• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16 
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/CodeGen/MachineInstrBundle.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include <vector>
22 
23 namespace llvm {
24 
25 /// MachineRegisterInfo - Keep track of information for virtual and physical
26 /// registers, including vreg register classes, use/def chains for registers,
27 /// etc.
28 class MachineRegisterInfo {
29   const TargetRegisterInfo *const TRI;
30 
31   /// IsSSA - True when the machine function is in SSA form and virtual
32   /// registers have a single def.
33   bool IsSSA;
34 
35   /// TracksLiveness - True while register liveness is being tracked accurately.
36   /// Basic block live-in lists, kill flags, and implicit defs may not be
37   /// accurate when after this flag is cleared.
38   bool TracksLiveness;
39 
40   /// VRegInfo - Information we keep for each virtual register.
41   ///
42   /// Each element in this list contains the register class of the vreg and the
43   /// start of the use/def list for the register.
44   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
45              VirtReg2IndexFunctor> VRegInfo;
46 
47   /// RegAllocHints - This vector records register allocation hints for virtual
48   /// registers. For each virtual register, it keeps a register and hint type
49   /// pair making up the allocation hint. Hint type is target specific except
50   /// for the value 0 which means the second value of the pair is the preferred
51   /// register for allocation. For example, if the hint is <0, 1024>, it means
52   /// the allocator should prefer the physical register allocated to the virtual
53   /// register of the hint.
54   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
55 
56   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
57   /// physical registers.
58   MachineOperand **PhysRegUseDefLists;
59 
60   /// getRegUseDefListHead - Return the head pointer for the register use/def
61   /// list for the specified virtual or physical register.
getRegUseDefListHead(unsigned RegNo)62   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
63     if (TargetRegisterInfo::isVirtualRegister(RegNo))
64       return VRegInfo[RegNo].second;
65     return PhysRegUseDefLists[RegNo];
66   }
67 
getRegUseDefListHead(unsigned RegNo)68   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
69     if (TargetRegisterInfo::isVirtualRegister(RegNo))
70       return VRegInfo[RegNo].second;
71     return PhysRegUseDefLists[RegNo];
72   }
73 
74   /// Get the next element in the use-def chain.
getNextOperandForReg(const MachineOperand * MO)75   static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
76     assert(MO && MO->isReg() && "This is not a register operand!");
77     return MO->Contents.Reg.Next;
78   }
79 
80   /// UsedRegUnits - This is a bit vector that is computed and set by the
81   /// register allocator, and must be kept up to date by passes that run after
82   /// register allocation (though most don't modify this).  This is used
83   /// so that the code generator knows which callee save registers to save and
84   /// for other target specific uses.
85   /// This vector has bits set for register units that are modified in the
86   /// current function. It doesn't include registers clobbered by function
87   /// calls with register mask operands.
88   BitVector UsedRegUnits;
89 
90   /// UsedPhysRegMask - Additional used physregs including aliases.
91   /// This bit vector represents all the registers clobbered by function calls.
92   /// It can model things that UsedRegUnits can't, such as function calls that
93   /// clobber ymm7 but preserve the low half in xmm7.
94   BitVector UsedPhysRegMask;
95 
96   /// ReservedRegs - This is a bit vector of reserved registers.  The target
97   /// may change its mind about which registers should be reserved.  This
98   /// vector is the frozen set of reserved registers when register allocation
99   /// started.
100   BitVector ReservedRegs;
101 
102   /// Keep track of the physical registers that are live in to the function.
103   /// Live in values are typically arguments in registers.  LiveIn values are
104   /// allowed to have virtual registers associated with them, stored in the
105   /// second element.
106   std::vector<std::pair<unsigned, unsigned> > LiveIns;
107 
108   MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
109   void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
110 public:
111   explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
112   ~MachineRegisterInfo();
113 
114   //===--------------------------------------------------------------------===//
115   // Function State
116   //===--------------------------------------------------------------------===//
117 
118   // isSSA - Returns true when the machine function is in SSA form. Early
119   // passes require the machine function to be in SSA form where every virtual
120   // register has a single defining instruction.
121   //
122   // The TwoAddressInstructionPass and PHIElimination passes take the machine
123   // function out of SSA form when they introduce multiple defs per virtual
124   // register.
isSSA()125   bool isSSA() const { return IsSSA; }
126 
127   // leaveSSA - Indicates that the machine function is no longer in SSA form.
leaveSSA()128   void leaveSSA() { IsSSA = false; }
129 
130   /// tracksLiveness - Returns true when tracking register liveness accurately.
