1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines analysis_warnings::[Policy,Executor].
11 // Together they are used by Sema to issue warnings based on inexpensive
12 // static analysis algorithms in libAnalysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/Sema/AnalysisBasedWarnings.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28 #include "clang/Analysis/Analyses/ReachableCode.h"
29 #include "clang/Analysis/Analyses/ThreadSafety.h"
30 #include "clang/Analysis/Analyses/UninitializedValues.h"
31 #include "clang/Analysis/AnalysisContext.h"
32 #include "clang/Analysis/CFG.h"
33 #include "clang/Analysis/CFGStmtMap.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Lex/Lexer.h"
37 #include "clang/Lex/Preprocessor.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/BitVector.h"
42 #include "llvm/ADT/FoldingSet.h"
43 #include "llvm/ADT/ImmutableMap.h"
44 #include "llvm/ADT/MapVector.h"
45 #include "llvm/ADT/PostOrderIterator.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Support/Casting.h"
50 #include <algorithm>
51 #include <deque>
52 #include <iterator>
53 #include <vector>
54
55 using namespace clang;
56
57 //===----------------------------------------------------------------------===//
58 // Unreachable code analysis.
59 //===----------------------------------------------------------------------===//
60
61 namespace {
62 class UnreachableCodeHandler : public reachable_code::Callback {
63 Sema &S;
64 public:
UnreachableCodeHandler(Sema & s)65 UnreachableCodeHandler(Sema &s) : S(s) {}
66
HandleUnreachable(SourceLocation L,SourceRange R1,SourceRange R2)67 void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
68 S.Diag(L, diag::warn_unreachable) << R1 << R2;
69 }
70 };
71 }
72
73 /// CheckUnreachable - Check for unreachable code.
CheckUnreachable(Sema & S,AnalysisDeclContext & AC)74 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
75 UnreachableCodeHandler UC(S);
76 reachable_code::FindUnreachableCode(AC, UC);
77 }
78
79 //===----------------------------------------------------------------------===//
80 // Check for missing return value.
81 //===----------------------------------------------------------------------===//
82
83 enum ControlFlowKind {
84 UnknownFallThrough,
85 NeverFallThrough,
86 MaybeFallThrough,
87 AlwaysFallThrough,
88 NeverFallThroughOrReturn
89 };
90
91 /// CheckFallThrough - Check that we don't fall off the end of a
92 /// Statement that should return a value.
93 ///
94 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
95 /// MaybeFallThrough iff we might or might not fall off the end,
96 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
97 /// return. We assume NeverFallThrough iff we never fall off the end of the
98 /// statement but we may return. We assume that functions not marked noreturn
99 /// will return.
CheckFallThrough(AnalysisDeclContext & AC)100 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
101 CFG *cfg = AC.getCFG();
102 if (cfg == 0) return UnknownFallThrough;
103
104 // The CFG leaves in dead things, and we don't want the dead code paths to
105 // confuse us, so we mark all live things first.
106 llvm::BitVector live(cfg->getNumBlockIDs());
107 unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
108 live);
109
110 bool AddEHEdges = AC.getAddEHEdges();
111 if (!AddEHEdges && count != cfg->getNumBlockIDs())
112 // When there are things remaining dead, and we didn't add EH edges
113 // from CallExprs to the catch clauses, we have to go back and
114 // mark them as live.
115 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
116 CFGBlock &b = **I;
117 if (!live[b.getBlockID()]) {
118 if (b.pred_begin() == b.pred_end()) {
119 if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
120 // When not adding EH edges from calls, catch clauses
121 // can otherwise seem dead. Avoid noting them as dead.
122 count += reachable_code::ScanReachableFromBlock(&b, live);
123 continue;
124 }
125 }
126 }
127
128 // Now we know what is live, we check the live precessors of the exit block
129 // and look for fall through paths, being careful to ignore normal returns,
130 // and exceptional paths.
131 bool HasLiveReturn = false;
132 bool HasFakeEdge = false;
133 bool HasPlainEdge = false;
134 bool HasAbnormalEdge = false;
135
136 // Ignore default cases that aren't likely to be reachable because all
137 // enums in a switch(X) have explicit case statements.
138 CFGBlock::FilterOptions FO;
139 FO.IgnoreDefaultsWithCoveredEnums = 1;
140
141 for (CFGBlock::filtered_pred_iterator
142 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
143 const CFGBlock& B = **I;
144 if (!live[B.getBlockID()])
145 continue;
146
147 // Skip blocks which contain an element marked as no-return. They don't
148 // represent actually viable edges into the exit block, so mark them as
149 // abnormal.
150 if (B.hasNoReturnElement()) {
151 HasAbnormalEdge = true;
152 continue;
153 }
154
155 // Destructors can appear after the 'return' in the CFG. This is
156 // normal. We need to look pass the destructors for the return
157 // statement (if it exists).
158 CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
159
160 for ( ; ri != re ; ++ri)
161 if (ri->getAs<CFGStmt>())
162 break;
163
164 // No more CFGElements in the block?
165 if (ri == re) {
166 if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
167 HasAbnormalEdge = true;
168 continue;
169 }
170 // A labeled empty statement, or the entry block...
171 HasPlainEdge = true;
172 continue;
173 }
174
175 CFGStmt CS = ri->castAs<CFGStmt>();
176 const Stmt *S = CS.getStmt();
177 if (isa<ReturnStmt>(S)) {
178 HasLiveReturn = true;
179 continue;
180 }
181 if (isa<ObjCAtThrowStmt>(S)) {
182 HasFakeEdge = true;
183 continue;
184 }
185 if (isa<CXXThrowExpr>(S)) {
186 HasFakeEdge = true;
187 continue;
188 }
189 if (isa<MSAsmStmt>(S)) {
190 // TODO: Verify this is correct.
191 HasFakeEdge = true;
192 HasLiveReturn = true;
193 continue;
194 }
195 if (isa<CXXTryStmt>(S)) {
196 HasAbnormalEdge = true;
197 continue;
198 }
199 if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
200 == B.succ_end()) {
201 HasAbnormalEdge = true;
202 continue;
203 }
204
205 HasPlainEdge = true;
206 }
207 if (!HasPlainEdge) {
208 if (HasLiveReturn)
209 return NeverFallThrough;
210 return NeverFallThroughOrReturn;
211 }
212 if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
213 return MaybeFallThrough;
214 // This says AlwaysFallThrough for calls to functions that are not marked
215 // noreturn, that don't return. If people would like this warning to be more
216 // accurate, such functions should be marked as noreturn.
217 return AlwaysFallThrough;
218 }
219
220 namespace {
221
222 struct CheckFallThroughDiagnostics {
223 unsigned diag_MaybeFallThrough_HasNoReturn;
224 unsigned diag_MaybeFallThrough_ReturnsNonVoid;
225 unsigned diag_AlwaysFallThrough_HasNoReturn;
226 unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
227 unsigned diag_NeverFallThroughOrReturn;
228 enum { Function, Block, Lambda } funMode;
229 SourceLocation FuncLoc;
230
MakeForFunction__anoncd628f830211::CheckFallThroughDiagnostics231 static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
232 CheckFallThroughDiagnostics D;
233 D.FuncLoc = Func->getLocation();
234 D.diag_MaybeFallThrough_HasNoReturn =
235 diag::warn_falloff_noreturn_function;
236 D.diag_MaybeFallThrough_ReturnsNonVoid =
237 diag::warn_maybe_falloff_nonvoid_function;
238 D.diag_AlwaysFallThrough_HasNoReturn =
239 diag::warn_falloff_noreturn_function;
240 D.diag_AlwaysFallThrough_ReturnsNonVoid =
241 diag::warn_falloff_nonvoid_function;
242
243 // Don't suggest that virtual functions be marked "noreturn", since they
244 // might be overridden by non-noreturn functions.
