• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAsmLayout.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDwarf.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCFixupKindInfo.h"
22 #include "llvm/MC/MCObjectWriter.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCSymbol.h"
25 #include "llvm/MC/MCValue.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/LEB128.h"
29 #include "llvm/Support/TargetRegistry.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace llvm;
33 
34 namespace {
35 namespace stats {
36 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
37 STATISTIC(EmittedRelaxableFragments,
38           "Number of emitted assembler fragments - relaxable");
39 STATISTIC(EmittedDataFragments,
40           "Number of emitted assembler fragments - data");
41 STATISTIC(EmittedCompactEncodedInstFragments,
42           "Number of emitted assembler fragments - compact encoded inst");
43 STATISTIC(EmittedAlignFragments,
44           "Number of emitted assembler fragments - align");
45 STATISTIC(EmittedFillFragments,
46           "Number of emitted assembler fragments - fill");
47 STATISTIC(EmittedOrgFragments,
48           "Number of emitted assembler fragments - org");
49 STATISTIC(evaluateFixup, "Number of evaluated fixups");
50 STATISTIC(FragmentLayouts, "Number of fragment layouts");
51 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
52 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
53 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
54 }
55 }
56 
57 // FIXME FIXME FIXME: There are number of places in this file where we convert
58 // what is a 64-bit assembler value used for computation into a value in the
59 // object file, which may truncate it. We should detect that truncation where
60 // invalid and report errors back.
61 
62 /* *** */
63 
MCAsmLayout(MCAssembler & Asm)64 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
65   : Assembler(Asm), LastValidFragment()
66  {
67   // Compute the section layout order. Virtual sections must go last.
68   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
69     if (!it->getSection().isVirtualSection())
70       SectionOrder.push_back(&*it);
71   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
72     if (it->getSection().isVirtualSection())
73       SectionOrder.push_back(&*it);
74 }
75 
isFragmentValid(const MCFragment * F) const76 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
77   const MCSectionData &SD = *F->getParent();
78   const MCFragment *LastValid = LastValidFragment.lookup(&SD);
79   if (!LastValid)
80     return false;
81   assert(LastValid->getParent() == F->getParent());
82   return F->getLayoutOrder() <= LastValid->getLayoutOrder();
83 }
84 
invalidateFragmentsFrom(MCFragment * F)85 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
86   // If this fragment wasn't already valid, we don't need to do anything.
87   if (!isFragmentValid(F))
88     return;
89 
90   // Otherwise, reset the last valid fragment to the previous fragment
91   // (if this is the first fragment, it will be NULL).
92   const MCSectionData &SD = *F->getParent();
93   LastValidFragment[&SD] = F->getPrevNode();
94 }
95 
ensureValid(const MCFragment * F) const96 void MCAsmLayout::ensureValid(const MCFragment *F) const {
97   MCSectionData &SD = *F->getParent();
98 
99   MCFragment *Cur = LastValidFragment[&SD];
100   if (!Cur)
101     Cur = &*SD.begin();
102   else
103     Cur = Cur->getNextNode();
104 
105   // Advance the layout position until the fragment is valid.
106   while (!isFragmentValid(F)) {
107     assert(Cur && "Layout bookkeeping error");
108     const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
109     Cur = Cur->getNextNode();
110   }
111 }
112 
getFragmentOffset(const MCFragment * F) const113 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
114   ensureValid(F);
115   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
116   return F->Offset;
117 }
118 
getSymbolOffset(const MCSymbolData * SD) const119 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
120   const MCSymbol &S = SD->getSymbol();
121 
122   // If this is a variable, then recursively evaluate now.
123   if (S.isVariable()) {
124     MCValue Target;
125     if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this))
126       report_fatal_error("unable to evaluate offset for variable '" +
127                          S.getName() + "'");
128 
129     // Verify that any used symbols are defined.
130     if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined())
131       report_fatal_error("unable to evaluate offset to undefined symbol '" +
132                          Target.getSymA()->getSymbol().getName() + "'");
133     if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined())
134       report_fatal_error("unable to evaluate offset to undefined symbol '" +
135                          Target.getSymB()->getSymbol().getName() + "'");
136 
137     uint64_t Offset = Target.getConstant();
138     if (Target.getSymA())
139       Offset += getSymbolOffset(&Assembler.getSymbolData(
140                                   Target.getSymA()->getSymbol()));
141     if (Target.getSymB())
142       Offset -= getSymbolOffset(&Assembler.getSymbolData(
143                                   Target.getSymB()->getSymbol()));
144     return Offset;
145   }
146 
147   assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
148   return getFragmentOffset(SD->getFragment()) + SD->getOffset();
149 }
150 
getSectionAddressSize(const MCSectionData * SD) const151 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
152   // The size is the last fragment's end offset.
153   const MCFragment &F = SD->getFragmentList().back();
154   return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
155 }
156 
getSectionFileSize(const MCSectionData * SD) const157 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
158   // Virtual sections have no file size.
