• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw.h"
25 #include "pci.h"
26 #include "pc.h"
27 #include "net.h"
28 
29 /* debug NE2000 card */
30 //#define DEBUG_NE2000
31 
32 #define MAX_ETH_FRAME_SIZE 1514
33 
34 #define E8390_CMD	0x00  /* The command register (for all pages) */
35 /* Page 0 register offsets. */
36 #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
37 #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
38 #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
39 #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
40 #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
41 #define EN0_TSR		0x04	/* Transmit status reg RD */
42 #define EN0_TPSR	0x04	/* Transmit starting page WR */
43 #define EN0_NCR		0x05	/* Number of collision reg RD */
44 #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
45 #define EN0_FIFO	0x06	/* FIFO RD */
46 #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
47 #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
48 #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
49 #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
50 #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
51 #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
52 #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
53 #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
54 #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
55 #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
56 #define EN0_RSR		0x0c	/* rx status reg RD */
57 #define EN0_RXCR	0x0c	/* RX configuration reg WR */
58 #define EN0_TXCR	0x0d	/* TX configuration reg WR */
59 #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
60 #define EN0_DCFG	0x0e	/* Data configuration reg WR */
61 #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
62 #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
63 #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
64 
65 #define EN1_PHYS        0x11
66 #define EN1_CURPAG      0x17
67 #define EN1_MULT        0x18
68 
69 #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
70 #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
71 
72 #define EN3_CONFIG0	0x33
73 #define EN3_CONFIG1	0x34
74 #define EN3_CONFIG2	0x35
75 #define EN3_CONFIG3	0x36
76 
77 /*  Register accessed at EN_CMD, the 8390 base addr.  */
78 #define E8390_STOP	0x01	/* Stop and reset the chip */
79 #define E8390_START	0x02	/* Start the chip, clear reset */
80 #define E8390_TRANS	0x04	/* Transmit a frame */
81 #define E8390_RREAD	0x08	/* Remote read */
82 #define E8390_RWRITE	0x10	/* Remote write  */
83 #define E8390_NODMA	0x20	/* Remote DMA */
84 #define E8390_PAGE0	0x00	/* Select page chip registers */
85 #define E8390_PAGE1	0x40	/* using the two high-order bits */
86 #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
87 
88 /* Bits in EN0_ISR - Interrupt status register */
89 #define ENISR_RX	0x01	/* Receiver, no error */
90 #define ENISR_TX	0x02	/* Transmitter, no error */
91 #define ENISR_RX_ERR	0x04	/* Receiver, with error */
92 #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
93 #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
94 #define ENISR_COUNTERS	0x20	/* Counters need emptying */
95 #define ENISR_RDC	0x40	/* remote dma complete */
96 #define ENISR_RESET	0x80	/* Reset completed */
97 #define ENISR_ALL	0x3f	/* Interrupts we will enable */
98 
99 /* Bits in received packet status byte and EN0_RSR*/
100 #define ENRSR_RXOK	0x01	/* Received a good packet */
101 #define ENRSR_CRC	0x02	/* CRC error */
102 #define ENRSR_FAE	0x04	/* frame alignment error */
103 #define ENRSR_FO	0x08	/* FIFO overrun */
104 #define ENRSR_MPA	0x10	/* missed pkt */
105 #define ENRSR_PHY	0x20	/* physical/multicast address */
106 #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
107 #define ENRSR_DEF	0x80	/* deferring */
108 
109 /* Transmitted packet status, EN0_TSR. */
110 #define ENTSR_PTX 0x01	/* Packet transmitted without error */
111 #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