245 bool isVirtualMethod = false;
246 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
247 isVirtualMethod = Method->isVirtual();
248
249 // Don't suggest that template instantiations be marked "noreturn"
250 bool isTemplateInstantiation = false;
251 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
252 isTemplateInstantiation = Function->isTemplateInstantiation();
253
254 if (!isVirtualMethod && !isTemplateInstantiation)
255 D.diag_NeverFallThroughOrReturn =
256 diag::warn_suggest_noreturn_function;
257 else
258 D.diag_NeverFallThroughOrReturn = 0;
259
260 D.funMode = Function;
261 return D;
262 }
263
MakeForBlock__anoncd628f830211::CheckFallThroughDiagnostics264 static CheckFallThroughDiagnostics MakeForBlock() {
265 CheckFallThroughDiagnostics D;
266 D.diag_MaybeFallThrough_HasNoReturn =
267 diag::err_noreturn_block_has_return_expr;
268 D.diag_MaybeFallThrough_ReturnsNonVoid =
269 diag::err_maybe_falloff_nonvoid_block;
270 D.diag_AlwaysFallThrough_HasNoReturn =
271 diag::err_noreturn_block_has_return_expr;
272 D.diag_AlwaysFallThrough_ReturnsNonVoid =
273 diag::err_falloff_nonvoid_block;
274 D.diag_NeverFallThroughOrReturn =
275 diag::warn_suggest_noreturn_block;
276 D.funMode = Block;
277 return D;
278 }
279
MakeForLambda__anoncd628f830211::CheckFallThroughDiagnostics280 static CheckFallThroughDiagnostics MakeForLambda() {
281 CheckFallThroughDiagnostics D;
282 D.diag_MaybeFallThrough_HasNoReturn =
283 diag::err_noreturn_lambda_has_return_expr;
284 D.diag_MaybeFallThrough_ReturnsNonVoid =
285 diag::warn_maybe_falloff_nonvoid_lambda;
286 D.diag_AlwaysFallThrough_HasNoReturn =
287 diag::err_noreturn_lambda_has_return_expr;
288 D.diag_AlwaysFallThrough_ReturnsNonVoid =
289 diag::warn_falloff_nonvoid_lambda;
290 D.diag_NeverFallThroughOrReturn = 0;
291 D.funMode = Lambda;
292 return D;
293 }
294
checkDiagnostics__anoncd628f830211::CheckFallThroughDiagnostics295 bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
296 bool HasNoReturn) const {
297 if (funMode == Function) {
298 return (ReturnsVoid ||
299 D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
300 FuncLoc) == DiagnosticsEngine::Ignored)
301 && (!HasNoReturn ||
302 D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
303 FuncLoc) == DiagnosticsEngine::Ignored)
304 && (!ReturnsVoid ||
305 D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
306 == DiagnosticsEngine::Ignored);
307 }
308
309 // For blocks / lambdas.
310 return ReturnsVoid && !HasNoReturn
311 && ((funMode == Lambda) ||
312 D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
313 == DiagnosticsEngine::Ignored);
314 }
315 };
316
317 }
318
319 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
320 /// function that should return a value. Check that we don't fall off the end
321 /// of a noreturn function. We assume that functions and blocks not marked
322 /// noreturn will return.
CheckFallThroughForBody(Sema & S,const Decl * D,const Stmt * Body,const BlockExpr * blkExpr,const CheckFallThroughDiagnostics & CD,AnalysisDeclContext & AC)323 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
324 const BlockExpr *blkExpr,
325 const CheckFallThroughDiagnostics& CD,
326 AnalysisDeclContext &AC) {
327
328 bool ReturnsVoid = false;
329 bool HasNoReturn = false;
330
331 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
332 ReturnsVoid = FD->getResultType()->isVoidType();
333 HasNoReturn = FD->isNoReturn();
334 }
335 else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
336 ReturnsVoid = MD->getResultType()->isVoidType();
337 HasNoReturn = MD->hasAttr<NoReturnAttr>();
338 }
339 else if (isa<BlockDecl>(D)) {
340 QualType BlockTy = blkExpr->getType();
341 if (const FunctionType *FT =
342 BlockTy->getPointeeType()->getAs<FunctionType>()) {
343 if (FT->getResultType()->isVoidType())
344 ReturnsVoid = true;
345 if (FT->getNoReturnAttr())
346 HasNoReturn = true;
347 }
348 }
349
350 DiagnosticsEngine &Diags = S.getDiagnostics();
351
352 // Short circuit for compilation speed.
353 if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
354 return;
355
356 // FIXME: Function try block
357 if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
358 switch (CheckFallThrough(AC)) {
359 case UnknownFallThrough:
360 break;
361
362 case MaybeFallThrough:
363 if (HasNoReturn)
364 S.Diag(Compound->getRBracLoc(),
365 CD.diag_MaybeFallThrough_HasNoReturn);
366 else if (!ReturnsVoid)
367 S.Diag(Compound->getRBracLoc(),
368 CD.diag_MaybeFallThrough_ReturnsNonVoid);
369 break;
370 case AlwaysFallThrough:
371 if (HasNoReturn)
372 S.Diag(Compound->getRBracLoc(),
373 CD.diag_AlwaysFallThrough_HasNoReturn);
374 else if (!ReturnsVoid)
375 S.Diag(Compound->getRBracLoc(),
376 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
377 break;
378 case NeverFallThroughOrReturn:
379 if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
380 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
381 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
382 << 0 << FD;
383 } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
384 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
385 << 1 << MD;
386 } else {
387 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
388 }
389 }
390 break;
391 case NeverFallThrough:
392 break;
393 }
394 }
395 }
396
397 //===----------------------------------------------------------------------===//
398 // -Wuninitialized
399 //===----------------------------------------------------------------------===//
400
401 namespace {
402 /// ContainsReference - A visitor class to search for references to
403 /// a particular declaration (the needle) within any evaluated component of an
404 /// expression (recursively).
405 class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
406 bool FoundReference;
407 const DeclRefExpr *Needle;
408
409 public:
ContainsReference(ASTContext & Context,const DeclRefExpr * Needle)410 ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
411 : EvaluatedExprVisitor<ContainsReference>(Context),
412 FoundReference(false), Needle(Needle) {}
413
VisitExpr(Expr * E)414 void VisitExpr(Expr *E) {
415 // Stop evaluating if we already have a reference.
416 if (FoundReference)
417 return;
418
419 EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
420 }
421
VisitDeclRefExpr(DeclRefExpr * E)422 void VisitDeclRefExpr(DeclRefExpr *E) {
423 if (E == Needle)
424 FoundReference = true;
425 else
426 EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
427 }
428
doesContainReference() const429 bool doesContainReference() const { return FoundReference; }
430 };
431 }
432
SuggestInitializationFixit(Sema & S,const VarDecl * VD)433 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
434 QualType VariableTy = VD->getType().getCanonicalType();
435 if (VariableTy->isBlockPointerType() &&
436 !VD->hasAttr<BlocksAttr>()) {
437 S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName()
438 << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
439 return true;
440 }
441
442 // Don't issue a fixit if there is already an initializer.
