1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Assembly/Writer.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/DebugInfo.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/MC/MCInstrDesc.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetRegisterInfo.h"
43 using namespace llvm;
44
45 //===----------------------------------------------------------------------===//
46 // MachineOperand Implementation
47 //===----------------------------------------------------------------------===//
48
setReg(unsigned Reg)49 void MachineOperand::setReg(unsigned Reg) {
50 if (getReg() == Reg) return; // No change.
51
52 // Otherwise, we have to change the register. If this operand is embedded
53 // into a machine function, we need to update the old and new register's
54 // use/def lists.
55 if (MachineInstr *MI = getParent())
56 if (MachineBasicBlock *MBB = MI->getParent())
57 if (MachineFunction *MF = MBB->getParent()) {
58 MachineRegisterInfo &MRI = MF->getRegInfo();
59 MRI.removeRegOperandFromUseList(this);
60 SmallContents.RegNo = Reg;
61 MRI.addRegOperandToUseList(this);
62 return;
63 }
64
65 // Otherwise, just change the register, no problem. :)
66 SmallContents.RegNo = Reg;
67 }
68
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
70 const TargetRegisterInfo &TRI) {
71 assert(TargetRegisterInfo::isVirtualRegister(Reg));
72 if (SubIdx && getSubReg())
73 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
74 setReg(Reg);
75 if (SubIdx)
76 setSubReg(SubIdx);
77 }
78
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
80 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
81 if (getSubReg()) {
82 Reg = TRI.getSubReg(Reg, getSubReg());
83 // Note that getSubReg() may return 0 if the sub-register doesn't exist.
84 // That won't happen in legal code.
85 setSubReg(0);
86 }
87 setReg(Reg);
88 }
89
90 /// Change a def to a use, or a use to a def.
setIsDef(bool Val)91 void MachineOperand::setIsDef(bool Val) {
92 assert(isReg() && "Wrong MachineOperand accessor");
93 assert((!Val || !isDebug()) && "Marking a debug operation as def");
94 if (IsDef == Val)
95 return;
96 // MRI may keep uses and defs in different list positions.
97 if (MachineInstr *MI = getParent())
98 if (MachineBasicBlock *MBB = MI->getParent())
99 if (MachineFunction *MF = MBB->getParent()) {
100 MachineRegisterInfo &MRI = MF->getRegInfo();
101 MRI.removeRegOperandFromUseList(this);
102 IsDef = Val;
103 MRI.addRegOperandToUseList(this);
104 return;
105 }
106 IsDef = Val;
107 }
108
109 /// ChangeToImmediate - Replace this operand with a new immediate operand of
110 /// the specified value. If an operand is known to be an immediate already,
111 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)112 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
113 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
114 // If this operand is currently a register operand, and if this is in a
115 // function, deregister the operand from the register's use/def list.
116 if (isReg() && isOnRegUseList())
117 if (MachineInstr *MI = getParent())
118 if (MachineBasicBlock *MBB = MI->getParent())
119 if (MachineFunction *MF = MBB->getParent())
120 MF->getRegInfo().removeRegOperandFromUseList(this);
121
122 OpKind = MO_Immediate;
123 Contents.ImmVal = ImmVal;
124 }
125
126 /// ChangeToRegister - Replace this operand with a new register operand of
127 /// the specified value. If an operand is known to be an register already,
128 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)129 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
130 bool isKill, bool isDead, bool isUndef,
131 bool isDebug) {
132 MachineRegisterInfo *RegInfo = 0;
133 if (MachineInstr *MI = getParent())
134 if (MachineBasicBlock *MBB = MI->getParent())
135 if (MachineFunction *MF = MBB->getParent())
136 RegInfo = &MF->getRegInfo();
137 // If this operand is already a register operand, remove it from the
138 // register's use/def lists.
139 bool WasReg = isReg();
140 if (RegInfo && WasReg)
141 RegInfo->removeRegOperandFromUseList(this);
142
143 // Change this to a register and set the reg#.
144 OpKind = MO_Register;
145 SmallContents.RegNo = Reg;
146 SubReg_TargetFlags = 0;
147 IsDef = isDef;
148 IsImp = isImp;
149 IsKill = isKill;
150 IsDead = isDead;
151 IsUndef = isUndef;
152 IsInternalRead = false;
153 IsEarlyClobber = false;
154 IsDebug = isDebug;
155 // Ensure isOnRegUseList() returns false.
156 Contents.Reg.Prev = 0;
157 // Preserve the tie when the operand was already a register.
158 if (!WasReg)
159 TiedTo = 0;
160
161 // If this operand is embedded in a function, add the operand to the
162 // register's use/def list.
163 if (RegInfo)
164 RegInfo->addRegOperandToUseList(this);
165 }
166
167 /// isIdenticalTo - Return true if this operand is identical to the specified
168 /// operand. Note that this should stay in sync with the hash_value overload
169 /// below.
isIdenticalTo(const MachineOperand & Other) const170 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
171 if (getType() != Other.getType() ||
172 getTargetFlags() != Other.getTargetFlags())
173 return false;
174
175 switch (getType()) {
176 case MachineOperand::MO_Register:
177 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
178 getSubReg() == Other.getSubReg();
179 case MachineOperand::MO_Immediate:
180 return getImm() == Other.getImm();
181 case MachineOperand::MO_CImmediate:
182 return getCImm() == Other.getCImm();
183 case MachineOperand::MO_FPImmediate:
184 return getFPImm() == Other.getFPImm();
185 case MachineOperand::MO_MachineBasicBlock:
186 return getMBB() == Other.getMBB();
187 case MachineOperand::MO_FrameIndex:
188 return getIndex() == Other.getIndex();
189 case MachineOperand::MO_ConstantPoolIndex:
190 case MachineOperand::MO_TargetIndex:
191 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
192 case MachineOperand::MO_JumpTableIndex:
193 return getIndex() == Other.getIndex();
194 case MachineOperand::MO_GlobalAddress:
195 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
196 case MachineOperand::MO_ExternalSymbol:
197 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
198 getOffset() == Other.getOffset();
199 case MachineOperand::MO_BlockAddress:
200 return getBlockAddress() == Other.getBlockAddress() &&
201 getOffset() == Other.getOffset();
202 case MO_RegisterMask:
203 return getRegMask() == Other.getRegMask();
204 case MachineOperand::MO_MCSymbol:
205 return getMCSymbol() == Other.getMCSymbol();
206 case MachineOperand::MO_Metadata:
207 return getMetadata() == Other.getMetadata();
208 }
209 llvm_unreachable("Invalid machine operand type");
210 }
211
212 // Note: this must stay exactly in sync with isIdenticalTo above.
hash_value(const MachineOperand & MO)213 hash_code llvm::hash_value(const MachineOperand &MO) {
214 switch (MO.getType()) {
215 case MachineOperand::MO_Register:
216 // Register operands don't have target flags.
217 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
218 case MachineOperand::MO_Immediate:
219 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
220 case MachineOperand::MO_CImmediate:
221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
222 case MachineOperand::MO_FPImmediate:
223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
224 case MachineOperand::MO_MachineBasicBlock:
225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
226 case MachineOperand::MO_FrameIndex:
227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
228 case MachineOperand::MO_ConstantPoolIndex:
229 case MachineOperand::MO_TargetIndex:
230 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
231 MO.getOffset());
232 case MachineOperand::MO_JumpTableIndex:
233 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
234 case MachineOperand::MO_ExternalSymbol:
235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
236 MO.getSymbolName());
237 case MachineOperand::MO_GlobalAddress:
238 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
239 MO.getOffset());
240 case MachineOperand::MO_BlockAddress:
241 return hash_combine(MO.getType(), MO.getTargetFlags(),
242 MO.getBlockAddress(), MO.getOffset());
243 case MachineOperand::MO_RegisterMask:
244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
245 case MachineOperand::MO_Metadata:
246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
247 case MachineOperand::MO_MCSymbol:
248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
249 }
250 llvm_unreachable("Invalid machine operand type");
251 }
252
253 /// print - Print the specified machine operand.
