEntry(), but reaching to the next
301   ///         basic block that forms with getEntry() a (non canonical) region.
302   ///         NULL if such a basic block does not exist.
303   Region *getExpandedRegion() const;
304 
305   /// @brief Return the first block of this region's single entry edge,
306   ///        if existing.
307   ///
308   /// @return The BasicBlock starting this region's single entry edge,
309   ///         else NULL.
310   BasicBlock *getEnteringBlock() const;
311 
312   /// @brief Return the first block of this region's single exit edge,
313   ///        if existing.
314   ///
315   /// @return The BasicBlock starting this region's single exit edge,
316   ///         else NULL.
317   BasicBlock *getExitingBlock() const;
318 
319   /// @brief Is this a simple region?
320   ///
321   /// A region is simple if it has exactly one exit and one entry edge.
322   ///
323   /// @return True if the Region is simple.
324   bool isSimple() const;
325 
326   /// @brief Returns the name of the Region.
327   /// @return The Name of the Region.
328   std::string getNameStr() const;
329 
330   /// @brief Return the RegionInfo object, that belongs to this Region.
getRegionInfo()331   RegionInfo *getRegionInfo() const {
332     return RI;
333   }
334 
335   /// PrintStyle - Print region in difference ways.
336   enum PrintStyle { PrintNone, PrintBB, PrintRN  };
337 
338   /// @brief Print the region.
339   ///
340   /// @param OS The output stream the Region is printed to.
341   /// @param printTree Print also the tree of subregions.
342   /// @param level The indentation level used for printing.
343   void print(raw_ostream& OS, bool printTree = true, unsigned level = 0,
344              enum PrintStyle Style = PrintNone) const;
345 
346   /// @brief Print the region to stderr.
347   void dump() const;
348 
349   /// @brief Check if the region contains a BasicBlock.
350   ///
351   /// @param BB The BasicBlock that might be contained in this Region.
352   /// @return True if the block is contained in the region otherwise false.
353   bool contains(const BasicBlock *BB) const;
354 
355   /// @brief Check if the region contains another region.
356   ///
357   /// @param SubRegion The region that might be contained in this Region.
358   /// @return True if SubRegion is contained in the region otherwise false.
contains(const Region * SubRegion)359   bool contains(const Region *SubRegion) const {
360     // Toplevel Region.
361     if (!getExit())
362       return true;
363 
364     return contains(SubRegion->getEntry())
365       && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
366   }
367 
368   /// @brief Check if the region contains an Instruction.
369   ///
370   /// @param Inst The Instruction that might be contained in this region.
371   /// @return True if the Instruction is contained in the region otherwise false.
contains(const Instruction * Inst)372   bool contains(const Instruction *Inst) const {
373     return contains(Inst->getParent());
374   }
375 
376   /// @brief Check if the region contains a loop.
377   ///
378   /// @param L The loop that might be contained in this region.
379   /// @return True if the loop is contained in the region otherwise false.
380   ///         In case a NULL pointer is passed to this function the result
381   ///         is false, except for the region that describes the whole function.
382   ///         In that case true is returned.
383   bool contains(const Loop *L) const;
384 
385   /// @brief Get the outermost loop in the region that contains a loop.
386   ///
387   /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
388   /// and is itself contained in the region.
389   ///
390   /// @param L The loop the lookup is started.
391   /// @return The outermost loop in the region, NULL if such a loop does not
392   ///         exist or if the region describes the whole function.
393   Loop *outermostLoopInRegion(Loop *L) const;
394 
395   /// @brief Get the outermost loop in the region that contains a basic block.
396   ///
397   /// Find for a basic block BB the outermost loop L that contains BB and is
398   /// itself contained in the region.
399   ///
400   /// @param LI A pointer to a LoopInfo analysis.
401   /// @param BB The basic block surrounded by the loop.
402   /// @return The outermost loop in the region, NULL if such a loop does not
403   ///         exist or if the region describes the whole function.
404   Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
405 
406   /// @brief Get the subregion that starts at a BasicBlock
407   ///
408   /// @param BB The BasicBlock the subregion should start.
409   /// @return The Subregion if available, otherwise NULL.
410   Region* getSubRegionNode(BasicBlock *BB) const;
411 
412   /// @brief Get the RegionNode for a BasicBlock
413   ///
414   /// @param BB The BasicBlock at which the RegionNode should start.
415   /// @return If available, the RegionNode that represents the subregion
416   ///         starting at BB. If no subregion starts at BB, the RegionNode
417   ///         representing BB.
418   RegionNode* getNode(BasicBlock *BB) const;
419 
420   /// @brief Get the BasicBlock RegionNode for a BasicBlock
421   ///
422   /// @param BB The BasicBlock for which the RegionNode is requested.
423   /// @return The RegionNode representing the BB.
424   RegionNode* getBBNode(BasicBlock *BB) const;
425 
426   /// @brief Add a new subregion to this Region.
427   ///
428   /// @param SubRegion The new subregion that will be added.
429   /// @param moveChildren Move the children of this region, that are also
430   ///                     contained in SubRegion into SubRegion.