443 if (VD->getInit())
444 return false;
445
446 // Suggest possible initialization (if any).
447 std::string Init = S.getFixItZeroInitializerForType(VariableTy);
448 if (Init.empty())
449 return false;
450
451 // Don't suggest a fixit inside macros.
452 if (VD->getLocEnd().isMacroID())
453 return false;
454
455 SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
456
457 S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
458 << FixItHint::CreateInsertion(Loc, Init);
459 return true;
460 }
461
462 /// Create a fixit to remove an if-like statement, on the assumption that its
463 /// condition is CondVal.
CreateIfFixit(Sema & S,const Stmt * If,const Stmt * Then,const Stmt * Else,bool CondVal,FixItHint & Fixit1,FixItHint & Fixit2)464 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
465 const Stmt *Else, bool CondVal,
466 FixItHint &Fixit1, FixItHint &Fixit2) {
467 if (CondVal) {
468 // If condition is always true, remove all but the 'then'.
469 Fixit1 = FixItHint::CreateRemoval(
470 CharSourceRange::getCharRange(If->getLocStart(),
471 Then->getLocStart()));
472 if (Else) {
473 SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
474 Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
475 Fixit2 = FixItHint::CreateRemoval(
476 SourceRange(ElseKwLoc, Else->getLocEnd()));
477 }
478 } else {
479 // If condition is always false, remove all but the 'else'.
480 if (Else)
481 Fixit1 = FixItHint::CreateRemoval(
482 CharSourceRange::getCharRange(If->getLocStart(),
483 Else->getLocStart()));
484 else
485 Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
486 }
487 }
488
489 /// DiagUninitUse -- Helper function to produce a diagnostic for an
490 /// uninitialized use of a variable.
DiagUninitUse(Sema & S,const VarDecl * VD,const UninitUse & Use,bool IsCapturedByBlock)491 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
492 bool IsCapturedByBlock) {
493 bool Diagnosed = false;
494
495 // Diagnose each branch which leads to a sometimes-uninitialized use.
496 for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
497 I != E; ++I) {
498 assert(Use.getKind() == UninitUse::Sometimes);
499
500 const Expr *User = Use.getUser();
501 const Stmt *Term = I->Terminator;
502
503 // Information used when building the diagnostic.
504 unsigned DiagKind;
505 StringRef Str;
506 SourceRange Range;
507
508 // FixIts to suppress the diagnostic by removing the dead condition.
509 // For all binary terminators, branch 0 is taken if the condition is true,
510 // and branch 1 is taken if the condition is false.
511 int RemoveDiagKind = -1;
512 const char *FixitStr =
513 S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
514 : (I->Output ? "1" : "0");
515 FixItHint Fixit1, Fixit2;
516
517 switch (Term->getStmtClass()) {
518 default:
519 // Don't know how to report this. Just fall back to 'may be used
520 // uninitialized'. This happens for range-based for, which the user
521 // can't explicitly fix.
522 // FIXME: This also happens if the first use of a variable is always
523 // uninitialized, eg "for (int n; n < 10; ++n)". We should report that
524 // with the 'is uninitialized' diagnostic.
525 continue;
526
527 // "condition is true / condition is false".
528 case Stmt::IfStmtClass: {
529 const IfStmt *IS = cast<IfStmt>(Term);
530 DiagKind = 0;
531 Str = "if";
532 Range = IS->getCond()->getSourceRange();
533 RemoveDiagKind = 0;
534 CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
535 I->Output, Fixit1, Fixit2);
536 break;
537 }
538 case Stmt::ConditionalOperatorClass: {
539 const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
540 DiagKind = 0;
541 Str = "?:";
542 Range = CO->getCond()->getSourceRange();
543 RemoveDiagKind = 0;
544 CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
545 I->Output, Fixit1, Fixit2);
546 break;
547 }
548 case Stmt::BinaryOperatorClass: {
549 const BinaryOperator *BO = cast<BinaryOperator>(Term);
550 if (!BO->isLogicalOp())
551 continue;
552 DiagKind = 0;
553 Str = BO->getOpcodeStr();
554 Range = BO->getLHS()->getSourceRange();
555 RemoveDiagKind = 0;
556 if ((BO->getOpcode() == BO_LAnd && I->Output) ||
557 (BO->getOpcode() == BO_LOr && !I->Output))
558 // true && y -> y, false || y -> y.
559 Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
560 BO->getOperatorLoc()));
561 else
562 // false && y -> false, true || y -> true.
563 Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
564 break;
565 }
566
567 // "loop is entered / loop is exited".
568 case Stmt::WhileStmtClass:
569 DiagKind = 1;
570 Str = "while";
571 Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
572 RemoveDiagKind = 1;
573 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
574 break;
575 case Stmt::ForStmtClass:
576 DiagKind = 1;
577 Str = "for";
578 Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
579 RemoveDiagKind = 1;
580 if (I->Output)
581 Fixit1 = FixItHint::CreateRemoval(Range);
582 else
583 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
584 break;
585
586 // "condition is true / loop is exited".
587 case Stmt::DoStmtClass:
588 DiagKind = 2;
589 Str = "do";
590 Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
591 RemoveDiagKind = 1;
592 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
593 break;
594
595 // "switch case is taken".
596 case Stmt::CaseStmtClass:
597 DiagKind = 3;
598 Str = "case";
599 Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
600 break;
601 case Stmt::DefaultStmtClass:
602 DiagKind = 3;
603 Str = "default";
604 Range = cast<DefaultStmt>(Term)->getDefaultLoc();
605 break;
606 }
607
608 S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
609 << VD->getDeclName() << IsCapturedByBlock << DiagKind
610 << Str << I->Output << Range;
611 S.Diag(User->getLocStart(), diag::note_uninit_var_use)
612 << IsCapturedByBlock << User->getSourceRange();
613 if (RemoveDiagKind != -1)
614 S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
615 << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
616
617 Diagnosed = true;
618 }
619
620 if (!Diagnosed)
621 S.Diag(Use.getUser()->getLocStart(),
622 Use.getKind() == UninitUse::Always ? diag::warn_uninit_var
623 : diag::warn_maybe_uninit_var)
624 << VD->getDeclName() << IsCapturedByBlock
625 << Use.getUser()->getSourceRange();
626 }
627
628 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
629 /// uninitialized variable. This manages the different forms of diagnostic
630 /// emitted for particular types of uses. Returns true if the use was diagnosed
631 /// as a warning. If a particular use is one we omit warnings for, returns
632 /// false.
DiagnoseUninitializedUse(Sema & S,const VarDecl * VD,const UninitUse & Use,bool alwaysReportSelfInit=false)633 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
634 const UninitUse &Use,
635 bool alwaysReportSelfInit = false) {
636
637 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
638 // Inspect the initializer of the variable declaration which is
639 // being referenced prior to its initialization. We emit
640 // specialized diagnostics for self-initialization, and we
641 // specifically avoid warning about self references which take the
642 // form of:
643 //
644 // int x = x;
645 //
646 // This is used to indicate to GCC that 'x' is intentionally left
647 // uninitialized. Proven code paths which access 'x' in
648 // an uninitialized state after this will still warn.