112 #define ENTSR_COL 0x04	/* The transmit collided at least once. */
113 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
114 #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
115 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
116 #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
117 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
118 
119 #define NE2000_PMEM_SIZE    (32*1024)
120 #define NE2000_PMEM_START   (16*1024)
121 #define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
122 #define NE2000_MEM_SIZE     NE2000_PMEM_END
123 
124 typedef struct NE2000State {
125     uint8_t cmd;
126     uint32_t start;
127     uint32_t stop;
128     uint8_t boundary;
129     uint8_t tsr;
130     uint8_t tpsr;
131     uint16_t tcnt;
132     uint16_t rcnt;
133     uint32_t rsar;
134     uint8_t rsr;
135     uint8_t rxcr;
136     uint8_t isr;
137     uint8_t dcfg;
138     uint8_t imr;
139     uint8_t phys[6]; /* mac address */
140     uint8_t curpag;
141     uint8_t mult[8]; /* multicast mask array */
142     qemu_irq irq;
143     int isa_io_base;
144     PCIDevice *pci_dev;
145     VLANClientState *vc;
146     uint8_t macaddr[6];
147     uint8_t mem[NE2000_MEM_SIZE];
148 } NE2000State;
149 
ne2000_reset(NE2000State * s)150 static void ne2000_reset(NE2000State *s)
151 {
152     int i;
153 
154     s->isr = ENISR_RESET;
155     memcpy(s->mem, s->macaddr, 6);
156     s->mem[14] = 0x57;
157     s->mem[15] = 0x57;
158 
159     /* duplicate prom data */
160     for(i = 15;i >= 0; i--) {
161         s->mem[2 * i] = s->mem[i];
162         s->mem[2 * i + 1] = s->mem[i];
163     }
164 }
165 
ne2000_update_irq(NE2000State * s)166 static void ne2000_update_irq(NE2000State *s)
167 {
168     int isr;
169     isr = (s->isr & s->imr) & 0x7f;
170 #if defined(DEBUG_NE2000)
171     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
172 	   isr ? 1 : 0, s->isr, s->imr);
173 #endif
174     qemu_set_irq(s->irq, (isr != 0));
175 }
176 
177 #define POLYNOMIAL 0x04c11db6
178 
179 /* From FreeBSD */
180 /* XXX: optimize */
compute_mcast_idx(const uint8_t * ep)181 static int compute_mcast_idx(const uint8_t *ep)
182 {
183     uint32_t crc;
184     int carry, i, j;
185     uint8_t b;
186 
187     crc = 0xffffffff;
188     for (i = 0; i < 6; i++) {
189         b = *ep++;
190         for (j = 0; j < 8; j++) {
191             carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
192             crc <<= 1;
193             b >>= 1;
194             if (carry)
195                 crc = ((crc ^ POLYNOMIAL) | carry);
196         }
197     }
198     return (crc >> 26);
199 }
200 
ne2000_buffer_full(NE2000State * s)201 static int ne2000_buffer_full(NE2000State *s)
202 {
203     int avail, index, boundary;
204 
205     index = s->curpag << 8;
206     boundary = s->boundary << 8;
207     if (index < boundary)
208         avail = boundary - index;
209     else
210         avail = (s->stop - s->start) - (index - boundary);
211     if (avail < (MAX_ETH_FRAME_SIZE + 4))
212         return 1;
213     return 0;
214 }
215 
ne2000_can_receive(VLANClientState * vc)216 static int ne2000_can_receive(VLANClientState *vc)
217 {
218     NE2000State *s = vc->opaque;
219 
220     if (s->cmd & E8390_STOP)
221         return 1;
222     return !ne2000_buffer_full(s);
223 }
224 
225 #define MIN_BUF_SIZE 60
226 
ne2000_receive(VLANClientState * vc,const uint8_t * buf,size_t size_)227 static ssize_t ne2000_receive(VLANClientState *vc, const uint8_t *buf, size_t size_)
228 {
229     NE2000State *s = vc->opaque;
230     int size = size_;
231     uint8_t *p;
232     unsigned int total_len, next, avail, len, index, mcast_idx;
233     uint8_t buf1[60];
234     static const uint8_t broadcast_macaddr[6] =
235         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
236 
237 #if defined(DEBUG_NE2000)
238     printf("NE2000: received len=%d\n", size);
239 #endif
240 
241     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