254 ///
print(raw_ostream & OS,const TargetMachine * TM) const255 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
256 // If the instruction is embedded into a basic block, we can find the
257 // target info for the instruction.
258 if (!TM)
259 if (const MachineInstr *MI = getParent())
260 if (const MachineBasicBlock *MBB = MI->getParent())
261 if (const MachineFunction *MF = MBB->getParent())
262 TM = &MF->getTarget();
263 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
264
265 switch (getType()) {
266 case MachineOperand::MO_Register:
267 OS << PrintReg(getReg(), TRI, getSubReg());
268
269 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
270 isInternalRead() || isEarlyClobber() || isTied()) {
271 OS << '<';
272 bool NeedComma = false;
273 if (isDef()) {
274 if (NeedComma) OS << ',';
275 if (isEarlyClobber())
276 OS << "earlyclobber,";
277 if (isImplicit())
278 OS << "imp-";
279 OS << "def";
280 NeedComma = true;
281 // <def,read-undef> only makes sense when getSubReg() is set.
282 // Don't clutter the output otherwise.
283 if (isUndef() && getSubReg())
284 OS << ",read-undef";
285 } else if (isImplicit()) {
286 OS << "imp-use";
287 NeedComma = true;
288 }
289
290 if (isKill()) {
291 if (NeedComma) OS << ',';
292 OS << "kill";
293 NeedComma = true;
294 }
295 if (isDead()) {
296 if (NeedComma) OS << ',';
297 OS << "dead";
298 NeedComma = true;
299 }
300 if (isUndef() && isUse()) {
301 if (NeedComma) OS << ',';
302 OS << "undef";
303 NeedComma = true;
304 }
305 if (isInternalRead()) {
306 if (NeedComma) OS << ',';
307 OS << "internal";
308 NeedComma = true;
309 }
310 if (isTied()) {
311 if (NeedComma) OS << ',';
312 OS << "tied";
313 if (TiedTo != 15)
314 OS << unsigned(TiedTo - 1);
315 NeedComma = true;
316 }
317 OS << '>';
318 }
319 break;
320 case MachineOperand::MO_Immediate:
321 OS << getImm();
322 break;
323 case MachineOperand::MO_CImmediate:
324 getCImm()->getValue().print(OS, false);
325 break;
326 case MachineOperand::MO_FPImmediate:
327 if (getFPImm()->getType()->isFloatTy())
328 OS << getFPImm()->getValueAPF().convertToFloat();
329 else
330 OS << getFPImm()->getValueAPF().convertToDouble();
331 break;
332 case MachineOperand::MO_MachineBasicBlock:
333 OS << "<BB#" << getMBB()->getNumber() << ">";
334 break;
335 case MachineOperand::MO_FrameIndex:
336 OS << "<fi#" << getIndex() << '>';
337 break;
338 case MachineOperand::MO_ConstantPoolIndex:
339 OS << "<cp#" << getIndex();
340 if (getOffset()) OS << "+" << getOffset();
341 OS << '>';
342 break;
343 case MachineOperand::MO_TargetIndex:
344 OS << "<ti#" << getIndex();
345 if (getOffset()) OS << "+" << getOffset();
346 OS << '>';
347 break;
348 case MachineOperand::MO_JumpTableIndex:
349 OS << "<jt#" << getIndex() << '>';
350 break;
351 case MachineOperand::MO_GlobalAddress:
352 OS << "<ga:";
353 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
354 if (getOffset()) OS << "+" << getOffset();
355 OS << '>';
356 break;
357 case MachineOperand::MO_ExternalSymbol:
358 OS << "<es:" << getSymbolName();
359 if (getOffset()) OS << "+" << getOffset();
360 OS << '>';
361 break;
362 case MachineOperand::MO_BlockAddress:
363 OS << '<';
364 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
365 if (getOffset()) OS << "+" << getOffset();
366 OS << '>';
367 break;
368 case MachineOperand::MO_RegisterMask:
369 OS << "<regmask>";
370 break;
371 case MachineOperand::MO_Metadata:
372 OS << '<';
373 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
374 OS << '>';
375 break;
376 case MachineOperand::MO_MCSymbol:
377 OS << "<MCSym=" << *getMCSymbol() << '>';
378 break;
379 }
380
381 if (unsigned TF = getTargetFlags())
382 OS << "[TF=" << TF << ']';
383 }
384
385 //===----------------------------------------------------------------------===//
386 // MachineMemOperand Implementation
387 //===----------------------------------------------------------------------===//
388
389 /// getAddrSpace - Return the LLVM IR address space number that this pointer
390 /// points into.
getAddrSpace() const391 unsigned MachinePointerInfo::getAddrSpace() const {
392 if (V == 0) return 0;
393 return cast<PointerType>(V->getType())->getAddressSpace();
394 }
395
396 /// getConstantPool - Return a MachinePointerInfo record that refers to the
397 /// constant pool.
getConstantPool()398 MachinePointerInfo MachinePointerInfo::getConstantPool() {
399 return MachinePointerInfo(PseudoSourceValue::getConstantPool());
400 }
401
402 /// getFixedStack - Return a MachinePointerInfo record that refers to the
403 /// the specified FrameIndex.
getFixedStack(int FI,int64_t offset)404 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
405 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
406 }
407
getJumpTable()408 MachinePointerInfo MachinePointerInfo::getJumpTable() {
409 return MachinePointerInfo(PseudoSourceValue::getJumpTable());
410 }
411
getGOT()412 MachinePointerInfo MachinePointerInfo::getGOT() {
413 return MachinePointerInfo(PseudoSourceValue::getGOT());
414 }
415
getStack(int64_t Offset)416 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
417 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
418 }
419
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const MDNode * TBAAInfo,const MDNode * Ranges)420 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
421 uint64_t s, unsigned int a,
422 const MDNode *TBAAInfo,
423 const MDNode *Ranges)
424 : PtrInfo(ptrinfo), Size(s),
425 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
426 TBAAInfo(TBAAInfo), Ranges(Ranges) {
427 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
428 "invalid pointer value");
429 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
430 assert((isLoad() || isStore()) && "Not a load/store!");
431 }
432
433 /// Profile - Gather unique data for the object.
434 ///
Profile(FoldingSetNodeID & ID) const435 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
436 ID.AddInteger(getOffset());
437 ID.AddInteger(Size);
438 ID.AddPointer(getValue());
439 ID.AddInteger(Flags);
440 }
441
refineAlignment(const MachineMemOperand * MMO)442 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
443 // The Value and Offset may differ due to CSE. But the flags and size
444 // should be the same.
445 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
446 assert(MMO->getSize() == getSize() && "Size mismatch!");
447
448 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
449 // Update the alignment value.
450 Flags = (Flags & ((1 << MOMaxBits) - 1)) |
451 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
452 // Also update the base and offset, because the new alignment may
453 // not be applicable with the old ones.
454 PtrInfo = MMO->PtrInfo;
455 }
456 }
457
458 /// getAlignment - Return the minimum known alignment in bytes of the
459 /// actual memory reference.
getAlignment() const460 uint64_t MachineMemOperand::getAlignment() const {
461 return MinAlign(getBaseAlignment(), getOffset());
462 }
463
operator <<(raw_ostream & OS,const MachineMemOperand & MMO)464 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
465 assert((MMO.isLoad() || MMO.isStore()) &&
466 "SV has to be a load, store or both.");
467
468 if (MMO.isVolatile())
469 OS << "Volatile ";
470
471 if (MMO.isLoad())
472 OS << "LD";
473 if (MMO.isStore())
474 OS << "ST";
475 OS << MMO.getSize();
476
477 // Print the address information.