131   ///
132   /// While this flag is true, register liveness information in basic block
133   /// live-in lists and machine instruction operands is accurate. This means it
134   /// can be used to change the code in ways that affect the values in
135   /// registers, for example by the register scavenger.
136   ///
137   /// When this flag is false, liveness is no longer reliable.
tracksLiveness()138   bool tracksLiveness() const { return TracksLiveness; }
139 
140   /// invalidateLiveness - Indicates that register liveness is no longer being
141   /// tracked accurately.
142   ///
143   /// This should be called by late passes that invalidate the liveness
144   /// information.
invalidateLiveness()145   void invalidateLiveness() { TracksLiveness = false; }
146 
147   //===--------------------------------------------------------------------===//
148   // Register Info
149   //===--------------------------------------------------------------------===//
150 
151   // Strictly for use by MachineInstr.cpp.
152   void addRegOperandToUseList(MachineOperand *MO);
153 
154   // Strictly for use by MachineInstr.cpp.
155   void removeRegOperandFromUseList(MachineOperand *MO);
156 
157   // Strictly for use by MachineInstr.cpp.
158   void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
159 
160   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
161   /// and uses of a register within the MachineFunction that corresponds to this
162   /// MachineRegisterInfo object.
163   template<bool Uses, bool Defs, bool SkipDebug>
164   class defusechain_iterator;
165 
166   // Make it a friend so it can access getNextOperandForReg().
167   template<bool, bool, bool> friend class defusechain_iterator;
168 
169   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
170   /// register.
171   typedef defusechain_iterator<true,true,false> reg_iterator;
reg_begin(unsigned RegNo)172   reg_iterator reg_begin(unsigned RegNo) const {
173     return reg_iterator(getRegUseDefListHead(RegNo));
174   }
reg_end()175   static reg_iterator reg_end() { return reg_iterator(0); }
176 
177   /// reg_empty - Return true if there are no instructions using or defining the
178   /// specified register (it may be live-in).
reg_empty(unsigned RegNo)179   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
180 
181   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
182   /// of the specified register, skipping those marked as Debug.
183   typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
reg_nodbg_begin(unsigned RegNo)184   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
185     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
186   }
reg_nodbg_end()187   static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
188 
189   /// reg_nodbg_empty - Return true if the only instructions using or defining
190   /// Reg are Debug instructions.
reg_nodbg_empty(unsigned RegNo)191   bool reg_nodbg_empty(unsigned RegNo) const {
192     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
193   }
194 
195   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
196   typedef defusechain_iterator<false,true,false> def_iterator;
def_begin(unsigned RegNo)197   def_iterator def_begin(unsigned RegNo) const {
198     return def_iterator(getRegUseDefListHead(RegNo));
199   }
def_end()200   static def_iterator def_end() { return def_iterator(0); }
201 
202   /// def_empty - Return true if there are no instructions defining the
203   /// specified register (it may be live-in).
def_empty(unsigned RegNo)204   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
205 
206   /// hasOneDef - Return true if there is exactly one instruction defining the
207   /// specified register.
hasOneDef(unsigned RegNo)208   bool hasOneDef(unsigned RegNo) const {
209     def_iterator DI = def_begin(RegNo);
210     if (DI == def_end())
211       return false;
212     return ++DI == def_end();
213   }
214 
215   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
216   typedef defusechain_iterator<true,false,false> use_iterator;
use_begin(unsigned RegNo)217   use_iterator use_begin(unsigned RegNo) const {
218     return use_iterator(getRegUseDefListHead(RegNo));
219   }
use_end()220   static use_iterator use_end() { return use_iterator(0); }
221 
222   /// use_empty - Return true if there are no instructions using the specified
223   /// register.
use_empty(unsigned RegNo)224   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
225 
226   /// hasOneUse - Return true if there is exactly one instruction using the
227   /// specified register.
hasOneUse(unsigned RegNo)228   bool hasOneUse(unsigned RegNo) const {
229     use_iterator UI = use_begin(RegNo);
230     if (UI == use_end())
231       return false;
232     return ++UI == use_end();
233   }
234 
235   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
236   /// specified register, skipping those marked as Debug.
237   typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
use_nodbg_begin(unsigned RegNo)238   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
239     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
240   }
use_nodbg_end()241   static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
242 
243   /// use_nodbg_empty - Return true if there are no non-Debug instructions
244   /// using the specified register.
use_nodbg_empty(unsigned RegNo)245   bool use_nodbg_empty(unsigned RegNo) const {
246     return use_nodbg_begin(RegNo) == use_nodbg_end();
247   }
248 
249   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
250   /// instruction using the specified register.