242         return -1;
243 
244     /* XXX: check this */
245     if (s->rxcr & 0x10) {
246         /* promiscuous: receive all */
247     } else {
248         if (!memcmp(buf,  broadcast_macaddr, 6)) {
249             /* broadcast address */
250             if (!(s->rxcr & 0x04))
251                 return size;
252         } else if (buf[0] & 0x01) {
253             /* multicast */
254             if (!(s->rxcr & 0x08))
255                 return size;
256             mcast_idx = compute_mcast_idx(buf);
257             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
258                 return size;
259         } else if (s->mem[0] == buf[0] &&
260                    s->mem[2] == buf[1] &&
261                    s->mem[4] == buf[2] &&
262                    s->mem[6] == buf[3] &&
263                    s->mem[8] == buf[4] &&
264                    s->mem[10] == buf[5]) {
265             /* match */
266         } else {
267             return size;
268         }
269     }
270 
271 
272     /* if too small buffer, then expand it */
273     if (size < MIN_BUF_SIZE) {
274         memcpy(buf1, buf, size);
275         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
276         buf = buf1;
277         size = MIN_BUF_SIZE;
278     }
279 
280     index = s->curpag << 8;
281     /* 4 bytes for header */
282     total_len = size + 4;
283     /* address for next packet (4 bytes for CRC) */
284     next = index + ((total_len + 4 + 255) & ~0xff);
285     if (next >= s->stop)
286         next -= (s->stop - s->start);
287     /* prepare packet header */
288     p = s->mem + index;
289     s->rsr = ENRSR_RXOK; /* receive status */
290     /* XXX: check this */
291     if (buf[0] & 0x01)
292         s->rsr |= ENRSR_PHY;
293     p[0] = s->rsr;
294     p[1] = next >> 8;
295     p[2] = total_len;
296     p[3] = total_len >> 8;
297     index += 4;
298 
299     /* write packet data */
300     while (size > 0) {
301         if (index <= s->stop)
302             avail = s->stop - index;
303         else
304             avail = 0;
305         len = size;
306         if (len > avail)
307             len = avail;
308         memcpy(s->mem + index, buf, len);
309         buf += len;
310         index += len;
311         if (index == s->stop)
312             index = s->start;
313         size -= len;
314     }
315     s->curpag = next >> 8;
316 
317     /* now we can signal we have received something */
318     s->isr |= ENISR_RX;
319     ne2000_update_irq(s);
320 
321     return size_;
322 }
323 
ne2000_ioport_write(void * opaque,uint32_t addr,uint32_t val)324 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
325 {
326     NE2000State *s = opaque;
327     int offset, page, index;
328 
329     addr &= 0xf;
330 #ifdef DEBUG_NE2000
331     printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
332 #endif
333     if (addr == E8390_CMD) {
334         /* control register */
335         s->cmd = val;
336         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
337             s->isr &= ~ENISR_RESET;
338             /* test specific case: zero length transfer */
339             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
340                 s->rcnt == 0) {
341                 s->isr |= ENISR_RDC;
342                 ne2000_update_irq(s);
343             }
344             if (val & E8390_TRANS) {
345                 index = (s->tpsr << 8);
346                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
347                 if (index >= NE2000_PMEM_END)
348                     index -= NE2000_PMEM_SIZE;
349                 /* fail safe: check range on the transmitted length  */
350                 if (index + s->tcnt <= NE2000_PMEM_END) {
351                     qemu_send_packet(s->vc, s->mem + index, s->tcnt);
352                 }
353                 /* signal end of transfer */
354                 s->tsr = ENTSR_PTX;
355                 s->isr |= ENISR_TX;
