1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Calculate a program structure tree built out of single entry single exit 11 // regions. 12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson, 13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The 14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana 15 // Koehler - 2009". 16 // The algorithm to calculate these data structures however is completely 17 // different, as it takes advantage of existing information already available 18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler 19 // and in practice hopefully better performing algorithm. The runtime of the 20 // algorithms described in the papers above are both linear in graph size, 21 // O(V+E), whereas this algorithm is not, as the dominance frontier information 22 // itself is not, but in practice runtime seems to be in the order of magnitude 23 // of dominance tree calculation. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #ifndef LLVM_ANALYSIS_REGIONINFO_H 28 #define LLVM_ANALYSIS_REGIONINFO_H 29 30 #include "llvm/ADT/PointerIntPair.h" 31 #include "llvm/Analysis/DominanceFrontier.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/Support/Allocator.h" 34 #include <map> 35 36 namespace llvm { 37 38 class Region; 39 class RegionInfo; 40 class raw_ostream; 41 class Loop; 42 class LoopInfo; 43 44 /// @brief Marker class to iterate over the elements of a Region in flat mode. 45 /// 46 /// The class is used to either iterate in Flat mode or by not using it to not 47 /// iterate in Flat mode. During a Flat mode iteration all Regions are entered 48 /// and the iteration returns every BasicBlock. If the Flat mode is not 49 /// selected for SubRegions just one RegionNode containing the subregion is 50 /// returned. 51 template <class GraphType> 52 class FlatIt {}; 53 54 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a 55 /// Region. 56 class RegionNode { 57 RegionNode(const RegionNode &) LLVM_DELETED_FUNCTION; 58 const RegionNode &operator=(const RegionNode &) LLVM_DELETED_FUNCTION; 59 60 protected: 61 /// This is the entry basic block that starts this region node. If this is a 62 /// BasicBlock RegionNode, then entry is just the basic block, that this 63 /// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode. 64 /// 65 /// In the BBtoRegionNode map of the parent of this node, BB will always map 66 /// to this node no matter which kind of node this one is. 67 /// 68 /// The node can hold either a Region or a BasicBlock. 69 /// Use one bit to save, if this RegionNode is a subregion or BasicBlock 70 /// RegionNode. 71 PointerIntPair<BasicBlock*, 1, bool> entry; 72 73 /// @brief The parent Region of this RegionNode. 74 /// @see getParent() 75 Region* parent; 76 77 public: 78 /// @brief Create a RegionNode. 79 /// 80 /// @param Parent The parent of this RegionNode. 81 /// @param Entry The entry BasicBlock of the RegionNode. If this 82 /// RegionNode represents a BasicBlock, this is the 83 /// BasicBlock itself. If it represents a subregion, this 84 /// is the entry BasicBlock of the subregion. 85 /// @param isSubRegion If this RegionNode represents a SubRegion. 86 inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0) entry(Entry,isSubRegion)87 : entry(Entry, isSubRegion), parent(Parent) {} 88 89 /// @brief Get the parent Region of this RegionNode. 90 /// 91 /// The parent Region is the Region this RegionNode belongs to. If for 92 /// example a BasicBlock is element of two Regions, there exist two 93 /// RegionNodes for this BasicBlock. Each with the getParent() function 94 /// pointing to the Region this RegionNode belongs to. 95 /// 96 /// @return Get the parent Region of this RegionNode. getParent()97 inline Region* getParent() const { return parent; } 98 99 /// @brief Get the entry BasicBlock of this RegionNode. 100 /// 101 /// If this RegionNode represents a BasicBlock this is just the BasicBlock 102 /// itself, otherwise we return the entry BasicBlock of the Subregion 103 /// 104 /// @return The entry BasicBlock of this RegionNode. getEntry()105 inline BasicBlock* getEntry() const { return entry.getPointer(); } 106 107 /// @brief Get the content of this RegionNode. 108 /// 109 /// This can be either a BasicBlock or a subregion. Before calling getNodeAs() 110 /// check the type of the content with the isSubRegion() function call. 111 /// 112 /// @return The content of this RegionNode. 113 template<class T> 114 inline T* getNodeAs() const; 115 116 /// @brief Is this RegionNode a subregion? 