478 OS << "[";
479 if (!MMO.getValue())
480 OS << "<unknown>";
481 else
482 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
483
484 // If the alignment of the memory reference itself differs from the alignment
485 // of the base pointer, print the base alignment explicitly, next to the base
486 // pointer.
487 if (MMO.getBaseAlignment() != MMO.getAlignment())
488 OS << "(align=" << MMO.getBaseAlignment() << ")";
489
490 if (MMO.getOffset() != 0)
491 OS << "+" << MMO.getOffset();
492 OS << "]";
493
494 // Print the alignment of the reference.
495 if (MMO.getBaseAlignment() != MMO.getAlignment() ||
496 MMO.getBaseAlignment() != MMO.getSize())
497 OS << "(align=" << MMO.getAlignment() << ")";
498
499 // Print TBAA info.
500 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
501 OS << "(tbaa=";
502 if (TBAAInfo->getNumOperands() > 0)
503 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
504 else
505 OS << "<unknown>";
506 OS << ")";
507 }
508
509 // Print nontemporal info.
510 if (MMO.isNonTemporal())
511 OS << "(nontemporal)";
512
513 return OS;
514 }
515
516 //===----------------------------------------------------------------------===//
517 // MachineInstr Implementation
518 //===----------------------------------------------------------------------===//
519
addImplicitDefUseOperands(MachineFunction & MF)520 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
521 if (MCID->ImplicitDefs)
522 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
523 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
524 if (MCID->ImplicitUses)
525 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
526 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
527 }
528
529 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
530 /// implicit operands. It reserves space for the number of operands specified by
531 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,const DebugLoc dl,bool NoImp)532 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
533 const DebugLoc dl, bool NoImp)
534 : MCID(&tid), Parent(0), Operands(0), NumOperands(0),
535 Flags(0), AsmPrinterFlags(0),
536 NumMemRefs(0), MemRefs(0), debugLoc(dl) {
537 // Reserve space for the expected number of operands.
538 if (unsigned NumOps = MCID->getNumOperands() +
539 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
540 CapOperands = OperandCapacity::get(NumOps);
541 Operands = MF.allocateOperandArray(CapOperands);
542 }
543
544 if (!NoImp)
545 addImplicitDefUseOperands(MF);
546 }
547
548 /// MachineInstr ctor - Copies MachineInstr arg exactly
549 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)550 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
551 : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0),
552 Flags(0), AsmPrinterFlags(0),
553 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
554 debugLoc(MI.getDebugLoc()) {
555 CapOperands = OperandCapacity::get(MI.getNumOperands());
556 Operands = MF.allocateOperandArray(CapOperands);
557
558 // Copy operands.
559 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
560 addOperand(MF, MI.getOperand(i));
561
562 // Copy all the sensible flags.
563 setFlags(MI.Flags);
564 }
565
566 /// getRegInfo - If this instruction is embedded into a MachineFunction,
567 /// return the MachineRegisterInfo object for the current function, otherwise
568 /// return null.
getRegInfo()569 MachineRegisterInfo *MachineInstr::getRegInfo() {
570 if (MachineBasicBlock *MBB = getParent())
571 return &MBB->getParent()->getRegInfo();
572 return 0;
573 }
574
575 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
576 /// this instruction from their respective use lists. This requires that the
577 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)578 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
579 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
580 if (Operands[i].isReg())
581 MRI.removeRegOperandFromUseList(&Operands[i]);
582 }
583
584 /// AddRegOperandsToUseLists - Add all of the register operands in
585 /// this instruction from their respective use lists. This requires that the
586 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)587 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
588 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
589 if (Operands[i].isReg())
590 MRI.addRegOperandToUseList(&Operands[i]);
591 }
592
addOperand(const MachineOperand & Op)593 void MachineInstr::addOperand(const MachineOperand &Op) {
594 MachineBasicBlock *MBB = getParent();
595 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
596 MachineFunction *MF = MBB->getParent();
597 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
598 addOperand(*MF, Op);
599 }
600
601 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
602 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)603 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
604 unsigned NumOps, MachineRegisterInfo *MRI) {
605 if (MRI)
606 return MRI->moveOperands(Dst, Src, NumOps);
607
608 // Here it would be convenient to call memmove, so that isn't allowed because
609 // MachineOperand has a constructor and so isn't a POD type.
610 if (Dst < Src)
611 for (unsigned i = 0; i != NumOps; ++i)
612 new (Dst + i) MachineOperand(Src[i]);
613 else
614 for (unsigned i = NumOps; i ; --i)
615 new (Dst + i - 1) MachineOperand(Src[i - 1]);
616 }
617
618 /// addOperand - Add the specified operand to the instruction. If it is an
619 /// implicit operand, it is added to the end of the operand list. If it is
620 /// an explicit operand it is added at the end of the explicit operand list
621 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)622 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
623 assert(MCID && "Cannot add operands before providing an instr descriptor");
624
625 // Check if we're adding one of our existing operands.
626 if (&Op >= Operands && &Op < Operands + NumOperands) {
627 // This is unusual: MI->addOperand(MI->getOperand(i)).
628 // If adding Op requires reallocating or moving existing operands around,
629 // the Op reference could go stale. Support it by copying Op.
630 MachineOperand CopyOp(Op);
631 return addOperand(MF, CopyOp);
632 }
633
634 // Find the insert location for the new operand. Implicit registers go at
635 // the end, everything else goes before the implicit regs.
636 //
637 // FIXME: Allow mixed explicit and implicit operands on inline asm.
638 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
639 // implicit-defs, but they must not be moved around. See the FIXME in
640 // InstrEmitter.cpp.
641 unsigned OpNo = getNumOperands();
642 bool isImpReg = Op.isReg() && Op.isImplicit();
643 if (!isImpReg && !isInlineAsm()) {
644 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
645 --OpNo;
646 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
647 }
648 }
649
650 // OpNo now points as the desired insertion point. Unless this is a variadic
651 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
652 // RegMask operands go between the explicit and implicit operands.
653 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
654 OpNo < MCID->getNumOperands()) &&
655 "Trying to add an operand to a machine instr that is already done!");
656
657 MachineRegisterInfo *MRI = getRegInfo();
658
659 // Determine if the Operands array needs to be reallocated.
660 // Save the old capacity and operand array.
661 OperandCapacity OldCap = CapOperands;
662 MachineOperand *OldOperands = Operands;
663 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
664 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
665 Operands = MF.allocateOperandArray(CapOperands);
666 // Move the operands before the insertion point.
667 if (OpNo)
668 moveOperands(Operands, OldOperands, OpNo, MRI);
669 }
670
671 // Move the operands following the insertion point.
672 if (OpNo != NumOperands)
673 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
674 MRI);
675 ++NumOperands;
676
677 // Deallocate the old operand array.
678 if (OldOperands != Operands && OldOperands)
679 MF.deallocateOperandArray(OldCap, OldOperands);
680
681 // Copy Op into place. It still needs to be inserted into the MRI use lists.
682 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
683 NewMO->ParentMI = this;
684
685 // When adding a register operand, tell MRI about it.
686 if (NewMO->isReg()) {
687 // Ensure isOnRegUseList() returns false, regardless of Op's status.
688 NewMO->Contents.Reg.Prev = 0;
689 // Ignore existing ties. This is not a property that can be copied.
690 NewMO->TiedTo = 0;
691 // Add the new operand to MRI, but only for instructions in an MBB.
692 if (MRI)
693 MRI->addRegOperandToUseList(NewMO);
694 // The MCID operand information isn't accurate until we start adding
695 // explicit operands. The implicit operands are added first, then the
696 // explicits are inserted before them.