356                 s->cmd &= ~E8390_TRANS;
357                 ne2000_update_irq(s);
358             }
359         }
360     } else {
361         page = s->cmd >> 6;
362         offset = addr | (page << 4);
363         switch(offset) {
364         case EN0_STARTPG:
365             s->start = val << 8;
366             break;
367         case EN0_STOPPG:
368             s->stop = val << 8;
369             break;
370         case EN0_BOUNDARY:
371             s->boundary = val;
372             break;
373         case EN0_IMR:
374             s->imr = val;
375             ne2000_update_irq(s);
376             break;
377         case EN0_TPSR:
378             s->tpsr = val;
379             break;
380         case EN0_TCNTLO:
381             s->tcnt = (s->tcnt & 0xff00) | val;
382             break;
383         case EN0_TCNTHI:
384             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
385             break;
386         case EN0_RSARLO:
387             s->rsar = (s->rsar & 0xff00) | val;
388             break;
389         case EN0_RSARHI:
390             s->rsar = (s->rsar & 0x00ff) | (val << 8);
391             break;
392         case EN0_RCNTLO:
393             s->rcnt = (s->rcnt & 0xff00) | val;
394             break;
395         case EN0_RCNTHI:
396             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
397             break;
398         case EN0_RXCR:
399             s->rxcr = val;
400             break;
401         case EN0_DCFG:
402             s->dcfg = val;
403             break;
404         case EN0_ISR:
405             s->isr &= ~(val & 0x7f);
406             ne2000_update_irq(s);
407             break;
408         case EN1_PHYS ... EN1_PHYS + 5:
409             s->phys[offset - EN1_PHYS] = val;
410             break;
411         case EN1_CURPAG:
412             s->curpag = val;
413             break;
414         case EN1_MULT ... EN1_MULT + 7:
415             s->mult[offset - EN1_MULT] = val;
416             break;
417         }
418     }
419 }
420 
ne2000_ioport_read(void * opaque,uint32_t addr)421 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
422 {
423     NE2000State *s = opaque;
424     int offset, page, ret;
425 
426     addr &= 0xf;
427     if (addr == E8390_CMD) {
428         ret = s->cmd;
429     } else {
430         page = s->cmd >> 6;
431         offset = addr | (page << 4);
432         switch(offset) {
433         case EN0_TSR:
434             ret = s->tsr;
435             break;
436         case EN0_BOUNDARY:
437             ret = s->boundary;
438             break;
439         case EN0_ISR:
440             ret = s->isr;
441             break;
442 	case EN0_RSARLO:
443 	    ret = s->rsar & 0x00ff;
444 	    break;
445 	case EN0_RSARHI:
446 	    ret = s->rsar >> 8;
447 	    break;
448         case EN1_PHYS ... EN1_PHYS + 5:
449             ret = s->phys[offset - EN1_PHYS];
450             break;
451         case EN1_CURPAG:
452             ret = s->curpag;
453             break;
454         case EN1_MULT ... EN1_MULT + 7:
455             ret = s->mult[offset - EN1_MULT];
456             break;
457         case EN0_RSR:
458             ret = s->rsr;
459             break;
460         case EN2_STARTPG:
461             ret = s->start >> 8;
462             break;
463         case EN2_STOPPG:
464             ret = s->stop >> 8;
465             break;
466 	case EN0_RTL8029ID0:
467 	    ret = 0x50;
468 	    break;
469 	case EN0_RTL8029ID1:
470 	    ret = 0x43;
471 	    break;
472 	case EN3_CONFIG0:
473 	    ret = 0;		/* 10baseT media */
474 	    break;
475 	case EN3_CONFIG2:
476 	    ret = 0x40;		/* 10baseT active */
477 	    break;
478 	case EN3_CONFIG3:
479 	    ret = 0x40;		/* Full duplex */
480 	    break;
481         default:
482             ret = 0x00;
483             break;
484         }
485     }
486 #ifdef DEBUG_NE2000
487     printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
488 #endif
489     return ret;
490 }
491 