431   void addSubRegion(Region *SubRegion, bool moveChildren = false);
432 
433   /// @brief Remove a subregion from this Region.
434   ///
435   /// The subregion is not deleted, as it will probably be inserted into another
436   /// region.
437   /// @param SubRegion The SubRegion that will be removed.
438   Region *removeSubRegion(Region *SubRegion);
439 
440   /// @brief Move all direct child nodes of this Region to another Region.
441   ///
442   /// @param To The Region the child nodes will be transferred to.
443   void transferChildrenTo(Region *To);
444 
445   /// @brief Verify if the region is a correct region.
446   ///
447   /// Check if this is a correctly build Region. This is an expensive check, as
448   /// the complete CFG of the Region will be walked.
449   void verifyRegion() const;
450 
451   /// @brief Clear the cache for BB RegionNodes.
452   ///
453   /// After calling this function the BasicBlock RegionNodes will be stored at
454   /// different memory locations. RegionNodes obtained before this function is
455   /// called are therefore not comparable to RegionNodes abtained afterwords.
456   void clearNodeCache();
457 
458   /// @name Subregion Iterators
459   ///
460   /// These iterators iterator over all subregions of this Region.
461   //@{
462   typedef RegionSet::iterator iterator;
463   typedef RegionSet::const_iterator const_iterator;
464 
begin()465   iterator begin() { return children.begin(); }
end()466   iterator end() { return children.end(); }
467 
begin()468   const_iterator begin() const { return children.begin(); }
end()469   const_iterator end() const { return children.end(); }
470   //@}
471 
472   /// @name BasicBlock Iterators
473   ///
474   /// These iterators iterate over all BasicBlocks that are contained in this
475   /// Region. The iterator also iterates over BasicBlocks that are elements of
476   /// a subregion of this Region. It is therefore called a flat iterator.
477   //@{
478   template <bool IsConst>
479   class block_iterator_wrapper
480     : public df_iterator<typename conditional<IsConst,
481                                               const BasicBlock,
482                                               BasicBlock>::type*> {
483     typedef df_iterator<typename conditional<IsConst,
484                                              const BasicBlock,
485                                              BasicBlock>::type*>
486       super;
487   public:
488     typedef block_iterator_wrapper<IsConst> Self;
489     typedef typename super::pointer pointer;
490 
491     // Construct the begin iterator.
block_iterator_wrapper(pointer Entry,pointer Exit)492     block_iterator_wrapper(pointer Entry, pointer Exit) : super(df_begin(Entry))
493     {
494       // Mark the exit of the region as visited, so that the children of the
495       // exit and the exit itself, i.e. the block outside the region will never
496       // be visited.
497       super::Visited.insert(Exit);
498     }
499 
500     // Construct the end iterator.
block_iterator_wrapper()501     block_iterator_wrapper() : super(df_end<pointer>((BasicBlock *)0)) {}
502 
block_iterator_wrapper(super I)503     /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
504 
505     // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
506     //        This was introduced for backwards compatibility, but should
507     //        be removed as soon as all users are fixed.
508     BasicBlock *operator*() const {
509       return const_cast<BasicBlock*>(super::operator*());
510     }
511   };
512 
513   typedef block_iterator_wrapper<false> block_iterator;
514   typedef block_iterator_wrapper<true>  const_block_iterator;
515 
block_begin()516   block_iterator block_begin() {
517    return block_iterator(getEntry(), getExit());
518   }
519 
block_end()520   block_iterator block_end() {
521    return block_iterator();
522   }
523 
block_begin()524   const_block_iterator block_begin() const {
525     return const_block_iterator(getEntry(), getExit());
526   }
block_end()527   const_block_iterator block_end() const {
528     return const_block_iterator();
529   }
530   //@}
531 
532   /// @name Element Iterators
533   ///
534   /// These iterators iterate over all BasicBlock and subregion RegionNodes that
535   /// are direct children of this Region. It does not iterate over any
536   /// RegionNodes that are also element of a subregion of this Region.
537   //@{
538   typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
539                       GraphTraits<RegionNode*> > element_iterator;
540 
541   typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
542                       false, GraphTraits<const RegionNode*> >
543             const_element_iterator;
544 
545   element_iterator element_begin();
546   element_iterator element_end();
547 
548   const_element_iterator element_begin() const;
549   const_element_iterator element_end() const;
550   //@}
551 };
552 
553 //===----------------------------------------------------------------------===//
554 /// @brief Analysis that detects all canonical Regions.
555 ///
556 /// The RegionInfo pass detects all canonical regions in a function. The Regions
557 /// are connected using the parent relation. This builds a Program Structure
558 /// Tree.
559 class RegionInfo : public FunctionPass {
560   typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
561   typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
562   typedef SmallPtrSet<Region*, 4> RegionSet;
563 
564   RegionInfo(const RegionInfo &) LLVM_DELETED_FUNCTION;
565   const RegionInfo &operator=(const RegionInfo &) LLVM_DELETED_FUNCTION;
566 
567   DominatorTree *DT;
568   PostDominatorTree *PDT;
569   DominanceFrontier *DF;
570 
571   /// The top level region.