697 if (!isImpReg) {
698 // Tie uses to defs as indicated in MCInstrDesc.
699 if (NewMO->isUse()) {
700 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
701 if (DefIdx != -1)
702 tieOperands(DefIdx, OpNo);
703 }
704 // If the register operand is flagged as early, mark the operand as such.
705 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
706 NewMO->setIsEarlyClobber(true);
707 }
708 }
709 }
710
711 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
712 /// fewer operand than it started with.
713 ///
RemoveOperand(unsigned OpNo)714 void MachineInstr::RemoveOperand(unsigned OpNo) {
715 assert(OpNo < getNumOperands() && "Invalid operand number");
716 untieRegOperand(OpNo);
717
718 #ifndef NDEBUG
719 // Moving tied operands would break the ties.
720 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
721 if (Operands[i].isReg())
722 assert(!Operands[i].isTied() && "Cannot move tied operands");
723 #endif
724
725 MachineRegisterInfo *MRI = getRegInfo();
726 if (MRI && Operands[OpNo].isReg())
727 MRI->removeRegOperandFromUseList(Operands + OpNo);
728
729 // Don't call the MachineOperand destructor. A lot of this code depends on
730 // MachineOperand having a trivial destructor anyway, and adding a call here
731 // wouldn't make it 'destructor-correct'.
732
733 if (unsigned N = NumOperands - 1 - OpNo)
734 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
735 --NumOperands;
736 }
737
738 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
739 /// This function should be used only occasionally. The setMemRefs function
740 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)741 void MachineInstr::addMemOperand(MachineFunction &MF,
742 MachineMemOperand *MO) {
743 mmo_iterator OldMemRefs = MemRefs;
744 unsigned OldNumMemRefs = NumMemRefs;
745
746 unsigned NewNum = NumMemRefs + 1;
747 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
748
749 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
750 NewMemRefs[NewNum - 1] = MO;
751 setMemRefs(NewMemRefs, NewMemRefs + NewNum);
752 }
753
hasPropertyInBundle(unsigned Mask,QueryType Type) const754 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
755 assert(!isBundledWithPred() && "Must be called on bundle header");
756 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) {
757 if (MII->getDesc().getFlags() & Mask) {
758 if (Type == AnyInBundle)
759 return true;
760 } else {
761 if (Type == AllInBundle && !MII->isBundle())
762 return false;
763 }
764 // This was the last instruction in the bundle.
765 if (!MII->isBundledWithSucc())
766 return Type == AllInBundle;
767 }
768 }
769
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const770 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
771 MICheckType Check) const {
772 // If opcodes or number of operands are not the same then the two
773 // instructions are obviously not identical.
774 if (Other->getOpcode() != getOpcode() ||
775 Other->getNumOperands() != getNumOperands())
776 return false;
777
778 if (isBundle()) {
779 // Both instructions are bundles, compare MIs inside the bundle.
780 MachineBasicBlock::const_instr_iterator I1 = *this;
781 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
782 MachineBasicBlock::const_instr_iterator I2 = *Other;
783 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
784 while (++I1 != E1 && I1->isInsideBundle()) {
785 ++I2;
786 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
787 return false;
788 }
789 }
790
791 // Check operands to make sure they match.
792 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
793 const MachineOperand &MO = getOperand(i);
794 const MachineOperand &OMO = Other->getOperand(i);
795 if (!MO.isReg()) {
796 if (!MO.isIdenticalTo(OMO))
797 return false;
798 continue;
799 }
800
801 // Clients may or may not want to ignore defs when testing for equality.
802 // For example, machine CSE pass only cares about finding common
803 // subexpressions, so it's safe to ignore virtual register defs.
804 if (MO.isDef()) {
805 if (Check == IgnoreDefs)
806 continue;
807 else if (Check == IgnoreVRegDefs) {
808 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
809 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
810 if (MO.getReg() != OMO.getReg())
811 return false;
812 } else {
813 if (!MO.isIdenticalTo(OMO))
814 return false;
815 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
816 return false;
817 }
818 } else {
819 if (!MO.isIdenticalTo(OMO))
820 return false;
821 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
822 return false;
823 }
824 }
825 // If DebugLoc does not match then two dbg.values are not identical.
826 if (isDebugValue())
827 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
828 && getDebugLoc() != Other->getDebugLoc())
829 return false;
830 return true;
831 }
832
removeFromParent()833 MachineInstr *MachineInstr::removeFromParent() {
834 assert(getParent() && "Not embedded in a basic block!");
835 return getParent()->remove(this);
836 }
837
removeFromBundle()838 MachineInstr *MachineInstr::removeFromBundle() {
839 assert(getParent() && "Not embedded in a basic block!");
840 return getParent()->remove_instr(this);
841 }
842
eraseFromParent()843 void MachineInstr::eraseFromParent() {
844 assert(getParent() && "Not embedded in a basic block!");
845 getParent()->erase(this);
846 }
847
eraseFromBundle()848 void MachineInstr::eraseFromBundle() {
849 assert(getParent() && "Not embedded in a basic block!");
850 getParent()->erase_instr(this);
851 }
852
853 /// getNumExplicitOperands - Returns the number of non-implicit operands.
854 ///
getNumExplicitOperands() const855 unsigned MachineInstr::getNumExplicitOperands() const {
856 unsigned NumOperands = MCID->getNumOperands();
857 if (!MCID->isVariadic())
858 return NumOperands;
859
860 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
861 const MachineOperand &MO = getOperand(i);
862 if (!MO.isReg() || !MO.isImplicit())
863 NumOperands++;
864 }
865 return NumOperands;
866 }
867
bundleWithPred()868 void MachineInstr::bundleWithPred() {
869 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
870 setFlag(BundledPred);
871 MachineBasicBlock::instr_iterator Pred = this;
872 --Pred;
873 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
874 Pred->setFlag(BundledSucc);
875 }
876
bundleWithSucc()877 void MachineInstr::bundleWithSucc() {
878 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
879 setFlag(BundledSucc);
880 MachineBasicBlock::instr_iterator Succ = this;
881 ++Succ;
882 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
883 Succ->setFlag(BundledPred);
884 }
885
unbundleFromPred()886 void MachineInstr::unbundleFromPred() {
887 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
888 clearFlag(BundledPred);
889 MachineBasicBlock::instr_iterator Pred = this;
890 --Pred;
891 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
892 Pred->clearFlag(BundledSucc);
893 }
894
unbundleFromSucc()895 void MachineInstr::unbundleFromSucc() {
896 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
897 clearFlag(BundledSucc);
898 MachineBasicBlock::instr_iterator Succ = this;
899 ++Succ;
900 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
901 Succ->clearFlag(BundledPred);
902 }
903
isStackAligningInlineAsm() const904 bool MachineInstr::isStackAligningInlineAsm() const {
905 if (isInlineAsm()) {
906 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
907 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
908 return true;
909 }
910 return false;
911 }
912
getInlineAsmDialect() const913 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
914 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
915 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
916 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
917 }
918
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const919 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
920 unsigned *GroupNo) const {
921 assert(isInlineAsm() && "Expected an inline asm instruction");
922 assert(OpIdx < getNumOperands() && "OpIdx out of range");
923
924 // Ignore queries about the initial operands.
925 if (OpIdx < InlineAsm::MIOp_FirstOperand)
926 return -1;
927
928 unsigned Group = 0;
929 unsigned NumOps;
930 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
931 i += NumOps) {
932 const MachineOperand &FlagMO = getOperand(i);
933 // If we reach the implicit register operands, stop looking.