159   if (SD->getSection().isVirtualSection())
160     return 0;
161 
162   // Otherwise, the file size is the same as the address space size.
163   return getSectionAddressSize(SD);
164 }
165 
computeBundlePadding(const MCFragment * F,uint64_t FOffset,uint64_t FSize)166 uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F,
167                                            uint64_t FOffset, uint64_t FSize) {
168   uint64_t BundleSize = Assembler.getBundleAlignSize();
169   assert(BundleSize > 0 &&
170          "computeBundlePadding should only be called if bundling is enabled");
171   uint64_t BundleMask = BundleSize - 1;
172   uint64_t OffsetInBundle = FOffset & BundleMask;
173   uint64_t EndOfFragment = OffsetInBundle + FSize;
174 
175   // There are two kinds of bundling restrictions:
176   //
177   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
178   //    *end* on a bundle boundary.
179   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
180   //    would, add padding until the end of the bundle so that the fragment
181   //    will start in a new one.
182   if (F->alignToBundleEnd()) {
183     // Three possibilities here:
184     //
185     // A) The fragment just happens to end at a bundle boundary, so we're good.
186     // B) The fragment ends before the current bundle boundary: pad it just
187     //    enough to reach the boundary.
188     // C) The fragment ends after the current bundle boundary: pad it until it
189     //    reaches the end of the next bundle boundary.
190     //
191     // Note: this code could be made shorter with some modulo trickery, but it's
192     // intentionally kept in its more explicit form for simplicity.
193     if (EndOfFragment == BundleSize)
194       return 0;
195     else if (EndOfFragment < BundleSize)
196       return BundleSize - EndOfFragment;
197     else { // EndOfFragment > BundleSize
198       return 2 * BundleSize - EndOfFragment;
199     }
200   } else if (EndOfFragment > BundleSize)
201     return BundleSize - OffsetInBundle;
202   else
203     return 0;
204 }
205 
206 /* *** */
207 
MCFragment()208 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
209 }
210 
~MCFragment()211 MCFragment::~MCFragment() {
212 }
213 
MCFragment(FragmentType _Kind,MCSectionData * _Parent)214 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
215   : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0)),
216     LayoutOrder(~(0U))
217 {
218   if (Parent)
219     Parent->getFragmentList().push_back(this);
220 }
221 
222 /* *** */
223 
~MCEncodedFragment()224 MCEncodedFragment::~MCEncodedFragment() {
225 }
226 
227 /* *** */
228 
~MCEncodedFragmentWithFixups()229 MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
230 }
231 
232 /* *** */
233 
MCSectionData()234 MCSectionData::MCSectionData() : Section(0) {}
235 
MCSectionData(const MCSection & _Section,MCAssembler * A)236 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
237   : Section(&_Section),
238     Ordinal(~UINT32_C(0)),
239     Alignment(1),
240     BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false),
241     HasInstructions(false)
242 {
243   if (A)
244     A->getSectionList().push_back(this);
245 }
246 
247 /* *** */
248 
MCSymbolData()249 MCSymbolData::MCSymbolData() : Symbol(0) {}
250 
MCSymbolData(const MCSymbol & _Symbol,MCFragment * _Fragment,uint64_t _Offset,MCAssembler * A)251 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
252                            uint64_t _Offset, MCAssembler *A)
253   : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
254     IsExternal(false), IsPrivateExtern(false),
255     CommonSize(0), SymbolSize(0), CommonAlign(0),
256     Flags(0), Index(0)
257 {
258   if (A)
259     A->getSymbolList().push_back(this);
260 }
261 
262 /* *** */
263 
MCAssembler(MCContext & Context_,MCAsmBackend & Backend_,MCCodeEmitter & Emitter_,MCObjectWriter & Writer_,raw_ostream & OS_)264 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
265                          MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
266                          raw_ostream &OS_)
267   : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(&Writer_),
268     OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false),
269     SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
270 }
271 
~MCAssembler()272 MCAssembler::~MCAssembler() {
273 }
274 
setWriter(MCObjectWriter & ObjectWriter)275 void MCAssembler::setWriter(MCObjectWriter &ObjectWriter) {
276   delete Writer;
277   Writer = &ObjectWriter;
278 }
279 
reset()280 void MCAssembler::reset() {
281   Sections.clear();
282   Symbols.clear();
283   SectionMap.clear();
284   SymbolMap.clear();
285   IndirectSymbols.clear();
286   DataRegions.clear();
287   ThumbFuncs.clear();
288   RelaxAll = false;
289   NoExecStack = false;
290   SubsectionsViaSymbols = false;
291   ELFHeaderEFlags = 0;
292 
293   // reset objects owned by us
294   getBackend().reset();
295   getEmitter().reset();
296   getWriter().reset();
297 }
298 
isSymbolLinkerVisible(const MCSymbol & Symbol) const299 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
300   // Non-temporary labels should always be visible to the linker.
301   if (!Symbol.isTemporary())
302     return true;
303 
304   // Absolute temporary labels are never visible.
