• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkMatrix44_DEFINED
9 #define SkMatrix44_DEFINED
10 
11 #include "SkMatrix.h"
12 #include "SkScalar.h"
13 
14 #ifdef SK_MSCALAR_IS_DOUBLE
15 #ifdef SK_MSCALAR_IS_FLOAT
16     #error "can't define MSCALAR both as DOUBLE and FLOAT"
17 #endif
18     typedef double SkMScalar;
19 
SkFloatToMScalar(float x)20     static inline double SkFloatToMScalar(float x) {
21         return static_cast<double>(x);
22     }
SkMScalarToFloat(double x)23     static inline float SkMScalarToFloat(double x) {
24         return static_cast<float>(x);
25     }
SkDoubleToMScalar(double x)26     static inline double SkDoubleToMScalar(double x) {
27         return x;
28     }
SkMScalarToDouble(double x)29     static inline double SkMScalarToDouble(double x) {
30         return x;
31     }
32     static const SkMScalar SK_MScalarPI = 3.141592653589793;
33 #elif defined SK_MSCALAR_IS_FLOAT
34 #ifdef SK_MSCALAR_IS_DOUBLE
35     #error "can't define MSCALAR both as DOUBLE and FLOAT"
36 #endif
37     typedef float SkMScalar;
38 
SkFloatToMScalar(float x)39     static inline float SkFloatToMScalar(float x) {
40         return x;
41     }
SkMScalarToFloat(float x)42     static inline float SkMScalarToFloat(float x) {
43         return x;
44     }
SkDoubleToMScalar(double x)45     static inline float SkDoubleToMScalar(double x) {
46         return static_cast<float>(x);
47     }
SkMScalarToDouble(float x)48     static inline double SkMScalarToDouble(float x) {
49         return static_cast<double>(x);
50     }
51     static const SkMScalar SK_MScalarPI = 3.14159265f;
52 #endif
53 
54 #define SkMScalarToScalar SkMScalarToFloat
55 #define SkScalarToMScalar SkFloatToMScalar
56 
57 static const SkMScalar SK_MScalar1 = 1;
58 
59 ///////////////////////////////////////////////////////////////////////////////
60 
61 struct SkVector4 {
62     SkScalar fData[4];
63 
SkVector4SkVector464     SkVector4() {
65         this->set(0, 0, 0, 1);
66     }
SkVector4SkVector467     SkVector4(const SkVector4& src) {
68         memcpy(fData, src.fData, sizeof(fData));
69     }
70     SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
71         fData[0] = x;
72         fData[1] = y;
73         fData[2] = z;
74         fData[3] = w;
75     }
76 
77     SkVector4& operator=(const SkVector4& src) {
78         memcpy(fData, src.fData, sizeof(fData));
79         return *this;
80     }
81 
82     bool operator==(const SkVector4& v) {
83         return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
84                fData[2] == v.fData[2] && fData[3] == v.fData[3];
85     }
86     bool operator!=(const SkVector4& v) {
87         return !(*this == v);
88     }
89     bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
90         return fData[0] == x && fData[1] == y &&
91                fData[2] == z && fData[3] == w;
92     }
93 
94     void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
95         fData[0] = x;
96         fData[1] = y;
97         fData[2] = z;
98         fData[3] = w;
99     }
100 };
101 
102 class SK_API SkMatrix44 {
103 public:
104 
105     enum Uninitialized_Constructor {
106         kUninitialized_Constructor
107     };
108     enum Identity_Constructor {
109         kIdentity_Constructor
110     };
111 
SkMatrix44(Uninitialized_Constructor)112     SkMatrix44(Uninitialized_Constructor) { }
SkMatrix44(Identity_Constructor)113     SkMatrix44(Identity_Constructor) { this->setIdentity(); }
114 
115     // DEPRECATED: use the constructors that take an enum
SkMatrix44()116     SkMatrix44() { this->setIdentity(); }
117 
SkMatrix44(const SkMatrix44 & src)118     SkMatrix44(const SkMatrix44& src) {
119         memcpy(fMat, src.fMat, sizeof(fMat));
120         fTypeMask = src.fTypeMask;
121     }
122 
SkMatrix44(const SkMatrix44 & a,const SkMatrix44 & b)123     SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
124         this->setConcat(a, b);
125     }
126 
127     SkMatrix44& operator=(const SkMatrix44& src) {
128         memcpy(fMat, src.fMat, sizeof(fMat));
129         fTypeMask = src.fTypeMask;
130         return *this;
131     }
132 
133     bool operator==(const SkMatrix44& other) const;
134     bool operator!=(const SkMatrix44& other) const {
135         return !(other == *this);
136     }
137 
138     SkMatrix44(const SkMatrix&);
139     SkMatrix44& operator=(const SkMatrix& src);
140     operator SkMatrix() const;
141 
142     /**
143      *  Return a reference to a const identity matrix
144      */
145     static const SkMatrix44& I();
146 
147     enum TypeMask {
148         kIdentity_Mask      = 0,
149         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
150         kScale_Mask         = 0x02,  //!< set if the matrix has any scale != 1
151         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
152         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
153     };
154 
155     /**
156      *  Returns a bitfield describing the transformations the matrix may
157      *  perform. The bitfield is computed conservatively, so it may include
158      *  false positives. For example, when kPerspective_Mask is true, all
159      *  other bits may be set to true even in the case of a pure perspective
160      *  transform.