934 if (!FlagMO.isImm())
935 return -1;
936 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
937 if (i + NumOps > OpIdx) {
938 if (GroupNo)
939 *GroupNo = Group;
940 return i;
941 }
942 ++Group;
943 }
944 return -1;
945 }
946
947 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const948 MachineInstr::getRegClassConstraint(unsigned OpIdx,
949 const TargetInstrInfo *TII,
950 const TargetRegisterInfo *TRI) const {
951 assert(getParent() && "Can't have an MBB reference here!");
952 assert(getParent()->getParent() && "Can't have an MF reference here!");
953 const MachineFunction &MF = *getParent()->getParent();
954
955 // Most opcodes have fixed constraints in their MCInstrDesc.
956 if (!isInlineAsm())
957 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
958
959 if (!getOperand(OpIdx).isReg())
960 return NULL;
961
962 // For tied uses on inline asm, get the constraint from the def.
963 unsigned DefIdx;
964 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
965 OpIdx = DefIdx;
966
967 // Inline asm stores register class constraints in the flag word.
968 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
969 if (FlagIdx < 0)
970 return NULL;
971
972 unsigned Flag = getOperand(FlagIdx).getImm();
973 unsigned RCID;
974 if (InlineAsm::hasRegClassConstraint(Flag, RCID))
975 return TRI->getRegClass(RCID);
976
977 // Assume that all registers in a memory operand are pointers.
978 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
979 return TRI->getPointerRegClass(MF);
980
981 return NULL;
982 }
983
984 /// Return the number of instructions inside the MI bundle, not counting the
985 /// header instruction.
getBundleSize() const986 unsigned MachineInstr::getBundleSize() const {
987 MachineBasicBlock::const_instr_iterator I = this;
988 unsigned Size = 0;
989 while (I->isBundledWithSucc())
990 ++Size, ++I;
991 return Size;
992 }
993
994 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
995 /// the specific register or -1 if it is not found. It further tightens
996 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const997 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
998 const TargetRegisterInfo *TRI) const {
999 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1000 const MachineOperand &MO = getOperand(i);
1001 if (!MO.isReg() || !MO.isUse())
1002 continue;
1003 unsigned MOReg = MO.getReg();
1004 if (!MOReg)
1005 continue;
1006 if (MOReg == Reg ||
1007 (TRI &&
1008 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1009 TargetRegisterInfo::isPhysicalRegister(Reg) &&
1010 TRI->isSubRegister(MOReg, Reg)))
1011 if (!isKill || MO.isKill())
1012 return i;
1013 }
1014 return -1;
1015 }
1016
1017 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1018 /// indicating if this instruction reads or writes Reg. This also considers
1019 /// partial defines.
1020 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const1021 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1022 SmallVectorImpl<unsigned> *Ops) const {
1023 bool PartDef = false; // Partial redefine.
1024 bool FullDef = false; // Full define.
1025 bool Use = false;
1026
1027 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1028 const MachineOperand &MO = getOperand(i);
1029 if (!MO.isReg() || MO.getReg() != Reg)
1030 continue;
1031 if (Ops)
1032 Ops->push_back(i);
1033 if (MO.isUse())
1034 Use |= !MO.isUndef();
1035 else if (MO.getSubReg() && !MO.isUndef())
1036 // A partial <def,undef> doesn't count as reading the register.
1037 PartDef = true;
1038 else
1039 FullDef = true;
1040 }
1041 // A partial redefine uses Reg unless there is also a full define.
1042 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1043 }
1044
1045 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1046 /// the specified register or -1 if it is not found. If isDead is true, defs
1047 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1048 /// also checks if there is a def of a super-register.
1049 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1050 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1051 const TargetRegisterInfo *TRI) const {
1052 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1053 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1054 const MachineOperand &MO = getOperand(i);
1055 // Accept regmask operands when Overlap is set.
1056 // Ignore them when looking for a specific def operand (Overlap == false).
1057 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1058 return i;
1059 if (!MO.isReg() || !MO.isDef())
1060 continue;
1061 unsigned MOReg = MO.getReg();
1062 bool Found = (MOReg == Reg);
1063 if (!Found && TRI && isPhys &&
1064 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1065 if (Overlap)
1066 Found = TRI->regsOverlap(MOReg, Reg);
1067 else
1068 Found = TRI->isSubRegister(MOReg, Reg);
1069 }
1070 if (Found && (!isDead || MO.isDead()))
1071 return i;
1072 }
1073 return -1;
1074 }
1075
1076 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1077 /// operand list that is used to represent the predicate. It returns -1 if
1078 /// none is found.
findFirstPredOperandIdx() const1079 int MachineInstr::findFirstPredOperandIdx() const {
1080 // Don't call MCID.findFirstPredOperandIdx() because this variant
1081 // is sometimes called on an instruction that's not yet complete, and
1082 // so the number of operands is less than the MCID indicates. In
1083 // particular, the PTX target does this.
1084 const MCInstrDesc &MCID = getDesc();
1085 if (MCID.isPredicable()) {
1086 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1087 if (MCID.OpInfo[i].isPredicate())
1088 return i;
1089 }
1090
1091 return -1;
1092 }
1093
1094 // MachineOperand::TiedTo is 4 bits wide.
1095 const unsigned TiedMax = 15;
1096
1097 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1098 ///
1099 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1100 /// field. TiedTo can have these values:
1101 ///
1102 /// 0: Operand is not tied to anything.
1103 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1104 /// TiedMax: Tied to an operand >= TiedMax-1.
1105 ///
1106 /// The tied def must be one of the first TiedMax operands on a normal
1107 /// instruction. INLINEASM instructions allow more tied defs.
1108 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1109 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1110 MachineOperand &DefMO = getOperand(DefIdx);
1111 MachineOperand &UseMO = getOperand(UseIdx);
1112 assert(DefMO.isDef() && "DefIdx must be a def operand");
1113 assert(UseMO.isUse() && "UseIdx must be a use operand");
1114 assert(!DefMO.isTied() && "Def is already tied to another use");
1115 assert(!UseMO.isTied() && "Use is already tied to another def");
1116
1117 if (DefIdx < TiedMax)
1118 UseMO.TiedTo = DefIdx + 1;
1119 else {
1120 // Inline asm can use the group descriptors to find tied operands, but on
1121 // normal instruction, the tied def must be within the first TiedMax
1122 // operands.
1123 assert(isInlineAsm() && "DefIdx out of range");
1124 UseMO.TiedTo = TiedMax;
1125 }
1126
1127 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1128 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1129 }
1130
1131 /// Given the index of a tied register operand, find the operand it is tied to.
1132 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1133 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1134 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1135 const MachineOperand &MO = getOperand(OpIdx);
1136 assert(MO.isTied() && "Operand isn't tied");
1137
1138 // Normally TiedTo is in range.
1139 if (MO.TiedTo < TiedMax)
1140 return MO.TiedTo - 1;
1141
1142 // Uses on normal instructions can be out of range.
1143 if (!isInlineAsm()) {
1144 // Normal tied defs must be in the 0..TiedMax-1 range.
1145 if (MO.isUse())
1146 return TiedMax - 1;
1147 // MO is a def. Search for the tied use.
1148 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1149 const MachineOperand &UseMO = getOperand(i);
1150 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1151 return i;
1152 }
1153 llvm_unreachable("Can't find tied use");
1154 }
1155
1156 // Now deal with inline asm by parsing the operand group descriptor flags.
1157 // Find the beginning of each operand group.
1158 SmallVector<unsigned, 8> GroupIdx;
1159 unsigned OpIdxGroup = ~0u;
1160 unsigned NumOps;
1161 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1162 i += NumOps) {
1163 const MachineOperand &FlagMO = getOperand(i);
1164 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1165 unsigned CurGroup = GroupIdx.size();
1166 GroupIdx.push_back(i);
1167 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1168 // OpIdx belongs to this operand group.
1169 if (OpIdx > i && OpIdx < i + NumOps)
1170 OpIdxGroup = CurGroup;
1171 unsigned TiedGroup;
1172 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1173 continue;
1174 // Operands in this group are tied to operands in TiedGroup which must be
1175 // earlier. Find the number of operands between the two groups.