305   if (!Symbol.isInSection())
306     return false;
307 
308   // Otherwise, check if the section requires symbols even for temporary labels.
309   return getBackend().doesSectionRequireSymbols(Symbol.getSection());
310 }
311 
getAtom(const MCSymbolData * SD) const312 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
313   // Linker visible symbols define atoms.
314   if (isSymbolLinkerVisible(SD->getSymbol()))
315     return SD;
316 
317   // Absolute and undefined symbols have no defining atom.
318   if (!SD->getFragment())
319     return 0;
320 
321   // Non-linker visible symbols in sections which can't be atomized have no
322   // defining atom.
323   if (!getBackend().isSectionAtomizable(
324         SD->getFragment()->getParent()->getSection()))
325     return 0;
326 
327   // Otherwise, return the atom for the containing fragment.
328   return SD->getFragment()->getAtom();
329 }
330 
evaluateFixup(const MCAsmLayout & Layout,const MCFixup & Fixup,const MCFragment * DF,MCValue & Target,uint64_t & Value) const331 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
332                                 const MCFixup &Fixup, const MCFragment *DF,
333                                 MCValue &Target, uint64_t &Value) const {
334   ++stats::evaluateFixup;
335 
336   if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
337     getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
338 
339   bool IsPCRel = Backend.getFixupKindInfo(
340     Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
341 
342   bool IsResolved;
343   if (IsPCRel) {
344     if (Target.getSymB()) {
345       IsResolved = false;
346     } else if (!Target.getSymA()) {
347       IsResolved = false;
348     } else {
349       const MCSymbolRefExpr *A = Target.getSymA();
350       const MCSymbol &SA = A->getSymbol();
351       if (A->getKind() != MCSymbolRefExpr::VK_None ||
352           SA.AliasedSymbol().isUndefined()) {
353         IsResolved = false;
354       } else {
355         const MCSymbolData &DataA = getSymbolData(SA);
356         IsResolved =
357           getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
358                                                              *DF, false, true);
359       }
360     }
361   } else {
362     IsResolved = Target.isAbsolute();
363   }
364 
365   Value = Target.getConstant();
366 
367   if (const MCSymbolRefExpr *A = Target.getSymA()) {
368     const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
369     if (Sym.isDefined())
370       Value += Layout.getSymbolOffset(&getSymbolData(Sym));
371   }
372   if (const MCSymbolRefExpr *B = Target.getSymB()) {
373     const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
374     if (Sym.isDefined())
375       Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
376   }
377 
378 
379   bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
380                          MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
381   assert((ShouldAlignPC ? IsPCRel : true) &&
382     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
383 
384   if (IsPCRel) {
385     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
386 
387     // A number of ARM fixups in Thumb mode require that the effective PC
388     // address be determined as the 32-bit aligned version of the actual offset.
389     if (ShouldAlignPC) Offset &= ~0x3;
390     Value -= Offset;
391   }
392 
393   // Let the backend adjust the fixup value if necessary, including whether
394   // we need a relocation.
395   Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
396                             IsResolved);
397 
398   return IsResolved;
399 }
400 
computeFragmentSize(const MCAsmLayout & Layout,const MCFragment & F) const401 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
402                                           const MCFragment &F) const {
403   switch (F.getKind()) {
404   case MCFragment::FT_Data:
405   case MCFragment::FT_Relaxable:
406   case MCFragment::FT_CompactEncodedInst:
407     return cast<MCEncodedFragment>(F).getContents().size();
408   case MCFragment::FT_Fill:
409     return cast<MCFillFragment>(F).getSize();
410 
411   case MCFragment::FT_LEB:
412     return cast<MCLEBFragment>(F).getContents().size();
413 
414   case MCFragment::FT_Align: {
415     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
416     unsigned Offset = Layout.getFragmentOffset(&AF);
417     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
418     // If we are padding with nops, force the padding to be larger than the
419     // minimum nop size.
420     if (Size > 0 && AF.hasEmitNops()) {
421       while (Size % getBackend().getMinimumNopSize())
422         Size += AF.getAlignment();
423     }
424     if (Size > AF.getMaxBytesToEmit())
425       return 0;
426     return Size;
427   }
428 
429   case MCFragment::FT_Org: {
430     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
431     int64_t TargetLocation;
432     if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
433       report_fatal_error("expected assembly-time absolute expression");
434 
435     // FIXME: We need a way to communicate this error.
436     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
437     int64_t Size = TargetLocation - FragmentOffset;
438     if (Size < 0 || Size >= 0x40000000)
439       report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
440                          "' (at offset '" + Twine(FragmentOffset) + "')");
441     return Size;
442   }
443 
444   case MCFragment::FT_Dwarf:
445     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
446   case MCFragment::FT_DwarfFrame:
447     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
448   }
449 
450   llvm_unreachable("invalid fragment kind");
451 }
452 
layoutFragment(MCFragment * F)453 void MCAsmLayout::layoutFragment(MCFragment *F) {
454   MCFragment *Prev = F->getPrevNode();
455 
456   // We should never try to recompute something which is valid.
