1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MachineRegisterInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H 15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H 16 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/CodeGen/MachineInstrBundle.h" 20 #include "llvm/Target/TargetRegisterInfo.h" 21 #include <vector> 22 23 namespace llvm { 24 25 /// MachineRegisterInfo - Keep track of information for virtual and physical 26 /// registers, including vreg register classes, use/def chains for registers, 27 /// etc. 28 class MachineRegisterInfo { 29 const TargetRegisterInfo *const TRI; 30 31 /// IsSSA - True when the machine function is in SSA form and virtual 32 /// registers have a single def. 33 bool IsSSA; 34 35 /// TracksLiveness - True while register liveness is being tracked accurately. 36 /// Basic block live-in lists, kill flags, and implicit defs may not be 37 /// accurate when after this flag is cleared. 38 bool TracksLiveness; 39 40 /// VRegInfo - Information we keep for each virtual register. 41 /// 42 /// Each element in this list contains the register class of the vreg and the 43 /// start of the use/def list for the register. 44 IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>, 45 VirtReg2IndexFunctor> VRegInfo; 46 47 /// RegAllocHints - This vector records register allocation hints for virtual 48 /// registers. For each virtual register, it keeps a register and hint type 49 /// pair making up the allocation hint. Hint type is target specific except 50 /// for the value 0 which means the second value of the pair is the preferred 51 /// register for allocation. For example, if the hint is <0, 1024>, it means 52 /// the allocator should prefer the physical register allocated to the virtual 53 /// register of the hint. 54 IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints; 55 56 /// PhysRegUseDefLists - This is an array of the head of the use/def list for 57 /// physical registers. 58 MachineOperand **PhysRegUseDefLists; 59 60 /// getRegUseDefListHead - Return the head pointer for the register use/def 61 /// list for the specified virtual or physical register. getRegUseDefListHead(unsigned RegNo)62 MachineOperand *&getRegUseDefListHead(unsigned RegNo) { 63 if (TargetRegisterInfo::isVirtualRegister(RegNo)) 64 return VRegInfo[RegNo].second; 65 return PhysRegUseDefLists[RegNo]; 66 } 67 getRegUseDefListHead(unsigned RegNo)68 MachineOperand *getRegUseDefListHead(unsigned RegNo) const { 69 if (TargetRegisterInfo::isVirtualRegister(RegNo)) 70 return VRegInfo[RegNo].second; 71 return PhysRegUseDefLists[RegNo]; 72 } 73 74 /// Get the next element in the use-def chain. getNextOperandForReg(const MachineOperand * MO)75 static MachineOperand *getNextOperandForReg(const MachineOperand *MO) { 76 assert(MO && MO->isReg() && "This is not a register operand!"); 77 return MO->Contents.Reg.Next; 78 } 79 80 /// UsedRegUnits - This is a bit vector that is computed and set by the 81 /// register allocator, and must be kept up to date by passes that run after 82 /// register allocation (though most don't modify this). This is used 83 /// so that the code generator knows which callee save registers to save and 84 /// for other target specific uses. 85 /// This vector has bits set for register units that are modified in the 86 /// current function. It doesn't include registers clobbered by function 87 /// calls with register mask operands. 88 BitVector UsedRegUnits; 89 90 /// UsedPhysRegMask - Additional used physregs including aliases. 91 /// This bit vector represents all the registers clobbered by function calls. 92 /// It can model things that UsedRegUnits can't, such as function calls that 93 /// clobber ymm7 but preserve the low half in xmm7. 94 BitVector UsedPhysRegMask; 95 96 /// ReservedRegs - This is a bit vector of reserved registers. The target 97 /// may change its mind about which registers should be reserved. This 98 /// vector is the frozen set of reserved registers when register allocation 99 /// started. 100 BitVector ReservedRegs; 101 102 /// Keep track of the physical registers that are live in to the function. 103 /// Live in values are typically arguments in registers. LiveIn values are 104 /// allowed to have virtual registers associated with them, stored in the 105 /// second element. 