649 if (const Expr *Initializer = VD->getInit()) {
650 if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
651 return false;
652
653 ContainsReference CR(S.Context, DRE);
654 CR.Visit(const_cast<Expr*>(Initializer));
655 if (CR.doesContainReference()) {
656 S.Diag(DRE->getLocStart(),
657 diag::warn_uninit_self_reference_in_init)
658 << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
659 return true;
660 }
661 }
662
663 DiagUninitUse(S, VD, Use, false);
664 } else {
665 const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
666 if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
667 S.Diag(BE->getLocStart(),
668 diag::warn_uninit_byref_blockvar_captured_by_block)
669 << VD->getDeclName();
670 else
671 DiagUninitUse(S, VD, Use, true);
672 }
673
674 // Report where the variable was declared when the use wasn't within
675 // the initializer of that declaration & we didn't already suggest
676 // an initialization fixit.
677 if (!SuggestInitializationFixit(S, VD))
678 S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
679 << VD->getDeclName();
680
681 return true;
682 }
683
684 namespace {
685 class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
686 public:
FallthroughMapper(Sema & S)687 FallthroughMapper(Sema &S)
688 : FoundSwitchStatements(false),
689 S(S) {
690 }
691
foundSwitchStatements() const692 bool foundSwitchStatements() const { return FoundSwitchStatements; }
693
markFallthroughVisited(const AttributedStmt * Stmt)694 void markFallthroughVisited(const AttributedStmt *Stmt) {
695 bool Found = FallthroughStmts.erase(Stmt);
696 assert(Found);
697 (void)Found;
698 }
699
700 typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
701
getFallthroughStmts() const702 const AttrStmts &getFallthroughStmts() const {
703 return FallthroughStmts;
704 }
705
fillReachableBlocks(CFG * Cfg)706 void fillReachableBlocks(CFG *Cfg) {
707 assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
708 std::deque<const CFGBlock *> BlockQueue;
709
710 ReachableBlocks.insert(&Cfg->getEntry());
711 BlockQueue.push_back(&Cfg->getEntry());
712 // Mark all case blocks reachable to avoid problems with switching on
713 // constants, covered enums, etc.
714 // These blocks can contain fall-through annotations, and we don't want to
715 // issue a warn_fallthrough_attr_unreachable for them.
716 for (CFG::iterator I = Cfg->begin(), E = Cfg->end(); I != E; ++I) {
717 const CFGBlock *B = *I;
718 const Stmt *L = B->getLabel();
719 if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B))
720 BlockQueue.push_back(B);
721 }
722
723 while (!BlockQueue.empty()) {
724 const CFGBlock *P = BlockQueue.front();
725 BlockQueue.pop_front();
726 for (CFGBlock::const_succ_iterator I = P->succ_begin(),
727 E = P->succ_end();
728 I != E; ++I) {
729 if (*I && ReachableBlocks.insert(*I))
730 BlockQueue.push_back(*I);
731 }
732 }
733 }
734
checkFallThroughIntoBlock(const CFGBlock & B,int & AnnotatedCnt)735 bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
736 assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
737
738 int UnannotatedCnt = 0;
739 AnnotatedCnt = 0;
740
741 std::deque<const CFGBlock*> BlockQueue;
742
743 std::copy(B.pred_begin(), B.pred_end(), std::back_inserter(BlockQueue));
744
745 while (!BlockQueue.empty()) {
746 const CFGBlock *P = BlockQueue.front();
747 BlockQueue.pop_front();
748
749 const Stmt *Term = P->getTerminator();
750 if (Term && isa<SwitchStmt>(Term))
751 continue; // Switch statement, good.
752
753 const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
754 if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
755 continue; // Previous case label has no statements, good.
756
757 const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
758 if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
759 continue; // Case label is preceded with a normal label, good.
760
761 if (!ReachableBlocks.count(P)) {
762 for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
763 ElemEnd = P->rend();
764 ElemIt != ElemEnd; ++ElemIt) {
765 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
766 if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
767 S.Diag(AS->getLocStart(),
768 diag::warn_fallthrough_attr_unreachable);
769 markFallthroughVisited(AS);
770 ++AnnotatedCnt;
771 break;
772 }
773 // Don't care about other unreachable statements.
774 }
775 }
776 // If there are no unreachable statements, this may be a special
777 // case in CFG:
778 // case X: {
779 // A a; // A has a destructor.
780 // break;
781 // }
782 // // <<<< This place is represented by a 'hanging' CFG block.
783 // case Y:
784 continue;
785 }
786
787 const Stmt *LastStmt = getLastStmt(*P);
788 if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
789 markFallthroughVisited(AS);
790 ++AnnotatedCnt;
791 continue; // Fallthrough annotation, good.
792 }
793
794 if (!LastStmt) { // This block contains no executable statements.
795 // Traverse its predecessors.
796 std::copy(P->pred_begin(), P->pred_end(),
797 std::back_inserter(BlockQueue));
798 continue;
799 }
800
801 ++UnannotatedCnt;
802 }
803 return !!UnannotatedCnt;
804 }
805
806 // RecursiveASTVisitor setup.
shouldWalkTypesOfTypeLocs() const807 bool shouldWalkTypesOfTypeLocs() const { return false; }
808
VisitAttributedStmt(AttributedStmt * S)809 bool VisitAttributedStmt(AttributedStmt *S) {
810 if (asFallThroughAttr(S))
811 FallthroughStmts.insert(S);
812 return true;
813 }
814
VisitSwitchStmt(SwitchStmt * S)815 bool VisitSwitchStmt(SwitchStmt *S) {
816 FoundSwitchStatements = true;
817 return true;
818 }
819
820 private:
821
asFallThroughAttr(const Stmt * S)822 static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
823 if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
824 if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
825 return AS;
826 }
827 return 0;
828 }
829
getLastStmt(const CFGBlock & B)830 static const Stmt *getLastStmt(const CFGBlock &B) {
831 if (const Stmt *Term = B.getTerminator())
832 return Term;
833 for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
834 ElemEnd = B.rend();
835 ElemIt != ElemEnd; ++ElemIt) {
836 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
837 return CS->getStmt();
838 }
839 // Workaround to detect a statement thrown out by CFGBuilder:
840 // case X: {} case Y:
841 // case X: ; case Y:
842 if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
843 if (!isa<SwitchCase>(SW->getSubStmt()))
844 return SW->getSubStmt();
845
846 return 0;
847 }
848
849 bool FoundSwitchStatements;
850 AttrStmts FallthroughStmts;
851 Sema &S;
852 llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
853 };
854 }
855
DiagnoseSwitchLabelsFallthrough(Sema & S,AnalysisDeclContext & AC,bool PerFunction)856 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
857 bool PerFunction) {
858 // Only perform this analysis when using C++11. There is no good workflow
859 // for this warning when not using C++11. There is no good way to silence
860 // the warning (no attribute is available) unless we are using C++11's support
861 // for generalized attributes. Once could use pragmas to silence the warning,
862 // but as a general solution that is gross and not in the spirit of this
863 // warning.
864 //
865 // NOTE: This an intermediate solution. There are on-going discussions on
866 // how to properly support this warning outside of C++11 with an annotation.
