1 //==-- llvm/CodeGen/DwarfAccelTable.h - Dwarf Accelerator Tables -*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing dwarf accelerator tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CODEGEN_ASMPRINTER_DWARFACCELTABLE_H__ 15 #define CODEGEN_ASMPRINTER_DWARFACCELTABLE_H__ 16 17 #include "DIE.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/MC/MCSymbol.h" 21 #include "llvm/Support/DataTypes.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/Dwarf.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include <map> 28 #include <vector> 29 30 // The dwarf accelerator tables are an indirect hash table optimized 31 // for null lookup rather than access to known data. They are output into 32 // an on-disk format that looks like this: 33 // 34 // .-------------. 35 // | HEADER | 36 // |-------------| 37 // | BUCKETS | 38 // |-------------| 39 // | HASHES | 40 // |-------------| 41 // | OFFSETS | 42 // |-------------| 43 // | DATA | 44 // `-------------' 45 // 46 // where the header contains a magic number, version, type of hash function, 47 // the number of buckets, total number of hashes, and room for a special 48 // struct of data and the length of that struct. 49 // 50 // The buckets contain an index (e.g. 6) into the hashes array. The hashes 51 // section contains all of the 32-bit hash values in contiguous memory, and 52 // the offsets contain the offset into the data area for the particular 53 // hash. 54 // 55 // For a lookup example, we could hash a function name and take it modulo the 56 // number of buckets giving us our bucket. From there we take the bucket value 57 // as an index into the hashes table and look at each successive hash as long 58 // as the hash value is still the same modulo result (bucket value) as earlier. 59 // If we have a match we look at that same entry in the offsets table and 60 // grab the offset in the data for our final match. 61 62 namespace llvm { 63 64 class AsmPrinter; 65 class DIE; 66 class DwarfUnits; 67 68 class DwarfAccelTable { 69 70 enum HashFunctionType { 71 eHashFunctionDJB = 0u 72 }; 73 HashDJB(StringRef Str)74 static uint32_t HashDJB (StringRef Str) { 75 uint32_t h = 5381; 76 for (unsigned i = 0, e = Str.size(); i != e; ++i) 77 h = ((h << 5) + h) + Str[i]; 78 return h; 79 } 80 81 // Helper function to compute the number of buckets needed based on 82 // the number of unique hashes. 83 void ComputeBucketCount (void); 84 85 struct TableHeader { 86 uint32_t magic; // 'HASH' magic value to allow endian detection 87 uint16_t version; // Version number. 88 uint16_t hash_function; // The hash function enumeration that was used. 89 uint32_t bucket_count; // The number of buckets in this hash table. 90 uint32_t hashes_count; // The total number of unique hash values 91 // and hash data offsets in this table. 92 uint32_t header_data_len; // The bytes to skip to get to the hash 93 // indexes (buckets) for correct alignment. 94 // Also written to disk is the implementation specific header data. 95 96 static const uint32_t MagicHash = 0x48415348; 97 TableHeaderTableHeader98 TableHeader (uint32_t data_len) : 99 magic (MagicHash), version (1), hash_function (eHashFunctionDJB), 100 bucket_count (0), hashes_count (0), header_data_len (data_len) 101 {} 102 103 #ifndef NDEBUG printTableHeader104 void print(raw_ostream &O) { 105 O << "Magic: " << format("0x%x", magic) << "\n" 106 << "Version: " << version << "\n" 107 << "Hash Function: " << hash_function << "\n" 108 << "Bucket Count: " << bucket_count << "\n" 109 << "Header Data Length: " << header_data_len << "\n"; 110 } dumpTableHeader111 void dump() { print(dbgs()); } 112 #endif 113 }; 114 115 public: 116 // The HeaderData describes the form of each set of data. In general this 117 // is as a list of atoms (atom_count) where each atom contains a type 118 // (AtomType type) of data, and an encoding form (form). In the case of 119 // data that is referenced via DW_FORM_ref_* the die_offset_base is 120 // used to describe the offset for all forms in the list of atoms. 121 // This also serves as a public interface of sorts. 122 // When written to disk this will have the form: 123 // 124 // uint32_t die_offset_base 125 // uint32_t atom_count 126 // atom_count Atoms 127 enum AtomType { 128 eAtomTypeNULL = 0u, 129 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding 130 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that 131 // contains the item in question 132 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as 133 // DW_FORM_data1 (if no tags exceed 255) or 134 // DW_FORM_data2. 