106 std::vector<std::pair<unsigned, unsigned> > LiveIns; 107 108 MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION; 109 void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION; 110 public: 111 explicit MachineRegisterInfo(const TargetRegisterInfo &TRI); 112 ~MachineRegisterInfo(); 113 114 //===--------------------------------------------------------------------===// 115 // Function State 116 //===--------------------------------------------------------------------===// 117 118 // isSSA - Returns true when the machine function is in SSA form. Early 119 // passes require the machine function to be in SSA form where every virtual 120 // register has a single defining instruction. 121 // 122 // The TwoAddressInstructionPass and PHIElimination passes take the machine 123 // function out of SSA form when they introduce multiple defs per virtual 124 // register. isSSA()125 bool isSSA() const { return IsSSA; } 126 127 // leaveSSA - Indicates that the machine function is no longer in SSA form. leaveSSA()128 void leaveSSA() { IsSSA = false; } 129 130 /// tracksLiveness - Returns true when tracking register liveness accurately. 131 /// 132 /// While this flag is true, register liveness information in basic block 133 /// live-in lists and machine instruction operands is accurate. This means it 134 /// can be used to change the code in ways that affect the values in 135 /// registers, for example by the register scavenger. 136 /// 137 /// When this flag is false, liveness is no longer reliable. tracksLiveness()138 bool tracksLiveness() const { return TracksLiveness; } 139 140 /// invalidateLiveness - Indicates that register liveness is no longer being 141 /// tracked accurately. 142 /// 143 /// This should be called by late passes that invalidate the liveness 144 /// information. invalidateLiveness()145 void invalidateLiveness() { TracksLiveness = false; } 146 147 //===--------------------------------------------------------------------===// 148 // Register Info 149 //===--------------------------------------------------------------------===// 150 151 // Strictly for use by MachineInstr.cpp. 152 void addRegOperandToUseList(MachineOperand *MO); 153 154 // Strictly for use by MachineInstr.cpp. 155 void removeRegOperandFromUseList(MachineOperand *MO); 156 157 // Strictly for use by MachineInstr.cpp. 158 void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps); 159 160 /// reg_begin/reg_end - Provide iteration support to walk over all definitions 161 /// and uses of a register within the MachineFunction that corresponds to this 162 /// MachineRegisterInfo object. 163 template<bool Uses, bool Defs, bool SkipDebug> 164 class defusechain_iterator; 165 166 // Make it a friend so it can access getNextOperandForReg(). 167 template<bool, bool, bool> friend class defusechain_iterator; 168 169 /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified 170 /// register. 171 typedef defusechain_iterator<true,true,false> reg_iterator; reg_begin(unsigned RegNo)172 reg_iterator reg_begin(unsigned RegNo) const { 173 return reg_iterator(getRegUseDefListHead(RegNo)); 174 } reg_end()175 static reg_iterator reg_end() { return reg_iterator(0); } 176 177 /// reg_empty - Return true if there are no instructions using or defining the 178 /// specified register (it may be live-in). reg_empty(unsigned RegNo)179 bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); } 180 181 /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses 182 /// of the specified register, skipping those marked as Debug. 183 typedef defusechain_iterator<true,true,true> reg_nodbg_iterator; reg_nodbg_begin(unsigned RegNo)184 reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const { 185 return reg_nodbg_iterator(getRegUseDefListHead(RegNo)); 186 } reg_nodbg_end()187 static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); } 188 189 /// reg_nodbg_empty - Return true if the only instructions using or defining 190 /// Reg are Debug instructions. reg_nodbg_empty(unsigned RegNo)191 bool reg_nodbg_empty(unsigned RegNo) const { 192 return reg_nodbg_begin(RegNo) == reg_nodbg_end(); 193 } 194 195 /// def_iterator/def_begin/def_end - Walk all defs of the specified register. 