457   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
458   // We should never try to compute the fragment layout if its predecessor
459   // isn't valid.
460   assert((!Prev || isFragmentValid(Prev)) &&
461          "Attempt to compute fragment before its predecessor!");
462 
463   ++stats::FragmentLayouts;
464 
465   // Compute fragment offset and size.
466   if (Prev)
467     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
468   else
469     F->Offset = 0;
470   LastValidFragment[F->getParent()] = F;
471 
472   // If bundling is enabled and this fragment has instructions in it, it has to
473   // obey the bundling restrictions. With padding, we'll have:
474   //
475   //
476   //        BundlePadding
477   //             |||
478   // -------------------------------------
479   //   Prev  |##########|       F        |
480   // -------------------------------------
481   //                    ^
482   //                    |
483   //                    F->Offset
484   //
485   // The fragment's offset will point to after the padding, and its computed
486   // size won't include the padding.
487   //
488   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
489     assert(isa<MCEncodedFragment>(F) &&
490            "Only MCEncodedFragment implementations have instructions");
491     uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
492 
493     if (FSize > Assembler.getBundleAlignSize())
494       report_fatal_error("Fragment can't be larger than a bundle size");
495 
496     uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize);
497     if (RequiredBundlePadding > UINT8_MAX)
498       report_fatal_error("Padding cannot exceed 255 bytes");
499     F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
500     F->Offset += RequiredBundlePadding;
501   }
502 }
503 
504 /// \brief Write the contents of a fragment to the given object writer. Expects
505 ///        a MCEncodedFragment.
writeFragmentContents(const MCFragment & F,MCObjectWriter * OW)506 static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
507   const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
508   OW->WriteBytes(EF.getContents());
509 }
510 
511 /// \brief Write the fragment \p F to the output file.
writeFragment(const MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment & F)512 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
513                           const MCFragment &F) {
514   MCObjectWriter *OW = &Asm.getWriter();
515 
516   // FIXME: Embed in fragments instead?
517   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
518 
519   // Should NOP padding be written out before this fragment?
520   unsigned BundlePadding = F.getBundlePadding();
521   if (BundlePadding > 0) {
522     assert(Asm.isBundlingEnabled() &&
523            "Writing bundle padding with disabled bundling");
524     assert(F.hasInstructions() &&
525            "Writing bundle padding for a fragment without instructions");
526 
527     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize);
528     if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) {
529       // If the padding itself crosses a bundle boundary, it must be emitted
530       // in 2 pieces, since even nop instructions must not cross boundaries.
531       //             v--------------v   <- BundleAlignSize
532       //        v---------v             <- BundlePadding
533       // ----------------------------
534       // | Prev |####|####|    F    |
535       // ----------------------------
536       //        ^-------------------^   <- TotalLength
537       unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize();
538       if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW))
539           report_fatal_error("unable to write NOP sequence of " +
540                              Twine(DistanceToBoundary) + " bytes");
541       BundlePadding -= DistanceToBoundary;
542     }
543     if (!Asm.getBackend().writeNopData(BundlePadding, OW))
544       report_fatal_error("unable to write NOP sequence of " +
545                          Twine(BundlePadding) + " bytes");
546   }
547 
548   // This variable (and its dummy usage) is to participate in the assert at
549   // the end of the function.
550   uint64_t Start = OW->getStream().tell();
551   (void) Start;
552 
553   ++stats::EmittedFragments;
554 
555   switch (F.getKind()) {
556   case MCFragment::FT_Align: {
557     ++stats::EmittedAlignFragments;
558     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
559     uint64_t Count = FragmentSize / AF.getValueSize();
560 
561     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
562 
563     // FIXME: This error shouldn't actually occur (the front end should emit
564     // multiple .align directives to enforce the semantics it wants), but is
565     // severe enough that we want to report it. How to handle this?
566     if (Count * AF.getValueSize() != FragmentSize)
567       report_fatal_error("undefined .align directive, value size '" +
568                         Twine(AF.getValueSize()) +
569                         "' is not a divisor of padding size '" +
570                         Twine(FragmentSize) + "'");
571 
572     // See if we are aligning with nops, and if so do that first to try to fill
573     // the Count bytes.  Then if that did not fill any bytes or there are any
574     // bytes left to fill use the Value and ValueSize to fill the rest.
575     // If we are aligning with nops, ask that target to emit the right data.
576     if (AF.hasEmitNops()) {
577       if (!Asm.getBackend().writeNopData(Count, OW))
578         report_fatal_error("unable to write nop sequence of " +
579                           Twine(Count) + " bytes");
580       break;
581     }
582 
583     // Otherwise, write out in multiples of the value size.