251   bool hasOneNonDBGUse(unsigned RegNo) const;
252 
253   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
254   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
255   /// except that it also changes any definitions of the register as well.
256   ///
257   /// Note that it is usually necessary to first constrain ToReg's register
258   /// class to match the FromReg constraints using:
259   ///
260   ///   constrainRegClass(ToReg, getRegClass(FromReg))
261   ///
262   /// That function will return NULL if the virtual registers have incompatible
263   /// constraints.
264   void replaceRegWith(unsigned FromReg, unsigned ToReg);
265 
266   /// getVRegDef - Return the machine instr that defines the specified virtual
267   /// register or null if none is found.  This assumes that the code is in SSA
268   /// form, so there should only be one definition.
269   MachineInstr *getVRegDef(unsigned Reg) const;
270 
271   /// getUniqueVRegDef - Return the unique machine instr that defines the
272   /// specified virtual register or null if none is found.  If there are
273   /// multiple definitions or no definition, return null.
274   MachineInstr *getUniqueVRegDef(unsigned Reg) const;
275 
276   /// clearKillFlags - Iterate over all the uses of the given register and
277   /// clear the kill flag from the MachineOperand. This function is used by
278   /// optimization passes which extend register lifetimes and need only
279   /// preserve conservative kill flag information.
280   void clearKillFlags(unsigned Reg) const;
281 
282 #ifndef NDEBUG
283   void dumpUses(unsigned RegNo) const;
284 #endif
285 
286   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
287   /// throughout the function.  It is safe to move instructions that read such
288   /// a physreg.
289   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
290 
291   //===--------------------------------------------------------------------===//
292   // Virtual Register Info
293   //===--------------------------------------------------------------------===//
294 
295   /// getRegClass - Return the register class of the specified virtual register.
296   ///
getRegClass(unsigned Reg)297   const TargetRegisterClass *getRegClass(unsigned Reg) const {
298     return VRegInfo[Reg].first;
299   }
300 
301   /// setRegClass - Set the register class of the specified virtual register.
302   ///
303   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
304 
305   /// constrainRegClass - Constrain the register class of the specified virtual
306   /// register to be a common subclass of RC and the current register class,
307   /// but only if the new class has at least MinNumRegs registers.  Return the
308   /// new register class, or NULL if no such class exists.
309   /// This should only be used when the constraint is known to be trivial, like
310   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
311   ///
312   const TargetRegisterClass *constrainRegClass(unsigned Reg,
313                                                const TargetRegisterClass *RC,
314                                                unsigned MinNumRegs = 0);
315 
316   /// recomputeRegClass - Try to find a legal super-class of Reg's register
317   /// class that still satisfies the constraints from the instructions using
318   /// Reg.  Returns true if Reg was upgraded.
319   ///
320   /// This method can be used after constraints have been removed from a
321   /// virtual register, for example after removing instructions or splitting
322   /// the live range.
323   ///
324   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
325 
326   /// createVirtualRegister - Create and return a new virtual register in the
327   /// function with the specified register class.
328   ///
329   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
330 
331   /// getNumVirtRegs - Return the number of virtual registers created.
332   ///
getNumVirtRegs()333   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
334 
335   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
336   void clearVirtRegs();
337 
338   /// setRegAllocationHint - Specify a register allocation hint for the
339   /// specified virtual register.
setRegAllocationHint(unsigned Reg,unsigned Type,unsigned PrefReg)340   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
341     RegAllocHints[Reg].first  = Type;
342     RegAllocHints[Reg].second = PrefReg;
343   }
344 
345   /// getRegAllocationHint - Return the register allocation hint for the
346   /// specified virtual register.
347   std::pair<unsigned, unsigned>
getRegAllocationHint(unsigned Reg)348   getRegAllocationHint(unsigned Reg) const {
349     return RegAllocHints[Reg];
350   }
351 
352   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
353   /// standard simple hint (Type == 0) is not set.
getSimpleHint(unsigned Reg)354   unsigned getSimpleHint(unsigned Reg) const {
355     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
356     return Hint.first ? 0 : Hint.second;
357   }
358 
359 
360   //===--------------------------------------------------------------------===//
361   // Physical Register Use Info
362   //===--------------------------------------------------------------------===//
363 
364   /// isPhysRegUsed - Return true if the specified register is used in this
365   /// function. Also check for clobbered aliases and registers clobbered by
366   /// function calls with register mask operands.