196 typedef defusechain_iterator<false,true,false> def_iterator; def_begin(unsigned RegNo)197 def_iterator def_begin(unsigned RegNo) const { 198 return def_iterator(getRegUseDefListHead(RegNo)); 199 } def_end()200 static def_iterator def_end() { return def_iterator(0); } 201 202 /// def_empty - Return true if there are no instructions defining the 203 /// specified register (it may be live-in). def_empty(unsigned RegNo)204 bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); } 205 206 /// hasOneDef - Return true if there is exactly one instruction defining the 207 /// specified register. hasOneDef(unsigned RegNo)208 bool hasOneDef(unsigned RegNo) const { 209 def_iterator DI = def_begin(RegNo); 210 if (DI == def_end()) 211 return false; 212 return ++DI == def_end(); 213 } 214 215 /// use_iterator/use_begin/use_end - Walk all uses of the specified register. 216 typedef defusechain_iterator<true,false,false> use_iterator; use_begin(unsigned RegNo)217 use_iterator use_begin(unsigned RegNo) const { 218 return use_iterator(getRegUseDefListHead(RegNo)); 219 } use_end()220 static use_iterator use_end() { return use_iterator(0); } 221 222 /// use_empty - Return true if there are no instructions using the specified 223 /// register. use_empty(unsigned RegNo)224 bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); } 225 226 /// hasOneUse - Return true if there is exactly one instruction using the 227 /// specified register. hasOneUse(unsigned RegNo)228 bool hasOneUse(unsigned RegNo) const { 229 use_iterator UI = use_begin(RegNo); 230 if (UI == use_end()) 231 return false; 232 return ++UI == use_end(); 233 } 234 235 /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the 236 /// specified register, skipping those marked as Debug. 237 typedef defusechain_iterator<true,false,true> use_nodbg_iterator; use_nodbg_begin(unsigned RegNo)238 use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const { 239 return use_nodbg_iterator(getRegUseDefListHead(RegNo)); 240 } use_nodbg_end()241 static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); } 242 243 /// use_nodbg_empty - Return true if there are no non-Debug instructions 244 /// using the specified register. use_nodbg_empty(unsigned RegNo)245 bool use_nodbg_empty(unsigned RegNo) const { 246 return use_nodbg_begin(RegNo) == use_nodbg_end(); 247 } 248 249 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug 250 /// instruction using the specified register. 251 bool hasOneNonDBGUse(unsigned RegNo) const; 252 253 /// replaceRegWith - Replace all instances of FromReg with ToReg in the 254 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), 255 /// except that it also changes any definitions of the register as well. 256 /// 257 /// Note that it is usually necessary to first constrain ToReg's register 258 /// class to match the FromReg constraints using: 259 /// 260 /// constrainRegClass(ToReg, getRegClass(FromReg)) 261 /// 262 /// That function will return NULL if the virtual registers have incompatible 263 /// constraints. 264 void replaceRegWith(unsigned FromReg, unsigned ToReg); 265 266 /// getVRegDef - Return the machine instr that defines the specified virtual 267 /// register or null if none is found. This assumes that the code is in SSA 268 /// form, so there should only be one definition. 269 MachineInstr *getVRegDef(unsigned Reg) const; 270 271 /// getUniqueVRegDef - Return the unique machine instr that defines the 272 /// specified virtual register or null if none is found. If there are 273 /// multiple definitions or no definition, return null. 274 MachineInstr *getUniqueVRegDef(unsigned Reg) const; 275 276 /// clearKillFlags - Iterate over all the uses of the given register and 277 /// clear the kill flag from the MachineOperand. This function is used by 278 /// optimization passes which extend register lifetimes and need only 279 /// preserve conservative kill flag information. 280 void clearKillFlags(unsigned Reg) const; 281 282 #ifndef NDEBUG 283 void dumpUses(unsigned RegNo) const; 284 #endif 285 286 /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant 287 /// throughout the function. It is safe to move instructions that read such 288 /// a physreg. 289 bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const; 290 291 //===--------------------------------------------------------------------===// 292 // Virtual Register Info 293 //===--------------------------------------------------------------------===// 294 295 /// getRegClass - Return the register class of the specified virtual register. 