117 /// 118 /// @return True if it contains a subregion. False if it contains a 119 /// BasicBlock. isSubRegion()120 inline bool isSubRegion() const { 121 return entry.getInt(); 122 } 123 }; 124 125 /// Print a RegionNode. 126 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node); 127 128 template<> 129 inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const { 130 assert(!isSubRegion() && "This is not a BasicBlock RegionNode!"); 131 return getEntry(); 132 } 133 134 template<> 135 inline Region* RegionNode::getNodeAs<Region>() const { 136 assert(isSubRegion() && "This is not a subregion RegionNode!"); 137 return reinterpret_cast<Region*>(const_cast<RegionNode*>(this)); 138 } 139 140 //===----------------------------------------------------------------------===// 141 /// @brief A single entry single exit Region. 142 /// 143 /// A Region is a connected subgraph of a control flow graph that has exactly 144 /// two connections to the remaining graph. It can be used to analyze or 145 /// optimize parts of the control flow graph. 146 /// 147 /// A <em> simple Region </em> is connected to the remaining graph by just two 148 /// edges. One edge entering the Region and another one leaving the Region. 149 /// 150 /// An <em> extended Region </em> (or just Region) is a subgraph that can be 151 /// transform into a simple Region. The transformation is done by adding 152 /// BasicBlocks that merge several entry or exit edges so that after the merge 153 /// just one entry and one exit edge exists. 154 /// 155 /// The \e Entry of a Region is the first BasicBlock that is passed after 156 /// entering the Region. It is an element of the Region. The entry BasicBlock 157 /// dominates all BasicBlocks in the Region. 158 /// 159 /// The \e Exit of a Region is the first BasicBlock that is passed after 160 /// leaving the Region. It is not an element of the Region. The exit BasicBlock, 161 /// postdominates all BasicBlocks in the Region. 162 /// 163 /// A <em> canonical Region </em> cannot be constructed by combining smaller 164 /// Regions. 165 /// 166 /// Region A is the \e parent of Region B, if B is completely contained in A. 167 /// 168 /// Two canonical Regions either do not intersect at all or one is 169 /// the parent of the other. 170 /// 171 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of 172 /// Regions in the control flow graph and E is the \e parent relation of these 173 /// Regions. 174 /// 175 /// Example: 176 /// 177 /// \verbatim 178 /// A simple control flow graph, that contains two regions. 179 /// 180 /// 1 181 /// / | 182 /// 2 | 183 /// / \ 3 184 /// 4 5 | 185 /// | | | 186 /// 6 7 8 187 /// \ | / 188 /// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8} 189 /// 9 Region B: 2 -> 9 {2,4,5,6,7} 190 /// \endverbatim 191 /// 192 /// You can obtain more examples by either calling 193 /// 194 /// <tt> "opt -regions -analyze anyprogram.ll" </tt> 195 /// or 196 /// <tt> "opt -view-regions-only anyprogram.ll" </tt> 197 /// 198 /// on any LLVM file you are interested in. 199 /// 200 /// The first call returns a textual representation of the program structure 201 /// tree, the second one creates a graphical representation using graphviz. 202 class Region : public RegionNode { 203 friend class RegionInfo; 204 Region(const Region &) LLVM_DELETED_FUNCTION; 205 const Region &operator=(const Region &) LLVM_DELETED_FUNCTION; 206 207 // Information necessary to manage this Region. 208 RegionInfo* RI; 209 DominatorTree *DT; 210 211 // The exit BasicBlock of this region. 212 // (The entry BasicBlock is part of RegionNode) 213 BasicBlock *exit; 214 215 typedef std::vector<Region*> RegionSet; 216 217 // The subregions of this region. 218 RegionSet children; 219 220 typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT; 221 222 // Save the BasicBlock RegionNodes that are element of this Region. 223 mutable BBNodeMapT BBNodeMap; 224 225 /// verifyBBInRegion - Check if a BB is in this Region. This check also works 226 /// if the region is incorrectly built. (EXPENSIVE!) 227 void verifyBBInRegion(BasicBlock* BB) const; 228 229 /// verifyWalk - Walk over all the BBs of the region starting from BB and 230 /// verify that all reachable basic blocks are elements of the region. 231 /// (EXPENSIVE!) 232 void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const; 233 234 /// verifyRegionNest - Verify if the region and its children are valid 235 /// regions (EXPENSIVE!) 236 void verifyRegionNest() const; 237 238 public: 239 /// @brief Create a new region. 240 /// 241 /// @param Entry The entry basic block of the region. 242 /// @param Exit The exit basic block of the region. 243 /// @param RI The region info object that is managing this region. 