ne2000_mem_writeb(NE2000State * s,uint32_t addr,uint32_t val)492 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
493                                      uint32_t val)
494 {
495     if (addr < 32 ||
496         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
497         s->mem[addr] = val;
498     }
499 }
500 
ne2000_mem_writew(NE2000State * s,uint32_t addr,uint32_t val)501 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
502                                      uint32_t val)
503 {
504     addr &= ~1; /* XXX: check exact behaviour if not even */
505     if (addr < 32 ||
506         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
507         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
508     }
509 }
510 
ne2000_mem_writel(NE2000State * s,uint32_t addr,uint32_t val)511 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
512                                      uint32_t val)
513 {
514     addr &= ~1; /* XXX: check exact behaviour if not even */
515     if (addr < 32 ||
516         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
517         cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
518     }
519 }
520 
ne2000_mem_readb(NE2000State * s,uint32_t addr)521 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
522 {
523     if (addr < 32 ||
524         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
525         return s->mem[addr];
526     } else {
527         return 0xff;
528     }
529 }
530 
ne2000_mem_readw(NE2000State * s,uint32_t addr)531 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
532 {
533     addr &= ~1; /* XXX: check exact behaviour if not even */
534     if (addr < 32 ||
535         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
536         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
537     } else {
538         return 0xffff;
539     }
540 }
541 
ne2000_mem_readl(NE2000State * s,uint32_t addr)542 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
543 {
544     addr &= ~1; /* XXX: check exact behaviour if not even */
545     if (addr < 32 ||
546         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
547         return le32_to_cpupu((uint32_t *)(s->mem + addr));
548     } else {
549         return 0xffffffff;
550     }
551 }
552 
ne2000_dma_update(NE2000State * s,int len)553 static inline void ne2000_dma_update(NE2000State *s, int len)
554 {
555     s->rsar += len;
556     /* wrap */
557     /* XXX: check what to do if rsar > stop */
558     if (s->rsar == s->stop)
559         s->rsar = s->start;
560 
561     if (s->rcnt <= len) {
562         s->rcnt = 0;
563         /* signal end of transfer */
564         s->isr |= ENISR_RDC;
565         ne2000_update_irq(s);
566     } else {
567         s->rcnt -= len;
568     }
569 }
570 
ne2000_asic_ioport_write(void * opaque,uint32_t addr,uint32_t val)571 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
572 {
573     NE2000State *s = opaque;
574 
575 #ifdef DEBUG_NE2000
576     printf("NE2000: asic write val=0x%04x\n", val);
577 #endif
578     if (s->rcnt == 0)
579         return;
580     if (s->dcfg & 0x01) {
581         /* 16 bit access */
582         ne2000_mem_writew(s, s->rsar, val);
583         ne2000_dma_update(s, 2);
584     } else {
585         /* 8 bit access */
586         ne2000_mem_writeb(s, s->rsar, val);
587         ne2000_dma_update(s, 1);
588     }
589 }
590 
ne2000_asic_ioport_read(void * opaque,uint32_t addr)591 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
592 {
593     NE2000State *s = opaque;
594     int ret;
595 
596     if (s->dcfg & 0x01) {
597         /* 16 bit access */
598         ret = ne2000_mem_readw(s, s->rsar);
599         ne2000_dma_update(s, 2);
600     } else {
601         /* 8 bit access */
602         ret = ne2000_mem_readb(s, s->rsar);
603         ne2000_dma_update(s, 1);
604     }
605 #ifdef DEBUG_NE2000
606     printf("NE2000: asic read val=0x%04x\n", ret);
607 #endif
608     return ret;
609 }
610 