296 /// getRegClass(unsigned Reg)297 const TargetRegisterClass *getRegClass(unsigned Reg) const { 298 return VRegInfo[Reg].first; 299 } 300 301 /// setRegClass - Set the register class of the specified virtual register. 302 /// 303 void setRegClass(unsigned Reg, const TargetRegisterClass *RC); 304 305 /// constrainRegClass - Constrain the register class of the specified virtual 306 /// register to be a common subclass of RC and the current register class, 307 /// but only if the new class has at least MinNumRegs registers. Return the 308 /// new register class, or NULL if no such class exists. 309 /// This should only be used when the constraint is known to be trivial, like 310 /// GR32 -> GR32_NOSP. Beware of increasing register pressure. 311 /// 312 const TargetRegisterClass *constrainRegClass(unsigned Reg, 313 const TargetRegisterClass *RC, 314 unsigned MinNumRegs = 0); 315 316 /// recomputeRegClass - Try to find a legal super-class of Reg's register 317 /// class that still satisfies the constraints from the instructions using 318 /// Reg. Returns true if Reg was upgraded. 319 /// 320 /// This method can be used after constraints have been removed from a 321 /// virtual register, for example after removing instructions or splitting 322 /// the live range. 323 /// 324 bool recomputeRegClass(unsigned Reg, const TargetMachine&); 325 326 /// createVirtualRegister - Create and return a new virtual register in the 327 /// function with the specified register class. 328 /// 329 unsigned createVirtualRegister(const TargetRegisterClass *RegClass); 330 331 /// getNumVirtRegs - Return the number of virtual registers created. 332 /// getNumVirtRegs()333 unsigned getNumVirtRegs() const { return VRegInfo.size(); } 334 335 /// clearVirtRegs - Remove all virtual registers (after physreg assignment). 336 void clearVirtRegs(); 337 338 /// setRegAllocationHint - Specify a register allocation hint for the 339 /// specified virtual register. setRegAllocationHint(unsigned Reg,unsigned Type,unsigned PrefReg)340 void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) { 341 RegAllocHints[Reg].first = Type; 342 RegAllocHints[Reg].second = PrefReg; 343 } 344 345 /// getRegAllocationHint - Return the register allocation hint for the 346 /// specified virtual register. 347 std::pair<unsigned, unsigned> getRegAllocationHint(unsigned Reg)348 getRegAllocationHint(unsigned Reg) const { 349 return RegAllocHints[Reg]; 350 } 351 352 /// getSimpleHint - Return the preferred register allocation hint, or 0 if a 353 /// standard simple hint (Type == 0) is not set. getSimpleHint(unsigned Reg)354 unsigned getSimpleHint(unsigned Reg) const { 355 std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg); 356 return Hint.first ? 0 : Hint.second; 357 } 358 359 360 //===--------------------------------------------------------------------===// 361 // Physical Register Use Info 362 //===--------------------------------------------------------------------===// 363 364 /// isPhysRegUsed - Return true if the specified register is used in this 365 /// function. Also check for clobbered aliases and registers clobbered by 366 /// function calls with register mask operands. 367 /// 368 /// This only works after register allocation. It is primarily used by 369 /// PrologEpilogInserter to determine which callee-saved registers need 370 /// spilling. isPhysRegUsed(unsigned Reg)371 bool isPhysRegUsed(unsigned Reg) const { 372 if (UsedPhysRegMask.test(Reg)) 373 return true; 374 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 375 if (UsedRegUnits.test(*Units)) 376 return true; 377 return false; 378 } 379 380 /// Mark the specified register unit as used in this function. 381 /// This should only be called during and after register allocation. setRegUnitUsed(unsigned RegUnit)382 void setRegUnitUsed(unsigned RegUnit) { 383 UsedRegUnits.set(RegUnit); 384 } 385 386 /// setPhysRegUsed - Mark the specified register used in this function. 