584     for (uint64_t i = 0; i != Count; ++i) {
585       switch (AF.getValueSize()) {
586       default: llvm_unreachable("Invalid size!");
587       case 1: OW->Write8 (uint8_t (AF.getValue())); break;
588       case 2: OW->Write16(uint16_t(AF.getValue())); break;
589       case 4: OW->Write32(uint32_t(AF.getValue())); break;
590       case 8: OW->Write64(uint64_t(AF.getValue())); break;
591       }
592     }
593     break;
594   }
595 
596   case MCFragment::FT_Data:
597     ++stats::EmittedDataFragments;
598     writeFragmentContents(F, OW);
599     break;
600 
601   case MCFragment::FT_Relaxable:
602     ++stats::EmittedRelaxableFragments;
603     writeFragmentContents(F, OW);
604     break;
605 
606   case MCFragment::FT_CompactEncodedInst:
607     ++stats::EmittedCompactEncodedInstFragments;
608     writeFragmentContents(F, OW);
609     break;
610 
611   case MCFragment::FT_Fill: {
612     ++stats::EmittedFillFragments;
613     const MCFillFragment &FF = cast<MCFillFragment>(F);
614 
615     assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
616 
617     for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
618       switch (FF.getValueSize()) {
619       default: llvm_unreachable("Invalid size!");
620       case 1: OW->Write8 (uint8_t (FF.getValue())); break;
621       case 2: OW->Write16(uint16_t(FF.getValue())); break;
622       case 4: OW->Write32(uint32_t(FF.getValue())); break;
623       case 8: OW->Write64(uint64_t(FF.getValue())); break;
624       }
625     }
626     break;
627   }
628 
629   case MCFragment::FT_LEB: {
630     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
631     OW->WriteBytes(LF.getContents().str());
632     break;
633   }
634 
635   case MCFragment::FT_Org: {
636     ++stats::EmittedOrgFragments;
637     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
638 
639     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
640       OW->Write8(uint8_t(OF.getValue()));
641 
642     break;
643   }
644 
645   case MCFragment::FT_Dwarf: {
646     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
647     OW->WriteBytes(OF.getContents().str());
648     break;
649   }
650   case MCFragment::FT_DwarfFrame: {
651     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
652     OW->WriteBytes(CF.getContents().str());
653     break;
654   }
655   }
656 
657   assert(OW->getStream().tell() - Start == FragmentSize &&
658          "The stream should advance by fragment size");
659 }
660 
writeSectionData(const MCSectionData * SD,const MCAsmLayout & Layout) const661 void MCAssembler::writeSectionData(const MCSectionData *SD,
662                                    const MCAsmLayout &Layout) const {
663   // Ignore virtual sections.
664   if (SD->getSection().isVirtualSection()) {
665     assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
666 
667     // Check that contents are only things legal inside a virtual section.
668     for (MCSectionData::const_iterator it = SD->begin(),
669            ie = SD->end(); it != ie; ++it) {
670       switch (it->getKind()) {
671       default: llvm_unreachable("Invalid fragment in virtual section!");
672       case MCFragment::FT_Data: {
673         // Check that we aren't trying to write a non-zero contents (or fixups)
674         // into a virtual section. This is to support clients which use standard
675         // directives to fill the contents of virtual sections.
676         const MCDataFragment &DF = cast<MCDataFragment>(*it);
677         assert(DF.fixup_begin() == DF.fixup_end() &&
678                "Cannot have fixups in virtual section!");
679         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
680           assert(DF.getContents()[i] == 0 &&
681                  "Invalid data value for virtual section!");
682         break;
683       }
684       case MCFragment::FT_Align:
685         // Check that we aren't trying to write a non-zero value into a virtual
686         // section.
687         assert((!cast<MCAlignFragment>(it)->getValueSize() ||
688                 !cast<MCAlignFragment>(it)->getValue()) &&
689                "Invalid align in virtual section!");
690         break;
691       case MCFragment::FT_Fill:
692         assert(!cast<MCFillFragment>(it)->getValueSize() &&
693                "Invalid fill in virtual section!");
694         break;
695       }
696     }
697 
698     return;
699   }
700 
701   uint64_t Start = getWriter().getStream().tell();
702   (void)Start;
703 
704   for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
705        it != ie; ++it)
706     writeFragment(*this, Layout, *it);
707 
708   assert(getWriter().getStream().tell() - Start ==
709          Layout.getSectionAddressSize(SD));
710 }
711 
712 
handleFixup(const MCAsmLayout & Layout,MCFragment & F,const MCFixup & Fixup)713 uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout,
714                                   MCFragment &F,
715                                   const MCFixup &Fixup) {
716    // Evaluate the fixup.
717    MCValue Target;
718    uint64_t FixedValue;
719    if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
720      // The fixup was unresolved, we need a relocation. Inform the object
721      // writer of the relocation, and give it an opportunity to adjust the
722      // fixup value if need be.
723      getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
724    }
725    return FixedValue;
726  }
727 
Finish()728 void MCAssembler::Finish() {
729   DEBUG_WITH_TYPE("mc-dump", {
730       llvm::errs() << "assembler backend - pre-layout\n--\n";
731       dump(); });
732 
733   // Create the layout object.