244 /// @param DT The dominator tree of the current function. 245 /// @param Parent The surrounding region or NULL if this is a top level 246 /// region. 247 Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI, 248 DominatorTree *DT, Region *Parent = 0); 249 250 /// Delete the Region and all its subregions. 251 ~Region(); 252 253 /// @brief Get the entry BasicBlock of the Region. 254 /// @return The entry BasicBlock of the region. getEntry()255 BasicBlock *getEntry() const { return RegionNode::getEntry(); } 256 257 /// @brief Replace the entry basic block of the region with the new basic 258 /// block. 259 /// 260 /// @param BB The new entry basic block of the region. 261 void replaceEntry(BasicBlock *BB); 262 263 /// @brief Replace the exit basic block of the region with the new basic 264 /// block. 265 /// 266 /// @param BB The new exit basic block of the region. 267 void replaceExit(BasicBlock *BB); 268 269 /// @brief Get the exit BasicBlock of the Region. 270 /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel 271 /// Region. getExit()272 BasicBlock *getExit() const { return exit; } 273 274 /// @brief Get the parent of the Region. 275 /// @return The parent of the Region or NULL if this is a top level 276 /// Region. getParent()277 Region *getParent() const { return RegionNode::getParent(); } 278 279 /// @brief Get the RegionNode representing the current Region. 280 /// @return The RegionNode representing the current Region. getNode()281 RegionNode* getNode() const { 282 return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this)); 283 } 284 285 /// @brief Get the nesting level of this Region. 286 /// 287 /// An toplevel Region has depth 0. 288 /// 289 /// @return The depth of the region. 290 unsigned getDepth() const; 291 292 /// @brief Check if a Region is the TopLevel region. 293 /// 294 /// The toplevel region represents the whole function. isTopLevelRegion()295 bool isTopLevelRegion() const { return exit == NULL; } 296 297 /// @brief Return a new (non canonical) region, that is obtained by joining 298 /// this region with its predecessors. 299 /// 300 /// @return A region also starting at getEntry(), but reaching to the next 301 /// basic block that forms with getEntry() a (non canonical) region. 302 /// NULL if such a basic block does not exist. 303 Region *getExpandedRegion() const; 304 305 /// @brief Return the first block of this region's single entry edge, 306 /// if existing. 307 /// 308 /// @return The BasicBlock starting this region's single entry edge, 309 /// else NULL. 310 BasicBlock *getEnteringBlock() const; 311 312 /// @brief Return the first block of this region's single exit edge, 313 /// if existing. 314 /// 315 /// @return The BasicBlock starting this region's single exit edge, 316 /// else NULL. 317 BasicBlock *getExitingBlock() const; 318 319 /// @brief Is this a simple region? 320 /// 321 /// A region is simple if it has exactly one exit and one entry edge. 322 /// 323 /// @return True if the Region is simple. 324 bool isSimple() const; 325 326 /// @brief Returns the name of the Region. 327 /// @return The Name of the Region. 328 std::string getNameStr() const; 329 330 /// @brief Return the RegionInfo object, that belongs to this Region. getRegionInfo()331 RegionInfo *getRegionInfo() const { 332 return RI; 333 } 334 335 /// PrintStyle - Print region in difference ways. 336 enum PrintStyle { PrintNone, PrintBB, PrintRN }; 337 338 /// @brief Print the region. 339 /// 340 /// @param OS The output stream the Region is printed to. 341 /// @param printTree Print also the tree of subregions. 342 /// @param level The indentation level used for printing. 343 void print(raw_ostream& OS, bool printTree = true, unsigned level = 0, 344 enum PrintStyle Style = PrintNone) const; 345 346 /// @brief Print the region to stderr. 347 void dump() const; 348 349 /// @brief Check if the region contains a BasicBlock. 350 /// 351 /// @param BB The BasicBlock that might be contained in this Region. 352 /// @return True if the block is contained in the region otherwise false. 353 bool contains(const BasicBlock *BB) const; 354 355 /// @brief Check if the region contains another region. 356 /// 357 /// @param SubRegion The region that might be contained in this Region. 358 /// @return True if SubRegion is contained in the region otherwise false. contains(const Region * SubRegion)359 bool contains(const Region *SubRegion) const { 360 // Toplevel Region. 361 if (!getExit()) 362 return true; 363 364 return contains(SubRegion->getEntry()) 365 && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit()); 366 } 367 368 /// @brief Check if the region contains an Instruction. 