ne2000_asic_ioport_writel(void * opaque,uint32_t addr,uint32_t val)611 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
612 {
613     NE2000State *s = opaque;
614 
615 #ifdef DEBUG_NE2000
616     printf("NE2000: asic writel val=0x%04x\n", val);
617 #endif
618     if (s->rcnt == 0)
619         return;
620     /* 32 bit access */
621     ne2000_mem_writel(s, s->rsar, val);
622     ne2000_dma_update(s, 4);
623 }
624 
ne2000_asic_ioport_readl(void * opaque,uint32_t addr)625 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
626 {
627     NE2000State *s = opaque;
628     int ret;
629 
630     /* 32 bit access */
631     ret = ne2000_mem_readl(s, s->rsar);
632     ne2000_dma_update(s, 4);
633 #ifdef DEBUG_NE2000
634     printf("NE2000: asic readl val=0x%04x\n", ret);
635 #endif
636     return ret;
637 }
638 
ne2000_reset_ioport_write(void * opaque,uint32_t addr,uint32_t val)639 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
640 {
641     /* nothing to do (end of reset pulse) */
642 }
643 
ne2000_reset_ioport_read(void * opaque,uint32_t addr)644 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
645 {
646     NE2000State *s = opaque;
647     ne2000_reset(s);
648     return 0;
649 }
650 
ne2000_save(QEMUFile * f,void * opaque)651 static void ne2000_save(QEMUFile* f,void* opaque)
652 {
653 	NE2000State* s=(NE2000State*)opaque;
654         uint32_t tmp;
655 
656         if (s->pci_dev)
657             pci_device_save(s->pci_dev, f);
658 
659         qemu_put_8s(f, &s->rxcr);
660 
661 	qemu_put_8s(f, &s->cmd);
662 	qemu_put_be32s(f, &s->start);
663 	qemu_put_be32s(f, &s->stop);
664 	qemu_put_8s(f, &s->boundary);
665 	qemu_put_8s(f, &s->tsr);
666 	qemu_put_8s(f, &s->tpsr);
667 	qemu_put_be16s(f, &s->tcnt);
668 	qemu_put_be16s(f, &s->rcnt);
669 	qemu_put_be32s(f, &s->rsar);
670 	qemu_put_8s(f, &s->rsr);
671 	qemu_put_8s(f, &s->isr);
672 	qemu_put_8s(f, &s->dcfg);
673 	qemu_put_8s(f, &s->imr);
674 	qemu_put_buffer(f, s->phys, 6);
675 	qemu_put_8s(f, &s->curpag);
676 	qemu_put_buffer(f, s->mult, 8);
677         tmp = 0;
678 	qemu_put_be32s(f, &tmp); /* ignored, was irq */
679 	qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
680 }
681 
ne2000_load(QEMUFile * f,void * opaque,int version_id)682 static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
683 {
684 	NE2000State* s=(NE2000State*)opaque;
685         int ret;
686         uint32_t tmp;
687 
688         if (version_id > 3)
689             return -EINVAL;
690 
691         if (s->pci_dev && version_id >= 3) {
692             ret = pci_device_load(s->pci_dev, f);
693             if (ret < 0)
694                 return ret;
695         }
696 
697         if (version_id >= 2) {
698             qemu_get_8s(f, &s->rxcr);
699         } else {
700             s->rxcr = 0x0c;
701         }
702 
703 	qemu_get_8s(f, &s->cmd);
704 	qemu_get_be32s(f, &s->start);
705 	qemu_get_be32s(f, &s->stop);
706 	qemu_get_8s(f, &s->boundary);
707 	qemu_get_8s(f, &s->tsr);
708 	qemu_get_8s(f, &s->tpsr);
709 	qemu_get_be16s(f, &s->tcnt);
710 	qemu_get_be16s(f, &s->rcnt);
711 	qemu_get_be32s(f, &s->rsar);
712 	qemu_get_8s(f, &s->rsr);
713 	qemu_get_8s(f, &s->isr);
714 	qemu_get_8s(f, &s->dcfg);
715 	qemu_get_8s(f, &s->imr);
716 	qemu_get_buffer(f, s->phys, 6);
717 	qemu_get_8s(f, &s->curpag);
718 	qemu_get_buffer(f, s->mult, 8);
719 	qemu_get_be32s(f, &tmp); /* ignored */
720 	qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
721 
722 	return 0;
723 }
724 
isa_ne2000_cleanup(VLANClientState * vc)725 static void isa_ne2000_cleanup(VLANClientState *vc)
726 {
727     NE2000State *s = vc->opaque;
728 
729     unregister_savevm("ne2000", s);
730 
731     isa_unassign_ioport(s->isa_io_base, 16);
732     isa_unassign_ioport(s->isa_io_base + 0x10, 2);
733     isa_unassign_ioport(s->isa_io_base + 0x1f, 1);
734 
735     qemu_free(s);
736 }
737 
isa_ne2000_init(int base,qemu_irq irq,NICInfo * nd)738 void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
739 {
740     NE2000State *s;
741 