734   MCAsmLayout Layout(*this);
735 
736   // Create dummy fragments and assign section ordinals.
737   unsigned SectionIndex = 0;
738   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
739     // Create dummy fragments to eliminate any empty sections, this simplifies
740     // layout.
741     if (it->getFragmentList().empty())
742       new MCDataFragment(it);
743 
744     it->setOrdinal(SectionIndex++);
745   }
746 
747   // Assign layout order indices to sections and fragments.
748   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
749     MCSectionData *SD = Layout.getSectionOrder()[i];
750     SD->setLayoutOrder(i);
751 
752     unsigned FragmentIndex = 0;
753     for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
754          iFrag != iFragEnd; ++iFrag)
755       iFrag->setLayoutOrder(FragmentIndex++);
756   }
757 
758   // Layout until everything fits.
759   while (layoutOnce(Layout))
760     continue;
761 
762   DEBUG_WITH_TYPE("mc-dump", {
763       llvm::errs() << "assembler backend - post-relaxation\n--\n";
764       dump(); });
765 
766   // Finalize the layout, including fragment lowering.
767   finishLayout(Layout);
768 
769   DEBUG_WITH_TYPE("mc-dump", {
770       llvm::errs() << "assembler backend - final-layout\n--\n";
771       dump(); });
772 
773   uint64_t StartOffset = OS.tell();
774 
775   // Allow the object writer a chance to perform post-layout binding (for
776   // example, to set the index fields in the symbol data).
777   getWriter().ExecutePostLayoutBinding(*this, Layout);
778 
779   // Evaluate and apply the fixups, generating relocation entries as necessary.
780   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
781     for (MCSectionData::iterator it2 = it->begin(),
782            ie2 = it->end(); it2 != ie2; ++it2) {
783       MCEncodedFragmentWithFixups *F =
784         dyn_cast<MCEncodedFragmentWithFixups>(it2);
785       if (F) {
786         for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
787              ie3 = F->fixup_end(); it3 != ie3; ++it3) {
788           MCFixup &Fixup = *it3;
789           uint64_t FixedValue = handleFixup(Layout, *F, Fixup);
790           getBackend().applyFixup(Fixup, F->getContents().data(),
791                                   F->getContents().size(), FixedValue);
792         }
793       }
794     }
795   }
796 
797   // Write the object file.
798   getWriter().WriteObject(*this, Layout);
799 
800   stats::ObjectBytes += OS.tell() - StartOffset;
801 }
802 
fixupNeedsRelaxation(const MCFixup & Fixup,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const803 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
804                                        const MCRelaxableFragment *DF,
805                                        const MCAsmLayout &Layout) const {
806   // If we cannot resolve the fixup value, it requires relaxation.
807   MCValue Target;
808   uint64_t Value;
809   if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
810     return true;
811 
812   return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
813 }
814 
fragmentNeedsRelaxation(const MCRelaxableFragment * F,const MCAsmLayout & Layout) const815 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
816                                           const MCAsmLayout &Layout) const {
817   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
818   // are intentionally pushing out inst fragments, or because we relaxed a
819   // previous instruction to one that doesn't need relaxation.
820   if (!getBackend().mayNeedRelaxation(F->getInst()))
821     return false;
822 
823   for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
824        ie = F->fixup_end(); it != ie; ++it)
825     if (fixupNeedsRelaxation(*it, F, Layout))
826       return true;
827 
828   return false;
829 }
830 
relaxInstruction(MCAsmLayout & Layout,MCRelaxableFragment & F)831 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
832                                    MCRelaxableFragment &F) {
833   if (!fragmentNeedsRelaxation(&F, Layout))
834     return false;
835 
836   ++stats::RelaxedInstructions;
837 
838   // FIXME-PERF: We could immediately lower out instructions if we can tell
839   // they are fully resolved, to avoid retesting on later passes.
840 
841   // Relax the fragment.
842 
843   MCInst Relaxed;
844   getBackend().relaxInstruction(F.getInst(), Relaxed);
845 
846   // Encode the new instruction.
847   //
848   // FIXME-PERF: If it matters, we could let the target do this. It can
849   // probably do so more efficiently in many cases.
850   SmallVector<MCFixup, 4> Fixups;
851   SmallString<256> Code;
852   raw_svector_ostream VecOS(Code);
853   getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
854   VecOS.flush();
855 
856   // Update the fragment.