367   ///
368   /// This only works after register allocation. It is primarily used by
369   /// PrologEpilogInserter to determine which callee-saved registers need
370   /// spilling.
isPhysRegUsed(unsigned Reg)371   bool isPhysRegUsed(unsigned Reg) const {
372     if (UsedPhysRegMask.test(Reg))
373       return true;
374     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
375       if (UsedRegUnits.test(*Units))
376         return true;
377     return false;
378   }
379 
380   /// Mark the specified register unit as used in this function.
381   /// This should only be called during and after register allocation.
setRegUnitUsed(unsigned RegUnit)382   void setRegUnitUsed(unsigned RegUnit) {
383     UsedRegUnits.set(RegUnit);
384   }
385 
386   /// setPhysRegUsed - Mark the specified register used in this function.
387   /// This should only be called during and after register allocation.
setPhysRegUsed(unsigned Reg)388   void setPhysRegUsed(unsigned Reg) {
389     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
390       UsedRegUnits.set(*Units);
391   }
392 
393   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
394   /// This corresponds to the bit mask attached to register mask operands.
addPhysRegsUsedFromRegMask(const uint32_t * RegMask)395   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
396     UsedPhysRegMask.setBitsNotInMask(RegMask);
397   }
398 
399   /// setPhysRegUnused - Mark the specified register unused in this function.
400   /// This should only be called during and after register allocation.
setPhysRegUnused(unsigned Reg)401   void setPhysRegUnused(unsigned Reg) {
402     UsedPhysRegMask.reset(Reg);
403     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
404       UsedRegUnits.reset(*Units);
405   }
406 
407 
408   //===--------------------------------------------------------------------===//
409   // Reserved Register Info
410   //===--------------------------------------------------------------------===//
411   //
412   // The set of reserved registers must be invariant during register
413   // allocation.  For example, the target cannot suddenly decide it needs a
414   // frame pointer when the register allocator has already used the frame
415   // pointer register for something else.
416   //
417   // These methods can be used by target hooks like hasFP() to avoid changing
418   // the reserved register set during register allocation.
419 
420   /// freezeReservedRegs - Called by the register allocator to freeze the set
421   /// of reserved registers before allocation begins.
422   void freezeReservedRegs(const MachineFunction&);
423 
424   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
425   /// to ensure the set of reserved registers stays constant.
reservedRegsFrozen()426   bool reservedRegsFrozen() const {
427     return !ReservedRegs.empty();
428   }
429 
430   /// canReserveReg - Returns true if PhysReg can be used as a reserved
431   /// register.  Any register can be reserved before freezeReservedRegs() is
432   /// called.
canReserveReg(unsigned PhysReg)433   bool canReserveReg(unsigned PhysReg) const {
434     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
435   }
436 
437   /// getReservedRegs - Returns a reference to the frozen set of reserved
438   /// registers. This method should always be preferred to calling
439   /// TRI::getReservedRegs() when possible.
getReservedRegs()440   const BitVector &getReservedRegs() const {
441     assert(reservedRegsFrozen() &&
442            "Reserved registers haven't been frozen yet. "
443            "Use TRI::getReservedRegs().");
444     return ReservedRegs;
445   }
446 
447   /// isReserved - Returns true when PhysReg is a reserved register.
448   ///
449   /// Reserved registers may belong to an allocatable register class, but the
450   /// target has explicitly requested that they are not used.
451   ///
isReserved(unsigned PhysReg)452   bool isReserved(unsigned PhysReg) const {
453     return getReservedRegs().test(PhysReg);
454   }
455 
456   /// isAllocatable - Returns true when PhysReg belongs to an allocatable
457   /// register class and it hasn't been reserved.
458   ///
459   /// Allocatable registers may show up in the allocation order of some virtual
460   /// register, so a register allocator needs to track its liveness and
461   /// availability.
isAllocatable(unsigned PhysReg)462   bool isAllocatable(unsigned PhysReg) const {
463     return TRI->isInAllocatableClass(PhysReg) && !isReserved(PhysReg);
464   }
465 
466   //===--------------------------------------------------------------------===//
467   // LiveIn Management
468   //===--------------------------------------------------------------------===//
469 
470   /// addLiveIn - Add the specified register as a live-in.  Note that it
471   /// is an error to add the same register to the same set more than once.
472   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
473     LiveIns.push_back(std::make_pair(Reg, vreg));
474   }
475 
476   // Iteration support for the live-ins set.  It's kept in sorted order
477   // by register number.