135 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags 136 eAtomTypeTypeFlags = 5u // Flags from enum TypeFlags 137 }; 138 139 enum TypeFlags { 140 eTypeFlagClassMask = 0x0000000fu, 141 142 // Always set for C++, only set for ObjC if this is the 143 // @implementation for a class. 144 eTypeFlagClassIsImplementation = ( 1u << 1 ) 145 }; 146 147 // Make these public so that they can be used as a general interface to 148 // the class. 149 struct Atom { 150 AtomType type; // enum AtomType 151 uint16_t form; // DWARF DW_FORM_ defines 152 AtomAtom153 Atom(AtomType type, uint16_t form) : type(type), form(form) {} 154 static const char * AtomTypeString(enum AtomType); 155 #ifndef NDEBUG printAtom156 void print(raw_ostream &O) { 157 O << "Type: " << AtomTypeString(type) << "\n" 158 << "Form: " << dwarf::FormEncodingString(form) << "\n"; 159 } dumpAtom160 void dump() { 161 print(dbgs()); 162 } 163 #endif 164 }; 165 166 private: 167 struct TableHeaderData { 168 uint32_t die_offset_base; 169 SmallVector<Atom, 1> Atoms; 170 171 TableHeaderData(ArrayRef<Atom> AtomList, uint32_t offset = 0) die_offset_baseTableHeaderData172 : die_offset_base(offset), Atoms(AtomList.begin(), AtomList.end()) { } 173 174 #ifndef NDEBUG printTableHeaderData175 void print (raw_ostream &O) { 176 O << "die_offset_base: " << die_offset_base << "\n"; 177 for (size_t i = 0; i < Atoms.size(); i++) 178 Atoms[i].print(O); 179 } dumpTableHeaderData180 void dump() { 181 print(dbgs()); 182 } 183 #endif 184 }; 185 186 // The data itself consists of a str_offset, a count of the DIEs in the 187 // hash and the offsets to the DIEs themselves. 188 // On disk each data section is ended with a 0 KeyType as the end of the 189 // hash chain. 190 // On output this looks like: 191 // uint32_t str_offset 192 // uint32_t hash_data_count 193 // HashData[hash_data_count] 194 public: 195 struct HashDataContents { 196 DIE *Die; // Offsets 197 char Flags; // Specific flags to output 198 HashDataContentsHashDataContents199 HashDataContents(DIE *D, char Flags) : 200 Die(D), 201 Flags(Flags) { } 202 #ifndef NDEBUG printHashDataContents203 void print(raw_ostream &O) const { 204 O << " Offset: " << Die->getOffset() << "\n"; 205 O << " Tag: " << dwarf::TagString(Die->getTag()) << "\n"; 206 O << " Flags: " << Flags << "\n"; 207 } 208 #endif 209 }; 210 private: 211 struct HashData { 212 StringRef Str; 213 uint32_t HashValue; 214 MCSymbol *Sym; 215 ArrayRef<HashDataContents*> Data; // offsets HashDataHashData216 HashData(StringRef S, ArrayRef<HashDataContents*> Data) 217 : Str(S), Data(Data) { 218 HashValue = DwarfAccelTable::HashDJB(S); 219 } 220 #ifndef NDEBUG printHashData221 void print(raw_ostream &O) { 222 O << "Name: " << Str << "\n"; 223 O << " Hash Value: " << format("0x%x", HashValue) << "\n"; 224 O << " Symbol: " ; 225 if (Sym) Sym->print(O); 226 else O << "<none>"; 227 O << "\n"; 228 for (size_t i = 0; i < Data.size(); i++) { 229 O << " Offset: " << Data[i]->Die->getOffset() << "\n"; 230 O << " Tag: " << dwarf::TagString(Data[i]->Die->getTag()) << "\n"; 231 O << " Flags: " << Data[i]->Flags << "\n"; 232 } 233 } dumpHashData234 void dump() { 235 print(dbgs()); 236 } 237 #endif 238 }; 239 240 DwarfAccelTable(const DwarfAccelTable&) LLVM_DELETED_FUNCTION; 241 void operator=(const DwarfAccelTable&) LLVM_DELETED_FUNCTION; 242 243 // Internal Functions 244 void EmitHeader(AsmPrinter *); 245 void EmitBuckets(AsmPrinter *); 246 void EmitHashes(AsmPrinter *); 247 void EmitOffsets(AsmPrinter *, MCSymbol *); 248 void EmitData(AsmPrinter *, DwarfUnits *D); 249 250 // Allocator for HashData and HashDataContents. 251 BumpPtrAllocator Allocator; 252 253 // Output Variables 254 TableHeader Header; 255 TableHeaderData HeaderData; 256 std::vector<HashData*> Data; 257 258 // String Data 259 typedef std::vector<HashDataContents*> DataArray; 260 typedef StringMap<DataArray, BumpPtrAllocator&> StringEntries; 261 StringEntries Entries; 262 263 // Buckets/Hashes/Offsets 264 typedef std::vector<HashData*> HashList; 265 typedef std::vector<HashList> BucketList; 266 BucketList Buckets; 267 HashList Hashes; 268 269 // Public Implementation 270 public: 271 DwarfAccelTable(ArrayRef<DwarfAccelTable::Atom>); 272 ~DwarfAccelTable(); 273 void AddName(StringRef, DIE*, char = 0); 274 void FinalizeTable(AsmPrinter *, const char *); 275 void Emit(AsmPrinter *, MCSymbol *, DwarfUnits *); 276 #ifndef NDEBUG 277 void print(raw_ostream &O); dump()278 void dump() { print(dbgs()); } 279 #endif 280 }; 281 282 } 283 #endif 284