857   F.setInst(Relaxed);
858   F.getContents() = Code;
859   F.getFixups() = Fixups;
860 
861   return true;
862 }
863 
relaxLEB(MCAsmLayout & Layout,MCLEBFragment & LF)864 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
865   int64_t Value = 0;
866   uint64_t OldSize = LF.getContents().size();
867   bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
868   (void)IsAbs;
869   assert(IsAbs);
870   SmallString<8> &Data = LF.getContents();
871   Data.clear();
872   raw_svector_ostream OSE(Data);
873   if (LF.isSigned())
874     encodeSLEB128(Value, OSE);
875   else
876     encodeULEB128(Value, OSE);
877   OSE.flush();
878   return OldSize != LF.getContents().size();
879 }
880 
relaxDwarfLineAddr(MCAsmLayout & Layout,MCDwarfLineAddrFragment & DF)881 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
882                                      MCDwarfLineAddrFragment &DF) {
883   int64_t AddrDelta = 0;
884   uint64_t OldSize = DF.getContents().size();
885   bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
886   (void)IsAbs;
887   assert(IsAbs);
888   int64_t LineDelta;
889   LineDelta = DF.getLineDelta();
890   SmallString<8> &Data = DF.getContents();
891   Data.clear();
892   raw_svector_ostream OSE(Data);
893   MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE);
894   OSE.flush();
895   return OldSize != Data.size();
896 }
897 
relaxDwarfCallFrameFragment(MCAsmLayout & Layout,MCDwarfCallFrameFragment & DF)898 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
899                                               MCDwarfCallFrameFragment &DF) {
900   int64_t AddrDelta = 0;
901   uint64_t OldSize = DF.getContents().size();
902   bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
903   (void)IsAbs;
904   assert(IsAbs);
905   SmallString<8> &Data = DF.getContents();
906   Data.clear();
907   raw_svector_ostream OSE(Data);
908   MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE);
909   OSE.flush();
910   return OldSize != Data.size();
911 }
912 
layoutSectionOnce(MCAsmLayout & Layout,MCSectionData & SD)913 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
914   // Holds the first fragment which needed relaxing during this layout. It will
915   // remain NULL if none were relaxed.
916   // When a fragment is relaxed, all the fragments following it should get
917   // invalidated because their offset is going to change.
918   MCFragment *FirstRelaxedFragment = NULL;
919 
920   // Attempt to relax all the fragments in the section.
921   for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
922     // Check if this is a fragment that needs relaxation.
923     bool RelaxedFrag = false;
924     switch(I->getKind()) {
925     default:
926       break;
927     case MCFragment::FT_Relaxable:
928       assert(!getRelaxAll() &&
929              "Did not expect a MCRelaxableFragment in RelaxAll mode");
930       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
931       break;
932     case MCFragment::FT_Dwarf:
933       RelaxedFrag = relaxDwarfLineAddr(Layout,
934                                        *cast<MCDwarfLineAddrFragment>(I));
935       break;
936     case MCFragment::FT_DwarfFrame:
937       RelaxedFrag =
938         relaxDwarfCallFrameFragment(Layout,
939                                     *cast<MCDwarfCallFrameFragment>(I));
940       break;
941     case MCFragment::FT_LEB:
942       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
943       break;
944     }
945     if (RelaxedFrag && !FirstRelaxedFragment)
946       FirstRelaxedFragment = I;
947   }
948   if (FirstRelaxedFragment) {
949     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
950     return true;
951   }
952   return false;
953 }
954 
layoutOnce(MCAsmLayout & Layout)955 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
956   ++stats::RelaxationSteps;
957 
958   bool WasRelaxed = false;
959   for (iterator it = begin(), ie = end(); it != ie; ++it) {
960     MCSectionData &SD = *it;
961     while (layoutSectionOnce(Layout, SD))
962       WasRelaxed = true;
963   }
964 
965   return WasRelaxed;
966 }
967 
finishLayout(MCAsmLayout & Layout)968 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
969   // The layout is done. Mark every fragment as valid.
970   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
971     Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
972   }
973 }
974 
975 // Debugging methods
976 
977 namespace llvm {
978 
operator <<(raw_ostream & OS,const MCFixup & AF)979 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
980   OS << "<MCFixup" << " Offset:" << AF.getOffset()
981      << " Value:" << *AF.getValue()
982      << " Kind:" << AF.getKind() << ">";
983   return OS;
984 }
985 
986 }
987 
988 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump()989 void MCFragment::dump() {
990   raw_ostream &OS = llvm::errs();
991 
992   OS << "<";
993   switch (getKind()) {
994   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
995   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
996   case MCFragment::FT_CompactEncodedInst:
997     OS << "MCCompactEncodedInstFragment"; break;
998   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
999   case MCFragment::FT_Relaxable:  OS << "MCRelaxableFragment"; break;
1000   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
1001   case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
1002   case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
1003   case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
1004   }