161      */
getType()162     inline TypeMask getType() const {
163         if (fTypeMask & kUnknown_Mask) {
164             fTypeMask = this->computeTypeMask();
165         }
166         SkASSERT(!(fTypeMask & kUnknown_Mask));
167         return (TypeMask)fTypeMask;
168     }
169 
170     /**
171      *  Return true if the matrix is identity.
172      */
isIdentity()173     inline bool isIdentity() const {
174         return kIdentity_Mask == this->getType();
175     }
176 
177     /**
178      *  Return true if the matrix contains translate or is identity.
179      */
isTranslate()180     inline bool isTranslate() const {
181         return !(this->getType() & ~kTranslate_Mask);
182     }
183 
184     /**
185      *  Return true if the matrix only contains scale or translate or is identity.
186      */
isScaleTranslate()187     inline bool isScaleTranslate() const {
188         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
189     }
190 
191     void setIdentity();
reset()192     inline void reset() { this->setIdentity();}
193 
194     /**
195      *  get a value from the matrix. The row,col parameters work as follows:
196      *  (0, 0)  scale-x
197      *  (0, 3)  translate-x
198      *  (3, 0)  perspective-x
199      */
get(int row,int col)200     inline SkMScalar get(int row, int col) const {
201         SkASSERT((unsigned)row <= 3);
202         SkASSERT((unsigned)col <= 3);
203         return fMat[col][row];
204     }
205 
206     /**
207      *  set a value in the matrix. The row,col parameters work as follows:
208      *  (0, 0)  scale-x
209      *  (0, 3)  translate-x
210      *  (3, 0)  perspective-x
211      */
set(int row,int col,SkMScalar value)212     inline void set(int row, int col, SkMScalar value) {
213         SkASSERT((unsigned)row <= 3);
214         SkASSERT((unsigned)col <= 3);
215         fMat[col][row] = value;
216         this->dirtyTypeMask();
217     }
218 
getDouble(int row,int col)219     inline double getDouble(int row, int col) const {
220         return SkMScalarToDouble(this->get(row, col));
221     }
setDouble(int row,int col,double value)222     inline void setDouble(int row, int col, double value) {
223         this->set(row, col, SkDoubleToMScalar(value));
224     }
225 
226     /** These methods allow one to efficiently read matrix entries into an
227      *  array. The given array must have room for exactly 16 entries. Whenever
228      *  possible, they will try to use memcpy rather than an entry-by-entry
229      *  copy.
230      */
231     void asColMajorf(float[]) const;
232     void asColMajord(double[]) const;
233     void asRowMajorf(float[]) const;
234     void asRowMajord(double[]) const;
235 
236     /** These methods allow one to efficiently set all matrix entries from an
237      *  array. The given array must have room for exactly 16 entries. Whenever
238      *  possible, they will try to use memcpy rather than an entry-by-entry
239      *  copy.
240      */
241     void setColMajorf(const float[]);
242     void setColMajord(const double[]);
243     void setRowMajorf(const float[]);
244     void setRowMajord(const double[]);
245 
246 #ifdef SK_MSCALAR_IS_FLOAT
setColMajor(const SkMScalar data[])247     void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
setRowMajor(const SkMScalar data[])248     void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
249 #else
setColMajor(const SkMScalar data[])250     void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
setRowMajor(const SkMScalar data[])251     void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
252 #endif
253 
254     void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
255                 SkMScalar m10, SkMScalar m11, SkMScalar m12,
256                 SkMScalar m20, SkMScalar m21, SkMScalar m22);
257 
258     void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
259     void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
260     void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
261 
262     void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
263     void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
264     void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
265 
setScale(SkMScalar scale)266     inline void setScale(SkMScalar scale) {
267         this->setScale(scale, scale, scale);
268     }
preScale(SkMScalar scale)269     inline void preScale(SkMScalar scale) {
270         this->preScale(scale, scale, scale);
271     }
postScale(SkMScalar scale)272     inline void postScale(SkMScalar scale) {
273         this->postScale(scale, scale, scale);
274     }
275 
setRotateDegreesAbout(SkMScalar x,SkMScalar y,SkMScalar z,SkMScalar degrees)276     void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
277                                SkMScalar degrees) {
278         this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
279     }
280 
281     /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
282         it will be automatically resized.