387 /// This should only be called during and after register allocation. setPhysRegUsed(unsigned Reg)388 void setPhysRegUsed(unsigned Reg) { 389 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 390 UsedRegUnits.set(*Units); 391 } 392 393 /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used. 394 /// This corresponds to the bit mask attached to register mask operands. addPhysRegsUsedFromRegMask(const uint32_t * RegMask)395 void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) { 396 UsedPhysRegMask.setBitsNotInMask(RegMask); 397 } 398 399 /// setPhysRegUnused - Mark the specified register unused in this function. 400 /// This should only be called during and after register allocation. setPhysRegUnused(unsigned Reg)401 void setPhysRegUnused(unsigned Reg) { 402 UsedPhysRegMask.reset(Reg); 403 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 404 UsedRegUnits.reset(*Units); 405 } 406 407 408 //===--------------------------------------------------------------------===// 409 // Reserved Register Info 410 //===--------------------------------------------------------------------===// 411 // 412 // The set of reserved registers must be invariant during register 413 // allocation. For example, the target cannot suddenly decide it needs a 414 // frame pointer when the register allocator has already used the frame 415 // pointer register for something else. 416 // 417 // These methods can be used by target hooks like hasFP() to avoid changing 418 // the reserved register set during register allocation. 419 420 /// freezeReservedRegs - Called by the register allocator to freeze the set 421 /// of reserved registers before allocation begins. 422 void freezeReservedRegs(const MachineFunction&); 423 424 /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called 425 /// to ensure the set of reserved registers stays constant. reservedRegsFrozen()426 bool reservedRegsFrozen() const { 427 return !ReservedRegs.empty(); 428 } 429 430 /// canReserveReg - Returns true if PhysReg can be used as a reserved 431 /// register. Any register can be reserved before freezeReservedRegs() is 432 /// called. canReserveReg(unsigned PhysReg)433 bool canReserveReg(unsigned PhysReg) const { 434 return !reservedRegsFrozen() || ReservedRegs.test(PhysReg); 435 } 436 437 /// getReservedRegs - Returns a reference to the frozen set of reserved 438 /// registers. This method should always be preferred to calling 439 /// TRI::getReservedRegs() when possible. getReservedRegs()440 const BitVector &getReservedRegs() const { 441 assert(reservedRegsFrozen() && 442 "Reserved registers haven't been frozen yet. " 443 "Use TRI::getReservedRegs()."); 444 return ReservedRegs; 445 } 446 447 /// isReserved - Returns true when PhysReg is a reserved register. 448 /// 449 /// Reserved registers may belong to an allocatable register class, but the 450 /// target has explicitly requested that they are not used. 451 /// isReserved(unsigned PhysReg)452 bool isReserved(unsigned PhysReg) const { 453 return getReservedRegs().test(PhysReg); 454 } 455 456 /// isAllocatable - Returns true when PhysReg belongs to an allocatable 457 /// register class and it hasn't been reserved. 458 /// 459 /// Allocatable registers may show up in the allocation order of some virtual 460 /// register, so a register allocator needs to track its liveness and 461 /// availability. isAllocatable(unsigned PhysReg)462 bool isAllocatable(unsigned PhysReg) const { 463 return TRI->isInAllocatableClass(PhysReg) && !isReserved(PhysReg); 464 } 465 466 //===--------------------------------------------------------------------===// 467 // LiveIn Management 468 //===--------------------------------------------------------------------===// 469 470 /// addLiveIn - Add the specified register as a live-in. Note that it 471 /// is an error to add the same register to the same set more than once. 472 void addLiveIn(unsigned Reg, unsigned vreg = 0) { 473 LiveIns.push_back(std::make_pair(Reg, vreg)); 474 } 475 476 // Iteration support for the live-ins set. It's kept in sorted order 477 // by register number. 478 typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator 479 livein_iterator; livein_begin()480 livein_iterator livein_begin() const { return LiveIns.begin(); } livein_end()481 livein_iterator livein_end() const { return LiveIns.end(); } livein_empty()482 bool livein_empty() const { return LiveIns.empty(); } 483 484 bool isLiveIn(unsigned Reg) const; 485 486 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the 487 /// corresponding live-in physical register. 