867 if (!AC.getASTContext().getLangOpts().CPlusPlus11)
868 return;
869
870 FallthroughMapper FM(S);
871 FM.TraverseStmt(AC.getBody());
872
873 if (!FM.foundSwitchStatements())
874 return;
875
876 if (PerFunction && FM.getFallthroughStmts().empty())
877 return;
878
879 CFG *Cfg = AC.getCFG();
880
881 if (!Cfg)
882 return;
883
884 FM.fillReachableBlocks(Cfg);
885
886 for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
887 const CFGBlock *B = *I;
888 const Stmt *Label = B->getLabel();
889
890 if (!Label || !isa<SwitchCase>(Label))
891 continue;
892
893 int AnnotatedCnt;
894
895 if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
896 continue;
897
898 S.Diag(Label->getLocStart(),
899 PerFunction ? diag::warn_unannotated_fallthrough_per_function
900 : diag::warn_unannotated_fallthrough);
901
902 if (!AnnotatedCnt) {
903 SourceLocation L = Label->getLocStart();
904 if (L.isMacroID())
905 continue;
906 if (S.getLangOpts().CPlusPlus11) {
907 const Stmt *Term = B->getTerminator();
908 // Skip empty cases.
909 while (B->empty() && !Term && B->succ_size() == 1) {
910 B = *B->succ_begin();
911 Term = B->getTerminator();
912 }
913 if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
914 Preprocessor &PP = S.getPreprocessor();
915 TokenValue Tokens[] = {
916 tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
917 tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
918 tok::r_square, tok::r_square
919 };
920 StringRef AnnotationSpelling = "[[clang::fallthrough]]";
921 StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
922 if (!MacroName.empty())
923 AnnotationSpelling = MacroName;
924 SmallString<64> TextToInsert(AnnotationSpelling);
925 TextToInsert += "; ";
926 S.Diag(L, diag::note_insert_fallthrough_fixit) <<
927 AnnotationSpelling <<
928 FixItHint::CreateInsertion(L, TextToInsert);
929 }
930 }
931 S.Diag(L, diag::note_insert_break_fixit) <<
932 FixItHint::CreateInsertion(L, "break; ");
933 }
934 }
935
936 const FallthroughMapper::AttrStmts &Fallthroughs = FM.getFallthroughStmts();
937 for (FallthroughMapper::AttrStmts::const_iterator I = Fallthroughs.begin(),
938 E = Fallthroughs.end();
939 I != E; ++I) {
940 S.Diag((*I)->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
941 }
942
943 }
944
945 namespace {
946 typedef std::pair<const Stmt *,
947 sema::FunctionScopeInfo::WeakObjectUseMap::const_iterator>
948 StmtUsesPair;
949
950 class StmtUseSorter {
951 const SourceManager &SM;
952
953 public:
StmtUseSorter(const SourceManager & SM)954 explicit StmtUseSorter(const SourceManager &SM) : SM(SM) { }
955
operator ()(const StmtUsesPair & LHS,const StmtUsesPair & RHS)956 bool operator()(const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
957 return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
958 RHS.first->getLocStart());
959 }
960 };
961 }
962
isInLoop(const ASTContext & Ctx,const ParentMap & PM,const Stmt * S)963 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
964 const Stmt *S) {
965 assert(S);
966
967 do {
968 switch (S->getStmtClass()) {
969 case Stmt::ForStmtClass:
970 case Stmt::WhileStmtClass:
971 case Stmt::CXXForRangeStmtClass:
972 case Stmt::ObjCForCollectionStmtClass:
973 return true;
974 case Stmt::DoStmtClass: {
975 const Expr *Cond = cast<DoStmt>(S)->getCond();
976 llvm::APSInt Val;
977 if (!Cond->EvaluateAsInt(Val, Ctx))
978 return true;
979 return Val.getBoolValue();
980 }
981 default:
982 break;
983 }
984 } while ((S = PM.getParent(S)));
985
986 return false;
987 }
988
989
diagnoseRepeatedUseOfWeak(Sema & S,const sema::FunctionScopeInfo * CurFn,const Decl * D,const ParentMap & PM)990 static void diagnoseRepeatedUseOfWeak(Sema &S,
991 const sema::FunctionScopeInfo *CurFn,
992 const Decl *D,
993 const ParentMap &PM) {
994 typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
995 typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
996 typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
997
998 ASTContext &Ctx = S.getASTContext();
999
1000 const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1001
1002 // Extract all weak objects that are referenced more than once.
1003 SmallVector<StmtUsesPair, 8> UsesByStmt;
1004 for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1005 I != E; ++I) {
1006 const WeakUseVector &Uses = I->second;
1007
1008 // Find the first read of the weak object.
1009 WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1010 for ( ; UI != UE; ++UI) {
1011 if (UI->isUnsafe())
1012 break;
1013 }
1014
1015 // If there were only writes to this object, don't warn.
1016 if (UI == UE)
1017 continue;
1018
1019 // If there was only one read, followed by any number of writes, and the
1020 // read is not within a loop, don't warn. Additionally, don't warn in a
1021 // loop if the base object is a local variable -- local variables are often
1022 // changed in loops.
1023 if (UI == Uses.begin()) {
1024 WeakUseVector::const_iterator UI2 = UI;
1025 for (++UI2; UI2 != UE; ++UI2)
1026 if (UI2->isUnsafe())
1027 break;
1028
1029 if (UI2 == UE) {
1030 if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1031 continue;
1032
1033 const WeakObjectProfileTy &Profile = I->first;
1034 if (!Profile.isExactProfile())
1035 continue;
1036
1037 const NamedDecl *Base = Profile.getBase();
1038 if (!Base)
1039 Base = Profile.getProperty();
1040 assert(Base && "A profile always has a base or property.");
1041
1042 if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1043 if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1044 continue;
1045 }
1046 }
1047
1048 UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1049 }
1050
1051 if (UsesByStmt.empty())
1052 return;
1053
1054 // Sort by first use so that we emit the warnings in a deterministic order.
1055 std::sort(UsesByStmt.begin(), UsesByStmt.end(),
1056 StmtUseSorter(S.getSourceManager()));
1057
1058 // Classify the current code body for better warning text.
1059 // This enum should stay in sync with the cases in
1060 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1061 // FIXME: Should we use a common classification enum and the same set of
1062 // possibilities all throughout Sema?
1063 enum {
1064 Function,
1065 Method,
1066 Block,
1067 Lambda
1068 } FunctionKind;
1069
1070 if (isa<sema::BlockScopeInfo>(CurFn))
1071 FunctionKind = Block;
1072 else if (isa<sema::LambdaScopeInfo>(CurFn))
1073 FunctionKind = Lambda;
1074 else if (isa<ObjCMethodDecl>(D))
1075 FunctionKind = Method;
1076 else
1077 FunctionKind = Function;
1078
1079 // Iterate through the sorted problems and emit warnings for each.
1080 for (SmallVectorImpl<StmtUsesPair>::const_iterator I = UsesByStmt.begin(),
1081 E = UsesByStmt.end();
1082 I != E; ++I) {
1083 const Stmt *FirstRead = I->first;
1084 const WeakObjectProfileTy &Key = I->second->first;
1085 const WeakUseVector &Uses = I->second->second;
1086
1087 // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1088 // may not contain enough information to determine that these are different
1089 // properties. We can only be 100% sure of a repeated use in certain cases,
1090 // and we adjust the diagnostic kind accordingly so that the less certain
1091 // case can be turned off if it is too noisy.
1092 unsigned DiagKind;
1093 if (Key.isExactProfile())
1094 DiagKind = diag::warn_arc_repeated_use_of_weak;
1095 else
1096 DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1097
1098 // Classify the weak object being accessed for better warning text.