283      */
284     void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
285                         SkMScalar radians);
286     /** Rotate about the vector [x,y,z]. Does not check the length of the
287         vector, assuming it is unit-length.
288      */
289     void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
290                             SkMScalar radians);
291 
292     void setConcat(const SkMatrix44& a, const SkMatrix44& b);
preConcat(const SkMatrix44 & m)293     inline void preConcat(const SkMatrix44& m) {
294         this->setConcat(*this, m);
295     }
postConcat(const SkMatrix44 & m)296     inline void postConcat(const SkMatrix44& m) {
297         this->setConcat(m, *this);
298     }
299 
300     friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
301         return SkMatrix44(a, b);
302     }
303 
304     /** If this is invertible, return that in inverse and return true. If it is
305         not invertible, return false and ignore the inverse parameter.
306      */
307     bool invert(SkMatrix44* inverse) const;
308 
309     /** Transpose this matrix in place. */
310     void transpose();
311 
312     /** Apply the matrix to the src vector, returning the new vector in dst.
313         It is legal for src and dst to point to the same memory.
314      */
315     void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
mapScalars(SkScalar vec[4])316     inline void mapScalars(SkScalar vec[4]) const {
317         this->mapScalars(vec, vec);
318     }
319 
320     // DEPRECATED: call mapScalars()
map(const SkScalar src[4],SkScalar dst[4])321     void map(const SkScalar src[4], SkScalar dst[4]) const {
322         this->mapScalars(src, dst);
323     }
324     // DEPRECATED: call mapScalars()
map(SkScalar vec[4])325     void map(SkScalar vec[4]) const {
326         this->mapScalars(vec, vec);
327     }
328 
329 #ifdef SK_MSCALAR_IS_DOUBLE
330     void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
331 #elif defined SK_MSCALAR_IS_FLOAT
mapMScalars(const SkMScalar src[4],SkMScalar dst[4])332     inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
333         this->mapScalars(src, dst);
334     }
335 #endif
mapMScalars(SkMScalar vec[4])336     inline void mapMScalars(SkMScalar vec[4]) const {
337         this->mapMScalars(vec, vec);
338     }
339 
340     friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
341         SkVector4 dst;
342         m.map(src.fData, dst.fData);
343         return dst;
344     }
345 
346     /**
347      *  map an array of [x, y, 0, 1] through the matrix, returning an array
348      *  of [x', y', z', w'].
349      *
350      *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
351      *  @param count    number of [x, y] pairs in src2
352      *  @param dst4     array of [x', y', z', w'] quads as the output.
353      */
354     void map2(const float src2[], int count, float dst4[]) const;
355     void map2(const double src2[], int count, double dst4[]) const;
356 
357     void dump() const;
358 
359     double determinant() const;
360 
361 private:
362     SkMScalar           fMat[4][4];
363     mutable unsigned    fTypeMask;
364 
365     enum {
366         kUnknown_Mask = 0x80,
367 
368         kAllPublic_Masks = 0xF
369     };
370 
transX()371     SkMScalar transX() const { return fMat[3][0]; }
transY()372     SkMScalar transY() const { return fMat[3][1]; }
transZ()373     SkMScalar transZ() const { return fMat[3][2]; }
374 
scaleX()375     SkMScalar scaleX() const { return fMat[0][0]; }
scaleY()376     SkMScalar scaleY() const { return fMat[1][1]; }
scaleZ()377     SkMScalar scaleZ() const { return fMat[2][2]; }
378 
perspX()379     SkMScalar perspX() const { return fMat[0][3]; }
perspY()380     SkMScalar perspY() const { return fMat[1][3]; }
perspZ()381     SkMScalar perspZ() const { return fMat[2][3]; }
382 
383     int computeTypeMask() const;
384 
dirtyTypeMask()385     inline void dirtyTypeMask() {
386         fTypeMask = kUnknown_Mask;
387     }
388 
setTypeMask(int mask)389     inline void setTypeMask(int mask) {
390         SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
391         fTypeMask = mask;
392     }
393 
394     /**
395      *  Does not take the time to 'compute' the typemask. Only returns true if
396      *  we already know that this matrix is identity.
397      */
isTriviallyIdentity()398     inline bool isTriviallyIdentity() const {
399         return 0 == fTypeMask;
400     }
401 };
402 
403 #endif
404