488 unsigned getLiveInPhysReg(unsigned VReg) const; 489 490 /// getLiveInVirtReg - If PReg is a live-in physical register, return the 491 /// corresponding live-in physical register. 492 unsigned getLiveInVirtReg(unsigned PReg) const; 493 494 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers 495 /// into the given entry block. 496 void EmitLiveInCopies(MachineBasicBlock *EntryMBB, 497 const TargetRegisterInfo &TRI, 498 const TargetInstrInfo &TII); 499 500 /// defusechain_iterator - This class provides iterator support for machine 501 /// operands in the function that use or define a specific register. If 502 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it 503 /// returns defs. If neither are true then you are silly and it always 504 /// returns end(). If SkipDebug is true it skips uses marked Debug 505 /// when incrementing. 506 template<bool ReturnUses, bool ReturnDefs, bool SkipDebug> 507 class defusechain_iterator 508 : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> { 509 MachineOperand *Op; defusechain_iterator(MachineOperand * op)510 explicit defusechain_iterator(MachineOperand *op) : Op(op) { 511 // If the first node isn't one we're interested in, advance to one that 512 // we are interested in. 513 if (op) { 514 if ((!ReturnUses && op->isUse()) || 515 (!ReturnDefs && op->isDef()) || 516 (SkipDebug && op->isDebug())) 517 ++*this; 518 } 519 } 520 friend class MachineRegisterInfo; 521 public: 522 typedef std::iterator<std::forward_iterator_tag, 523 MachineInstr, ptrdiff_t>::reference reference; 524 typedef std::iterator<std::forward_iterator_tag, 525 MachineInstr, ptrdiff_t>::pointer pointer; 526 defusechain_iterator(const defusechain_iterator & I)527 defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {} defusechain_iterator()528 defusechain_iterator() : Op(0) {} 529 530 bool operator==(const defusechain_iterator &x) const { 531 return Op == x.Op; 532 } 533 bool operator!=(const defusechain_iterator &x) const { 534 return !operator==(x); 535 } 536 537 /// atEnd - return true if this iterator is equal to reg_end() on the value. atEnd()538 bool atEnd() const { return Op == 0; } 539 540 // Iterator traversal: forward iteration only 541 defusechain_iterator &operator++() { // Preincrement 542 assert(Op && "Cannot increment end iterator!"); 543 Op = getNextOperandForReg(Op); 544 545 // All defs come before the uses, so stop def_iterator early. 546 if (!ReturnUses) { 547 if (Op) { 548 if (Op->isUse()) 549 Op = 0; 550 else 551 assert(!Op->isDebug() && "Can't have debug defs"); 552 } 553 } else { 554 // If this is an operand we don't care about, skip it. 555 while (Op && ((!ReturnDefs && Op->isDef()) || 556 (SkipDebug && Op->isDebug()))) 557 Op = getNextOperandForReg(Op); 558 } 559 560 return *this; 561 } 562 defusechain_iterator operator++(int) { // Postincrement 563 defusechain_iterator tmp = *this; ++*this; return tmp; 564 } 565 566 /// skipInstruction - move forward until reaching a different instruction. 567 /// Return the skipped instruction that is no longer pointed to, or NULL if 568 /// already pointing to end(). skipInstruction()569 MachineInstr *skipInstruction() { 570 if (!Op) return 0; 571 MachineInstr *MI = Op->getParent(); 572 do ++*this; 573 while (Op && Op->getParent() == MI); 574 return MI; 575 } 576 skipBundle()577 MachineInstr *skipBundle() { 578 if (!Op) return 0; 579 MachineInstr *MI = getBundleStart(Op->getParent()); 580 do ++*this; 581 while (Op && getBundleStart(Op->getParent()) == MI); 582 return MI; 583 } 584 getOperand()585 MachineOperand &getOperand() const { 586 assert(Op && "Cannot dereference end iterator!"); 587 return *Op; 588 } 589 590 /// getOperandNo - Return the operand # of this MachineOperand in its 591 /// MachineInstr. getOperandNo()592 unsigned getOperandNo() const { 593 assert(Op && "Cannot dereference end iterator!"); 594 return Op - &Op->getParent()->getOperand(0); 595 } 596 597 // Retrieve a reference to the current operand. 598 MachineInstr &operator*() const { 599 assert(Op && "Cannot dereference end iterator!"); 600 return *Op->getParent(); 601 } 602 603 MachineInstr *operator->() const { 604 assert(Op && "Cannot dereference end iterator!"); 605 return Op->getParent(); 606 } 607 }; 608 609 }; 610 611 } // End llvm namespace 612 613 #endif 614