1099 // This enum should stay in sync with the cases in
1100 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1101 enum {
1102 Variable,
1103 Property,
1104 ImplicitProperty,
1105 Ivar
1106 } ObjectKind;
1107
1108 const NamedDecl *D = Key.getProperty();
1109 if (isa<VarDecl>(D))
1110 ObjectKind = Variable;
1111 else if (isa<ObjCPropertyDecl>(D))
1112 ObjectKind = Property;
1113 else if (isa<ObjCMethodDecl>(D))
1114 ObjectKind = ImplicitProperty;
1115 else if (isa<ObjCIvarDecl>(D))
1116 ObjectKind = Ivar;
1117 else
1118 llvm_unreachable("Unexpected weak object kind!");
1119
1120 // Show the first time the object was read.
1121 S.Diag(FirstRead->getLocStart(), DiagKind)
1122 << ObjectKind << D << FunctionKind
1123 << FirstRead->getSourceRange();
1124
1125 // Print all the other accesses as notes.
1126 for (WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1127 UI != UE; ++UI) {
1128 if (UI->getUseExpr() == FirstRead)
1129 continue;
1130 S.Diag(UI->getUseExpr()->getLocStart(),
1131 diag::note_arc_weak_also_accessed_here)
1132 << UI->getUseExpr()->getSourceRange();
1133 }
1134 }
1135 }
1136
1137
1138 namespace {
1139 struct SLocSort {
operator ()__anoncd628f830911::SLocSort1140 bool operator()(const UninitUse &a, const UninitUse &b) {
1141 // Prefer a more confident report over a less confident one.
1142 if (a.getKind() != b.getKind())
1143 return a.getKind() > b.getKind();
1144 SourceLocation aLoc = a.getUser()->getLocStart();
1145 SourceLocation bLoc = b.getUser()->getLocStart();
1146 return aLoc.getRawEncoding() < bLoc.getRawEncoding();
1147 }
1148 };
1149
1150 class UninitValsDiagReporter : public UninitVariablesHandler {
1151 Sema &S;
1152 typedef SmallVector<UninitUse, 2> UsesVec;
1153 typedef std::pair<UsesVec*, bool> MappedType;
1154 // Prefer using MapVector to DenseMap, so that iteration order will be
1155 // the same as insertion order. This is needed to obtain a deterministic
1156 // order of diagnostics when calling flushDiagnostics().
1157 typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1158 UsesMap *uses;
1159
1160 public:
UninitValsDiagReporter(Sema & S)1161 UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
~UninitValsDiagReporter()1162 ~UninitValsDiagReporter() {
1163 flushDiagnostics();
1164 }
1165
getUses(const VarDecl * vd)1166 MappedType &getUses(const VarDecl *vd) {
1167 if (!uses)
1168 uses = new UsesMap();
1169
1170 MappedType &V = (*uses)[vd];
1171 UsesVec *&vec = V.first;
1172 if (!vec)
1173 vec = new UsesVec();
1174
1175 return V;
1176 }
1177
handleUseOfUninitVariable(const VarDecl * vd,const UninitUse & use)1178 void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) {
1179 getUses(vd).first->push_back(use);
1180 }
1181
handleSelfInit(const VarDecl * vd)1182 void handleSelfInit(const VarDecl *vd) {
1183 getUses(vd).second = true;
1184 }
1185
flushDiagnostics()1186 void flushDiagnostics() {
1187 if (!uses)
1188 return;
1189
1190 for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
1191 const VarDecl *vd = i->first;
1192 const MappedType &V = i->second;
1193
1194 UsesVec *vec = V.first;
1195 bool hasSelfInit = V.second;
1196
1197 // Specially handle the case where we have uses of an uninitialized
1198 // variable, but the root cause is an idiomatic self-init. We want
1199 // to report the diagnostic at the self-init since that is the root cause.
1200 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1201 DiagnoseUninitializedUse(S, vd,
1202 UninitUse(vd->getInit()->IgnoreParenCasts(),
1203 /* isAlwaysUninit */ true),
1204 /* alwaysReportSelfInit */ true);
1205 else {
1206 // Sort the uses by their SourceLocations. While not strictly
1207 // guaranteed to produce them in line/column order, this will provide
1208 // a stable ordering.
1209 std::sort(vec->begin(), vec->end(), SLocSort());
1210
1211 for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
1212 ++vi) {
1213 // If we have self-init, downgrade all uses to 'may be uninitialized'.
1214 UninitUse Use = hasSelfInit ? UninitUse(vi->getUser(), false) : *vi;
1215
1216 if (DiagnoseUninitializedUse(S, vd, Use))
1217 // Skip further diagnostics for this variable. We try to warn only
1218 // on the first point at which a variable is used uninitialized.
1219 break;
1220 }
1221 }
1222
1223 // Release the uses vector.
1224 delete vec;
1225 }
1226 delete uses;
1227 }
1228
1229 private:
hasAlwaysUninitializedUse(const UsesVec * vec)1230 static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1231 for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) {
1232 if (i->getKind() == UninitUse::Always) {
1233 return true;
1234 }
1235 }
1236 return false;
1237 }
1238 };
1239 }
1240
1241
1242 //===----------------------------------------------------------------------===//
1243 // -Wthread-safety
1244 //===----------------------------------------------------------------------===//
1245 namespace clang {
1246 namespace thread_safety {
1247 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1248 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1249 typedef std::list<DelayedDiag> DiagList;
1250
1251 struct SortDiagBySourceLocation {
1252 SourceManager &SM;
SortDiagBySourceLocationclang::thread_safety::SortDiagBySourceLocation1253 SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1254
operator ()clang::thread_safety::SortDiagBySourceLocation1255 bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1256 // Although this call will be slow, this is only called when outputting
1257 // multiple warnings.
1258 return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1259 }
1260 };
1261
1262 namespace {
1263 class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
1264 Sema &S;
1265 DiagList Warnings;
1266 SourceLocation FunLocation, FunEndLocation;
1267
1268 // Helper functions
warnLockMismatch(unsigned DiagID,Name LockName,SourceLocation Loc)1269 void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
1270 // Gracefully handle rare cases when the analysis can't get a more
1271 // precise source location.
1272 if (!Loc.isValid())
1273 Loc = FunLocation;
1274 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << LockName);
1275 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1276 }
1277
1278 public:
ThreadSafetyReporter(Sema & S,SourceLocation FL,SourceLocation FEL)1279 ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1280 : S(S), FunLocation(FL), FunEndLocation(FEL) {}
1281
1282 /// \brief Emit all buffered diagnostics in order of sourcelocation.
1283 /// We need to output diagnostics produced while iterating through
1284 /// the lockset in deterministic order, so this function orders diagnostics
1285 /// and outputs them.