1176 unsigned Delta = i - GroupIdx[TiedGroup];
1177
1178 // OpIdx is a use tied to TiedGroup.
1179 if (OpIdxGroup == CurGroup)
1180 return OpIdx - Delta;
1181
1182 // OpIdx is a def tied to this use group.
1183 if (OpIdxGroup == TiedGroup)
1184 return OpIdx + Delta;
1185 }
1186 llvm_unreachable("Invalid tied operand on inline asm");
1187 }
1188
1189 /// clearKillInfo - Clears kill flags on all operands.
1190 ///
clearKillInfo()1191 void MachineInstr::clearKillInfo() {
1192 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1193 MachineOperand &MO = getOperand(i);
1194 if (MO.isReg() && MO.isUse())
1195 MO.setIsKill(false);
1196 }
1197 }
1198
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1199 void MachineInstr::substituteRegister(unsigned FromReg,
1200 unsigned ToReg,
1201 unsigned SubIdx,
1202 const TargetRegisterInfo &RegInfo) {
1203 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1204 if (SubIdx)
1205 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1206 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1207 MachineOperand &MO = getOperand(i);
1208 if (!MO.isReg() || MO.getReg() != FromReg)
1209 continue;
1210 MO.substPhysReg(ToReg, RegInfo);
1211 }
1212 } else {
1213 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1214 MachineOperand &MO = getOperand(i);
1215 if (!MO.isReg() || MO.getReg() != FromReg)
1216 continue;
1217 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1218 }
1219 }
1220 }
1221
1222 /// isSafeToMove - Return true if it is safe to move this instruction. If
1223 /// SawStore is set to true, it means that there is a store (or call) between
1224 /// the instruction's location and its intended destination.
isSafeToMove(const TargetInstrInfo * TII,AliasAnalysis * AA,bool & SawStore) const1225 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1226 AliasAnalysis *AA,
1227 bool &SawStore) const {
1228 // Ignore stuff that we obviously can't move.
1229 //
1230 // Treat volatile loads as stores. This is not strictly necessary for
1231 // volatiles, but it is required for atomic loads. It is not allowed to move
1232 // a load across an atomic load with Ordering > Monotonic.
1233 if (mayStore() || isCall() ||
1234 (mayLoad() && hasOrderedMemoryRef())) {
1235 SawStore = true;
1236 return false;
1237 }
1238
1239 if (isLabel() || isDebugValue() ||
1240 isTerminator() || hasUnmodeledSideEffects())
1241 return false;
1242
1243 // See if this instruction does a load. If so, we have to guarantee that the
1244 // loaded value doesn't change between the load and the its intended
1245 // destination. The check for isInvariantLoad gives the targe the chance to
1246 // classify the load as always returning a constant, e.g. a constant pool
1247 // load.
1248 if (mayLoad() && !isInvariantLoad(AA))
1249 // Otherwise, this is a real load. If there is a store between the load and
1250 // end of block, we can't move it.
1251 return !SawStore;
1252
1253 return true;
1254 }
1255
1256 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1257 /// instruction which defined the specified register instead of copying it.
isSafeToReMat(const TargetInstrInfo * TII,AliasAnalysis * AA,unsigned DstReg) const1258 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1259 AliasAnalysis *AA,
1260 unsigned DstReg) const {
1261 bool SawStore = false;
1262 if (!TII->isTriviallyReMaterializable(this, AA) ||
1263 !isSafeToMove(TII, AA, SawStore))
1264 return false;
1265 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1266 const MachineOperand &MO = getOperand(i);
1267 if (!MO.isReg())
1268 continue;
1269 // FIXME: For now, do not remat any instruction with register operands.
1270 // Later on, we can loosen the restriction is the register operands have
1271 // not been modified between the def and use. Note, this is different from
1272 // MachineSink because the code is no longer in two-address form (at least
1273 // partially).
1274 if (MO.isUse())
1275 return false;
1276 else if (!MO.isDead() && MO.getReg() != DstReg)
1277 return false;
1278 }
1279 return true;
1280 }
1281
1282 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1283 /// or volatile memory reference, or if the information describing the memory
1284 /// reference is not available. Return false if it is known to have no ordered
1285 /// memory references.
hasOrderedMemoryRef() const1286 bool MachineInstr::hasOrderedMemoryRef() const {
1287 // An instruction known never to access memory won't have a volatile access.
1288 if (!mayStore() &&
1289 !mayLoad() &&
1290 !isCall() &&
1291 !hasUnmodeledSideEffects())
1292 return false;
1293
1294 // Otherwise, if the instruction has no memory reference information,
1295 // conservatively assume it wasn't preserved.
1296 if (memoperands_empty())
1297 return true;
1298
1299 // Check the memory reference information for ordered references.
1300 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1301 if (!(*I)->isUnordered())
1302 return true;
1303
1304 return false;
1305 }
1306
1307 /// isInvariantLoad - Return true if this instruction is loading from a
1308 /// location whose value is invariant across the function. For example,
1309 /// loading a value from the constant pool or from the argument area
1310 /// of a function if it does not change. This should only return true of
1311 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1312 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1313 // If the instruction doesn't load at all, it isn't an invariant load.
1314 if (!mayLoad())
1315 return false;
1316
1317 // If the instruction has lost its memoperands, conservatively assume that
1318 // it may not be an invariant load.
1319 if (memoperands_empty())
1320 return false;
1321
1322 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1323
1324 for (mmo_iterator I = memoperands_begin(),
1325 E = memoperands_end(); I != E; ++I) {
1326 if ((*I)->isVolatile()) return false;
1327 if ((*I)->isStore()) return false;
1328 if ((*I)->isInvariant()) return true;
1329
1330 if (const Value *V = (*I)->getValue()) {
1331 // A load from a constant PseudoSourceValue is invariant.
1332 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1333 if (PSV->isConstant(MFI))
1334 continue;
1335 // If we have an AliasAnalysis, ask it whether the memory is constant.
1336 if (AA && AA->pointsToConstantMemory(
1337 AliasAnalysis::Location(V, (*I)->getSize(),
1338 (*I)->getTBAAInfo())))
1339 continue;
1340 }
1341
1342 // Otherwise assume conservatively.
1343 return false;
1344 }
1345
1346 // Everything checks out.
1347 return true;
1348 }
1349
1350 /// isConstantValuePHI - If the specified instruction is a PHI that always
1351 /// merges together the same virtual register, return the register, otherwise
1352 /// return 0.
isConstantValuePHI() const1353 unsigned MachineInstr::isConstantValuePHI() const {
1354 if (!isPHI())
1355 return 0;
1356 assert(getNumOperands() >= 3 &&
1357 "It's illegal to have a PHI without source operands");
1358
1359 unsigned Reg = getOperand(1).getReg();
1360 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1361 if (getOperand(i).getReg() != Reg)
1362 return 0;
1363 return Reg;
1364 }
1365
hasUnmodeledSideEffects() const1366 bool MachineInstr::hasUnmodeledSideEffects() const {
1367 if (hasProperty(MCID::UnmodeledSideEffects))
1368 return true;
1369 if (isInlineAsm()) {
1370 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1371 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1372 return true;
1373 }
1374
1375 return false;
1376 }
1377
1378 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1379 ///
allDefsAreDead() const1380 bool MachineInstr::allDefsAreDead() const {
1381 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1382 const MachineOperand &MO = getOperand(i);
1383 if (!MO.isReg() || MO.isUse())
1384 continue;
1385 if (!MO.isDead())
1386 return false;
1387 }
1388 return true;
1389 }
1390
1391 /// copyImplicitOps - Copy implicit register operands from specified
1392 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr * MI)1393 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1394 const MachineInstr *MI) {
1395 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1396 i != e; ++i) {
1397 const MachineOperand &MO = MI->getOperand(i);
1398 if (MO.isReg() && MO.isImplicit())
1399 addOperand(MF, MO);
1400 }
1401 }
1402
dump() const1403 void MachineInstr::dump() const {
1404 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1405 dbgs() << " " << *this;
1406 #endif
1407 }
1408
printDebugLoc(DebugLoc DL,const MachineFunction * MF,raw_ostream & CommentOS)1409 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1410 raw_ostream &CommentOS) {
1411 const LLVMContext &Ctx = MF->getFunction()->getContext();
1412 if (!DL.isUnknown()) { // Print source line info.