478   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
479   livein_iterator;
livein_begin()480   livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_end()481   livein_iterator livein_end()   const { return LiveIns.end(); }
livein_empty()482   bool            livein_empty() const { return LiveIns.empty(); }
483 
484   bool isLiveIn(unsigned Reg) const;
485 
486   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
487   /// corresponding live-in physical register.
488   unsigned getLiveInPhysReg(unsigned VReg) const;
489 
490   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
491   /// corresponding live-in physical register.
492   unsigned getLiveInVirtReg(unsigned PReg) const;
493 
494   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
495   /// into the given entry block.
496   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
497                         const TargetRegisterInfo &TRI,
498                         const TargetInstrInfo &TII);
499 
500   /// defusechain_iterator - This class provides iterator support for machine
501   /// operands in the function that use or define a specific register.  If
502   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
503   /// returns defs.  If neither are true then you are silly and it always
504   /// returns end().  If SkipDebug is true it skips uses marked Debug
505   /// when incrementing.
506   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
507   class defusechain_iterator
508     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
509     MachineOperand *Op;
defusechain_iterator(MachineOperand * op)510     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
511       // If the first node isn't one we're interested in, advance to one that
512       // we are interested in.
513       if (op) {
514         if ((!ReturnUses && op->isUse()) ||
515             (!ReturnDefs && op->isDef()) ||
516             (SkipDebug && op->isDebug()))
517           ++*this;
518       }
519     }
520     friend class MachineRegisterInfo;
521   public:
522     typedef std::iterator<std::forward_iterator_tag,
523                           MachineInstr, ptrdiff_t>::reference reference;
524     typedef std::iterator<std::forward_iterator_tag,
525                           MachineInstr, ptrdiff_t>::pointer pointer;
526 
defusechain_iterator(const defusechain_iterator & I)527     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
defusechain_iterator()528     defusechain_iterator() : Op(0) {}
529 
530     bool operator==(const defusechain_iterator &x) const {
531       return Op == x.Op;
532     }
533     bool operator!=(const defusechain_iterator &x) const {
534       return !operator==(x);
535     }
536 
537     /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()538     bool atEnd() const { return Op == 0; }
539 
540     // Iterator traversal: forward iteration only
541     defusechain_iterator &operator++() {          // Preincrement
542       assert(Op && "Cannot increment end iterator!");
543       Op = getNextOperandForReg(Op);
544 
545       // All defs come before the uses, so stop def_iterator early.
546       if (!ReturnUses) {
547         if (Op) {
548           if (Op->isUse())
549             Op = 0;
550           else
551             assert(!Op->isDebug() && "Can't have debug defs");
552         }
553       } else {
554         // If this is an operand we don't care about, skip it.
555         while (Op && ((!ReturnDefs && Op->isDef()) ||
556                       (SkipDebug && Op->isDebug())))
557           Op = getNextOperandForReg(Op);
558       }
559 
560       return *this;
561     }
562     defusechain_iterator operator++(int) {        // Postincrement
563       defusechain_iterator tmp = *this; ++*this; return tmp;
564     }
565 
566     /// skipInstruction - move forward until reaching a different instruction.
567     /// Return the skipped instruction that is no longer pointed to, or NULL if
568     /// already pointing to end().
skipInstruction()569     MachineInstr *skipInstruction() {
570       if (!Op) return 0;
571       MachineInstr *MI = Op->getParent();
572       do ++*this;
573       while (Op && Op->getParent() == MI);
574       return MI;
575     }
576 
skipBundle()577     MachineInstr *skipBundle() {
578       if (!Op) return 0;
579       MachineInstr *MI = getBundleStart(Op->getParent());
580       do ++*this;
581       while (Op && getBundleStart(Op->getParent()) == MI);
582       return MI;
583     }
584 
getOperand()585     MachineOperand &getOperand() const {
586       assert(Op && "Cannot dereference end iterator!");
587       return *Op;
588     }
589 
590     /// getOperandNo - Return the operand # of this MachineOperand in its
591     /// MachineInstr.
getOperandNo()592     unsigned getOperandNo() const {
593       assert(Op && "Cannot dereference end iterator!");
594       return Op - &Op->getParent()->getOperand(0);
595     }
596 
597     // Retrieve a reference to the current operand.
598     MachineInstr &operator*() const {
599       assert(Op && "Cannot dereference end iterator!");
600       return *Op->getParent();
601     }
602 
603     MachineInstr *operator->() const {
604       assert(Op && "Cannot dereference end iterator!");
605       return Op->getParent();
606     }
607   };
608 
609 };
610 
611 } // End llvm namespace
612 
613 #endif
614