emitDiagnostics()1286 void emitDiagnostics() {
1287 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1288 for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
1289 I != E; ++I) {
1290 S.Diag(I->first.first, I->first.second);
1291 const OptionalNotes &Notes = I->second;
1292 for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI)
1293 S.Diag(Notes[NoteI].first, Notes[NoteI].second);
1294 }
1295 }
1296
handleInvalidLockExp(SourceLocation Loc)1297 void handleInvalidLockExp(SourceLocation Loc) {
1298 PartialDiagnosticAt Warning(Loc,
1299 S.PDiag(diag::warn_cannot_resolve_lock) << Loc);
1300 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1301 }
handleUnmatchedUnlock(Name LockName,SourceLocation Loc)1302 void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
1303 warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
1304 }
1305
handleDoubleLock(Name LockName,SourceLocation Loc)1306 void handleDoubleLock(Name LockName, SourceLocation Loc) {
1307 warnLockMismatch(diag::warn_double_lock, LockName, Loc);
1308 }
1309
handleMutexHeldEndOfScope(Name LockName,SourceLocation LocLocked,SourceLocation LocEndOfScope,LockErrorKind LEK)1310 void handleMutexHeldEndOfScope(Name LockName, SourceLocation LocLocked,
1311 SourceLocation LocEndOfScope,
1312 LockErrorKind LEK){
1313 unsigned DiagID = 0;
1314 switch (LEK) {
1315 case LEK_LockedSomePredecessors:
1316 DiagID = diag::warn_lock_some_predecessors;
1317 break;
1318 case LEK_LockedSomeLoopIterations:
1319 DiagID = diag::warn_expecting_lock_held_on_loop;
1320 break;
1321 case LEK_LockedAtEndOfFunction:
1322 DiagID = diag::warn_no_unlock;
1323 break;
1324 case LEK_NotLockedAtEndOfFunction:
1325 DiagID = diag::warn_expecting_locked;
1326 break;
1327 }
1328 if (LocEndOfScope.isInvalid())
1329 LocEndOfScope = FunEndLocation;
1330
1331 PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << LockName);
1332 PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here));
1333 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1334 }
1335
1336
handleExclusiveAndShared(Name LockName,SourceLocation Loc1,SourceLocation Loc2)1337 void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
1338 SourceLocation Loc2) {
1339 PartialDiagnosticAt Warning(
1340 Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName);
1341 PartialDiagnosticAt Note(
1342 Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << LockName);
1343 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1344 }
1345
handleNoMutexHeld(const NamedDecl * D,ProtectedOperationKind POK,AccessKind AK,SourceLocation Loc)1346 void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
1347 AccessKind AK, SourceLocation Loc) {
1348 assert((POK == POK_VarAccess || POK == POK_VarDereference)
1349 && "Only works for variables");
1350 unsigned DiagID = POK == POK_VarAccess?
1351 diag::warn_variable_requires_any_lock:
1352 diag::warn_var_deref_requires_any_lock;
1353 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1354 << D->getNameAsString() << getLockKindFromAccessKind(AK));
1355 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1356 }
1357
handleMutexNotHeld(const NamedDecl * D,ProtectedOperationKind POK,Name LockName,LockKind LK,SourceLocation Loc,Name * PossibleMatch)1358 void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
1359 Name LockName, LockKind LK, SourceLocation Loc,
1360 Name *PossibleMatch) {
1361 unsigned DiagID = 0;
1362 if (PossibleMatch) {
1363 switch (POK) {
1364 case POK_VarAccess:
1365 DiagID = diag::warn_variable_requires_lock_precise;
1366 break;
1367 case POK_VarDereference:
1368 DiagID = diag::warn_var_deref_requires_lock_precise;
1369 break;
1370 case POK_FunctionCall:
1371 DiagID = diag::warn_fun_requires_lock_precise;
1372 break;
1373 }
1374 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1375 << D->getNameAsString() << LockName << LK);
1376 PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1377 << *PossibleMatch);
1378 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1379 } else {
1380 switch (POK) {
1381 case POK_VarAccess:
1382 DiagID = diag::warn_variable_requires_lock;
1383 break;
1384 case POK_VarDereference:
1385 DiagID = diag::warn_var_deref_requires_lock;
1386 break;
1387 case POK_FunctionCall:
1388 DiagID = diag::warn_fun_requires_lock;
1389 break;
1390 }
1391 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1392 << D->getNameAsString() << LockName << LK);
1393 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1394 }
1395 }
1396
handleFunExcludesLock(Name FunName,Name LockName,SourceLocation Loc)1397 void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
1398 PartialDiagnosticAt Warning(Loc,
1399 S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName);
1400 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1401 }
1402 };
1403 }
1404 }
1405 }
1406
1407 //===----------------------------------------------------------------------===//
1408 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1409 // warnings on a function, method, or block.
1410 //===----------------------------------------------------------------------===//
1411
Policy()1412 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1413 enableCheckFallThrough = 1;
1414 enableCheckUnreachable = 0;
1415 enableThreadSafetyAnalysis = 0;
1416 }
1417
AnalysisBasedWarnings(Sema & s)1418 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1419 : S(s),
1420 NumFunctionsAnalyzed(0),
1421 NumFunctionsWithBadCFGs(0),
1422 NumCFGBlocks(0),
1423 MaxCFGBlocksPerFunction(0),
1424 NumUninitAnalysisFunctions(0),
1425 NumUninitAnalysisVariables(0),
1426 MaxUninitAnalysisVariablesPerFunction(0),
1427 NumUninitAnalysisBlockVisits(0),
1428 MaxUninitAnalysisBlockVisitsPerFunction(0) {
1429 DiagnosticsEngine &D = S.getDiagnostics();
1430 DefaultPolicy.enableCheckUnreachable = (unsigned)
1431 (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
1432 DiagnosticsEngine::Ignored);
1433 DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
1434 (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
1435 DiagnosticsEngine::Ignored);
1436
1437 }
1438
flushDiagnostics(Sema & S,sema::FunctionScopeInfo * fscope)1439 static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
1440 for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1441 i = fscope->PossiblyUnreachableDiags.begin(),
1442 e = fscope->PossiblyUnreachableDiags.end();
1443 i != e; ++i) {
1444 const sema::PossiblyUnreachableDiag &D = *i;
1445 S.Diag(D.Loc, D.PD);
1446 }
1447 }
1448
1449 void clang::sema::
IssueWarnings(sema::AnalysisBasedWarnings::Policy P,sema::FunctionScopeInfo * fscope,const Decl * D,const BlockExpr * blkExpr)1450 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1451 sema::FunctionScopeInfo *fscope,
1452 const Decl *D, const BlockExpr *blkExpr) {
1453
1454 // We avoid doing analysis-based warnings when there are errors for
1455 // two reasons:
1456 // (1) The CFGs often can't be constructed (if the body is invalid), so
1457 // don't bother trying.
1458 // (2) The code already has problems; running the analysis just takes more
1459 // time.
1460 DiagnosticsEngine &Diags = S.getDiagnostics();
1461
1462 // Do not do any analysis for declarations in system headers if we are
1463 // going to just ignore them.
1464 if (Diags.getSuppressSystemWarnings() &&
1465 S.SourceMgr.isInSystemHeader(D->getLocation()))
1466 return;
1467
1468 // For code in dependent contexts, we'll do this at instantiation time.
1469 if (cast<DeclContext>(D)->isDependentContext())
1470 return;
1471
1472 if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1473 // Flush out any possibly unreachable diagnostics.
1474 flushDiagnostics(S, fscope);
1475 return;
1476 }
1477
1478 const Stmt *Body = D->getBody();
1479 assert(Body);
1480
1481 AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0, D);
1482
1483 // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1484 // explosion for destrutors that can result and the compile time hit.
1485 AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1486 AC.getCFGBuildOptions().AddEHEdges = false;
1487 AC.getCFGBuildOptions().AddInitializers = true;
1488 AC.getCFGBuildOptions().AddImplicitDtors = true;
1489 AC.getCFGBuildOptions().AddTemporaryDtors = true;
1490
1491 // Force that certain expressions appear as CFGElements in the CFG. This
1492 // is used to speed up various analyses.
1493 // FIXME: This isn't the right factoring. This is here for initial
1494 // prototyping, but we need a way for analyses to say what expressions they
1495 // expect to always be CFGElements and then fill in the BuildOptions
1496 // appropriately. This is essentially a layering violation.
1497 if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis) {
1498 // Unreachable code analysis and thread safety require a linearized CFG.