1413 DIScope Scope(DL.getScope(Ctx));
1414 // Omit the directory, because it's likely to be long and uninteresting.
1415 if (Scope.Verify())
1416 CommentOS << Scope.getFilename();
1417 else
1418 CommentOS << "<unknown>";
1419 CommentOS << ':' << DL.getLine();
1420 if (DL.getCol() != 0)
1421 CommentOS << ':' << DL.getCol();
1422 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1423 if (!InlinedAtDL.isUnknown()) {
1424 CommentOS << " @[ ";
1425 printDebugLoc(InlinedAtDL, MF, CommentOS);
1426 CommentOS << " ]";
1427 }
1428 }
1429 }
1430
print(raw_ostream & OS,const TargetMachine * TM,bool SkipOpers) const1431 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
1432 bool SkipOpers) const {
1433 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1434 const MachineFunction *MF = 0;
1435 const MachineRegisterInfo *MRI = 0;
1436 if (const MachineBasicBlock *MBB = getParent()) {
1437 MF = MBB->getParent();
1438 if (!TM && MF)
1439 TM = &MF->getTarget();
1440 if (MF)
1441 MRI = &MF->getRegInfo();
1442 }
1443
1444 // Save a list of virtual registers.
1445 SmallVector<unsigned, 8> VirtRegs;
1446
1447 // Print explicitly defined operands on the left of an assignment syntax.
1448 unsigned StartOp = 0, e = getNumOperands();
1449 for (; StartOp < e && getOperand(StartOp).isReg() &&
1450 getOperand(StartOp).isDef() &&
1451 !getOperand(StartOp).isImplicit();
1452 ++StartOp) {
1453 if (StartOp != 0) OS << ", ";
1454 getOperand(StartOp).print(OS, TM);
1455 unsigned Reg = getOperand(StartOp).getReg();
1456 if (TargetRegisterInfo::isVirtualRegister(Reg))
1457 VirtRegs.push_back(Reg);
1458 }
1459
1460 if (StartOp != 0)
1461 OS << " = ";
1462
1463 // Print the opcode name.
1464 if (TM && TM->getInstrInfo())
1465 OS << TM->getInstrInfo()->getName(getOpcode());
1466 else
1467 OS << "UNKNOWN";
1468
1469 if (SkipOpers)
1470 return;
1471
1472 // Print the rest of the operands.
1473 bool OmittedAnyCallClobbers = false;
1474 bool FirstOp = true;
1475 unsigned AsmDescOp = ~0u;
1476 unsigned AsmOpCount = 0;
1477
1478 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1479 // Print asm string.
1480 OS << " ";
1481 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1482
1483 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1484 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1485 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1486 OS << " [sideeffect]";
1487 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1488 OS << " [mayload]";
1489 if (ExtraInfo & InlineAsm::Extra_MayStore)
1490 OS << " [maystore]";
1491 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1492 OS << " [alignstack]";
1493 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1494 OS << " [attdialect]";
1495 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1496 OS << " [inteldialect]";
1497
1498 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1499 FirstOp = false;
1500 }
1501
1502
1503 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1504 const MachineOperand &MO = getOperand(i);
1505
1506 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1507 VirtRegs.push_back(MO.getReg());
1508
1509 // Omit call-clobbered registers which aren't used anywhere. This makes
1510 // call instructions much less noisy on targets where calls clobber lots
1511 // of registers. Don't rely on MO.isDead() because we may be called before
1512 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1513 if (MF && isCall() &&
1514 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1515 unsigned Reg = MO.getReg();
1516 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1517 const MachineRegisterInfo &MRI = MF->getRegInfo();
1518 if (MRI.use_empty(Reg)) {
1519 bool HasAliasLive = false;
1520 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
1521 AI.isValid(); ++AI) {
1522 unsigned AliasReg = *AI;
1523 if (!MRI.use_empty(AliasReg)) {
1524 HasAliasLive = true;
1525 break;
1526 }
1527 }
1528 if (!HasAliasLive) {
1529 OmittedAnyCallClobbers = true;
1530 continue;
1531 }
1532 }
1533 }
1534 }
1535
1536 if (FirstOp) FirstOp = false; else OS << ",";
1537 OS << " ";
1538 if (i < getDesc().NumOperands) {
1539 const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1540 if (MCOI.isPredicate())
1541 OS << "pred:";
1542 if (MCOI.isOptionalDef())
1543 OS << "opt:";
1544 }
1545 if (isDebugValue() && MO.isMetadata()) {
1546 // Pretty print DBG_VALUE instructions.
1547 const MDNode *MD = MO.getMetadata();
1548 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1549 OS << "!\"" << MDS->getString() << '\"';
1550 else
1551 MO.print(OS, TM);
1552 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1553 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1554 } else if (i == AsmDescOp && MO.isImm()) {
1555 // Pretty print the inline asm operand descriptor.
1556 OS << '$' << AsmOpCount++;
1557 unsigned Flag = MO.getImm();
1558 switch (InlineAsm::getKind(Flag)) {
1559 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1560 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1561 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1562 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1563 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1564 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1565 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1566 }
1567
1568 unsigned RCID = 0;
1569 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1570 if (TM)
1571 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1572 else
1573 OS << ":RC" << RCID;
1574 }
1575
1576 unsigned TiedTo = 0;
1577 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1578 OS << " tiedto:$" << TiedTo;
1579
1580 OS << ']';
1581
1582 // Compute the index of the next operand descriptor.
1583 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1584 } else
1585 MO.print(OS, TM);
1586 }
1587
1588 // Briefly indicate whether any call clobbers were omitted.
1589 if (OmittedAnyCallClobbers) {
1590 if (!FirstOp) OS << ",";
1591 OS << " ...";
1592 }
1593
1594 bool HaveSemi = false;
1595 const unsigned PrintableFlags = FrameSetup;
1596 if (Flags & PrintableFlags) {
1597 if (!HaveSemi) OS << ";"; HaveSemi = true;
1598 OS << " flags: ";
1599
1600 if (Flags & FrameSetup)
1601 OS << "FrameSetup";
1602 }
1603
1604 if (!memoperands_empty()) {
1605 if (!HaveSemi) OS << ";"; HaveSemi = true;
1606
1607 OS << " mem:";
1608 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1609 i != e; ++i) {
1610 OS << **i;
1611 if (llvm::next(i) != e)
1612 OS << " ";
1613 }
1614 }
1615
1616 // Print the regclass of any virtual registers encountered.
1617 if (MRI && !VirtRegs.empty()) {
1618 if (!HaveSemi) OS << ";"; HaveSemi = true;
1619 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1620 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1621 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1622 for (unsigned j = i+1; j != VirtRegs.size();) {
1623 if (MRI->getRegClass(VirtRegs[j]) != RC) {
1624 ++j;
1625 continue;
1626 }
1627 if (VirtRegs[i] != VirtRegs[j])
1628 OS << "," << PrintReg(VirtRegs[j]);
1629 VirtRegs.erase(VirtRegs.begin()+j);
1630 }
1631 }
1632 }
1633
1634 // Print debug location information.