572   Region *TopLevelRegion;
573 
574   /// Map every BB to the smallest region, that contains BB.
575   BBtoRegionMap BBtoRegion;
576 
577   // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
578   // entry, because it was inherited from exit. In the other case there is an
579   // edge going from entry to BB without passing exit.
580   bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
581                            BasicBlock* exit) const;
582 
583   // isRegion - Check if entry and exit surround a valid region, based on
584   // dominance tree and dominance frontier.
585   bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
586 
587   // insertShortCut - Saves a shortcut pointing from entry to exit.
588   // This function may extend this shortcut if possible.
589   void insertShortCut(BasicBlock* entry, BasicBlock* exit,
590                       BBtoBBMap* ShortCut) const;
591 
592   // getNextPostDom - Returns the next BB that postdominates N, while skipping
593   // all post dominators that cannot finish a canonical region.
594   DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
595 
596   // isTrivialRegion - A region is trivial, if it contains only one BB.
597   bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
598 
599   // createRegion - Creates a single entry single exit region.
600   Region *createRegion(BasicBlock *entry, BasicBlock *exit);
601 
602   // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
603   void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
604 
605   // scanForRegions - Detects regions in F.
606   void scanForRegions(Function &F, BBtoBBMap *ShortCut);
607 
608   // getTopMostParent - Get the top most parent with the same entry block.
609   Region *getTopMostParent(Region *region);
610 
611   // buildRegionsTree - build the region hierarchy after all region detected.
612   void buildRegionsTree(DomTreeNode *N, Region *region);
613 
614   // Calculate - detecte all regions in function and build the region tree.
615   void Calculate(Function& F);
616 
617   void releaseMemory();
618 
619   // updateStatistics - Update statistic about created regions.
620   void updateStatistics(Region *R);
621 
622   // isSimple - Check if a region is a simple region with exactly one entry
623   // edge and exactly one exit edge.
624   bool isSimple(Region* R) const;
625 
626 public:
627   static char ID;
628   explicit RegionInfo();
629 
630   ~RegionInfo();
631 
632   /// @name FunctionPass interface
633   //@{
634   virtual bool runOnFunction(Function &F);
635   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
636   virtual void print(raw_ostream &OS, const Module *) const;
637   virtual void verifyAnalysis() const;
638   //@}
639 
640   /// @brief Get the smallest region that contains a BasicBlock.
641   ///
642   /// @param BB The basic block.
643   /// @return The smallest region, that contains BB or NULL, if there is no
644   /// region containing BB.
645   Region *getRegionFor(BasicBlock *BB) const;
646 
647   /// @brief  Set the smallest region that surrounds a basic block.
648   ///
649   /// @param BB The basic block surrounded by a region.
650   /// @param R The smallest region that surrounds BB.
651   void setRegionFor(BasicBlock *BB, Region *R);
652 
653   /// @brief A shortcut for getRegionFor().
654   ///
655   /// @param BB The basic block.
656   /// @return The smallest region, that contains BB or NULL, if there is no
657   /// region containing BB.
658   Region *operator[](BasicBlock *BB) const;
659 
660   /// @brief Return the exit of the maximal refined region, that starts at a
661   /// BasicBlock.
662   ///
663   /// @param BB The BasicBlock the refined region starts.
664   BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
665 
666   /// @brief Find the smallest region that contains two regions.
667   ///
668   /// @param A The first region.
669   /// @param B The second region.
670   /// @return The smallest region containing A and B.
671   Region *getCommonRegion(Region* A, Region *B) const;
672 
673   /// @brief Find the smallest region that contains two basic blocks.
674   ///
675   /// @param A The first basic block.
676   /// @param B The second basic block.
677   /// @return The smallest region that contains A and B.
getCommonRegion(BasicBlock * A,BasicBlock * B)678   Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
679     return getCommonRegion(getRegionFor(A), getRegionFor(B));
680   }
681 
682   /// @brief Find the smallest region that contains a set of regions.
683   ///
684   /// @param Regions A vector of regions.
685   /// @return The smallest region that contains all regions in Regions.
686   Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
687 
688   /// @brief Find the smallest region that contains a set of basic blocks.
689   ///
690   /// @param BBs A vector of basic blocks.
691   /// @return The smallest region that contains all basic blocks in BBS.
692   Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
693 
getTopLevelRegion()694   Region *getTopLevelRegion() const {
695     return TopLevelRegion;
696   }
697 
698   /// @brief Update RegionInfo after a basic block was split.
699   ///
700   /// @param NewBB The basic block that was created before OldBB.
701   /// @param OldBB The old basic block.
702   void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);
703 
704   /// @brief Clear the Node Cache for all Regions.
705   ///
706   /// @see Region::clearNodeCache()
clearNodeCache()707   void clearNodeCache() {
708     if (TopLevelRegion)
709       TopLevelRegion->clearNodeCache();
710   }
711 };
712 
713 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
714   if (Node.isSubRegion())
715     return OS << Node.getNodeAs<Region>()->getNameStr();
716   else
717     return OS << Node.getNodeAs<BasicBlock>()->getName();
718 }
719 } // End llvm namespace
720 #endif
721 
722