1499 AC.getCFGBuildOptions().setAllAlwaysAdd();
1500 }
1501 else {
1502 AC.getCFGBuildOptions()
1503 .setAlwaysAdd(Stmt::BinaryOperatorClass)
1504 .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
1505 .setAlwaysAdd(Stmt::BlockExprClass)
1506 .setAlwaysAdd(Stmt::CStyleCastExprClass)
1507 .setAlwaysAdd(Stmt::DeclRefExprClass)
1508 .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1509 .setAlwaysAdd(Stmt::UnaryOperatorClass)
1510 .setAlwaysAdd(Stmt::AttributedStmtClass);
1511 }
1512
1513 // Construct the analysis context with the specified CFG build options.
1514
1515 // Emit delayed diagnostics.
1516 if (!fscope->PossiblyUnreachableDiags.empty()) {
1517 bool analyzed = false;
1518
1519 // Register the expressions with the CFGBuilder.
1520 for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1521 i = fscope->PossiblyUnreachableDiags.begin(),
1522 e = fscope->PossiblyUnreachableDiags.end();
1523 i != e; ++i) {
1524 if (const Stmt *stmt = i->stmt)
1525 AC.registerForcedBlockExpression(stmt);
1526 }
1527
1528 if (AC.getCFG()) {
1529 analyzed = true;
1530 for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
1531 i = fscope->PossiblyUnreachableDiags.begin(),
1532 e = fscope->PossiblyUnreachableDiags.end();
1533 i != e; ++i)
1534 {
1535 const sema::PossiblyUnreachableDiag &D = *i;
1536 bool processed = false;
1537 if (const Stmt *stmt = i->stmt) {
1538 const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
1539 CFGReverseBlockReachabilityAnalysis *cra =
1540 AC.getCFGReachablityAnalysis();
1541 // FIXME: We should be able to assert that block is non-null, but
1542 // the CFG analysis can skip potentially-evaluated expressions in
1543 // edge cases; see test/Sema/vla-2.c.
1544 if (block && cra) {
1545 // Can this block be reached from the entrance?
1546 if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1547 S.Diag(D.Loc, D.PD);
1548 processed = true;
1549 }
1550 }
1551 if (!processed) {
1552 // Emit the warning anyway if we cannot map to a basic block.
1553 S.Diag(D.Loc, D.PD);
1554 }
1555 }
1556 }
1557
1558 if (!analyzed)
1559 flushDiagnostics(S, fscope);
1560 }
1561
1562
1563 // Warning: check missing 'return'
1564 if (P.enableCheckFallThrough) {
1565 const CheckFallThroughDiagnostics &CD =
1566 (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1567 : (isa<CXXMethodDecl>(D) &&
1568 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1569 cast<CXXMethodDecl>(D)->getParent()->isLambda())
1570 ? CheckFallThroughDiagnostics::MakeForLambda()
1571 : CheckFallThroughDiagnostics::MakeForFunction(D));
1572 CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1573 }
1574
1575 // Warning: check for unreachable code
1576 if (P.enableCheckUnreachable) {
1577 // Only check for unreachable code on non-template instantiations.
1578 // Different template instantiations can effectively change the control-flow
1579 // and it is very difficult to prove that a snippet of code in a template
1580 // is unreachable for all instantiations.
1581 bool isTemplateInstantiation = false;
1582 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1583 isTemplateInstantiation = Function->isTemplateInstantiation();
1584 if (!isTemplateInstantiation)
1585 CheckUnreachable(S, AC);
1586 }
1587
1588 // Check for thread safety violations
1589 if (P.enableThreadSafetyAnalysis) {
1590 SourceLocation FL = AC.getDecl()->getLocation();
1591 SourceLocation FEL = AC.getDecl()->getLocEnd();
1592 thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
1593 if (Diags.getDiagnosticLevel(diag::warn_thread_safety_beta,D->getLocStart())
1594 != DiagnosticsEngine::Ignored)
1595 Reporter.setIssueBetaWarnings(true);
1596
1597 thread_safety::runThreadSafetyAnalysis(AC, Reporter);
1598 Reporter.emitDiagnostics();
1599 }
1600
1601 if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
1602 != DiagnosticsEngine::Ignored ||
1603 Diags.getDiagnosticLevel(diag::warn_sometimes_uninit_var,D->getLocStart())
1604 != DiagnosticsEngine::Ignored ||
1605 Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
1606 != DiagnosticsEngine::Ignored) {
1607 if (CFG *cfg = AC.getCFG()) {
1608 UninitValsDiagReporter reporter(S);
1609 UninitVariablesAnalysisStats stats;
1610 std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1611 runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1612 reporter, stats);
1613
1614 if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1615 ++NumUninitAnalysisFunctions;
1616 NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1617 NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1618 MaxUninitAnalysisVariablesPerFunction =
1619 std::max(MaxUninitAnalysisVariablesPerFunction,
1620 stats.NumVariablesAnalyzed);
1621 MaxUninitAnalysisBlockVisitsPerFunction =
1622 std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1623 stats.NumBlockVisits);
1624 }
1625 }
1626 }
1627
1628 bool FallThroughDiagFull =
1629 Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough,
1630 D->getLocStart()) != DiagnosticsEngine::Ignored;
1631 bool FallThroughDiagPerFunction =
1632 Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough_per_function,
1633 D->getLocStart()) != DiagnosticsEngine::Ignored;
1634 if (FallThroughDiagFull || FallThroughDiagPerFunction) {
1635 DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
1636 }
1637
1638 if (S.getLangOpts().ObjCARCWeak &&
1639 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1640 D->getLocStart()) != DiagnosticsEngine::Ignored)
1641 diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
1642
1643 // Collect statistics about the CFG if it was built.
1644 if (S.CollectStats && AC.isCFGBuilt()) {
1645 ++NumFunctionsAnalyzed;
1646 if (CFG *cfg = AC.getCFG()) {
1647 // If we successfully built a CFG for this context, record some more
1648 // detail information about it.
1649 NumCFGBlocks += cfg->getNumBlockIDs();
1650 MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1651 cfg->getNumBlockIDs());
1652 } else {
1653 ++NumFunctionsWithBadCFGs;
1654 }
1655 }
1656 }
1657
PrintStats() const1658 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1659 llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1660
1661 unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1662 unsigned AvgCFGBlocksPerFunction =
1663 !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1664 llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1665 << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1666 << " " << NumCFGBlocks << " CFG blocks built.\n"
1667 << " " << AvgCFGBlocksPerFunction
1668 << " average CFG blocks per function.\n"
1669 << " " << MaxCFGBlocksPerFunction
1670 << " max CFG blocks per function.\n";
1671
1672 unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1673 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1674 unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1675 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1676 llvm::errs() << NumUninitAnalysisFunctions
1677 << " functions analyzed for uninitialiazed variables\n"
1678 << " " << NumUninitAnalysisVariables << " variables analyzed.\n"
1679 << " " << AvgUninitVariablesPerFunction
1680 << " average variables per function.\n"
1681 << " " << MaxUninitAnalysisVariablesPerFunction
1682 << " max variables per function.\n"
1683 << " " << NumUninitAnalysisBlockVisits << " block visits.\n"
1684 << " " << AvgUninitBlockVisitsPerFunction
1685 << " average block visits per function.\n"
1686 << " " << MaxUninitAnalysisBlockVisitsPerFunction
1687 << " max block visits per function.\n";
1688 }
1689