369 /// 370 /// @param Inst The Instruction that might be contained in this region. 371 /// @return True if the Instruction is contained in the region otherwise false. contains(const Instruction * Inst)372 bool contains(const Instruction *Inst) const { 373 return contains(Inst->getParent()); 374 } 375 376 /// @brief Check if the region contains a loop. 377 /// 378 /// @param L The loop that might be contained in this region. 379 /// @return True if the loop is contained in the region otherwise false. 380 /// In case a NULL pointer is passed to this function the result 381 /// is false, except for the region that describes the whole function. 382 /// In that case true is returned. 383 bool contains(const Loop *L) const; 384 385 /// @brief Get the outermost loop in the region that contains a loop. 386 /// 387 /// Find for a Loop L the outermost loop OuterL that is a parent loop of L 388 /// and is itself contained in the region. 389 /// 390 /// @param L The loop the lookup is started. 391 /// @return The outermost loop in the region, NULL if such a loop does not 392 /// exist or if the region describes the whole function. 393 Loop *outermostLoopInRegion(Loop *L) const; 394 395 /// @brief Get the outermost loop in the region that contains a basic block. 396 /// 397 /// Find for a basic block BB the outermost loop L that contains BB and is 398 /// itself contained in the region. 399 /// 400 /// @param LI A pointer to a LoopInfo analysis. 401 /// @param BB The basic block surrounded by the loop. 402 /// @return The outermost loop in the region, NULL if such a loop does not 403 /// exist or if the region describes the whole function. 404 Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const; 405 406 /// @brief Get the subregion that starts at a BasicBlock 407 /// 408 /// @param BB The BasicBlock the subregion should start. 409 /// @return The Subregion if available, otherwise NULL. 410 Region* getSubRegionNode(BasicBlock *BB) const; 411 412 /// @brief Get the RegionNode for a BasicBlock 413 /// 414 /// @param BB The BasicBlock at which the RegionNode should start. 415 /// @return If available, the RegionNode that represents the subregion 416 /// starting at BB. If no subregion starts at BB, the RegionNode 417 /// representing BB. 418 RegionNode* getNode(BasicBlock *BB) const; 419 420 /// @brief Get the BasicBlock RegionNode for a BasicBlock 421 /// 422 /// @param BB The BasicBlock for which the RegionNode is requested. 423 /// @return The RegionNode representing the BB. 424 RegionNode* getBBNode(BasicBlock *BB) const; 425 426 /// @brief Add a new subregion to this Region. 427 /// 428 /// @param SubRegion The new subregion that will be added. 429 /// @param moveChildren Move the children of this region, that are also 430 /// contained in SubRegion into SubRegion. 431 void addSubRegion(Region *SubRegion, bool moveChildren = false); 432 433 /// @brief Remove a subregion from this Region. 434 /// 435 /// The subregion is not deleted, as it will probably be inserted into another 436 /// region. 437 /// @param SubRegion The SubRegion that will be removed. 438 Region *removeSubRegion(Region *SubRegion); 439 440 /// @brief Move all direct child nodes of this Region to another Region. 441 /// 442 /// @param To The Region the child nodes will be transferred to. 443 void transferChildrenTo(Region *To); 444 445 /// @brief Verify if the region is a correct region. 446 /// 447 /// Check if this is a correctly build Region. This is an expensive check, as 448 /// the complete CFG of the Region will be walked. 449 void verifyRegion() const; 450 451 /// @brief Clear the cache for BB RegionNodes. 452 /// 453 /// After calling this function the BasicBlock RegionNodes will be stored at 454 /// different memory locations. RegionNodes obtained before this function is 455 /// called are therefore not comparable to RegionNodes abtained afterwords. 456 void clearNodeCache(); 457 458 /// @name Subregion Iterators 459 /// 460 /// These iterators iterator over all subregions of this Region. 461 //@{ 462 typedef RegionSet::iterator iterator; 463 typedef RegionSet::const_iterator const_iterator; 464 begin()465 iterator begin() { return children.begin(); } end()466 iterator end() { return children.end(); } 467 begin()468 const_iterator begin() const { return children.begin(); } end()469 const_iterator end() const { return children.end(); } 470 //@} 471 472 /// @name BasicBlock Iterators 473 /// 474 /// These iterators iterate over all BasicBlocks that are contained in this 475 /// Region. The iterator also iterates over BasicBlocks that are elements of 476 /// a subregion of this Region. It is therefore called a flat iterator. 