1005 
1006   OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
1007      << " Offset:" << Offset
1008      << " HasInstructions:" << hasInstructions()
1009      << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
1010 
1011   switch (getKind()) {
1012   case MCFragment::FT_Align: {
1013     const MCAlignFragment *AF = cast<MCAlignFragment>(this);
1014     if (AF->hasEmitNops())
1015       OS << " (emit nops)";
1016     OS << "\n       ";
1017     OS << " Alignment:" << AF->getAlignment()
1018        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
1019        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
1020     break;
1021   }
1022   case MCFragment::FT_Data:  {
1023     const MCDataFragment *DF = cast<MCDataFragment>(this);
1024     OS << "\n       ";
1025     OS << " Contents:[";
1026     const SmallVectorImpl<char> &Contents = DF->getContents();
1027     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1028       if (i) OS << ",";
1029       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1030     }
1031     OS << "] (" << Contents.size() << " bytes)";
1032 
1033     if (DF->fixup_begin() != DF->fixup_end()) {
1034       OS << ",\n       ";
1035       OS << " Fixups:[";
1036       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
1037              ie = DF->fixup_end(); it != ie; ++it) {
1038         if (it != DF->fixup_begin()) OS << ",\n                ";
1039         OS << *it;
1040       }
1041       OS << "]";
1042     }
1043     break;
1044   }
1045   case MCFragment::FT_CompactEncodedInst: {
1046     const MCCompactEncodedInstFragment *CEIF =
1047       cast<MCCompactEncodedInstFragment>(this);
1048     OS << "\n       ";
1049     OS << " Contents:[";
1050     const SmallVectorImpl<char> &Contents = CEIF->getContents();
1051     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1052       if (i) OS << ",";
1053       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1054     }
1055     OS << "] (" << Contents.size() << " bytes)";
1056     break;
1057   }
1058   case MCFragment::FT_Fill:  {
1059     const MCFillFragment *FF = cast<MCFillFragment>(this);
1060     OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
1061        << " Size:" << FF->getSize();
1062     break;
1063   }
1064   case MCFragment::FT_Relaxable:  {
1065     const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
1066     OS << "\n       ";
1067     OS << " Inst:";
1068     F->getInst().dump_pretty(OS);
1069     break;
1070   }
1071   case MCFragment::FT_Org:  {
1072     const MCOrgFragment *OF = cast<MCOrgFragment>(this);
1073     OS << "\n       ";
1074     OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
1075     break;
1076   }
1077   case MCFragment::FT_Dwarf:  {
1078     const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
1079     OS << "\n       ";
1080     OS << " AddrDelta:" << OF->getAddrDelta()
1081        << " LineDelta:" << OF->getLineDelta();
1082     break;
1083   }
1084   case MCFragment::FT_DwarfFrame:  {
1085     const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
1086     OS << "\n       ";
1087     OS << " AddrDelta:" << CF->getAddrDelta();
1088     break;
1089   }
1090   case MCFragment::FT_LEB: {
1091     const MCLEBFragment *LF = cast<MCLEBFragment>(this);
1092     OS << "\n       ";
1093     OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
1094     break;
1095   }
1096   }
1097   OS << ">";
1098 }
1099 
dump()1100 void MCSectionData::dump() {
1101   raw_ostream &OS = llvm::errs();
1102 
1103   OS << "<MCSectionData";
1104   OS << " Alignment:" << getAlignment()
1105      << " Fragments:[\n      ";
1106   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1107     if (it != begin()) OS << ",\n      ";
1108     it->dump();
1109   }
1110   OS << "]>";
1111 }
1112 
dump()1113 void MCSymbolData::dump() {
1114   raw_ostream &OS = llvm::errs();
1115 
1116   OS << "<MCSymbolData Symbol:" << getSymbol()
1117      << " Fragment:" << getFragment() << " Offset:" << getOffset()
1118      << " Flags:" << getFlags() << " Index:" << getIndex();
1119   if (isCommon())
1120     OS << " (common, size:" << getCommonSize()
1121        << " align: " << getCommonAlignment() << ")";
1122   if (isExternal())
1123     OS << " (external)";
1124   if (isPrivateExtern())
1125     OS << " (private extern)";
1126   OS << ">";
1127 }
1128 
dump()1129 void MCAssembler::dump() {
1130   raw_ostream &OS = llvm::errs();
1131 
1132   OS << "<MCAssembler\n";
1133   OS << "  Sections:[\n    ";
1134   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1135     if (it != begin()) OS << ",\n    ";
1136     it->dump();
1137   }
1138   OS << "],\n";
1139   OS << "  Symbols:[";
1140 
1141   for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1142     if (it != symbol_begin()) OS << ",\n           ";
1143     it->dump();
1144   }
1145   OS << "]>\n";
1146 }
1147 #endif
1148 
1149 // anchors for MC*Fragment vtables
anchor()1150 void MCEncodedFragment::anchor() { }
anchor()1151 void MCEncodedFragmentWithFixups::anchor() { }
anchor()1152 void MCDataFragment::anchor() { }
anchor()1153 void MCCompactEncodedInstFragment::anchor() { }
anchor()1154 void MCRelaxableFragment::anchor() { }
anchor()1155 void MCAlignFragment::anchor() { }
anchor()1156 void MCFillFragment::anchor() { }
anchor()1157 void MCOrgFragment::anchor() { }
anchor()1158 void MCLEBFragment::anchor() { }
anchor()1159 void MCDwarfLineAddrFragment::anchor() { }
anchor()1160 void MCDwarfCallFrameFragment::anchor() { }
1161