742     qemu_check_nic_model(nd, "ne2k_isa");
743 
744     s = qemu_mallocz(sizeof(NE2000State));
745 
746     register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
747     register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
748 
749     register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
750     register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
751     register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
752     register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
753 
754     register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
755     register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
756     s->isa_io_base = base;
757     s->irq = irq;
758     memcpy(s->macaddr, nd->macaddr, 6);
759 
760     ne2000_reset(s);
761 
762     s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
763                                  ne2000_can_receive, ne2000_receive, NULL,
764                                  isa_ne2000_cleanup, s);
765 
766     qemu_format_nic_info_str(s->vc, s->macaddr);
767 
768     register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
769 }
770 
771 /***********************************************************/
772 /* PCI NE2000 definitions */
773 
774 typedef struct PCINE2000State {
775     PCIDevice dev;
776     NE2000State ne2000;
777 } PCINE2000State;
778 
ne2000_map(PCIDevice * pci_dev,int region_num,uint32_t addr,uint32_t size,int type)779 static void ne2000_map(PCIDevice *pci_dev, int region_num,
780                        uint32_t addr, uint32_t size, int type)
781 {
782     PCINE2000State *d = (PCINE2000State *)pci_dev;
783     NE2000State *s = &d->ne2000;
784 
785     register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
786     register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
787 
788     register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
789     register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
790     register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
791     register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
792     register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
793     register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
794 
795     register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
796     register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
797 }
798 
ne2000_cleanup(VLANClientState * vc)799 static void ne2000_cleanup(VLANClientState *vc)
800 {
801     NE2000State *s = vc->opaque;
802 
803     unregister_savevm("ne2000", s);
804 }
805 
pci_ne2000_init(PCIDevice * pci_dev)806 static void pci_ne2000_init(PCIDevice *pci_dev)
807 {
808     PCINE2000State *d = (PCINE2000State *)pci_dev;
809     NE2000State *s;
810     uint8_t *pci_conf;
811 
812     pci_conf = d->dev.config;
813     pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
814     pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
815     pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
816     pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
817     pci_conf[0x3d] = 1; // interrupt pin 0
818 
819     pci_register_bar(&d->dev, 0, 0x100,
820                            PCI_ADDRESS_SPACE_IO, ne2000_map);
821     s = &d->ne2000;
822     s->irq = d->dev.irq[0];
823     s->pci_dev = (PCIDevice *)d;
824     qdev_get_macaddr(&d->dev.qdev, s->macaddr);
825     ne2000_reset(s);
826     s->vc = qdev_get_vlan_client(&d->dev.qdev,
827                                  ne2000_can_receive, ne2000_receive, NULL,
828                                  ne2000_cleanup, s);
829 
830     qemu_format_nic_info_str(s->vc, s->macaddr);
831 
832     register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
833 }
834 
ne2000_register_devices(void)835 static void ne2000_register_devices(void)
836 {
837     pci_qdev_register("ne2k_pci", sizeof(PCINE2000State), pci_ne2000_init);
838 }
839 
840 device_init(ne2000_register_devices)
841