477 //@{ 478 template <bool IsConst> 479 class block_iterator_wrapper 480 : public df_iterator<typename conditional<IsConst, 481 const BasicBlock, 482 BasicBlock>::type*> { 483 typedef df_iterator<typename conditional<IsConst, 484 const BasicBlock, 485 BasicBlock>::type*> 486 super; 487 public: 488 typedef block_iterator_wrapper<IsConst> Self; 489 typedef typename super::pointer pointer; 490 491 // Construct the begin iterator. block_iterator_wrapper(pointer Entry,pointer Exit)492 block_iterator_wrapper(pointer Entry, pointer Exit) : super(df_begin(Entry)) 493 { 494 // Mark the exit of the region as visited, so that the children of the 495 // exit and the exit itself, i.e. the block outside the region will never 496 // be visited. 497 super::Visited.insert(Exit); 498 } 499 500 // Construct the end iterator. block_iterator_wrapper()501 block_iterator_wrapper() : super(df_end<pointer>((BasicBlock *)0)) {} 502 block_iterator_wrapper(super I)503 /*implicit*/ block_iterator_wrapper(super I) : super(I) {} 504 505 // FIXME: Even a const_iterator returns a non-const BasicBlock pointer. 506 // This was introduced for backwards compatibility, but should 507 // be removed as soon as all users are fixed. 508 BasicBlock *operator*() const { 509 return const_cast<BasicBlock*>(super::operator*()); 510 } 511 }; 512 513 typedef block_iterator_wrapper<false> block_iterator; 514 typedef block_iterator_wrapper<true> const_block_iterator; 515 block_begin()516 block_iterator block_begin() { 517 return block_iterator(getEntry(), getExit()); 518 } 519 block_end()520 block_iterator block_end() { 521 return block_iterator(); 522 } 523 block_begin()524 const_block_iterator block_begin() const { 525 return const_block_iterator(getEntry(), getExit()); 526 } block_end()527 const_block_iterator block_end() const { 528 return const_block_iterator(); 529 } 530 //@} 531 532 /// @name Element Iterators 533 /// 534 /// These iterators iterate over all BasicBlock and subregion RegionNodes that 535 /// are direct children of this Region. It does not iterate over any 536 /// RegionNodes that are also element of a subregion of this Region. 537 //@{ 538 typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false, 539 GraphTraits<RegionNode*> > element_iterator; 540 541 typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>, 542 false, GraphTraits<const RegionNode*> > 543 const_element_iterator; 544 545 element_iterator element_begin(); 546 element_iterator element_end(); 547 548 const_element_iterator element_begin() const; 549 const_element_iterator element_end() const; 550 //@} 551 }; 552 553 //===----------------------------------------------------------------------===// 554 /// @brief Analysis that detects all canonical Regions. 555 /// 556 /// The RegionInfo pass detects all canonical regions in a function. The Regions 557 /// are connected using the parent relation. This builds a Program Structure 558 /// Tree. 559 class RegionInfo : public FunctionPass { 560 typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap; 561 typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap; 562 typedef SmallPtrSet<Region*, 4> RegionSet; 563 564 RegionInfo(const RegionInfo &) LLVM_DELETED_FUNCTION; 565 const RegionInfo &operator=(const RegionInfo &) LLVM_DELETED_FUNCTION; 566 567 DominatorTree *DT; 568 PostDominatorTree *PDT; 569 DominanceFrontier *DF; 570 571 /// The top level region. 572 Region *TopLevelRegion; 573 574 /// Map every BB to the smallest region, that contains BB. 575 BBtoRegionMap BBtoRegion; 576 577 // isCommonDomFrontier - Returns true if BB is in the dominance frontier of 578 // entry, because it was inherited from exit. In the other case there is an 579 // edge going from entry to BB without passing exit. 580 bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry, 581 BasicBlock* exit) const; 582 583 // isRegion - Check if entry and exit surround a valid region, based on 584 // dominance tree and dominance frontier. 585 bool isRegion(BasicBlock* entry, BasicBlock* exit) const; 586 587 // insertShortCut - Saves a shortcut pointing from entry to exit. 588 // This function may extend this shortcut if possible. 589 void insertShortCut(BasicBlock* entry, BasicBlock* exit, 590 BBtoBBMap* ShortCut) const; 591 592 // getNextPostDom - Returns the next BB that postdominates N, while skipping 593 // all post dominators that cannot finish a canonical region. 