1635 if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1636 if (!HaveSemi) OS << ";"; HaveSemi = true;
1637 DIVariable DV(getOperand(e - 1).getMetadata());
1638 OS << " line no:" << DV.getLineNumber();
1639 if (MDNode *InlinedAt = DV.getInlinedAt()) {
1640 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1641 if (!InlinedAtDL.isUnknown()) {
1642 OS << " inlined @[ ";
1643 printDebugLoc(InlinedAtDL, MF, OS);
1644 OS << " ]";
1645 }
1646 }
1647 } else if (!debugLoc.isUnknown() && MF) {
1648 if (!HaveSemi) OS << ";"; HaveSemi = true;
1649 OS << " dbg:";
1650 printDebugLoc(debugLoc, MF, OS);
1651 }
1652
1653 OS << '\n';
1654 }
1655
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1656 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1657 const TargetRegisterInfo *RegInfo,
1658 bool AddIfNotFound) {
1659 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1660 bool hasAliases = isPhysReg &&
1661 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1662 bool Found = false;
1663 SmallVector<unsigned,4> DeadOps;
1664 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1665 MachineOperand &MO = getOperand(i);
1666 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1667 continue;
1668 unsigned Reg = MO.getReg();
1669 if (!Reg)
1670 continue;
1671
1672 if (Reg == IncomingReg) {
1673 if (!Found) {
1674 if (MO.isKill())
1675 // The register is already marked kill.
1676 return true;
1677 if (isPhysReg && isRegTiedToDefOperand(i))
1678 // Two-address uses of physregs must not be marked kill.
1679 return true;
1680 MO.setIsKill();
1681 Found = true;
1682 }
1683 } else if (hasAliases && MO.isKill() &&
1684 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1685 // A super-register kill already exists.
1686 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1687 return true;
1688 if (RegInfo->isSubRegister(IncomingReg, Reg))
1689 DeadOps.push_back(i);
1690 }
1691 }
1692
1693 // Trim unneeded kill operands.
1694 while (!DeadOps.empty()) {
1695 unsigned OpIdx = DeadOps.back();
1696 if (getOperand(OpIdx).isImplicit())
1697 RemoveOperand(OpIdx);
1698 else
1699 getOperand(OpIdx).setIsKill(false);
1700 DeadOps.pop_back();
1701 }
1702
1703 // If not found, this means an alias of one of the operands is killed. Add a
1704 // new implicit operand if required.
1705 if (!Found && AddIfNotFound) {
1706 addOperand(MachineOperand::CreateReg(IncomingReg,
1707 false /*IsDef*/,
1708 true /*IsImp*/,
1709 true /*IsKill*/));
1710 return true;
1711 }
1712 return Found;
1713 }
1714
clearRegisterKills(unsigned Reg,const TargetRegisterInfo * RegInfo)1715 void MachineInstr::clearRegisterKills(unsigned Reg,
1716 const TargetRegisterInfo *RegInfo) {
1717 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1718 RegInfo = 0;
1719 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1720 MachineOperand &MO = getOperand(i);
1721 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1722 continue;
1723 unsigned OpReg = MO.getReg();
1724 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1725 MO.setIsKill(false);
1726 }
1727 }
1728
addRegisterDead(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1729 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1730 const TargetRegisterInfo *RegInfo,
1731 bool AddIfNotFound) {
1732 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1733 bool hasAliases = isPhysReg &&
1734 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1735 bool Found = false;
1736 SmallVector<unsigned,4> DeadOps;
1737 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1738 MachineOperand &MO = getOperand(i);
1739 if (!MO.isReg() || !MO.isDef())
1740 continue;
1741 unsigned Reg = MO.getReg();
1742 if (!Reg)
1743 continue;
1744
1745 if (Reg == IncomingReg) {
1746 MO.setIsDead();
1747 Found = true;
1748 } else if (hasAliases && MO.isDead() &&
1749 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1750 // There exists a super-register that's marked dead.
1751 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1752 return true;
1753 if (RegInfo->isSubRegister(IncomingReg, Reg))
1754 DeadOps.push_back(i);
1755 }
1756 }
1757
1758 // Trim unneeded dead operands.
1759 while (!DeadOps.empty()) {
1760 unsigned OpIdx = DeadOps.back();
1761 if (getOperand(OpIdx).isImplicit())
1762 RemoveOperand(OpIdx);
1763 else
1764 getOperand(OpIdx).setIsDead(false);
1765 DeadOps.pop_back();
1766 }
1767
1768 // If not found, this means an alias of one of the operands is dead. Add a
1769 // new implicit operand if required.
1770 if (Found || !AddIfNotFound)
1771 return Found;
1772
1773 addOperand(MachineOperand::CreateReg(IncomingReg,
1774 true /*IsDef*/,
1775 true /*IsImp*/,
1776 false /*IsKill*/,
1777 true /*IsDead*/));
1778 return true;
1779 }
1780
addRegisterDefined(unsigned IncomingReg,const TargetRegisterInfo * RegInfo)1781 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1782 const TargetRegisterInfo *RegInfo) {
1783 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1784 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1785 if (MO)
1786 return;
1787 } else {
1788 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1789 const MachineOperand &MO = getOperand(i);
1790 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1791 MO.getSubReg() == 0)
1792 return;
1793 }
1794 }
1795 addOperand(MachineOperand::CreateReg(IncomingReg,
1796 true /*IsDef*/,
1797 true /*IsImp*/));
1798 }
1799
setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,const TargetRegisterInfo & TRI)1800 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1801 const TargetRegisterInfo &TRI) {
1802 bool HasRegMask = false;
1803 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1804 MachineOperand &MO = getOperand(i);
1805 if (MO.isRegMask()) {
1806 HasRegMask = true;
1807 continue;
1808 }
1809 if (!MO.isReg() || !MO.isDef()) continue;
1810 unsigned Reg = MO.getReg();
1811 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1812 bool Dead = true;
1813 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1814 I != E; ++I)
1815 if (TRI.regsOverlap(*I, Reg)) {
1816 Dead = false;
1817 break;
1818 }
1819 // If there are no uses, including partial uses, the def is dead.
1820 if (Dead) MO.setIsDead();
1821 }
1822
1823 // This is a call with a register mask operand.
1824 // Mask clobbers are always dead, so add defs for the non-dead defines.
1825 if (HasRegMask)
1826 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1827 I != E; ++I)
1828 addRegisterDefined(*I, &TRI);
1829 }
1830
1831 unsigned
getHashValue(const MachineInstr * const & MI)1832 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1833 // Build up a buffer of hash code components.
1834 SmallVector<size_t, 8> HashComponents;
1835 HashComponents.reserve(MI->getNumOperands() + 1);
1836 HashComponents.push_back(MI->getOpcode());
1837 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1838 const MachineOperand &MO = MI->getOperand(i);
1839 if (MO.isReg() && MO.isDef() &&
1840 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1841 continue; // Skip virtual register defs.
1842
1843 HashComponents.push_back(hash_value(MO));
1844 }
1845 return hash_combine_range(HashComponents.begin(), HashComponents.end());
1846 }
1847
emitError(StringRef Msg) const1848 void MachineInstr::emitError(StringRef Msg) const {
1849 // Find the source location cookie.
1850 unsigned LocCookie = 0;
1851 const MDNode *LocMD = 0;
1852 for (unsigned i = getNumOperands(); i != 0; --i) {
1853 if (getOperand(i-1).isMetadata() &&
1854 (LocMD = getOperand(i-1).getMetadata()) &&
1855 LocMD->getNumOperands() != 0) {
1856 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1857 LocCookie = CI->getZExtValue();
1858 break;
1859 }
1860 }
1861 }
1862
1863 if (const MachineBasicBlock *MBB = getParent())
1864 if (const MachineFunction *MF = MBB->getParent())
1865 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1866 report_fatal_error(Msg);
1867 }
1868