594 DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const; 595 596 // isTrivialRegion - A region is trivial, if it contains only one BB. 597 bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const; 598 599 // createRegion - Creates a single entry single exit region. 600 Region *createRegion(BasicBlock *entry, BasicBlock *exit); 601 602 // findRegionsWithEntry - Detect all regions starting with bb 'entry'. 603 void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut); 604 605 // scanForRegions - Detects regions in F. 606 void scanForRegions(Function &F, BBtoBBMap *ShortCut); 607 608 // getTopMostParent - Get the top most parent with the same entry block. 609 Region *getTopMostParent(Region *region); 610 611 // buildRegionsTree - build the region hierarchy after all region detected. 612 void buildRegionsTree(DomTreeNode *N, Region *region); 613 614 // Calculate - detecte all regions in function and build the region tree. 615 void Calculate(Function& F); 616 617 void releaseMemory(); 618 619 // updateStatistics - Update statistic about created regions. 620 void updateStatistics(Region *R); 621 622 // isSimple - Check if a region is a simple region with exactly one entry 623 // edge and exactly one exit edge. 624 bool isSimple(Region* R) const; 625 626 public: 627 static char ID; 628 explicit RegionInfo(); 629 630 ~RegionInfo(); 631 632 /// @name FunctionPass interface 633 //@{ 634 virtual bool runOnFunction(Function &F); 635 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 636 virtual void print(raw_ostream &OS, const Module *) const; 637 virtual void verifyAnalysis() const; 638 //@} 639 640 /// @brief Get the smallest region that contains a BasicBlock. 641 /// 642 /// @param BB The basic block. 643 /// @return The smallest region, that contains BB or NULL, if there is no 644 /// region containing BB. 645 Region *getRegionFor(BasicBlock *BB) const; 646 647 /// @brief Set the smallest region that surrounds a basic block. 648 /// 649 /// @param BB The basic block surrounded by a region. 650 /// @param R The smallest region that surrounds BB. 651 void setRegionFor(BasicBlock *BB, Region *R); 652 653 /// @brief A shortcut for getRegionFor(). 654 /// 655 /// @param BB The basic block. 656 /// @return The smallest region, that contains BB or NULL, if there is no 657 /// region containing BB. 658 Region *operator[](BasicBlock *BB) const; 659 660 /// @brief Return the exit of the maximal refined region, that starts at a 661 /// BasicBlock. 662 /// 663 /// @param BB The BasicBlock the refined region starts. 664 BasicBlock *getMaxRegionExit(BasicBlock *BB) const; 665 666 /// @brief Find the smallest region that contains two regions. 667 /// 668 /// @param A The first region. 669 /// @param B The second region. 670 /// @return The smallest region containing A and B. 671 Region *getCommonRegion(Region* A, Region *B) const; 672 673 /// @brief Find the smallest region that contains two basic blocks. 674 /// 675 /// @param A The first basic block. 676 /// @param B The second basic block. 677 /// @return The smallest region that contains A and B. getCommonRegion(BasicBlock * A,BasicBlock * B)678 Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const { 679 return getCommonRegion(getRegionFor(A), getRegionFor(B)); 680 } 681 682 /// @brief Find the smallest region that contains a set of regions. 683 /// 684 /// @param Regions A vector of regions. 685 /// @return The smallest region that contains all regions in Regions. 686 Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const; 687 688 /// @brief Find the smallest region that contains a set of basic blocks. 689 /// 690 /// @param BBs A vector of basic blocks. 691 /// @return The smallest region that contains all basic blocks in BBS. 692 Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const; 693 getTopLevelRegion()694 Region *getTopLevelRegion() const { 695 return TopLevelRegion; 696 } 697 698 /// @brief Update RegionInfo after a basic block was split. 699 /// 700 /// @param NewBB The basic block that was created before OldBB. 701 /// @param OldBB The old basic block. 702 void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB); 703 704 /// @brief Clear the Node Cache for all Regions. 705 /// 706 /// @see Region::clearNodeCache() clearNodeCache()707 void clearNodeCache() { 708 if (TopLevelRegion) 709 TopLevelRegion->clearNodeCache(); 710 } 711 }; 712 713 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) { 714 if (Node.isSubRegion()) 715 return OS << Node.getNodeAs<Region>()->getNameStr(); 716 else 717 return OS << Node.getNodeAs<BasicBlock>()->getName(); 718 } 719 } // End llvm namespace 720 #endif 721 722